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ABSTRACT

Context: Systematic variability management helps efficiently man-
age commonalities and differences in software systems (e.g., in
software product lines and families). This enables the reuse of de-
velopment artifacts in organizations and increases the quality of
product variants. In software product lines, the product line archi-
tecture (PLA) is the core architecture for all product line variants. In
practice, software architectures are often not documented in detail.
Architecture recovery techniques can recover a system’s architec-
ture from development artifacts (e.g., source code). To recover the
architecture of product lines, we need recovery techniques that are
able to identify variability from different sources. Goal: We present
SAVaR, an approach to recover architectural variability from the
source code of product variants of a product line. SAVaR aims to
help developers to (a) create architectural documentation for a prod-
uct line, and (b) understand and improve the implementation of
variability. SAVaR identifies the smallest subset of architectural in-
formation that is common across products of a product line. To limit
the explosion of variability (and hence the complexity of architec-
ture documentation) in the product line architecture , SAVaR allows
architects to exclude architecture elements that appear in only a few
product variants. Method: We performed an exploratory study with
SAVaR to recover the architectures in ten academic product line
projects. We verified how the elimination of exclusive optional mod-
ules improves the results of SAVaR. Results: The results showed that
SAVaR is able to present improvements for the recovered PLAs and
it helped to identify that some projects maintained the variability
under control.
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1 INTRODUCTION

Variability is a characteristic of many software systems [10, 15] to
manage commonalities and differences across software products,
and to systematically accommodate reuse across organizations and
product variants [11], for example, in software product lines, prod-
uct platforms or ecosystems. Ideally, variability is identified and
designed into products early, instead of discovered and addressed
later in the life cycle [33]. Moreover, since variability is complex
and multi-faceted, it impacts software development processes and
practices (e.g., application and domain engineering practices in soft-
ware product lines) as well as software development artifacts (e.g.,
software architectures and designs that enable variability). Hence,
variability needs to be treated as a first-class citizen throughout
software development [12].

In software product lines (SPL), one example of variability-intensive
systems, variability is often supported during feature modeling or
product configuration [2]. At the software architecture level, vari-
ability may be supported by a product line architecture (PLA) as a
core architecture for all SPL products, representing the variation
points and possible variants represented in a system’s variability
model [28]. The PLA provides a high-level description of manda-
tory, optional, and variable components in the SPL, including their
relationships [14].

It is not uncommon for small and medium-sized companies to
adopt the SPL paradigm using a clone-and-own approach, by copy-
ing, adding or removing functional features from existing prod-
ucts [29]. This approach leads to ad-hoc product portfolios of multi-
ple yet similar product variants [9]. Furthermore, in this approach,
a common PLA and its explicit description do not exist. With the
growth of product portfolios, the management of variability and
reuse becomes more complex [30]. However, a PLA for the SPL
could be recovered from all the product variants and be used to
understand the commonalities between the implementations of
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products, variation points, etc. and eventually to guide systematic
SPL evolution.

Software architectures can be recovered from source code or
other available information (e.g., binaries) [7, 8]. However, software
architecture recovery (SAR) for product lines is more challenging
than recovering the architecture for “single” systems. This is be-
cause of the additional effort required to identify variability spread
across multiple implemented product variants and the challenges
related to representing variability at the architectural level. Existing
work on PLA recovery [23] focused on the reuse of architectural
information but lack information to support the architectural vari-
ability recovery, and in particular do not provide sound empirical
evaluations.

In this paper, we present the Software Architecture Variability
Recovery (SAVaR) approach for PLA recovery. SAVaR supports (a)
the identification of variability-related information from source
code, and (b) variability documentation at the architectural level. It
comprises two techniques for automating the PLA recovery , and a
guideline for how to use the techniques.

To evaluate SAVaR, we performed an exploratory study with ten
academic SPL projects. The results showed that SAVaR is able to:
(i) help to identify that the projects presenting small number of
threshold values considered the variability upfront and (ii) present
improvements for the recovered PLAs by reducing the number of
optional modules.

The remainder of this paper is organized as follows. Section 2
discusses background work related to variability in software archi-
tecture, architecture recovery and product line architecture. Sec-
tion 3 describes SAVaR, details of the two recovery techniques and
the guideline for supporting the PLA recovery with SAVaR. Sec-
tion 4 presents an exploratory study to investigate the application
of SAVaR. Section 5 presents related work. Section 6 concludes the
paper and summarizes its contributions and future work.

2 BACKGROUND

This section provides background information about variability
in software architecture (Section 2.1) and software architecture
recovery (Section 2.2).

2.1 Variability in Software Architecture

Variability is a concern of software systems that are developed
for different deployment and usage scenarios. Variability is also
reflected in the architecture of those systems [11, 15]. One type
of variability-intensive systems are software product lines. Vari-
ability can therefore be represented in and assessed through a
(documented) software architecture (for example, variability are
layered or modularized component and connector models that con-
tain constant elements and encapsulate parts of the system that
may change [11]). !

To address variability at the architecture level in software prod-
uct lines, and addressing [6, 10-12], the software engineering com-
munity introduced the concept of product line architectures (PLA) [1,
28]. PLA capture the core design of all products including variability

Note that in this work, we use the terms “architectural variability” and “variability in
software architecture” interchangeably.
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and commonalities of several products [36]. Product line architec-
tures are expected to enable reuse of existing structures with only
a limited number of exchangeable components to tailor the system
to each customer’s specific needs [3].

Software architecture documentation may comprise one or more
architectural views, such as a logical, physical, deployment or de-
velopment view [18]. This provides different types of stakeholders
who have different concerns with useful information [7].

Clements and colleagues argue that variability in an architecture
for a family of systems or product line needs to document the vari-
ation points (places in the architecture where variation can occur,
and associated alternatives), and the elements affected by the possi-
ble alternatives [7]. Moreover, if there are many variation points to
be documented, a specific view that shows just the variation points
can be used [7]. Therefore, variability can be presented in different
architectural views.

2.2 Software Architecture Recovery

Software architecture recovery (SAR) comprises the techniques and
processes to uncover a system’s architecture from development
artifacts (e.g., source code, binaries) [17]. SAR makes existing (but
potentially undocumented) software architectures explicit, by pro-
viding missing architectural specifications or supporting the update
of existing architecture documentation.

SAR requires different techniques and artifacts [32] to recover
architecture-relevant information to be presented in different types
of architectural views. For instance, the recovery of logical views [18]
relies on the analysis of requirements models, use cases and activ-
ity diagrams. In this example, a top-down recovery process could
start with high-level knowledge (requirements-related information)
and discovers the architecture [8]. On the other hand, the recov-
ery of physical and deployment views [18] requires the analysis
of dynamic information such as runtime logs, network traffic, con-
figuration files, and installation scripts. Similarly, the recovery of
development views [18] follows bottom-up processes and static
analysis to extract information from low-level artifacts (e.g., source
code).

SAR for SPL is more complex than for single systems, because of
the additional effort required to identify variability and common-
alities from different product variants. For instance, the recovery
of development views may require the analysis of #ifdef direc-
tives and the source code of several implemented product variants.
Additional concerns when recovering product line architectures
are how to abstract and represent variability and commonality in
a single PLA, and how to present them in architectural views for
different stakeholders. In this paper, we focus on the recovery of
development views [18]. The development view represents systems
components as collections of source code artifacts (e.g., files, func-
tions, types) and relations between these system components (e.g.,
calls, uses, sets).

We highlight that the implementation of a specific function can
differ from one variant to the other. However, this variability oc-
curs at lower levels (e.g., two methods that implement different
algorithms). Our objective is to identify the variability in a higher
level of abstraction, i.e., at the architecture level. In this context,
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the lower level variability (e.g., inside methods) does not affect the
structure of the PLA.

3 THE SAVAR APPROACH

This section introduces SAVaR, our approach for PLA recovery.
SAVaR is semi-automatic and follows a bottom-up architecture re-
covery process. SAVaR supports a recovery workflow based on a
sequence of extract-abstract-present activities [35]. Therefore, we
first describe this sequence of extract-abstract-present activities
(Section 3.1). Then, we discuss two techniques for automating the
PLA recovery (Section 3.2) and a guideline to help practitioners use
SAVaR (Section 3.3).

3.1 SAVaR Activities

Figure 1 presents SAVaR activities using the Software and Systems
Process Engineering Metamodel (SPEM).? We used SPEM to sum-
marize SAVaR activities sequence, inputs, outputs, and roles in a
high abstraction view. Adapting the roles involved in architecture
recovery proposed by Garcia et al. [13] to a product line context,
the following roles are involved: The Recoverer is responsible for
executing the steps described in the recovery guideline (see Sec-
tion 3.3). The SPL Architect is responsible for understanding and
verifying the conformance of the recovered PLA. The SPL Developer
is responsible for verifying the recovered architecture information
based on the SPL implementation and checking the relationship
between the SPL source code and the recovered PLA.

The recovered PLA is described in accordance with a reference
metamodel [21, 26] as a comprehensive conceptual basis for variabil-
ity at the architectural level. Next, we describe the SAVaR activities
by following the flow presented in Figure 1 (the numbers of sections
where we discuss each activity are also included in Figure 1). We
discuss SPL information collection (Section 3.1.1), information ex-
traction (Section 3.1.2), PLA recovery and variability identification
(Section 3.1.3), and PLA presentation (Section 3.1.4).

3.1.1  SPL Information Collection. This activity receives the SPL
source code and the guideline to support SAVaR as inputs. During
the SPL information collection, the recoverer gathers the infor-
mation about the SPL project by analyzing the source code and
identifying the mechanism used to implement variability. Such in-
formation allows the generation of the products that will be used
as input for the next activity.

Moreover, other assets such as feature model, documentation,
domain knowledge, requirements, etc., provide additional support
when they are available. However, to execute the PLA recovery
with SAVaR only the source code (or binary) is mandatory; other
information sources are optional. The output of this activity is a
set of variants source code.

3.1.2 Information Extraction. In this activity, SAVaR extracts
structured information based on the variants source code (semi-
structured information). Several existing analysis and extraction
tools that work for single systems can be used to extract informa-
tion (i.e., source code models) required for SAVaR from individual
product variants.

Zhttp://omg.org/spec/SPEM/2.0/
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These tools extract low-level source code models for products
implemented in one or more programming languages, for instance,
Stan4)® (Java), Struct101* (Java), Understand® (C and Java), Anal-
izo® (Java, C, C++, etc.), and PlantUML Dependency7 (Java). cpp-
stats®, a toolsuite for analyzing cpp-preprocessor-based SPL, can
be used to extract information from products with variability im-
plemented by means of #ifdef directives.

The reuse of extraction tools may require the implementation of
adapters to deal with different input/output formats. The selection
of an extraction tool is based on the programming language and/or
the mechanism used to implement the variability.

3.1.3  PLA recovery and Variability Identification. This activity
receives the source code models provided by the information ex-
traction activity. The models serve as input for the two recovery
techniques presented later in Section 3.2. The techniques are used
to identify (i) mandatory modules and relationships, that is, those
modules that are present in all the variants, and (ii) optional mod-
ules and relationships that are present in only some variants and
therefore represent variability between product variants.

Modules can be packages, classes, methods, functions, and other

units of modularization. After identifying the variability, the variability-

aware architectural models that comprise a PLA can be generated.
In our approach, the architectural models conform to the specifi-
cation of a variability-aware architectural metamodel [21, 26, 33],
that includes modeling elements for representing mandatory and
optional modules and their relationships.

3.1.4  Presentation of the Recovered PLA. The recovered PLA
can be presented using visual notations for development views (e.g.,
UML class diagrams, module dependency graphs or design struc-
ture matrices). In SAVaR, these diagrams are enhanced to explicitly
provide information about architectural variability and related as-
sets. As mentioned above, the recovered architecture conforms to a
variability-aware architectural metamodel.

Figure 2 presents the metamodel to support SAVaR . We simplified
the metamodel proposed by Thiel and Hein [34] and updated it
according to the ISO/IEC/IEEE 42010 [16], a standard for software
architecture descriptions. Moreover, we included an adaptation of
the Architecture Variability Extension and Design Element Extension.

In the metamodel, a PLA Description is an architecture description
enriched with explicit information about the Architectural Variabil-
ity Model of the software product line SPL-of-interest. This means
that PLA architecture models must be concerned with the represen-
tation of Architectural Variation Points. The architectural variability
models consist of Architectural Variability that is represented by
different Architecture Views.

The variability information is represented in development views
and architectural elements such as packages and classes. We used
the Variation Point Specification for describing the Optional Module
(for elements that are implemented by only some variants) and the

Shttp://standj.com/
*http://structure101.com
Shttp://scitools.com/
Chttp://www.analizo.org
"http://plantuml-depend.sourceforge.net
8http://fosd.net/cppstats
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every recovered product architecture is labelled as a “mandatory
module” while modules that appear in one or some of the product
variants are labelled as “optional module”. Relationships between
mandatory modules are labelled as “mandatory relationship”. The
set of mandatory modules and relationships, and optional modules
and relationships defines the recovered PLA for the SPL and its
products [23].

Figure 3 illustrates the technique. The core of the technique is
3.2 Techniques Implemented in SAVaR a merging algorithm (2) to identify variability. The input into the
algorithm are the architectures extracted from the products (D). The
technique identifies and groups mandatory modules (e.g., array_1:
classes A and B) and the mandatory relationship (e.g., array_3), and
organizes optional modules (e.g., array_2: classes C, D, and E) and

Figure 2: Conceptual elements of SPL and SA based on
ISO/IEC/IEEE 42010 (adapted from [34])

Mandatory Module (for elements that are implemented by all the
variants).

We developed one technique to address the identification of ar-
chitectural variability for a given SPL from source code and an-
other technique to filter the recovered variability information. The
first technique relies on the extracted architectures of variants
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optional relationships (e.g., array_4). The output is the recovered
PLA (® in Figure 3).

3.2.2 Threshold Technique. In our previous work [19, 20], We
developed a threshold analysis technique that identifies exclusive
modules, i.e., optional modules that appear only in a small number
of product variants, and whose inclusion in the visual presentation
of the recovered PLA would result in a cluttered architecture. There-
fore, the technique suggests exclusive modules (and relationships)
as candidates to be removed from the PLA recovery process. The de-
cision on whether or not to remove a module is based on a threshold
that captures the minimum number/percentage of product variants
a module appears in. Only including modules that exceed that
threshold keeps potential variability explosion under control, by ex-
cluding exclusive modules and only keeping modules implemented
in the majority of the products.

To determine the threshold, we rely on the number of occur-
rences of modules (e.g., package, class, or relationship) in the prod-
ucts. The technique prioritizes the mandatory (core) modules and
the modules implemented in most variants.

Figure 4 illustrates how the threshold technique works. In this
example, SAVaR considered ten variants for the PLA recovery. Class
A was implemented by all the ten variants (100%), class C was im-
plemented by seven variants (70%), and class D was implemented by
only two variants (20%). We set up the threshold to 50%. Therefore,
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Figure 5: Applying threshold technique on the GPL SPL project (a) DSM - threshold: 0% and (b) DSM - threshold: 47%

classes A and C were kept in the product line architecture, while
class D was not considered as input for recovering the PLA.

Figure 5 presents an example output of the threshold technique.
We used the Design Structure Matrix (DSM) generated by SAVaR to
visualize the output. In this example, we applied the technique on
the Graph Product Line (GPL) project’ which is an SPL for imple-
menting graph manipulation libraries. By analysing the Inspection
Report provided by SAVaR we identified the threshold values and
extracted four PLAs based on the recovery of the variants modules.

In Figure 5, we show the first PLA recovery (without threshold
applied) and with a threshold of 47% (i.e., modules need to appear
in at least 47% of the variants), it reduced the recovered informa-
tion (i.e., optional modules and their relationships) by 30%. The
technique kept the mandatory modules and the optional modules
that are implemented in the majority of the variants (e.g., Edge and
NumberWorkSpace).

3.3 Guideline for Supporting PLA Recovery

In our previous work [23], we identified the lack of guidelines to
support PLA recovery. Therefore, we documented a guideline to
help practitioners use SAVaR. We performed a set of exploratory
studies [5, 19, 20, 22, 23] that, as one finding, allowed us to define
the guideline. The guideline describes a realistic PLA recovery
scenario and supports identifying variability at the architectural
level, by providing steps, a recovery problem definition, technique
recommendation, hints, and potential pitfalls.

Figure 6 presents the Generate Variants guideline that helps re-
cover PLA using variants (i.e., SPL products). Due to space lim-
itation, we only provide a summary of the guideline. The com-
plete guideline including its detailed description can be found at:
http://sbes2020.herokuapp.com/.

https://bit.ly/2BIMtSU

4 EMPIRICAL EVALUATION

This section describes how we evaluated SAVaR. We followed the
Goal-Question-Metric (GQM) method to define the scope of the
evaluation [4].

Evaluation goal: evaluate how SAVaR and the guideline support the
cost-effective PLA recovery through the identification and removal of
exclusive optional modules.

Based on the evaluation goal, we defined a research question:
To what extent can the elimination of exclusive optional modules
improve the results of SAVaR ?

This research question focuses on the quality of the recovered
PLA when removing exclusive modules (i.e., optional modules that
appear in a small percentage of variants). We evaluate the quality
of such PLA quantitatively based on the metrics introduced next.

4.1 Metrics

Product line architecture metrics support the evaluation of variability-
aware software architectures. In our work, we use two sets of
metrics to evaluate the structure of the recovered PLAs, their com-
ponents and relationships: the metrics proposed by Zhang et al.
[37] and the metrics proposed by Oliveira-Junior et al. [27].

Zhang et al. [37] proposed a set of metrics for assessing the qual-
ity of a PLA based on the similarity and variability of its components
and relations. The “Structure Similarity Coefficient” (SSC) measures
the structure similarity of PLA components. Similarly, the “Struc-
ture Variability Coefficient” (SVC) measures the structure variability
of PLA components. Given C, (the number of common components
in the PLA) and C, (the number of variable components), SSC and
SVC are defined as follows [37]:

__IC] _ 1G]
SSC= G RiGT SVC= e RiGT

The “Relation Similarity Coefficient” (RSC) measures the similar-
ity of relations between components in a PLA and the “Relation
Variability Coefficient” (RVC) measures the variability in relations of
components in a PLA. Given R, (the number of common relations
in the PLA) and R, (the number of variable relations), RSC and RVC
are defined as follows [37]:
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Generate Variants
Intent: Recover product line architecture from a set of generated
variants.

Problem

Product line architecture is not explicitly documented; only im-
plementation artifacts are available One alternative is to recover
the PLA based on the source code of the product line. If variants
(in this case SPL products) are generated by tools such as Fea-
tureIDE [25], configuration of variants and variant generation are
necessary to populate the set of variants.

Recommended technique.

Generate variants that represent different configurations and use
them as input to a technique that combines an existing set of
variants to recover the PLA.

Steps.

(1) Obtain the variants’ source code;

(2) Select an extraction tool to recover the variants’ struc-
tural information;

(3) Perform the variability identification using tool support
to automate the process;

(4) Analyze PLA metrics (SSC and SVC, RSC and RVC);

(5) Analyze the other outputs provided by SAVaR (report and
visualization of the recovered PLA).

Hints for improving the PLA recovery.

e Use the report to identify the modules’ frequency;

e Perform threshold analysis to identify possible improve-
ments in the recovered PLA;

e FeatureIDE variant generator provides automation to
define all combination of products and a T-wise algorithm
that creates a set of relevant variants that can be used in
projects with a high number of variants.

Potential pitfalls.

o When the variants source code is not available, a variant
generator tool is needed to instantiate the products;

o Extracting all variants in projects with a high number of
optional features could be cumbersome;

e One alternative to the threshold technique is to manually
select a number of relevant variants that can impact the
accuracy of the recovered PLA.

Figure 6: Generate Variants guideline.

- IR - IR
T IR [+IR, | T IR [+IR, |

The SSC and SVC metrics are highly related given that the sum of
SSC and SVC will be always 1. Values close to 1 for SSC means that
there are few optional components, and values close to 0 means that
the PLA of the different variants does not have many components
in common. The RSC and RVC metrics behave similar to SSC and

RSC RVC
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SVC, i.e., their sum will always be 1. Values of RSC close to 1 mean
that there are few optional relations, while values close to 0 mean
that the relations in the architectures of different variants do not
have many relations in common.

Oliveira-Junior et al. [27] proposed a metrics suite for PLA eval-
uation based on UML models: (i) ClassOptional (CO) counts the
number of classes implemented by a subset of variants; (ii) Op-
tionalRelation (OR) counts the number of relationships between
classes implemented by a subset of variants; (iii) ClassMandatory
(CM) counts the number of classes implemented by all the variants;
and (iv) MandatoryRelation (MR) counts the number relationships
between classes that are implemented by all the variants.

We searched the literature to identify metrics in the context of
PLA recovery. The metrics mentioned in this Section were cho-
sen because they were the most suitable metrics for evaluating
development views as created by SAVaR.

Table 1: Analyzed Projects

Projects # #C avg #E #R #P Gen.
Desktop S. 462 18942 41 12504 30126 10 AH
GOL 64 1344 21 1197 1998 4 NA
GPL 156 2340 15 1843 4341 7 CD
Health W. 10 1396 136 1113 4857 11 NA
MobileM. 8 346 43 243 406 8 NA
Prop4j 452 6328 14 3648 6710 10 FH
Message 10 680 68 493 743 5 Ant
VOD 32 1344 42 1184 2082 3 NA
Webstore 10 710 71 534 1408 4 Ant
ZipME 31 992 32 897 1226 4 NA
Total 1226 33783 483 23746 53897 66 -

Legend: [#V] Number of variants, [#C] Total number of classes
analyzed, [avg] average number of classes per project, [#E] Total
number of modules analyzed, [#R] Total number of relations
analyzed, [#P] Number of execution of SAVaR, [Gen.] Variants
generation, [AH] AHEAD, [NA] Not Available, [CD] CIDE,
[FH] FeatureHouse

4.2 Projects

Table 1 presents descriptive data from the ten open source projects
selected for our empirical evaluation 1°. We selected projects with
different number of variants (#V), number of classes (#C), average
number of classes per project (avg), and strategies for variants gen-
eration (Gen.). There are different composers for feature-oriented
programming such as FeatureHouse, AHEAD, CIDE, etc. For this
reason, we used different types of variants generation and projects
to verify if SAVaR support them.

We used the FeatureIDE [25] to generate the variants from
AHEAD, CIDE, and FeatureHouse composers. Projects implemented
with #ifdef's used Ant build for variants generation. We used the
other projects (NA - Not Available) variants source code available
in the projects’ repositories.

WOhttps://bit.ly/2BcQQwg
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4.3 Preparation

We collected information about the projects and downloaded the
source code and other assets from their repository. We identified the
mechanism used to implement the variability because the selection
of the recovery techniques and extraction tools depends on them
(Section 3.2).

Then, we extracted each variant structural information. We per-
formed the variability identification. We mapped the mandatory
modules that were implemented in all the variants and the optional
modules that were implemented in only some variants.

With the recovered PLA outputs, we analyzed the metrics and
reports. These outputs were used to suggest improvements to the
results. We collected the modules implementation frequency to
define the threshold values.

Based on the threshold, we performed the PLA recovery again.
In this way, we provided a set of recovered PLAs allowing architects
and developers to select the PLA according to their interests.

4.4 Analysis and Interpretation

Table 2 presents the collected metrics for PLA recovery analy-
sis within the threshold results. We executed SAVaR according to
threshold values based on a report generated by the approach. The
report identifies the modules according to their existence in the vari-
ants. For instance, when a class is implemented in all the variants,
the report informs that this class appears in the implementation of
100% of the variants.

Due to space limitation, we omitted some threshold results. For
instance, we executed the PLA recovery 10 times for the Desktop
Searcher project according to the threshold values, but Table 2
only shows seven results. The complete experimental setting and

results can be found at the paper website!!.

4.5 Results

To answer the research question, we execute the SAVaR according
to each project threshold values. Then, we compared the results to
identify suggestions of improvements on the recovered PLAs. The
implementation of threshold technique allowed the reduction of
the number of optional classes without eliminating variants. It is an
alternative to the solution we proposed in our previous study [19,
22]. Instead of identifying and eliminating outliers (variant that
introduces a high number of optional modules that are implemented
in only that variant), we kept all the variants during our analysis.

Projects such as GOL, VOD, Webstore, and ZipME allowed a small
number of executions of SAVaR because the SSC and SVC values
were balanced. Such balance may indicate that these projects con-
sidered the impact of variability on the architecture upfront during
the development phase.

Moreover, the threshold technique allowed us to improve some
projects metrics such as for MobileMedia. In this case, the majority
of the variants implemented some classes such as AlbumData (87%),
AddPhotoAlbum (76%), and ImageAccessor (75%). In other words,
during the evolution of the SPL, stakeholders should consider mak-
ing these features and these classes mandatory.

"https://sbes2020.herokuapp.com
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Table 2: Recovered Metrics from the PLAs

TH SSC SVC RSC RVC CO OR CM MR %rd

Desktop Searcher
00% 0.27 0.73 0.09 091 30 134 11 14 -
04% 029 071 0.11 0.89 28 118 11 14 10%
25% 030 0.70 0.16 0.84 25 72 11 14 36%
29% 032 0.68 0.18 0.82 24 66 11 14 40%
37% 033 0.67 0.19 0.81 22 58 11 14 45%
43% 035 0.65 0.20 080 21 55 11 14 47%
49% 052 043 038 0.62 10 23 11 14 70%

GOL

00% 0.62 0.38 0.69 0.31 8 11 13 24 -
50% 0.76 0.24 0.80 0.20 4 6 13 24 17%
GPL
00% 0.60 0.40 041 0.59 6 23 9 16 -
16% 0.64 036 043 0.57 5 22 9 16 04%
39% 0.69 031 048 0.52 4 17 9 16 15%
47% 0.80 0.20 0.59 0.41 2 11 9 16 30%

Health Watcher
00% 042 058 0.29 071 91 550 66 233 -
11% 0.49 0.51 0.32 0.68 67 501 66 233 08%
21% 054 046 038 062 55 367 66 233 24%
31% 056 044 040 060 51 360 66 233 25%
41% 0.58 0.42 0.51 049 46 230 66 233 39%

MobileMedia

00% 0.12 0.88 0.02 098 52 148 7 3 -
13% 0.15 085 0.03 097 41 94 7 3 31%
26% 0.20 0.80 005 095 29 54 7 3 56%
38% 0.25 075 008 092 22 39 7 3 67%
Prop4j
00% 0.07 093 000 1.00 13 67 1 0 -
01% 0.08 092 0.00 1.00 12 49 1 0 24%
42% 0.09 091 0.00 100 11 13 1 0 70%
48% 0.10 090 0.00 100 10 12 1 0 72%

Message
00% 0.63 037 057 043 22 40 38 54 -
41% 0.84 0.16 0.80 020 7 12 38 54 28%

VOD
00% 0.76 0.24 0.70 030 10 23 32 55 -

Webstore
00% 0.71 0.29 068 032 20 57 48 122 -
21% 096 0.04 091 0.09 2 11 48 122 26%

ZipME
00% 080 020 069 031 6 14 25 32 -
51% 096 004 094 006 1 2 25 32  22%

Legend: [TH] Threshold, [SSC] Structure Similarity Coefficient,
[SvC] Structure Variability Coefficient, [RSC] Relation Similarity
Coefficient, [RVC] Relation Variability Coefficient, [CO] Class
Optional, [OR] Optional Relation, [CM] Class Mandatory, [MR]
Mandatory Relation, [%rd] Percentage of reduced information
per threshold cut
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Projects with high value of SVC and RSC (close to 1) could suffer
from variability explosion. For instance, Prop4j allows the creation
of 4,100 variants. During evolution, it is hard to maintain and prop-
agate any changes. In order to reduce variability explosion, the
threshold technique was able to improve the results slightly even
with a 70% in information reduction. Our report identified that the
majority of the variants implemented two classes: Literal (99%)
and SatSolver (98%). By considering these classes as mandatory,
the values for these metrics improved.

The metrics (high value of SSC and RSC) indicate that GOL, VOD,
Webstore, ZipME, GPL and Message variability can be improved.
On the other hand, projects with a high value of SVC and RSC (e.g.,
Desktop Searcher, MobileMedia, and Prop4j) indicate that im-
provements in the definition of mandatory modules are necessary.

We found that the information reduction provided by the thresh-
old technique allowed to balance SSC and RSC, and RSC and RVC. It
is relevant to support and raise the abstraction level at the archi-
tectural level. Moreover, in some cases, the technique reduced the
information up to 70% and provided a balance in metrics values.

4.6 Threats to Validity

The following threats to validity potentially interference with our
evaluation.

4.6.1 Internal Validity. We identified a selection effect during
the selection of the variants. In some cases, when we considered
all the variants in the recovery, the PLA was composed by only
optional classes. To reduce the noise in the representation, we
implemented the threshold technique.

The theory is not clear enough regarding the effectiveness of
PLA recovery and improvement of the recovered PLA. We based
our analysis on metrics and PLA representation. Even though, we
cannot reject stakeholders’ influence.

4.6.2 External Validity. The selected projects represent a small
portion of possible projects. However, the study proves another
case that can help build evidence regarding the impact of variability
in the context of PLA recovery. Another issue we found is related
to classes implementing the same logic but, using different names.
We eliminated information specific to projects to reduce this issue
and selected variants in projects developed by the same team.

We only considered open source projects. It may under-represent
the SPL domain and thus not give the full picture of the problem
The projects evolved over the years and new ideas were included
contributing for the maturity and raise of the complexity of the
projects.

The main threat to this study was the sample size. From the
1226 variants, we focused on the classes and their relationships.
SAVaR also supports packages and files abstraction. However, since
the purpose of this study was to provide evidence on how the
threshold for including or excluding modules in the PLA improves
the effectiveness of the PLA recovery, we understand that for gen-
eralizing such findings we need a larger sample.

5 RELATED WORK

Our work focuses on the recovery of architectural variability. We
are concerned with the bottom-up recovery of a PLA from source
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code that captures the variability and commonalities of several
related variants.

Few works address the recovery of architectural variability to
capture a PLA. We previously performed a systematic mapping
study to understand the relationship between PLA and SAR and
to characterize how existing research supports PLA recovery, and
to identify research trends and gaps [23]. The majority of research
addressed some aspects of SPL such as reuse, variability, etc., but
lacked proper empirical evaluation or detailed information to sup-
port PLA recovery and to apply proposed recovery techniques.
Also, just a few works focused on the recovery of variability at the
architectural level [30, 31].

Shatnawi et al. [30, 31] addressed PLA recovery with by compar-
ing components (classes and interfaces) recovered from different
versions of the same SPL. The authors relied on Formal Concept
Analysis (FCA) to analyze variability and create a variability model.
In our study, we used several variants as input to the PLA recovery
process. For each SPL product, we extracted structural information
from source code and collected information about variability found
within classes, packages, and their relationships.

Linsbauer et al. [24] presented an approach for extracting struc-
tural information from related product variants to recover a feature
model for the SPL. Likewise, our approach supports the extraction
of structural information from the source code of related variants,
but with the goal of recovering a PLA for the SPL.

Related approaches do not support recovering architectural vari-
ability information from source code and there is a gap regarding
variability identification from variants that are implemented using
a clone-and-own strategy.

6 CONCLUSIONS

In SPL, the PLA provides information about the common and vari-
able architectural elements. Since not all projects have their PLA
documented, PLA recovery provides support for stakeholders dur-
ing maintenance and evolution.

In summary, this paper contributes the following:

(1) We developed SAVaR an approach for PLA recovery from the
source code of variants; the approach includes a guideline to
aid the recovery process. SAVaR supports the link between
the SPL source code and its architecture to maintain them
in sync.

(2) We implemented a technique for automating the variabil-
ity identification at the architectural level. The recovered
variability information from SPL projects, together with
its representation at the architectural level provide up-to-
date structural PLA documentation, synchronized with
SPL source code, that can be useful for SPL stakeholders
to perform their tasks.

(3) We proposed and implemented a threshold technique to
tame variability explosion and improve the recovered PLA
results The technique leverages the reduction of the vari-
ability in the recovered PLA while keeping all available
variants in the analysis. It provides a set of outputs that
can be selected according to stakeholders’ interests. The
threshold technique maintains the core elements (classes
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and its relations) implemented by the majority of the vari-
ants and therefore emphasizes the information relevant to
most variants but ignores specific information from some
variants.

(4) We evaluated SAVaR with the application of the threshold
technique in ten open source software systems. We fol-
lowed the Generate Variants guideline for each threshold
value and we performed a comparison among the recov-
ered PLAs to identify improvements in SAVaR results.

As future work, we intend to create a decision model based on
SAVaR executions. Also, we intend to extend the evaluation studies
to include highly configurable systems using SAVaR . Other research
opportunity is to introduce search-based software engineering to
automate the threshold values identification.
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