
Universidade Federal da Bahia
Instituto de Matemática

Programa de Pós-Graduação em Ciência da Computação

INVESTIGATING FEATURE-ORIENTED
SOFTWARE COMPREHENSION

Alcemir Rodrigues Santos

TESE DE DOUTORADO

Salvador, Bahia – Brasil
Agosto, 2017

ALCEMIR RODRIGUES SANTOS

INVESTIGATING FEATURE-ORIENTED SOFTWARE
COMPREHENSION

Esta Tese de Doutorado foi apresen-
tada ao Programa de Pós-Graduação
em Ciência da Computação da Uni-
versidade Federal da Bahia, como
requisito parcial para obtenção do
grau de Doutor em Ciência da Com-
putação.

Orientador: Prof. Dr. Eduardo Santana de Almeida
Co-orientador: Prof. Dr. Ivan do Carmo Machado

Salvador, Bahia – Brasil
Agosto, 2017

Modelo de ficha catalográfica fornecido pelo Sistema Universitário de Bibliotecas da UFBA para ser confeccionada
pelo autor

 Santos, Alcemir Rodrigues
 Investigating Feature-Oriented Software Comprehension /
Alcemir Rodrigues Santos. -- Salvador, 2017.
 195 f. : il

 Orientador: Eduardo Santana de Almeida.
 Coorientador: Ivan do Carmo Machado.
 Tese (Doutorado - Programa de Pós-Graduação em Ciência da
Computação) -- Universidade Federal da Bahia, Instituto de
Matemática, 2017.

 1. Variability. 2. Software Maintenance. 3. Program
Comprehension. 4. Feature-Oriented Software Development. I.
Almeida, Eduardo Santana de. II. Machado, Ivan do Carmo. III.
Título.

ii

iii

ACKNOWLEDGEMENTS

It is of no surprise to anyone how hard it is to get to such an accomplishement of a Ph.D.
degree in life. Most do not get even a try. That is why we need so much people around us.
This English piece is for all those international ones I got to know back in Germany and
in the conferences a I took part during this period, whose in the name of Professor Sven
Apel I thank you all! Viellen Dank! Gracias! Merci! You all have somehow contributed to
such a step forward.

Repito, agora em Português, para os que estão aqui mais perto. Não é surpresa para
ningúem o quão difícil é alcançar o grau de Doutor durante a vida. A maioria não tem
nem ao menos a oportunidade de tentar. E é por isto que a gente precisa de tanta gente ao
nosso redor. Agora agradeço à aqueles que, mesmo sem muita ciência do que eu buscava
durante todo esse tempo, me apoiaram e trouxeram palavras de conforto durante todo
o período: meu pai, Almir José dos Santos e minha mãe, Maria Eunice Rodrigues dos
Santos. A quem, eu agradeço em nome de ambas suas famílias. Este título também é de
vocês.

Agradeço ainda aos companheiros de laboratório, que muitas vezes me ajudaram du-
rante todo o processo e tempos de UFBA e RiSELabs: Raphael, “Belle”, Tassio, Mário,
Jaziel, Magno, Jonatas, Leandro, Alberto, Amancio, Paulo, Crescencio, Renato, Bruno,
Simone, Glaucya, Iuri, Renata, Larissa, Matheus, Rose, Karla, Anna, Daniel, Taijara e
demais. Aos orientadores, Eduardo Santana de Almeida e Ivan do Carmo Machado, meu
muito obrigado por todos os conselhos, sugestões, tempo e atenção dispensados! Vocês
todos também contribuíram para esse trabalho.

Por fim, mas não menos importantes, todos amigos e amigas que caminharam comigo
durante esta jornada, meu muito obrigado! Sem os momentos de diversão, festas, treinos e
descontração com vocês, nada disso teria sido possível. Vocês todos também contribuíram
para esse trabalho. Muito obrigado!

v

RESUMO

Atualmente, uma gama de técnicas e ferramentas para a implementação de variabilidade
estão disponíveis e vem gradualmente sendo utilizadas para o desenvolvimento de sistemas
de software grandes e complexos. Algumas delas alcançaram um alto nível de popularidade
na indústria, como a compilação condicional, outras ainda residem o ambiente acadêmico,
como Programação Orientada à Características (FOP). Pesquisadores têm investigado as
limitações de cada uma delas em busca de facilitar a adoção e de seu uso.

No entanto, ainda não existe apoio à implementação de variabilidade em alguns
domínios –e.g., sistemas baseados em JavaScript– soma-se a isto a falta de evidências
sobre o impacto das differenças e similaridades de tais técnicas na compreensão dos pro-
gramas escritos e consequentemente no esforço que estas demandam dos desenvolvedores
para a conclusão de suas tarefas de manutenção.

Esta tese contribui em ambas direções. Primeiro, apresentamos uma estratégia para
engenharia de linhas de produtos baseada em composição híbrida (RiPLE-HC). Híbrida
pois mescla abordagens composicionais e anotativas para implementar variabilidade. Se-
gundo, construímos um corpo de evidências sobre compreensão de programas com vari-
abilidade, incluindo fatores que facilitam e dificultam a compreensão de sistemas equanto
utilizando-se de técnicas representativas de ambos os grupos, o popular e o emergente.

Na primeira direção, conduziu-se estudos preliminares da viabilidade e scalabilidade
da abordagem RiPLE-HC, tanto no ambiente industrial quanto acadêmico. Na segunda
direção, conduziu-se uma família de experimentos – chamada de Compreensão da Com-
preensão da Implementação de Variabilidade (VICC). Considerou-se tanto estudos quan-
titativos quanto qualitativos na família VICC, à saber três quasi-experimentos (VICC1-
3) e um grupo focal (VICC4). Os estudos VICC consideram duas linguages de progra-
mação (Java e JavaScript) e uma representação de variabilidade representativa dentre
as baseadas em anotação e composição para o desenvolvimento de software orientado
à caracteristicas (FOSD). VICC1 utilizou-se de tarefas de localização de interesses, en-
quanto VICC2 e VICC3 utilizaram-se de tarefas de correção de problemas, e VICC4
buscou identificar fatores de influência na comprehensão de programas.

Embora os participantes do grupo focal tenham destacado os benefícios da FOP para
manutenção, os quasi-experimentos não produziram evidencias estatísticas significativas
destas vantagens para quaisquer das representações de variabilidade equanto os partici-
pantes executavam tarefas de manutenção. Adicionalmente, encontrou-se que que engen-
heiros de software podem perceber o efeito de parâmetros de confusão de forma diferente
dependendo da representação de variabilidade utilizada.

Palavras-chave: FOSD; Variabilidade; Compreensão de Programas; Manutenção de
Software; Java; FeatureHouse; JavaScript; RiPLE-HC.

vii

ABSTRACT

A number of techniques and tools to handle variability are available and they have been
increasingly applied in the development of large and complex software systems. Some of
them have reached high levels of popularity in industry, such as conditional compilation,
whereas some are mostly known in academia, such as Feature-Oriented Programming
(FOP). Researchers have addressed the existing drawbacks of both in order to improve
adoption and ease their use.

However, there is still a lack of support to variability implementation in some domains
– e.g., JavaScript -based systems – and also a lack of understanding of the impact of
the different ways to implement variability on program comprehension and consequently
on the effort they demand from developers, so they could successfully accomplish the
assigned maintenance tasks.

This thesis contributes in both facets. First, we present the RiSE Product Lines En-
gineering approach based on Hybrid Composition (RiPLE-HC) to implement variability
in JavaScript-based systems. By hybrid composition, we mean the blending of com-
positional and annotative approaches to implement variability. Second, we built an evi-
dence corpus on program comprehension in the presence of variability, including factors
easing and hindering program comprehension in software systems using representative
approaches from both groups of techniques, the popular and the emerging ones.

In the first facet, we carried out a preliminary evaluation of the viability and scalabil-
ity of the RiPLE-HC approach both, in industry and academic settings. In the second
facet, we carried out a family of experiments – named Variability Implementation Com-
prehension Comprehension (VICC). We considered quantitative and qualitative stud-
ies in the VICC family, namely three quasi-experiments (VICC1-3) and a focus group
(VICC4). VICC studies considered two programming languages (Java and JavaScript)
and a representative variability representation representing either the annotative or the
compositional approaches for Feature-Oriented Software Development (FOSD). VICC1
addressed the concept location tasks, while VICC2 and VICC3 addressed bug-fixing tasks,
and VICC4 addressed the influence factors on program comprehension.

Although the participants of the focus group highlighted the benefits of the FOP for
maintenance, the quasi-experiments yielded no significant statistical difference regardless
of the variability representation while addressing maintenance tasks. Additionally, we
found that software engineers may perceive confounding parameters differently depending
on the used variability representation.

Keywords: FOSD; Variability; Software Maintenance; Program Comprehension; Java;
FeatureHouse; JavaScript; RiPLE-HC.

ix

TABLE OF CONTENTS

I Overview

Chapter 1—Introduction 3

1.1 Motivation . 4
1.2 Objectives . 5
1.3 Research Method . 6
1.4 Out of Scope . 7
1.5 Contributions . 7
1.6 Thesis Outline . 8

II Background

Chapter 2—Fundamental Concepts 13

2.1 Feature-Oriented Software Development (FOSD) 13
2.1.1 Annotation-based Approaches . 14
2.1.2 Composition-based Approaches 15
2.1.3 Hybrid Approaches . 16

2.2 Program Comprehension . 18
2.3 Chapter Summary . 20

Chapter 3—Literature Review 21

3.1 Method . 21
3.1.1 Selection Process . 21
3.1.2 Inclusion/Exclusion Criteria . 22

3.2 Data Collection . 22
3.3 Results . 23

3.3.1 Literature Reviews . 23
3.3.2 Understanding Program Comprehension 26
3.3.3 Reports on Experimental Studies 27

3.4 Related Work . 28
3.5 Chapter Summary . 28

xi

xii TABLE OF CONTENTS

III JavaScript Feature-Oriented Software Development

Chapter 4—JavaScript Hybrid Composition (RiPLE-HC) 33

4.1 Motivation . 33
4.2 Reuse in javascript-based Systems . 34
4.3 Concept . 36
4.4 Implementation . 37

4.4.1 Architecture . 37
4.4.2 FeatureJS: The Core Bundle . 39
4.4.3 Coarse-grained Variability . 41
4.4.4 Fine-grained Variability . 41
4.4.5 Scattering Support . 43

4.5 Inherited Characteristics . 45
4.6 Chapter Summary . 46

Chapter 5—RiPLE-HC Evaluations 47

5.1 Goal-Questions-Metrics (GQM) . 47
5.2 Industrial Case Study . 48

5.2.1 Domain . 48
5.2.2 Data Collected . 49
5.2.3 RQ1: Does RiPLE-HC handles variability in JavaScript software

project in industrial context? . 52
5.3 RiPLE-HC with Open Source Systems 53

5.3.1 Granularity . 54
5.3.2 Scalability . 54
5.3.3 RQ2: Does RiPLE-HC scales to systems of different domains and

sizes? . 56
5.4 Strengths and Weaknesses . 56
5.5 Threats to Validity . 56

5.5.1 External Validity . 56
5.5.2 Internal Validity . 57
5.5.3 Construct Validity . 57
5.5.4 Conclusion Validity . 57

5.6 Chapter Summary . 57

IV Variability Implementation Comprehension

Chapter 6—A Family of Experiments on Program Comprehension 61

6.1 Family Overview . 61
6.2 Overall Planning . 63

6.2.1 Research Questions . 63
6.2.2 Target Systems . 63

TABLE OF CONTENTS xiii

6.2.2.1 JavaScript-based Systems. 63
6.2.2.2 Java-based Systems. 64

6.2.3 Tasks and Measures . 65
6.2.4 Support Material . 65

6.2.4.1 Programming Environment. 65
6.2.4.2 Training. 65

6.3 Variations in the Experimental Setup . 66
6.4 Chapter Summary . 67

Chapter 7—VICC1: On the Impact on Concept Location 73

7.1 Planning . 73
7.1.1 Metrics . 74
7.1.2 Subjects . 75
7.1.3 Tasks . 75
7.1.4 Support Material . 76
7.1.5 Experiment Design and Variables 77

7.2 Preparation and Execution . 78
7.3 Results and Discussion . 78

7.3.1 Execution Time . 79
7.3.2 Correctness . 80

7.4 Participants’ Feedback . 81
7.5 Threats to Validity . 81

7.5.1 External Validity . 82
7.5.2 Internal Validity . 82
7.5.3 Construct Validity . 82
7.5.4 Conclusion Validity . 82

7.6 Chapter Summary . 83

Chapter 8—VICC2 and VICC3: On the Influence on Bug-Fixing 85

8.1 Study Settings . 85
8.1.1 Research Questions, Hypotheses, and Variables 86
8.1.2 Planning . 88

8.1.2.1 Design. 88
8.1.2.2 Target Systems. 89
8.1.2.3 Tasks. 89
8.1.2.4 Support Material. 90

8.1.3 Preparation and Execution . 90
8.1.3.1 Training. 91
8.1.3.2 Participants Characterization. 92
8.1.3.3 Example Task. 93

8.2 Results RQ1 . 94
H1 It is easier to understand FeatureHouse code rather than Condi-

tional Compilation code. 95

xiv TABLE OF CONTENTS

H2 Developers addressing change requests using FeatureHouse provide
more correct answers compared to developers using Conditional
Compilation. 96

H3 Developers addressing change requests with FeatureHouse code can
finish their tasks faster than those with Conditional Compila-
tion code. 97

8.3 Results RQ2: . 98
8.3.1 Confounding Parameters Classification 99

8.3.1.1 Individual knowledge parameters. 99
8.3.1.2 Individual circumstances parameters. 100
8.3.1.3 Study-specific parameters. 100

8.3.2 Participants’ Perception of Confounding Parameters 100
8.4 Discussion . 105

8.4.1 On the Participants’ Motivation, Tasks’ Difficulty, and Results . . 105
8.4.2 On the Answers to the Research Questions 108
8.4.3 Implications and Lessons Learned 110

8.5 Threats to Validity . 110
8.5.1 External Validity . 110
8.5.2 Internal Validity . 111
8.5.3 Construct Validity . 111
8.5.4 Conclusion Validity . 111

8.6 Chapter Summary . 111

Chapter 9—VICC4: On the Developers Perception of Demanded Effort 113

9.1 Study Settings . 113
9.1.1 Research Questions . 113
9.1.2 Planning . 114

9.1.2.1 Design. 114
9.1.2.2 Tasks. 115

9.1.3 Execution . 115
9.1.3.1 Subjects Characterization. 115
9.1.3.2 Support Material. 116
9.1.3.3 Pilot. 116

9.2 Data Collection . 116
9.2.1 Individual Feedback Collection 117
9.2.2 Focus Group Data Collection . 118

9.3 Individual Feedback Results . 118
9.3.1 Influence Drivers . 119
9.3.2 Tasks’ Difficulty Perception . 120

9.4 Focus Group Questions Answers . 120
9.4.1 Group 1: Comprehension Strategies 121
9.4.2 Group 2: Hindering Factors . 124
9.4.3 Group 3: Facilitators Factors . 125

TABLE OF CONTENTS xv

9.4.4 Group 4: General Observations 126
9.5 Research Questions Discussion . 127

9.5.1 RQa: How do developers approach the variability implementation
comprehension? . 127

9.5.2 RQb: Which aspects hinder variability implementation comprehen-
sion? . 127

9.5.3 RQc: Which aspects ease variability implementation comprehension?128
9.5.4 RQ: Which aspects impact the developers comprehension of vari-

ability implementation in the maintenance of feature-oriented soft-
ware? . 128

9.6 Threats to Validity . 129
9.7 Chapter Summary . 129

V Conclusions

Chapter 10—Conclusions and Future Work 133

10.1 Thesis Contributions . 133
10.2 Limitations . 136
10.3 Future Work . 137

Appendix A—Literature Venues 149

A.1 DBLP Venues . 149
A.2 Siegmund and Schumann Survey Venues 149

Appendix B—Characterization Questionnaire 153

Appendix C—VICC1 Feedback Form 155

Appendix D—Modeling Programming Experience 157

D.1 Correlations Analysis . 157
D.2 Factor Analysis . 159

Appendix E—VICC4 - Focus Group Transcription 163

LIST OF FIGURES

1.1 Schematic overview of the thesis development. 8
1.2 Schematic overview of the thesis structure. 10

2.1 Conditional Compilation code example extracted from MobileMedia
[26]. 15

2.2 FeatureHouse code example extracted from MobileMedia [28]. 17
2.3 Annotative and compositional approaches to product-line implementation 18

3.1 Papers selection process. 22

4.1 RiPLE-HC code organization: blending feature-based code organization
and preprocessing annotations. 36

4.2 RiPLE-HC deployment view. 38
4.3 FeatureJS package and class diagram. 40
4.4 algorithms.js SPL sample feature model. 42
4.5 Feature Interactions View of the RiPLE-HC toolkit. 44
4.6 RiPLE-HC visualization toolkit related environments. 44

5.1 Excerpt from the MDC Learning Objects feature model. 49
5.2 Reactive SPL process adopted. 51
5.3 Case studies build time in each iteration. 55

6.1 algorithms.js SPL feature model. 68
6.2 video.js SPL feature model. 69
6.3 MobileMedia SPL feature model. 69
6.4 RiSEEvent SPL feature model. 70
6.5 Variations in the experimental setup of the VICC family. 71

7.1 Code organization examples. 76
7.2 Experiment design. 77
7.3 Average time spent in each task in the VICC1. 79
7.4 Average f1-score in each task in the VICC1. 81

8.1 Experiment design. 89
8.2 Original RiSEEvent code snippet used in the Task 1. 91
8.3 PROPHET workbench: the two screens used by the participants to solve

the assigned tasks. 93
8.4 Participants’ programming experience (self assessment) against their class-

mates and professional developers with 20 years of experience. 94

xvii

xviii LIST OF FIGURES

8.5 Overall participants understanding of “why the problem happened?” and
“how to solve” in each round of the experiments. Scale: (0) no understand-
ing; (1) partial understanding; (2) complete understanding. 96

8.6 Overall participants correctness of the description of what “class”, “line of
code”, and “feature folder” in each round. Scale: (0) no correctness; (1)
partial correctness; (2) complete correctness. 97

8.7 Overall response time of the participants in each round. 98
8.8 Overall confounding parameters in each task of the ESE experiment. . . 101
8.9 Participant’s perception of the confounding parameters during the tasks

execution. 103
8.10 Dendograms showing the hierarchical clustering of the confounding param-

eters regarding their (dis)similarity. 104
8.11 Correlations matrices of the participant’s perception of the confounding

parameters. 105
8.12 Overall feeling of difficulty of the participants in each round. Scale: (0)

Very difficult; (1) Difficult; (2) Normal difficulty; (3) Easy; and (4) Very
easy. 106

8.13 Overall feeling of motivation of the participants in each round. Scale: (0)
Very unmotivated; (1) Unmotivated; (2) Normal motivation; (3) Moti-
vated; and (4) Very motivated. 107

9.1 Subjects’ programming experience self-assessment. 116
9.2 Subjects rating of the impact the predefined aspects. 120
9.3 Answers to the questions to assess the overall difficulty of the tasks. . . . 121

LIST OF TABLES

1.1 Publications during the Ph.D. research. 9

2.1 Confounding parameters on program comprehension experimentations [15]. 19

3.1 Number of selected paper in each forum per year. 24
3.2 Number of selected paper in each forum per year on the paper selected

from the Siegmund and Schumann survey [15]. 25

4.1 RiPLE-HC inherited characteristics from compositional and annotative
approaches. 45

5.1 Products metrics generated from the SPL. 50
5.2 Variant configuration matrix. 50
5.3 Development time. 51
5.4 Characterization metrics of the target systems, extracted from the quali-

tas.js corpus. 53
5.5 Target systems characterization metrics. 55

6.1 Target systems characterization. 64

7.1 Hypotheses tested in the controlled experiment. 74
7.2 algorithms.js (Round 1) features characterization. 76
7.3 video.js (Round 2) features characterization. 77
7.4 Shapiro-Wilk normality test data. 79
7.5 Mann-Whitney U Test of hypothesis for Time spent. 80
7.6 Mann-Whitney U Test results for F1_score. 80

8.1 Measures, their descriptions, and the associated hypothesis. 88
8.2 Experiment tasks defined for each target system used in the experiment. 90
8.3 RiSEEvent Task 1 correct answer. 92
8.4 Participants’ experience summary. 95
8.5 Confounding parameters took into consideration for the comprehension

analysis. 99
8.6 Questionnaire used for measuring the influence of the confounding param-

eters on the comprehension tasks of the experiments. 102
8.7 Correlations between the participant motivation and their feeling of diffi-

culty and each dependent variable of this study. 108

9.1 Tasks defined for MobileMedia in the focus group session. 115

xix

xx LIST OF TABLES

9.2 Predefined impact aspects used for the participants individual feedback. . 117
9.3 Predefined impact aspects used for the participants individual feedback. . 118
9.4 Focus group questions. 119
9.5 Benefits identified in the answers to the focus group questions. 122
9.6 Drawbacks identified in the answers to the focus group questions. 123

A.1 Selected research forums from DBLP. 150
A.2 Selected research forums from Siegmund and Schumann survey [15]. . . . 151

B.1 Questionnaire for measuring the programming experience of the partici-
pants. Extracted from Siegmund’s et al. work [41] 153

D.1 Description of the variables used for measuring the participants’ program-
ming experience. Extracted from Siegmund’s et al. work [41]. 158

D.2 Correlations between each characterization independent variable and each
dependent variable of this study. 159

D.3 Factor analysis of each characterization independent variable of the char-
acterization. 161

LIST OF ACRONYMS

DBLP Computer Science Bibliography . 22

FOP Feature-Oriented Programming . 16

FOPLE Feature-Oriented Product Line Engineering . 14

FOSD Feature-Oriented Software Development . 3

IDE Integrated Development Environment . 65

KLOC Thousand Lines of Code . 49

LOC Lines of Code. .49

RiPLE-HC RiSE Product Lines Engineering approach based on Hybrid Composition4

SDLC Software Development Life Cycle . 18

SoC Separation of Concerns . 16

SPL Software Product Line . 3

UI User Interface . 19

VICC Variability Implementation Comprehension Comprehension 61

xxi

PART I

OVERVIEW

Chapter

1
INTRODUCTION

Since the early stages to establish the Software Product Line (SPL) engineering field,
several work proposed means to improve source code modularity (e.g., “feature-oriented”
and “aspect-oriented” software development) [1, 2, 3]. The research community has tried
to achieve modularity as a prominent strategy to mitigate known conditional compilation
(also known as preprocessor-based implementation) issues, such as the increased occur-
rence of crosscutting concerns and code obfuscation [4, 5]. These problems originated
considerably by the use of C preprocessor-like (#ifdef) annotations to enable the modifi-
cation of software behavior depending on the features selected. Nevertheless, conditional
compilation has been the widely accepted strategy to implement variability in software
systems, despite its proven drawbacks [6]. However, both the ease of use and flexibility
provided by the #ifdef annotations, together with usually available robust tool support,
it is possible to develop variable systems sufficiently sheltered from inconsistences, even
in large software systems such as the Linux kernel [7].

Feature-Oriented Software Development (FOSD) is the term coined to refer to the
paradigm used for the construction, customization, and synthesis of large-scale software
systems relying on features [8]. A feature satisfies a requirement while performing design
decisions, which in other words means an increment in the program functionality [9].
There is a number of languages and tools [1, 2, 3] to serve as variability representation in
SPL engineering. The variability representations usually implement either pure composi-
tion (e.g. AHEAD [3]) or annotations (e.g. C preprocessor-like). The novelty introduced
by the pure composition approaches has imposed different adoption barriers, such as the
novel concept of class refinement [3] and feature-based code organization. Such barri-
ers may have produced the low adoption of feature-oriented approaches [10]. Thus, to
accommodate the benefits of both compositional and annotative approaches to imple-
ment variability, the so-called hybrid approaches have emerged [1, 2]. Hybrid approaches,
such as FeatureHouse [1] and FeatureC++ [2] allow to explore the benefits of both
(composition and annotation). They usually avoid the introduction of new elements –
usually unknown – in the existing programming languages, which may ease its adoption.

3

4 INTRODUCTION

Such hybridism may also be seen as a transition path towards systems modularization
using purely composition. This blending (composition with annotation) allows software
engineers to explore benefits from both, as well as minimizing their existing drawbacks.

Even with the advances of FOSD research, at least two facets are still under devel-
opment. First, given the big number of programming languages available, most of them
are not supported by any FOSD approach. One of them is JavaScript, a widely used
and the de facto programming language for the Web. Software engineers working with
this language still need to resort of external constructs (apart from language-native ones)
to achieve reasonable modularization, such as package managers (e.g., npm, jam, bower)
– that can be used to install software packages written by others and made available
in the Web to be used locally in backend development – and file/module loaders (e.g.,
requireJS) – that load single files or modules in the browser, asynchronously, on demand.

Second, after years of research in the the enhancement of FOSD approaches, little is
known about the differences of the influence of variability representations on program
comprehension. To the best of our knowledge, Siegmund [11] was the first one to ad-
dress such an important topic and systematize empirical studies in FOSD context. Her
framework helped the program comprehension experimentation by discussing inappro-
priate measures to program comprehension, confounding parameters, and a preliminary
questionnaire to measure programming experience.

In this thesis, we investigate both facets and propose a contribution (i) to JavaScript-
based product line engineering and (ii) to improve the understanding about the influence
of FOSD variability representations on program comprehension. This Chapter contextual-
izes the focus of this work and starts by presenting its motivation and a clearer definition
of the research problem, in Section 1.1. Next, Section 1.2 provides details of the thesis
statement, highlighting the research goals. We present the steps taken to conduct this
work in Section 1.3 and enumerate topics out of scope of this thesis in Section 1.4. The
main contributions are listed in Section 1.5, and finally Section 1.6 outlines the thesis
structure.

1.1 MOTIVATION

The ever increasing use of JavaScript for implementation of large software systems im-
ply to deal with a higher complexity [12]. Such fact raises many kinds of challenges,
e.g., regarding modularization and the systematic reuse of artifacts. Such scenario fulfills
the requirements for introducing SPL engineering, since it addresses these kind of is-
sues. However, despite the researchers and practitioners effort spent towards establishing
affordable and effective FOSD approaches [10], the JavaScript-based systems domain re-
mains uncovered. Therefore, we proposed the RiSE Product Lines Engineering approach
based on Hybrid Composition (RiPLE-HC) – to extend the FOSD umbrella and address
such a problem. In general terms, RiPLE-HC is aimed to (i) allow the modeling of such
systems in terms of features improving its modularity and (ii) fostering the improvement
of the practices of artifacts reuse while also controlling the variability at low level with
preprocessing annotations.

1.2 OBJECTIVES 5

Additionally, although an international conference1 discusses program comprehension
for quite some years already, there is few evidence about how developers understand
such relatively new programming paradigm, FOSD, in maintenance activities. In this
scenario, Siegmund [11] paved the path to further investigations in this direction and
encouraged the research community to pursue answers to different sets of unanswered
questions (e.g., what is the difference regarding comprehension effort while addressing
maintenance tasks in feature-oriented software using either Conditional Compilation
or FeatureHouse?).

In this effect, considering existing support for SPL engineering, the JavaScript sys-
tems development demands, as exemplified above, and the importance of program com-
prehension to software maintenance, the central problems addressed in this thesis are the
lack of adequate support for the low-level variability in JavaScript product lines engineer-
ing and the lack of understanding of the influence of different variability representations
on program comprehension.

1.2 OBJECTIVES

The objective of this thesis is twofold: (i) to extend the umbrella of feature-oriented soft-
ware development to cover the new demands of the JavaScript-based software systems
development and (ii) to contribute to a better understanding of the influence of FOSD on
program comprehension. In this sense, this thesis proposes and evaluates a hybrid com-
position approach for JavaScript-based systems and presents a family of experimental
studies on the comprehension of annotation-based and composition-based systems. The
research is guided by the following goals:

Research Goal 1: Propose a hybrid feature-oriented approach to support JavaScript-
based product lines development, evaluate its feasibility – as the ability to handle
variability in real world JavaScript systems – and its scalability – as the ability
to scale to large JavaScript systems.

Research Goal 2: Contribute to the understanding of the influence of annotative-based
and compositional-based approaches on program comprehension.

The first goal refers to a technical rather than a theoretical research contribution and
we state no general research question, since the contribution only builds upon previous
research to fill a specific gap. On the other hand, the second goal requires considerable
amount of research, so we establish the following research question that drives the inves-
tigation:

What are the implications of relying on the feature-oriented software
development paradigm on program comprehension during maintenance
tasks?

1International Conference on Program Comprehension (<http://www.program-comprehension.org>)

http://www.program-comprehension.org

6 INTRODUCTION

We hypothesize that FOSD approaches hinder data-flow comprehension although it
might improve on the system modularization. FOSD approaches that uses code hierar-
chies to hold source-code that belongs to each feature – e.g., FeatureHouse [1] and
FeatureC++ [2] – improve traceability feature-to-code and vice-versa. On the other
hand, the class refinements [3] may hinder the understanding of the product line data-
flow as a whole when in comparison to annotation-based code.

1.3 RESEARCH METHOD

This section describes the research design employed as the basis of this work. We split
this investigation in three main parts: Background ; JavaScript FOSD ; and Variability
Implementation Comprehension. Each of this parts used different research methods, which
are described next.

Background. The initial part comprises an overview of the basic concepts on the
foundations of this thesis, such as feature-oriented product lines and program compre-
hension, together with a literature review encompassing state-of-the-art approaches.

First, we manually reviewed the different ways of implement variability as feature-
oriented product lines (e.g., hybrid composition), which are in the core of the thesis.
We are aware of systematic methods of literature reviews [13, 14], however, we found
recent reviews [15, 16] addresing our topic of interest and decided to perform an ad-hoc
complimentary review with exhaustive snowballing [17]. The evolution of the foundations
on program comprehension research are also target of this review, including the different
models of program comprehension proposed back in time. Such concepts provided the
ground for us to devise our research questions and then narrow down the possibilities to
be included in this investigation. Then, we performed a literature review to serve as an in-
depth analysis of the current existing knowledge on the comprehension of feature-oriented
programs.

JavaScript FOSD. The second part comprises the proposal of the feature-oriented
approach to JavaScript systems together with preliminary empirical studies.

As a means of providing an overview of the novel approach (RiPLE-HC), we present
benefits and drawbacks the hybrid composition can have according to the characteristics
coming from annotative and pure compositional approaches. We also present the devel-
oped tool support available to software engineers. Furthermore, we performed proof-of-
concept studies to assess the feasibility – in a single case study into the industry context
– and scalability of the RiPLE-HC– by refactoring open-source projects into product
lines.

Variability Implementation Comprehension. The third part comprises the def-
inition of the family of experimental studies to gather evidence on the influence of the
variability representations on program comprehension.

We believed this thesis would benefit from having both qualitative and quantitative
methods in its studies. This mix of methods provides different sources of information,
which are usually complementary. Thus, we decided to combine two types of experimental
methods to carry our studies, namely the controlled (quasi-)experiments [18] and a focus
group [19]. Each experiment had slightly different designs and focused on different aspects

1.4 OUT OF SCOPE 7

of the program comprehension. Furthermore, the focus group complemented the findings
of the controlled experiments. It provides additional information impossible to capture
with the experiments and can bring light to aspects uncovered in this thesis.

1.4 OUT OF SCOPE

It is out of scope of this thesis, the following topics:

• JavaScript language grammar: although we proposed a way to preprocessing
JavaScript code to extract annotated blocks from the final product codebase, to
extend the language grammar to cope with such annotation keywords or even to
adapt the dynamic aspects of the language is out of scope;

• Synergy between RiPLE-HC and JavaScript frameworks: since there is
several frameworks available to manage dependences as mentioned before, the eval-
uation of the synergy among RiPLE-HC and those pieces of JavaScript code is
also out of scope.

• Tool support for feature-oriented software comprehension: although our
studies raised evidence of the importance of the existence of them, the implemen-
tation or the improvement of those tools already available are tasks also out of
scope.

• Theory on feature-oriented software comprehension: we believe this to be
a long term goal. Several additional emprirical studies would be necessary to have
enough evidence to build a grounded theory.

• Comprehension Measuring: we are aware of the difficulties to measure program
comprehension. We used measures such as response time and correctness in our
investigation, however the construction of a framework for comprehension measure-
ment would require significant evidence, which is not available yet, even after our
efforts in this thesis. Thus, this topic is also out of scope.

1.5 CONTRIBUTIONS

In accordance with our goals, the main expected contributions of this work are related
to feature-oriented software development and they are listed in the following:

• JavaScript development. An approach and tool support for the development of
JavaScript-based feature-oriented software [20, 21, 22].

• Body of knowledge on program comprehension.A literature review of feature-
oriented program comprehension, a family of experimental studies (including ex-
tended empirical study designs) on the influence of different variability representa-
tions on program comprehension [21, 23, 24].

8 INTRODUCTION

Problem 2Problem 1 Research Goal 1 Research Goal 2

Variability
Matters

VICC1

Lack of
Evidence on PC

VICC
Family

VICC2

VICC3

RiPLE-HC

IRT Case
Study

Empirical
Studies

VICC4

Comprehension
Matters

Figure 1.1 Schematic overview of the thesis development.

Figure 1.1 shows the history of this thesis development. From the literature and the
background knowledge that our research group gathered over the years, we knew be-
forehand the importance of variability management (Problem 1). At some point, the
opportunity of a collaboration with an industry partner brought us to the challenge of
handling variability in JavaScript-based system (Research Goal 1). After the end of
the industry partnership, we questioned ourserlves on the influence of such constructs of
feature-oriented sofware development on the software maintenance activities. As program
comprehension plays an important role in such activities and we found from a literature
review the lack of evidence on the topic (Problem 2), we decided to plan and perform a
family of experimental studies (Research Goal 2).

Table 1.1 shows a list of publications related to the thesis topic in order to get an
overview of our contributions. The column “Participation” concerns the overall contribu-
tion of this author to the published work.

1.6 THESIS OUTLINE

The remaining parts of this thesis is structured in four parts and four appendices, as
described next. Figure 1.2 shows a schematic overview of the thesis structure.

Part II - Background. This part provides background concepts on the topics involved
in this investigation, namely feature-oriented product line engineering and program
comprehension. In addition to the basic concepts, it also presents a literature review
on approaches discussing program comprehension in the field of FOSD.

Chapter 2 (Concepts). Underlying concepts regarding the topic of this thesis.

Chapter 3 (Literature Review). We present a program comprehension litera-
ture review.

Part III - JavaScript FOSD. This part motivates and provides readers with detailed
information about the novel approach to handle variability in JavaScript SPL
engineering. We discuss how it was conceived and present the carried out evaluation
on the viability and scalability of the approach. This part of the thesis covers the
Research Goal 1.

1.6 THESIS OUTLINE 9

Table 1.1 Publications during the Ph.D. research.

Paper Title Venue Participation

thesis related publications

Low-level Variability Support for Web-based Software Prod-
uct Lines [20]

VaMoS’14 Significant

RiPLE-HC: JavaScript Systems Meets SPL Composition
[21]

SPLC’16 Major

RiPLE-HC: Views on the Features Scattering and Interac-
tions [22]

SPLC’16 Major

Aspects Influencing Feature-Oriented Software Comprehen-
sion: Observations from a Focus Group [23]

SBCARS’17 Major

Exploring the Influence of Variability Representations on
Program Comprehension (*submitted) [24]

ESE Major

Related topics publications

Strategies for Consistency Checking on Software Product
Lines: A Mapping Study [25]

EASE’15 Major

Do #ifdef-based Variation Points Realize Feature Model
Constraints? [7]

SEN’15 Major

Chapter 4 (RiPLE-HC). Definition and discussion of the approach.
Chapter 5 (RiPLE-HC Evaluations). Evaluation of the viability and scala-

bility of the approach.

Part IV - Variability Implementation Comprehension. This parts presents our fam-
ily of experimental studies planned and carried out to gather evidence regarding
the influence of different variability representations on program comprehension.
This part of the thesis covers the Research Goal 2.

Chapter 6 (Controlled Experiments Family). Overview of the carried out stud-
ies, as well as the variations in the experimental setup among them, including
the description of the target systems, tasks, overall participants characteriza-
tion, and topic addressed in the tasks.

Chapter 7 (Concept Location Experiment). Controlled experiment concept
location with RiPLE-HC and Standard JavaScript development.

Chapter 8 (Bug-finding Experiments). Two replications of a bug-finding pilot
experiment found in the literature with systems written using Conditional
Compilation and FeatureHouse.

Chapter 9 (Focus Group). A qualitative study looking for new aspects easing,
hindering, as well as the confirmation of the aspects already found in the
previous studies.

10 INTRODUCTION

The body of knowledge on the foundations of the thesis

Variability
Implementation
Comprehension

(Part IV)

JavaScript
FOSD

(Part III)

Background
(Part II)

(Chapter 2)
Concepts

(Chapter 7)
On the Influence

on Concept
Location

(Chapter 3)
Literature Review

(Chapter 4)
RiPLE-HC

(Chapter 5)
RiPLE-HC Evaluations

(Chapter 6)
Family of

Experiments
Overview

FOSD umbrella extension to cover JavaScript systems

The gathering of evidence on program comprehension

(Chapter 8)
On the

Influence on
Bug-fixing

(Chapter 9)
On the

Developers
Perception

Conclusion
(Part V)

(Chapter 10)
Conclusions and Future Work

The summing up of the thesis findings and a research agenda

Figure 1.2 Schematic overview of the thesis structure.

Part V - Conclusions. Finally, this part concludes the thesis, with a summary of find-
ings of the studies and a research agenda.

Chapter 10 (Concluding Remarks and Future Work). The summing up of
the thesis findings and directions for future work.

We suggest the following sequence of reading to better unders:

PART II

BACKGROUND

Chapter

2
FUNDAMENTAL CONCEPTS

The goal of this chapter is twofold: (i) to present the underlying concepts needed to
understand this thesis; and (ii) to provide an overview of the software systems used in
the empirical assessment. The chapter consists of two main sections. Section 2.1 presents
the basics of FOSD, as a mainstream strategy to deliver SPL, deeply addressed in this
thesis. Section 2.2 discusses program comprehension models and describes the state-of-
the-art on Program Comprehension experimentation.

2.1 FEATURE-ORIENTED SOFTWARE DEVELOPMENT (FOSD)

FOSD is a paradigm used for the construction, customization, and synthesis of large-scale
software systems relying on features [8]. A feature satisfies a requirement while performing
design decisions, which in other words means an increment in the program functionality
[9]. In fact, FOSD aims essentially at three properties: structure, reuse, and variation
[8]. The features are the reuse unit in a software system structure designed to cope with
variation.

FOSD emerged from ideas coming from different software engineering areas, such
as programming languages, software architecture, and software modeling. Therefore, it
shares several goals with other paradigms, such as (i) to encapsulate the individual de-
velopment steps that implement distinct decisions – from the stepwise and incremental
software development field –, (ii) to modularize crosscutting concerns – from the aspect-
oriented software development field –, (iii) to construct software systems on demand using
off-the-shelf components – from the component-based software engineering field [8].

The SPL engineering aims at constructing families of software systems as an alter-
native strategy to traditional Software Engineering, in which each system is developed
individually from scratch. In SPL engineering, the emphasis is given to the similarities
among the systems instead of their differences [8]. While software engineers can resort
of all those paradigms to implement variability1, they can favor the FOSD paradigm to

1This work consider Apel et al. [10] definition for “variability”, which recalls to the ability to derive
different products from a common set of artifacts.

13

14 FUNDAMENTAL CONCEPTS

organize and structure the whole SPL process, as well as all the artifacts involved in
terms of features [10]. In such cases, we have Feature-Oriented Product Line Engineer-
ing (FOPLE), which in terms of variability implementation can be achieved through a
multitude of techniques.

Apel et al. [10] defined three dimensions for classifying the techniques used to achieve
variability in FOPLE: Binding time, Technology, and Representation. The first di-
mension concerns the time when the features are bound, also known as product derivation
– one of the tasks of SPL engineering –, with regard to a given product configuration.
Still, the binding can occur at compile time – before the product deployment – or run-
time – while the software is executing. The second dimension concerns the mechanisms
provided to operate the artifacts in order to derive products, which according to them
can be at language-based, when a programming language is the provider, or tool-based,
when a set of tools is the provider. Lastly, the third dimension concerns how to represent
the variability in the software artifacts. Such representation can be performed through
annotations, which are predefined keywords that allow the selection of a given feature
code inside of an artifact, or composition, when the code belonging to each feature are
placed in different artifacts.

In this work, we focus on the representation dimension of Apel’s classification [10].
The binding time dimension requires an extensive and expensive context for experi-
mentation in comparison to the representation dimension. In addition, the technology
dimension concerns to aspects too specific of the software development, which in our point
of view, the eventual contributions of would not last as much as those produced regard-
ing the representation dimension, since technology can change fast. Moreover, we extend
by including the so-called hybrid representation. The hybrid representation blends an-
notations and composition representations bringing to software engineers characteristics
from both other representations together. Next, we present these three different represen-
tations. Moreover, as the three dimensions share common approaches, while introducing
the representations, we may mention the technology dimension at some point for the sake
of understanding.

2.1.1 Annotation-based Approaches

Definition 2.1. Annotation-based approaches annotate a common code base,
such that code belonging to a certain feature is marked accordingly. During
product derivation, all code that belongs to deselected features or invalid
feature combinations is removed (at compile time) or ignored (at runtime) to
compose the final product [10].

In this thesis, we call the annotation-based approaches annotative approaches for
short. In these approaches, the code base is instrumented with annotation marks delim-
iting the code that belongs to the different features and removed on demand, which is
called negative variability. Conditional Compilation is a preprocessing technique well
known from the C/C++ languages and later implemented in other languages either natively

2.1 FEATURE-ORIENTED SOFTWARE DEVELOPMENT (FOSD) 15

or as third-party tools. Such technique allows software developers to resort of annotation
directives (e.g., #if, #ifdef, #ifndef, #else, #elif, and #endif) to control the in-
clusion of the code that belongs to the selected features or the exclusion of the code from
the deselected ones.

1 //#if includeMusic || includevideo

2 ...

3 public class MusicMediaUtil extends MediaUtil {

4 public byte[] getBytesFromMediaInfo(MediaData ii)

5 throws InvalidImageDataException{

6 try {

7 byte[] mediadata = super.getBytesFromMediaInfo(ii);

8 if (ii.getTypeMedia() != null) {

9 //#if (includeMusic && includevideo)

10 if ((ii.getTypeMedia().equals(MediaData.MUSIC)) ||

11 (ii.getTypeMedia().equals(MediaData.VIDEO)))

12 //#elif includeMusic

13 if (ii.getTypeMedia().equals(MediaData.MUSIC))

14 //#elif includevideo

15 if (ii.getTypeMedia().equals(MediaData.VIDEO))

16 //#endif

17 {...}

18 }

19 return mediadata;

20 } catch (Exception e) {...}

21 }

22 ...

23 }

1 public class MusicMediaUtil extends MediaUtil {

2 private boolean isSupportedMediaType(MediaData ii){

3 return false;

4 }

5

6 public byte[] getBytesFromMediaInfo(MediaData ii)

7 throws InvalidImageDataException{

8 try {

9 byte[] mediadata = super.getBytesFromMediaInfo(ii);

10 if (ii.getTypeMedia() != null) {

11 if (isSupportedMediaType(ii)){

12 ...}

13 }

14 return mediadata;

15 } catch (Exception e) {...}

16 }

17 ...

18 }

1

Figure 2.1 Conditional Compilation code example extracted from MobileMedia [26].

Figure 2.1 shows one code snippet of refinements of a given method by different
features in the MobileMedia [26] with Conditional Compilation. All the code is in
a single file, which is going to be preprocessed to remove the unwanted code before the
actual compilation depending on the product configuration.

The drawbacks of the annotative approaches, such as the lack of modularity and poor
readability have been roughly criticized in the research community. However, the ease of
use and its flexibility made it the most used variability implementation mechanism [6].
In fact, developers seemed to be aware of the problems since they mostly use disciplined
annotations2 [27], although it may be necessary to rely on code replication in favor of
better readability.

2.1.2 Composition-based Approaches

2In C, annotations on one or a sequence of entire functions and type definitions (e.g., struct) are
disciplined. Furthermore, annotations on one or a sequence of entire statements and annotations on
elements inside type definitions are disciplined. All other annotations are undisciplined [27].

16 FUNDAMENTAL CONCEPTS

Definition 2.2. Composition-based approaches implement feature in the form
of composable units, ideally one unit per feature. During product derivation,
all units of all selected features and valid feature combinations are composed
in a final product [10].

In this thesis, we call the composition-based approaches compositional approaches for
short. Among these approaches, we can include the classic frameworks and components,
as well as the advanced language abstractions and composition mechanisms to implement
SPL, including feature-oriented and aspect-oriented programming. These approaches sup-
port the so called positive variability – when composition units are added on demand –
and aim at keeping an one-to-one mapping between features and composition units.

Feature-Oriented Programming (FOP) [29] is a widely accepted language-based ap-
proach to achieve variability while resorting on composition. In other words, FOP is a
compositional approach for building SPL that decompose a system’s design and code into
features it provides [29, 30]. In this effect, feature modules are commonly represented by
file-system directories – called containment hierarchies – in several contemporary FOP
languages and tools. For instance, in the Jak language together with the AHEAD tool
suite [3, 30] and the FeatureHouse experience [1]. In these cases, classes and their
refinements are stored in files inside the corresponding containment hierarchies [10].

FeatureHouse [1] is itself an (independent) language-based technique to imple-
ment variability, which provides mechanisms to operate artifacts to derive products in a
composition-based approach. Figure 2.2 shows three code snippets showing the refinement
of a given method by different features in the MobileMedia [26] with FeatureHouse
[28]. Each snippet concerns a different feature implementation located in a Java file with
the same filename, class name, and method signature, but a different feature code con-
tainer. These different snippets are supposed to be composed depending on the product
configuration and the order in which they were listed for binding. The method call “orig-
inal()” serves the purpose to insert the piece of code from the feature Base, which is
mandatory, the the other refinements already binded to the final code in exact place of
the call.

2.1.3 Hybrid Approaches

Figure 2.3 shows the big picture of the main differences between (a) annotative and
(b) compositional approaches to product-line implementation. The latter emphasizes the
modularization. A hybrid approach should explore the best characteristics from both
worlds, such as the ability of feature interactions handling from annotative and the
strengthened modularization of compositional approaches.

Kästner et al. [4] discussed the possibilities of the implementation of hybrid ap-
proaches. They showed an eventual path to combine advantages, increase flexibility for
the developer, and ease its adoption. Later on, Kästner et al. [31] laid the foundation for
such integration by providing a model that supports both physical and virtual Separation
of Concerns (SoC) and by describing refactorings in both directions. In general words,
virtual SoC differs from physical SoC by the use of colors to represent variability instead
of the actual code annotations. Besides, Apel et al. [10] provided the following example:

2.1 FEATURE-ORIENTED SOFTWARE DEVELOPMENT (FOSD) 17

(a) Music_OR_Video

1 //#if includeMusic || includevideo

2 ...

3 public class MusicMediaUtil extends MediaUtil {

4 public byte[] getBytesFromMediaInfo(MediaData ii)

5 throws InvalidImageDataException{

6 try {

7 byte[] mediadata = super.getBytesFromMediaInfo(ii);

8 if (ii.getTypeMedia() != null) {

9 //#if (includeMusic && includevideo)

10 if ((ii.getTypeMedia().equals(MediaData.MUSIC)) ||

11 (ii.getTypeMedia().equals(MediaData.VIDEO)))

12 //#elif includeMusic

13 if (ii.getTypeMedia().equals(MediaData.MUSIC))

14 //#elif includevideo

15 if (ii.getTypeMedia().equals(MediaData.VIDEO))

16 //#endif

17 {...}

18 }

19 return mediadata;

20 } catch (Exception e) {...}

21 }

22 ...

23 }

1 public class MusicMediaUtil extends MediaUtil {

2 private boolean isSupportedMediaType(MediaData ii){

3 return false;

4 }

5

6 public byte[] getBytesFromMediaInfo(MediaData ii)

7 throws InvalidImageDataException{

8 try {

9 byte[] mediadata = super.getBytesFromMediaInfo(ii);

10 if (ii.getTypeMedia() != null) {

11 if (isSupportedMediaType(ii)){

12 ...}

13 }

14 return mediadata;

15 } catch (Exception e) {...}

16 }

17 ...

18 }

1

(b) Music

19 public class MusicMediaUtil extends MediaUtil {

20 private boolean isSupportedMediaType(MediaData ii){

21 return original(ii) ||

22 ii.getTypeMedia().equals(MediaData.MUSIC);

23 }

24 }

25 public class MusicMediaUtil extends MediaUtil {

26 private boolean isSupportedMediaType(MediaData ii){

27 return original(ii) ||

28 ii.getTypeMedia().equals(MediaData.VIDEO);

29 }

30 }

2

(c) Video

19 public class MusicMediaUtil extends MediaUtil {

20 private boolean isSupportedMediaType(MediaData ii){

21 return original(ii) ||

22 ii.getTypeMedia().equals(MediaData.MUSIC);

23 }

24 }

25 public class MusicMediaUtil extends MediaUtil {

26 private boolean isSupportedMediaType(MediaData ii){

27 return original(ii) ||

28 ii.getTypeMedia().equals(MediaData.VIDEO);

29 }

30 }

2

Figure 2.2 FeatureHouse code example extracted from MobileMedia [28].

“ We could decompose a system into composable units, where certain com-
ponents are themselves variable in the sense that their implementations are
annotated. During product derivation, a generator would select a subset of
composition units and remove annotated code from them that belongs to
deselected features.

Apel et al.[10] ”

18 FUNDAMENTAL CONCEPTS

(a) Annotative approach

Color

Graph

WeightBasicGraph

Annotated
Code Base

Feature
Model

(b) Compositional approach

Color

Graph

WeightBasicGraph

Feature
Model

Composition
Units

Figure 2.3 Annotative and compositional approaches to product-line implementation. Adapted
from Apel et al. [10].

Recently, Apel et al. [1] introduced a language-independent approach based on super-
imposition, called FeatureHouse, which unintentionally allowed hybrid composition
of C/C++ systems, while implementing software composition for such languages without
cut the preprocessor annotations out. In fact, their work inspired us while to conceive
our hybrid approach for JavaScript-based systems, the RiPLE-HC (which we present
in detail in Chapter 4). The RiPLE-HC was developed after discarding such initiative
as a viable solution for an industrial partner. The last quote describes the behaviour
of our proposed approach. Similarly with FeatureHouse, RiPLE-HC compose units
(without the original() method feature) and remove annotated code blocks belonging to
deselected features.

2.2 PROGRAM COMPREHENSION

Definition 2.3. Program comprehension is an internal complex cognitive problem solving
process of understanding unfamiliar program code [32].

The program comprehension process takes place in both, development and mainte-
nance phases of the Software Development Life Cycle (SDLC). Besides, it can happen
through different ways depending on the background knowledge – which consists of the
(in) formal education, as well as techniques, languages, and paradigms known by the
developer – and the developer understanding of the program domain – the context in
which the program was built for. Moreover, the amount of knowledge a developer in
charge of a maintenance task holds may determine how he/she addresses the comprehen-
sion tasks. There are three kinds of models which describe the comprehension tasks, as
follows: top-down models [33, 34, 35], bottom-up models [36, 37], and integrated models
[38].

In a nutshell, while developers understand a program in a top-down fashion if they are
familiar with the program’s domain, they use a bottom-up approach otherwise. In other
words, in the former situation, they state hypotheses on the program purpose without take
a closer look in the source code by comparing the current program with familiar ones. In
an integrated model, they cannot rely on any comparison, thus they are supposed to take

2.2 PROGRAM COMPREHENSION 19

a closer look into the program statements. The integrated models consider developers
hold an adequate knowledge about the program domain, but it is usually not enough
to clearly understand the code, in the sense they need to rely on a different number of
strategies, such as interacting with User Interface (UI) to test expected program behavior
or debug application to elicit runtime information [39].

Assessing program comprehension is not a trivial task due to the cognitive nature of
the process, especially when it involves measuring the comprehension of different indi-
viduals, with different backgrounds. Siegmund and Schumann [15] presented a literature
survey on the confounding parameters of the program comprehension tasks used in a
wide range of experiments. They also presented an overview of the measurements and
the control techniques for these parameters. In fact, Siegmund proposed a framework for
measuring program comprehension in her Ph.D. thesis [11]. She relied on those differ-
ent comprehension models to build a guideline framework to aid the design of program
comprehension experiments. More specifically, Siegmund’s framework [11] presented four
main contributions:

1. It is not recommended to use feature-oriented software measures as indicators of
program comprehension, since the results of their experiment did not indicate a
relationship between such measures and program comprehension. [40];

2. An extensive list of confounding parameters (Table 2.1) for program comprehension
presented together with their controlling techniques [15];

3. An evidence-based questionnaire to reliably and conveniently measure program ex-
perience, which included questions regarding knowledge of programming languages,
programming paradigms, number of courses taken, and experience with large soft-
ware projects [41];

4. A tool to fulfill common requirements of program-comprehension experiments [42,
43].

Table 2.1 Confounding parameters on program comprehension experimentations [15].

Type Confounding parameters

Individual knowledge
Ability, Domain knowledge, Education, Familiarity with
study object, Familiarity with tools, Programming expe-
rience, and Reading time.

Individual circumstances Fatigue, Motivation, and Treatment preference.
Individual background Color blindness, gender, culture, and intelligence.

Siegmund’s framework is robust, in the sense that it covers the different facets of
program comprehension experimentation, i.e., planning, controlling, measuring, and sup-
port. Therefore, we are going to use it as the proper guideline to plan and execute our
experimentation studies.

20 FUNDAMENTAL CONCEPTS

2.3 CHAPTER SUMMARY

In this chapter, we presented an overview of the topic approached in this thesis. We
started by introducing the big picture of the FOPLE while discussing the main goal
of each variability representation techniques. Regarding the variability representations,
we detailed annotative approaches, compositional approaches, as well as the hybrid ap-
proaches consisting of a blending of composition and annotations. Next, we briefly intro-
duced the existing program comprehension models and described the foundation concepts
regarding experimentation in such a context. We also discussed Siegmund’s framework
for program comprehension experimentation, including the use of software measures, con-
founding parameters, the measuring of programming experience, and the available tool
support.

Next chapter presents a literature review on the program comprehension experimen-
tation.

Chapter

3
LITERATURE REVIEW

The goal of this chapter is to present a literature review of the experimentation on influ-
ence of the differences among variability representations on the program comprehension,
the main topic addressed in this thesis. We performed the literature review in two steps:
(i) conducted a manual search using both, the main venues related to program compre-
hension in feature-oriented software and the Siegmund and Schumann survey confounding
parameters on software engineering experimentation [15]; and (ii) conducted an ad-hoc
search using Google Scholar for both aforementioned topics.

The chapter encompasses four main sections. Section 3.1 presents the method used to
carry out the literature review. Section 3.2 presents an overview of the quantitative data
of the selected papers. Section 3.3 discusses the selected papers in the literature review
process. Finally, Section 3.4 presents related work that may contribute to the kind of
investigation carried in this thesis.

3.1 METHOD

In this section, we present the method used to review the existing literature regarding
to empirical assessment of the impact of FOSD on program comprehension evidence
corpus. As earlier introduced, we performed the review in two phases, namely manual
and automated ad-hoc searches instead of use a systematic methods of literature review
[13, 14]. However, we we did follow a method using previous literature reviews we found
[15, 16] as the basis of ours. We describe the process next.

3.1.1 Selection Process

In the manual phase, we used the selected papers set (842 in total) from the catalog of
confounding parameters found in controlled experiments on program comprehension [15],
which covered from 2001 until 2010. Additionally, we selected 2458 papers from a broad
and representative set of journals (3), conferences (5), symposia (2), and workshops (2)
published since 2011, except from GPCE, which was not covered in the Siegmund and

21

22 LITERATURE REVIEW

Schumann survey [15] found at the Computer Science Bibliography (DBLP) for the matter
of completeness. Both venues’ list can be found in Appendix A. In the ad-hoc phase, we
did not took into account the amount of the papers reviewed since we adapted the search
string recurrently until no new relevant paper could be retrieved from the first five result
pages of Google Scholar. The author of this thesis performed the review himself.

Read
Title/Abstract

Evidence-
based study?

Scanning complete
paper & search for

keywords
Inconclusive

Add to the
"Selected

Papers" set
YesEvidence-

based study?

Discard
selected 15

discarded 3285

2458

No

Yes

No

DBLP ESE'14 Google
Scholar

842

1

2

Figure 3.1 Papers selection process.

Figure 3.1 shows the paper selection process used in both, manual and ad-hoc reviews.
We started the selection of the papers in the Step ¶ with the reading of the papers’ titles
– and in inconclusive cases also the abstract. Whenever the reading of abstracts could not
clearly indicate either the presence or absence of evidence-based research, we proceeded
with the Step · in which the main task was to scan the whole paper to clarify the nature
of the work. All the paper selection was made only by the author of this thesis without
any review from other researchers.

3.1.2 Inclusion/Exclusion Criteria

In order to select the papers as relevant in our literature review, we searched for a set of
keywords in the title/abstract/body as described before. We used these keywords to char-
acterize the publications as research based on evidence concerning the program compre-
hension of feature-oriented software. The keywords used in the searches of the literature
review were the following: “program comprehension”, “software understanding”, “variabil-
ity implementation”, “virtual separation of concerns”, “physical separation of concerns”,
“controlled experiments”, “empirical studies”. We also considered possible synonyms of
them.

3.2 DATA COLLECTION

In this section, we present the quantitative data about the selection of papers according
to the described selection process. Tables 3.1 and 3.2 show the number of papers selected
per year from each venue in the manual and ad-hoc searches, respectively. For each venue,
the tables show the amount of papers target of review (“Available” rows) and how many
out of them were selected (“Selected” rows). The last two rows of the tables subsume such
values from all the venues.

3.3 RESULTS 23

We knew beforehand few papers addressing the influence of variability representations
on program comprehension. So far, the main work addressing such identified problem has
been published by Siegmund et al. [28]. In the paper, the authors discussed the importance
of such studies and argued in favor of further experimental studies in such context for a
better understanding of the differences in the point of view of the (potential) developers.

Our paper selection process confirmed such assumption of lack of studies in the field.
For the manual search, Tables 3.1 and 3.2 show only 11 papers – all selected from the
DBLP set of papers and 4 out of those selected in the Siegmund and Schumann survey [15]
– contributed, at least to a certain extent on this matter. For the ad-doc search, we could
find any additional paper concerning the comprehension of different paradigms in the
variability implementation. Therefore, we only selected papers concerning to literature
reviews, opinion/discussion papers on the role of program comprehension in software
engineering tasks.

3.3 RESULTS

In this section, we discuss the selected studies in the manual and the ad-hoc searches
of the review process. The final set contains contributions of different types, therefore,
we present them grouped by their macro topics in the following subsections. Namely,
we discuss (i) literature reviews, (ii) understanding of program comprehension, and (iii)
experiment reports. These are discussed next.

3.3.1 Literature Reviews

An important subset of the selected papers are literature reviews. We found three of
them [44, 45, 16]. They provide a comprehensible landscape of the current state-of-the-
art of program comprehension research. Storey [45] presented a review of some of the
existing key cognitive theories that emerged prior to 2006, whereas Siegmund [16] recently
published her thoughts exploring the research field discussing the past, the current state,
and outlining what might be the next steps in the field.

Regarding their research questions: Mayhauser and Vans [44] addressed common ele-
ments of six cognition models and compare them based on their scope and experimental
support available prior to 1995; Storey [45] addressed the diverse theories, research meth-
ods and tools published prior to 2006 that were raised and produced from the multitude
of differences in program characteristics, programmer ability, and software tasks; Finally,
Siegmund [16] highlight past successful theory-driven research on program comprehension
and efforts to support the programmer, discuss the current state and its problems, and
outline where future research might be directed to. Siegmund looked back from the year
2016. All these litereature reviews are complimentary. Next, we detail each of them.

Mayhauser and Vans [44] reported on program comprehension during software mainte-
nance and evolution. They related the former existing models of program comprehension
with the different tasks of software maintenance. They surveyed the evaluation studies of
those models, which they classified on observational, correlational, and hypotheses-testing
experiments. They observed a lack of approaches providing the research community with

24 LITERATURE REVIEW

Table 3.1 Number of selected paper in each forum per year.

Venue 2011 2012 2013 2014 2015 2016* Total

ESE Available 25 23 32 55 50 48 233
Selected - - 1 - - - 1

TSE Available 48 82 95 63 61 31 380
Selected - - - - - - 0

TOSEM Available 17 18 35 43 22 8 143
Selected - - - - - - 0

SPLC Available 31 34 28 36 37 - 166
Selected 1 - - 1 - - 2

ICSR Available 16 - 23 - 24 24 87
Selected - - - - - - 0

GPCE Available 18 15 20 13 20 - 86 + 128**
Selected - - - - - - 0

ICPC Available 18 23 19 20 23 - 103
Selected 1 - - - 1 - 2

ICSE Available 62 105 100 99 83 101 550
Selected - - - 1 - - 1

FSE Available 34 34 49 61 88 - 266
Selected - - - - 1 - 1

ESEM Available 40 21 34 38 21 - 154
Selected 1 - - - - - 1

VAMOS Available 21 22 19 21 16 14 113
Selected - - - - 1 - 1

PLEASE Available 12 16 14 - 7 - 49
Selected - - - - - - 0

FOSD Available 8 10 6 6 - - 30 + 28**
Selected - 1 - - - - 2

Total Available 353 400 474 455 452 226 2516
Total Selected 2 1 1 1 2 - 10+1**

* until July of 2016; ** number of papers analyzed from the editions before 2011.

a clear picture of the program comprehension processes. Fortunately, we might observe an
increased interest by the research community at investigating the program comprehension
field, as pinpointed by Storey [45] in the second review.

Storey [45] discussed different facets of the program comprehension research, cover-
ing concepts and terminology, comprehension models (top-down, bottom-up, knowledge-
based, which mix the top-down and bottom-up models), opportunistic and systematic
strategies, and finally the integrated metamodel built upon influences from the previ-
ous models. The author then discussed the impact of program characteristics and the
influence of individuality of developers in the program comprehension tasks. Besides the

3.3 RESULTS 25
T
ab

le
3.
2

N
um

be
r
of

se
le
ct
ed

pa
pe

r
in

ea
ch

fo
ru
m

pe
r
ye
ar

on
th
e
pa

pe
r
se
le
ct
ed

fr
om

th
e
Si
eg
m
un

d
an

d
Sc
hu

m
an

n
su
rv
ey

[1
5]
.

V
en
u
e

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

To
ta

l

T
O
SE

M
A
va
ila

bl
e
[1
5]

-
-

-
-

1
-

3
-

-
3

7
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
T
SE

A
va
ila

bl
e
[1
5]

5
6

6
5

5
3

2
5

3
5

45
Se
le
ct
ed

-
-

1
1

-
-

-
-

-
-

2
E
SE

A
va
ila

bl
e
[1
5]

2
9

4
9

10
7

7
4

7
3

62
Se
le
ct
ed

1
-

-
-

-
-

-
-

-
-

1
JS

E
P

A
va
ila

bl
e
[1
5]

4
4

3
5

1
2

2
3

1
5

30
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-

C
H
I

A
va
ila

bl
e
[1
5]

16
16

16
19

22
24

22
35

52
47

26
9

Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
IC

P
C

A
va
ila

bl
e
[1
5]

-
-

-
-

-
2

4
6

4
3

19
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
IC

SE
A
va
ila

bl
e
[1
5]

8
10

8
1

11
11

10
8

4
12

83
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
IC

SM
A
va
ila

bl
e
[1
5]

7
10

4
5

8
11

13
7

5
5

75
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
V
LH

C
C

A
va
ila

bl
e
[1
5]

-
-

-
11

9
10

8
7

9
11

65
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
W
C
R
E

A
va
ila

bl
e
[1
5]

4
6

6
7

3
6

9
4

5
11

61
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-

F
SE

A
va
ila

bl
e
[1
5]

-
1

-
-

1
2

2
3

1
1

11
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
E
SE

M
A
va
ila

bl
e
[1
5]

-
-

-
-

-
-

12
3

11
8

34
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-

C
H
A
SE

A
va
ila

bl
e
[1
5]

-
-

-
-

-
-

-
11

9
8

28
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
H
C
C

∗
A
va
ila

bl
e
[1
5]

11
11

6
-

-
-

-
-

-
-

28
Se
le
ct
ed

-
-

-
-

-
-

-
-

-
-

-
IW

P
C

∗∗
A
va
ila

bl
e
[1
5]

2
3

4
8

8
-

-
-

-
-

25
Se
le
ct
ed

-
-

-
-

1
-

-
-

-
-

1

To
ta

l
Se

le
ct

ed
1

-
1

1
1

-
-

-
-

-
4

*
H
C
C

be
ca
m
e
V
L
H
C
C

in
20
04
.
**

IW
P
C

be
ca
m
e
IC

P
C

in
20
06
.

26 LITERATURE REVIEW

theories, the author also discussed the tools supporting them and enumerated a number
of requirements identified to provide such support, such as “providing of data and control
flow information to maintainers”, “software visualization”, as well as “search and history”
features.

Siegmund [16] argues that research on the understanding of how and why the advances
on programming environments, software visualizations, programming languages help de-
velopers are rather limited. The author points out the mid-90’s ceasing of the progress
in the related research for over a decade as one of the main reasons. Siegmund work [16]
discussed different facets of the research field, such as the (i) measuring of program com-
prehension, (ii) modeling program comprehension, (iii) programming languages, and (iv)
programming tools. The author highlighted the following points from the developers’s life
that should be considered in further empirical studies:

• Getting an overview of a large program or software architecture;

• Understanding type structures and call hierarchies;

• Understanding the relationship between components; and

• Identifying the developers who are responsible for a component.

Indeed, these are broad topics and will take several research effort to cover all of
them. However, in this thesis, we intend to go a step further by contributing with the
understanding of the influence factors on developers comprehension of the variability
implemented in both, annotative and compositional approaches.

3.3.2 Understanding Program Comprehension

While deciding to conduct research on program comprehension, it is essential to under-
stand its role in Software Engineering as a whole. Rajlich and Wild [46] presented a
preliminary discussion on the role of concepts1 in program comprehension. Their work
mainly described concept location scenarios and case studies pinpointing their importance
in the construction of domain knowledge. They highlighted the role of search techniques
in the process of understanding unfamiliar code.

Burkhardt et al. [47] investigated the effect of three different factors on program com-
prehension of the object-oriented (OO) paradigm. Namely, they addressed programmer
expertise, programming task and the development phase. Although it only addresses OO
systems, their work raises interesting aspects that can eventually be evaluated in the
context of other paradigms. Moreover, they showed that the models used to measure
comprehension were too simplistic and/or language-dependent. Lately, in the Interna-
tional Conference on Program Comprehension (2007), Penta et al. [48] carried out a
working session with the conference’s attendees. The main topic was the designing of
program comprehension empirical studies, which reinforces the importance of such type

1Such concepts were lately described as concerns in aspect oriented research [26] – which are associated
to the feature concept discussed in the Chapter 2.

3.3 RESULTS 27

of research. In fact, Siegmund [11] also contributed to measure of different aspects in-
volved in the comprehension process, such as programming experience of the developers
and the confounding parameters observed during experimentation.

Later, Maalej et al. [39] conducted an exploratory study on the identification of strate-
gies which developers use to comprehend, tools supporting their work, important knowl-
edge during comprehension tasks, channels they use to share knowledge, and the problems
faced in real experiences. They found a gap between the state-of-the -art and -practice
that questions the usefulness of comprehension tools suggested by research (e.g., none
of the developers mentioned the use of visualization, metrics, or concept location tools
in practice). They also identified differences in the understanding of program compre-
hension among developers and researchers. While researchers have comprehension in the
core of maintenance activity and try to systematize the whole process, developers avoid
it whenever possible focusing on the expected output.

Recently, Siegmund et al. [49] started a sophisticated series of studies on program
comprehension. They analyzed which brain areas were activated while developers per-
formed such cognitive process by using functional magnetic resonance imaging. They
found clear activation of specific brain regions associated with working memory, atten-
tion, and language processing. Moreover, they claim the programming education might be
more efficient when focused in the language skills instead of working memory or problem
solving tasks.

3.3.3 Reports on Experimental Studies

We found few reports involving experimental studies on program comprehension among
different paradigms [50, 28, 51]. In fact, only Siegmund et al. [28, 51] addressed feature-
oriented software, while Kosar et al. [50] assessed different languages using feature dia-
grams as one of the evaluation scenarios.

Kosar et al. [50] presented a family of experiments on the program comprehension of
domain-specific and general-purpose languages. The experiments covered three different
domains and different applications for each task analyzed. The results showed developers
are more accurate and more efficient in program comprehension when using a domain-
specific language than when using a general-purpose language. Such kind of evidence is
unavailable regarding #ifdef-based and feature-orientated software, which we plan to
contribute by identifying influence factors on program comprehension while developers
address code using different variability representations.

Siegmund et al. [28] conducted a pilot study on the comparison of program compre-
hension while addressing annotative and compositional source code, which is one of the
main topic of this thesis. To the best of our knowledge, this is the only work addressing
program comprehension on such different paradigms for feature-oriented software. Yet,
this study brought only preliminary evidence to the field and encouraged researchers to
replicate the pilot, as well as to extend their findings. We replicated their study with
students enrolled in a Software Engineering graduate program in order to strengthen or
contrast their findings [52]. Such a replicated study is further addressed in Chapter 8.

Siegmund et al. [51] presented a family of controlled experiments regarding the phys-

28 LITERATURE REVIEW

ical and virtual SoC effectiveness of the use of background colors to help on the mainte-
nance of software systems instead of an annotative approach. The main question addressed
was whether the use of colors instead of #ifdef directives reduces the code obfuscation
introduced by the latter while implementing variability in feature-oriented software. Back-
ground colors showed potential to improve program comprehension independent of size
and programming language of the project.

3.4 RELATED WORK

In this section, we present some related work that did not addressed the influence of vari-
ability representations on program comprehension directly, but might have contributed
somehow to our research.

Robillard et al. [53] investigated the behavior of developers while inspecting code in
order to implement a change request. They concluded that “in the context of a program
investigation task, a methodical investigation of the code of a system is more effective
than an opportunistic approach.” Although they addressed only OO code, they con-
tributed with a set of detailed observations about the characteristics of effective program
investigation behavior and a detailed methodology for performing empirical studies of
programmers where it is important that the programmer behavior be studied in detail.

Fritz et al. [54] investigated a novel approach to classify the difficulty of code compre-
hension tasks while developers are programming. They recorded the study using psycho-
physiological sensors, e.g., eye-tracking. They also relied on the record of think-aloud
narrative and screen capture. Finally, they used machine learning to define classifiers to
predict the task difficulty. They achieved the best overall performance outcomes when
predicting a new task with 84.38% precision and 69.79% recall.

Melo et al. [55] carried out a controlled experiment to quantify the impact of the
degree of variability in the bug finding tasks. Their results showed the speed of bug
finding decreases linearly with the degree of variability, while effectiveness of finding bugs
is relatively independent of the degree of variability. Moreover, they discovered that for the
subjects identify the exact set of affected configurations appears to be harder than finding
the bug in the first place. In our investigation, instead of the degree of variability, we resort
on tasks using two different variability representations for participants to identify feature
precedence in warming up tasks for a focus group (details in Chapter 9).

3.5 CHAPTER SUMMARY

In this chapter, we presented a literature review carried out to provide an overview of the
existing research related to the topic of this thesis. We first detailed the used method to
conduct the review, including the sources of literature, the revisited previous literature
review, the considered venues, and the include/exclude criteria adopted in the process.
Next, we enumerated the quantitative data regarding the selected papers. Finally, we
concluded the chapter discussing the selected papers and showing how they relate to this
work.

Next part of this thesis consists of two chapters. Chapter 4 presents our feature-

3.5 CHAPTER SUMMARY 29

oriented approach to handle variability in JavaScript-based systems, whereas Chapter
5 brings the preliminary evaluation of our approach.

PART III

JAVASCRIPT FEATURE-ORIENTED
SOFTWARE DEVELOPMENT

Chapter

4
JAVASCRIPT HYBRID COMPOSITION (RIPLE-HC)

The RiSE Product Lines Engineering approach based on Hybrid Composition (RiPLE-HC)
implements a strategy to handle variability at both feature modeling and code level for
JavaScript -based systems. It encourages the use of the feature-based code organization
and allows the use of preprocessing annotations to handle fine-grained variability. This
chapter is dedicated to introduce the RiPLE-HC concept and the methods underlying
the strategy.

The chapter consists of five main sections. Section 4.1 presents the motivation for
such a proposal. Section 4.2 discusses the lack of work addressing the systematic reuse
in JavaScript-based systems. Section 4.3 describes its inception and its overall charac-
teristics. Section 4.4 details the implementation of the approach and the available tool
support. Section 4.5 presents a rationale on the inherited characteristics by RiPLE-HC
from pure composition and annotative approaches.

4.1 MOTIVATION

JavaScript-based systems can be found in different platforms and such programming lan-
guage is not only used to implement Web-based systems [56], e.g., Brackets is a powerful
general purpose text editor implemented in JavaScript.1 Moreover, developers are turn-
ing their efforts to build modular code, so as to foster software reuse. For instance, Silva et
al. [12] investigated the use of classes-like and inheritance constructs in JavaScript devel-
opment. They concluded that, although the language is class-free, prototype-based, and
it will probably always keep such status, 74% of the analyzed systems (out of 50 systems)
make use of “classes” – from which 8% have the vast majority of their data structures
implemented with such construct. Only 26% of them do not rely on such construct in
order to organize the code. They suggested to consider the adaptation of the JavaScript
ecosystem to provide tools, concepts, and techniques that cope with characteristics of
systems that use class-based languages.

1Available at: <http://brackets.io/>

33

http://brackets.io/

34 JAVASCRIPT HYBRID COMPOSITION (RIPLE-HC)

At the same time, the complexity of JavaScript-based software systems is increasing
and a significant amount of complexity comes from handling the dynamic behavior of
their features, which sometimes depend on either the presence or absence of another fea-
ture. This ever increasing complex scenario satisfies SPL engineering key characteristics,
as it may provide JavaScript-based systems with the opportunity to move from a cus-
tom software development approach to build a set of products and assembling reusable
modules, in a systematic and coordinated fashion. Unless the business goals establish
a limited audience for the developed systems, SPL engineering can be considered as a
suitable strategy to cope with the large amount of system variations and complexity [57].

Research effort concerning the introduction of SPL engineering in the Web systems
domain can be found elsewhere [58, 59, 60]. However, they are mostly concerned with
modeling domain variability in a high-level abstraction, as a means to represent the com-
mon and variable features. For instance, in the feature-oriented software development
paradigm, the use of composition as the only mechanism to support variability may limit
the handling of feature interactions, as well as the support of fine-grained variability
management [61]. While it can facilitate the understanding of how products can be com-
posed in terms of features, it is rather important to manage variability in both, coarse
and fine-grained implementation levels, given that source code holds important role in
establishing variable behavior.

In fact, Medeiros et al. [6] showed that developers keep using conditional compilation
in such scenarios in spite of the recommendations against its use due to its likely harm-
fulness. In fact, the easy-to-use approach and the flexibility #ifdef annotations provide,
may allow the development of highly configurable systems sheltered from inconsistencies,
even in large systems, such as the Linux kernel [7]. In this scenario, some initiatives –
such as FeatureC++ [2] and FeatureHouse [1] – made viable to explore the benefits
of both compositional and annotative approaches to provide a middle-term solution for
the problem, hybrid approaches.

To the best of our knowledge, despite of the recommendations on the modularization
of large JavaScript applications2 of the JavaScript developers community, there is no
proper tool support for a systematic reuse and organization of the code, apart from the
external constructs, such as package managers (e.g., npm, jam, bower) and dependencies
managers (e.g., requireJS). We discuss this lack of approaches in details in the next
section.

4.2 REUSE IN JAVASCRIPT-BASED SYSTEMS

Apel et al. published a book on feature-oriented product lines in 2013 [10], which we
assume as a broad and representative list of relevant related approaches. Therefore, the
following studies were selected from an ad-doc search regarding the existing approaches
addressing the systematic reuse in JavaScript-based systems and Web-based product
lines.

There is a number of tools available to foster modularity in JavaScript-based sys-

2Recommendations on the code organization of large JavaScript applications (<http://goo.gl/
iKcJPD>). Accessed in July 12th, 2017.

http://goo.gl/iKcJPD
http://goo.gl/iKcJPD

4.2 REUSE IN JAVASCRIPT-BASED SYSTEMS 35

tems, namely, package managers (e.g., npm, jam, bower, etc.), dependencies managers
(e.g., requireJS), among others. In addition, the JavaScript developers community
package their scripts usually compressed by removing unecessary blank spaces to reduce
the size of the documents users would have to download. This fact by itself already il-
lustrates the need of removing also the unecessary code, which the use of “classes” or
the modularization recomendations mentioned befored do not solve. However, these ap-
proaches do not allow the project features management based on a feature model or
product composition. In fact, our approach does not exclude or intend to substitute such
tools, but to improve the reuse in such systems instead. We could not found any literature
addressing such an issue. Next, we discuss some investigations, which do not deal with
such problem but we considered as related to ours.

Clone-and-own requires no major upfront investments and it is intuitive. Fischer et al.
[62] proposed a new approach to enhance its use and address the lack of systematic reuse
methodologies in industry scenario. They support the development and maintenance of
software product variants by providing proper guidance during the artifacts adaptation
tasks.

Apel and Kästner [8] pointed out as a key challenge for feature-oriented programming
approaches the handling of feature interactions. Recently, empirical studies concerning
to feature-oriented programming provided evidence that reinforced their claim [61, 63].
As far as we know, Prehofer [29] is one of the first researchers to highlight the relevance
of such a problem, while proposing dedicated modules to implement feature interactions,
called lifters. Liu et al. [64] extended the lifters notation to derivatives and presented a
theory for feature interaction.

We also found some studies dealing with the composition of Web systems to a certain
extent, e.g., by using strategies such as XML-based [58] or feature-oriented programming
[59]. Nevertheless, they also focus rather on modeling aspects. For instance, Trujillo et
al.[60] presented a mix of FOP and Model-Driven Development (MDD), the Feature-
Oriented Model Driven Development (FOMDD), which shows how products in an SPL
can be synthesized in an MDD way by composing features to create models, and then
transforming these models into executables. By contrast, in this present investigation, we
considered a lower level of abstraction, while proposing a strategy to cope with variability
at the implementation level. None of these studies deal with feature-based composition
nor present any empirical evidence of such. Therefore, we might observe a lack of em-
pirical evidence on the impact of hybrid composition software development and on the
maintenance tasks in JavaScript -based systems.

Capilla and Dueñas [59] presented a light-weight SPL architecture to control the evo-
lution and maintenance of new Web products and facilitate the maintenance operations
on Web sites. The authors claim their approach reduces the development costs, and the
benefits of the SPL engineering can be noticed earlier. The research was based on data
from an initial analysis of two Web sites.

Pettersson and Jarzabek [58] used an XML-based Variant Configuration Language
to turn a Web portal into a more flexible architecture to reap the benefits of new busi-
ness opportunities that required rapid development and further maintenance. However,
developers had to manage multiple languages (XVCL, ASP, HTML) without specific

36 JAVASCRIPT HYBRID COMPOSITION (RIPLE-HC)

RiPLE-HC approachcompositional
approach

Foo

modulesFoo

Bar

modules

modules

Annotative approach

src

modules
#ifdef Bar
 <code here>
#endif Bar

modules

+ =
#ifdef Bar
 <code here>
#endif

Figure 4.1 RiPLE-HC code organization: blending feature-based code organization and pre-
processing annotations.

tool support, which may impact on both productivity and maintainability. Additionally,
while runtime debugging the webportals this approach forces developers to remember the
several mappings used, increasing complexity.

Trujillo et.al. [60] blended FOSD and model-driven development (FOMDD) to opti-
mize the synthesis of portlets in Web portals. A benefit of FOMDD is that it is mathe-
matically based, and this makes connections with category theory [65] easier to recognize.
Conversely, FOMDD requires additional effort to manage model and perform all trans-
formations needed, which without suitable tools it is likely that it might lead to higher
development costs and reduced quality of the models.

All of these studies propose strategies to handle Web-based SPLs to a certain ex-
tent. Nevertheless, they also focus rather on modeling aspects. Besides, the Feature-
House experience [1] was discarded while trying to extend the approach to cope with the
JavaScript language structure. Therefore, we considered a lower level of abstraction and
propose a strategy to handle JavaScript -based systems variability at implementation
level. Our approach aims to promote the modular and systematic reuse of artifacts in a
feature-oriented way. The approach is presented next.

4.3 CONCEPT

As the name suggests, RiPLE-HC is a hybrid approach that blends compositional and
annotative approaches of SPL engineering [10]. RiPLE-HC explores the modularization
of the compositional approaches and the flexibility that annotative approaches enable
to handle feature interactions. Such a blending allows to manage variability at different
levels of the development phase. Besides, while the composition handles the inclusion or
exclusion of an entire functionality in a product variant (coarse-grained variability), the
annotations enable inner-function statements to behave differently (fine-grained variabil-
ity), depending on the selection of a given feature.

Figure 4.1 shows how the RiPLE-HC employs the concept of feature-oriented software
product lines [10] to organize the source code. Containment hierarchies organize the
features [30], in which each directory holds elements of a given feature, including the

4.4 IMPLEMENTATION 37

source code. The containment hierarchy is a way to modularize the code and ease the
composition implementation. However, in practice, feature interaction problems – the
behavior of a given feature Foo being changed due the presence or absence of feature Bar
(as Fig. 4.1 illustrates) – make it too hard to have no code scattering, which directly
impacts the code organization. The hybrid composition of RiPLE-HC makes it possible
to handle feature interaction limitations of pure composition [61] by allowing the use
of preprocessing annotations. Thus, there may be eventual preprocessing annotations
concerning a given feature (e.g., Bar) scattered through different folders (e.g., Foo). It
is worth to notice that our approach does not make any assumptions regarding how the
JavaScript modules are structured.

Thus, the composition-based approach handles most of the work while composing a
new product and the annotative approach adds a preprocessing step preceding the real
composition. Although preprocessing annotations can be used anywhere within a module,
so that variability management can count solely on annotations, the feature-oriented code
organization fosters the inclusion of code mostly belonging to a given feature (e.g., Foo
in its particular folder. Conversely, annotations should preferably handle fine-grained
variability (e.g., feature interactions handling) to avoid problems with code obfuscation
[4].

4.4 IMPLEMENTATION

RiPLE-HC3 was implemented as a plugin for FeatureIDE [66], a variability man-
agement tool designed to provide automated support to SPL development. Thus, we
expanded the FeatureIDE capabilities to integrate an annotative with the native com-
positional approach, as a more general approach to enable variability management at
implementation level. While the former enables inner-function statements to behave dif-
ferently, depending on the selection of a given feature, the latter handles the inclusion
or exclusion of an entire function in a product variant. In this approach, we cope with
functional interactions, subsuming interactions that could potentially violate functional
specifications [10]. It is worth to notice that there is no native support for annotations in
JavaScript and by using this approach, the language remains as the original. For the pur-
pose of supporting them, we made use of parsing comment lines for the defined keywords
(Details about the keywords in Section 4.4.2). In addition, none of our implementations
were tested against variability awareness. We next describe the implementation architec-
ture, how the approach handles coarse and fine-grained variability, and the support to
deal with scattering and tangling.

4.4.1 Architecture

This section discusses the architecture and components of the RiPLE-HC implementa-
tion. Figure 4.2 shows its deployment view, highlighting how the plugin relates to exter-
nal entities. More specifically, such external entities comes from three different projects

3Available at: <https://goo.gl/Ar2cJC>

https://goo.gl/Ar2cJC

38 JAVASCRIPT HYBRID COMPOSITION (RIPLE-HC)

(FeatureIDE, VJET4, and GEF4 Zest – all of them in a shadowed dashed rectangle).
Next, we detail the role of each bundle.

de.ovgu.featureide.core

org.eclipse.vjet.core

br.com.reconcavo.featurejs de.ovgu.featureide.fm.core

br.com.riselabs.featurejs.ui

br.com.riselabs.vparser

org.eclipse.gef4.zest.core

org.eclipse.gef4.zest.layouts

Legend:
depends on Eclipse plugin bundle

Figure 4.2 RiPLE-HC deployment view.

br.com.reconcavo.featurejs: It is the core RiPLE-HC bundle. This bundle manages
the hybrid SPL composition by first performing the preprocessing of the existing
annotations and then the real composition of features. For instance, once a .js file
for a given feature is written and the annotations referencing other features included
throughout the code, this bundle is responsible to resolve which annotated blocks
will remain after the build of the variant.

br.com.riselabs.featurejs.ui: The user interface RiPLE-HC bundle. This bundle
implements views on the features interaction and annotations scattering throughout
the source code. This is a helper bundle designed to support code maintenance by
showing where the annotations referencing each feature are and the relationship
among them as well.

br.com.riselabs.vparser: The variability annotations parser RiPLE-HC bundle. This
bundle parses the source code to locate the annotations and collect information
needed to support the user interface bundle on the construction of its visualization
tools.

The external bundles are the following:

de.ovgu.featureide.core: The core FeatureIDE bundle. This bundle allows external
bundles implementing custom composers to extend the FeatureIDE composition
capabilities. RiPLE-HC relies on it to perform the composition.

4<http://eclipse.org/vjet/>

http://eclipse.org/vjet/

4.4 IMPLEMENTATION 39

de.ovgu.featureide.fm.core: The feature model core FeatureIDE bundle. This bun-
dle provides default implementations for feature models, features, and configura-
tions. RiPLE-HC relies on it to manage the product configuration.

org.eclipse.gef4.zest.core: The core GEF4 Zest bundle. This bundle contains im-
plementations of default graph-based models. RiPLE-HC relies on it to build the
feature interactions graph.

org.eclipse.gef4.zest.layouts: The layouts GEF4 Zest bundle. This bundle con-
tains a set of graph layout implementations for different presentations of them.
RiPLE-HC relies on it to arrange nodes and edges of the feature interactions graph.

org.eclipse.vjet.core: The core VJET bundle. This bundle provides IDE capabil-
ities to support JavaScript faster development, such as code completion, code
templates, wizards, debug support, and native type and syntax checking to identify
errors through semantic validation.

4.4.2 FeatureJS: The Core Bundle

This section details the core bundle implementation (br.com.reconcavo.featurejs).
Figure 4.3 shows how the packages and classes relate to each other, and how they relate
to FeatureIDE core entities. RiPLE-HC uses ComposerExtensionClass, from package
de.ovgu.featureide.core.composers, as this is the default composer implementation
provided by FeatureIDE. The RiPLE-HC encompasses the following classes:

FeatureJsCorePlugin. This class links FeatureIDE to RiPLE-HC plugin by cre-
ating an activator class, allowing this latter to be managed by the FeatureIDE
framework.

FeatureJSComposer. This is a business rule class that integrates FeatureIDE Wiz-
ard’s information. It is responsible for retaining variability information for further
treatments. This works by screening each file, within the allowed extensions, to
treat the preprocessor directives. It also creates the containment hierarchies, and
handles the software configuration build performance.

FeatureJSModelBuilder. This class is responsible for traversing each feature and the
associated files, displaying them in FeatureIDE’s FSTModel, which represents the
project structure.

FileManager. This class manages files that have been copied to remove the non-selected
features, keeping only the selected ones. It is a final class which implements the sin-
gleton pattern, hence it cannot be neither inherited nor instantiated. We found it to
be a safe approach to avoid likely concurrency problems. As a business rule class,
it defines the precedence logic for each preprocessor directive, and the replacement
policy. Once a directive’s block code contains an error, this class handles the error,
maintaining the code portion with deviation in a product variant. Meanwhile, an
exception is thrown to report the occurrence.

40 JAVASCRIPT HYBRID COMPOSITION (RIPLE-HC)

Figure 4.3 FeatureJS package and class diagram.

FileFeature. This class is responsible for identifying the feature interactions at imple-
mentation level, namely the files and features affected by other features. It retrieves
all feature interaction occurrences.

FileInterpreter. This class is an abstraction of a code fragment framed by a directive.
It implements a logical Doubly Linked List structured, as follows:

• The previous FileInterpreter is considered as a parent and known by the
attribute parentFileInterpreter.

• The next FileInterpreter is considered as a child and known by the attribute
childFileInterpreter.

• It has a pattern for the code fragment framed by a directives by the attribute
originalCode, and its replacement; if it is needed, it is defined by the attribute
innerCode.

FeatureTreatment. This is a final and non-instantiable class that encapsulates the
treatment of each feature, by generating a specific regular expression pattern to
recognize a directive. This is an utilitarian class, only accessible by its static meth-
ods.

PreProcessorDirectives. This Enum represents all available preprocessor directives that
are considered during the feature treatment phase in a file. Five directives are

4.4 IMPLEMENTATION 41

available to control conditional compilation, as follows: #ifdef, #ifndef, #else,
#elif, and #endif.

FeatureMetrics. This class gather metrics for measuring the complexity of the SPL.
This class enables the identification of source files containing preprocessor directives.
Besides, it also provides a view to list which files are affected by each feature. It is
useful for maintenance purposes, as it is possible to track files that need modification
when a feature is included, excluded, or modified.

4.4.3 Coarse-grained Variability

RiPLE-HC relies on the FeatureIDE capabilities to automatically create the contain-
ment hierarchy (Figure 4.1), in which there is a directory to store all the code belonging
to each concrete feature. This is a FeatureIDE inner concept. While abstract features
are dedicated to group concrete features and usually are named with more general terms,
the concrete features are those which actually provide the functionalities’ code. When a
new product is to be configured, the automated product generator picks all files from the
directories associated to all corresponding features and deploys the product variant in a
safe and effective manner. The JavaScript composition is made in the file level and no
assumption is made regarding the existence of methods with the same signature.

In the FeatureIDE, the variability is partially controlled at implementation level,
i.e., if a given file associated to a feature behaves differently depending on the selection of
an external feature, it replaces the entire file associated to that feature. In programming
languages such as Java, refinement declarations [30] serve as a strategy to handle changes
a feature makes to a program, without changing the core code, e.g., fields and methods
can be added to a class, and those will be reached in a program variant only if the feature
containing those refinements is selected. However, for programming languages which do
not enable those declarations, such as JavaScript, applying such a technique to control
inner-function variability would lead to a large amount of duplicated code.

In an ideal SPL, where there is a direct, one-to-one mapping between a problem do-
main variation and a variation point in the solution domain, this strategy would work
seamlessly. However, we should assume that feature interactions can also occur at imple-
mentation level, and a single feature can be mapped to multiple code fragments.

4.4.4 Fine-grained Variability

FeatureIDE allows the representation of constraints between features, controlled by the
configuration view. In such a view, a configuration either enables or disables the selection
of a given feature according to the constraints associated to it. RiPLE-HC relies on such
control for the composition and adds its own support to handle such dependencies with
low-level annotations.

For example, considering an SPL project called algorithms.js (Fig. 4.4) – which has
a root feature Algorithms representing the domain under analysis – a set of mandatory
features including a concrete feature called Knapsack and an abstract feature called Queue.
PriorityQueue and SingleQueue are alternative children of Queue. Therefore, one and

42 JAVASCRIPT HYBRID COMPOSITION (RIPLE-HC)

only one of them can be included, if their parent feature is included in a configuration.

...

Algorithms

Knapsack

SingleQueue PriorityQueue

...

Legend:

Mandatory

Optional

Alternative

Abstract

Concrete

Figure 4.4 algorithms.js SPL sample feature model.

The feature Knapsack have a containment hierarchy which holds a number of items,
which should behave differently depending on the Queue’s sub-feature selection. Listing
4.1 illustrates how the RiPLE-HC deals with the use of preprocessor directives (annota-
tive approach) to manage variability at implementation level.

The directives in the source code delimit blocks of program that are compiled only if a
specified condition is true. They may be employed to generate different product variants
by assembling the code fragments in cases where more than one product configuration
includes the same JavaScript file, but a given function behaves differently depending on
the feature selection. The main reason is that composition rules for augmenting functions
with new properties in JavaScript is not always safe [67]. In addition, this strategy
may reduce the maintenance effort, as the business rules from a single function will be
self-contained in a single file.

In the algorithms.js SPL example, after binding the variants, the variable queue
declaration statement will be set differently, depending on the selection of either fea-
ture PriorityQueue or SingleQueue. This shows how RiPLE-HC might anticipate pro-
gram-level customization of core assets for a custom product to an earlier phase in the
development cycle. Besides, it controls and manages variability at both model and im-
plementation levels to handle product enhancements.

function knapsack(items) {
...

var queue;
//#ifdef PriorityQueue

queue = new PriorityQueue ();
//#elif SingleQueue

queue = new SingleQueue ();
//#endif

...
});

Listing 4.1 Excerpt code from Knapsack.js (feature Knapsack).

4.4 IMPLEMENTATION 43

In summary, the syntax of the use of annotations was inspired by the Antenna5

syntax. The keywords are supposed to be inserted in the single line comments (“//”) in
any place of the .js file. The available keywords are #ifdef, #ifndef, #else, #elif,
and #endif. Each annotation block must be closed properly with the #endif keyword
after being opened with #ifdef and #ifndef. The keywords #else and #elif can be used
to provide an alternate behavior to program depending on the result of the evaluation of
the annotation block opening. These keywords keep the meaning of Antenna’s syntax.
However, the opening keywords take only one feature instead of a logical expression. Such
a restriction limits the flexibility/expresiveness of the annotations, yet in the same time
corroborates to the use of discplined annotations [27].

4.4.5 Scattering Support

RiPLE-HC implementation provides support for increasing the awareness of the develop-
ers regarding the SPL feature interactions and the scattering of annotations. Such support
consists of two views, the Feature Interactions View and the Scattering Tree View. We
decided to implement these views after the feedback of developers who used the approach
during (i) the case study we present in the Chapter 5 and (ii) in the experiment we
present in Chapter 7. Next, we detail each of these views.

The Feature Interactions View (Figure 4.5) consists in a tabbed panel with directed
graphs in each tab. The left-most tab exhibits the overall interaction of the selected
project. The remaining tabs exhibit a product-based graph containing only the selected
features for each product configuration available in the project. These graphs represent
the presence of #ifdef macros throughout the SPL source code, which we called feature
interactions (i.e., we do not deal with unexpected feacture interactions that usually cause
problems in software systems [10]). Nodes represent the product line features, whereas the
directed edges indicate the presence of conditional compilation annotations in the code
implementing the feature of the source node concerning the ending node feature. Numbers
over the edges account how many macros were found in the feature code relating both
features. We faced no problems while generating the graphs for the systems addresed in
the experimental study we present in the Chapter 5. We did not generate the graph with
a huge number of features.

The Scattering Tree View (Figure 4.6(a)) shows all the concrete features of the product
line as roots of a tree. Concrete is a FeatureIDE inner concept. While abstract features
are dedicated to group concrete features and usually are named with more general terms,
the concrete features are those which actually provide the business rule implementation.
All the JavaScript files in the respective feature folder containing annotations are shown
as child of feature root node. Besides, each line containing an annotation is a child itself
from the file nodes. This view is connected to the code Editor (4.6(b)). A double-click
in the #ifdef macro node in the tree opens the editor in the corresponding line. Thus,
the Scattering Tree View allows the developer to keep track of the exact location of each
conditional compilation annotations in the current project.

For the sake of understanding, we recall the algorithms.js SPL (Figure 4.4), but this

5Examples available at <http://antenna.sourceforge.net/wtkpreprocess.php>.

http://antenna.sourceforge.net/wtkpreprocess.php

44 JAVASCRIPT HYBRID COMPOSITION (RIPLE-HC)

Figure 4.5 Feature Interactions View of the RiPLE-HC toolkit.

(a) Scattering Tree View (b) JavaScript Editor

Figure 4.6 RiPLE-HC visualization toolkit related environments.

time refer to the concrete optional features Dijkstra and PriorityQueue. The directives
in the source code delimit blocks of program that are compiled only if a specified condition
is true. It enables modifying the behavior of a function or a statement, depending on
the selected feature. Therefore, assembling the code fragments that corresponds to a
configuration generates a product variant. For some reason, a variable q should be declared
as an instance of PriorityQueue only if this feature is selected for the product variant. A
developer added #ifdef annotation in the line 39 of the file dijkstra.js that implements
the functionalities of the feature Dijkstra.

Figure 4.6 illustrates how the Scattering Tree View shows the annotation (a) and
the JavaScript Editor highlights the line (b) after a double-click in the respective an-
notation in the tree. In this example, after binding the variants, the variable q dec-
laration statement (line 40) will be available depending on the selection of the fea-
ture PriorityQueue. At the same time, Figure 4.5 shows an edge between the features
Dijkstra and Priority Queue labeled with 3, which is the number of children in the
Dijkstra tree (Figure 4.6(a)).

4.5 INHERITED CHARACTERISTICS 45

Table 4.1 RiPLE-HC inherited characteristics from compositional and annotative approaches.

Compositional Approaches Annotative Approaches

8 Drawbacks

(+) Coarse granularity (+/−) Code obfuscation
(−) Poor feature interactions handling (+/−) Separation of concerns
(+/−) Difficult adoption

4 Benefits

(+/−) Modularization (+) Simple programming model
(+/−) Traceability (+) Fine granularity
(+/−) Disciplined variability support (+) Ease to use

(+) Strong feature interactions handling

4.5 INHERITED CHARACTERISTICS

We built the RiPLE-HC upon influences of previous hybrid approaches, namely Fea-
tureC++ [2] and FeatureHouse [1], which unintentionally allow the use of annota-
tions together with composition. In fact, compositional and annotative approaches pushed
the state-of-the-art and practice, respectively, to another level. While the former has
grown significantly and as a consequence has gathered much attention by researchers
[10], the latter is one of the most used approaches in the implementation of SPL in
industry.

Table 4.1 enumerates benefits and drawbacks of RiPLE-HC. Each table item has
a mark indicating whether the RiPLE-HC inherited the characteristics of those ap-
proaches completely (+), partially (+/−), or ignored them (−). It is not proven that
hybrid approaches inherit all valuable characteristics from compositional and annotative
approaches. Kästner and Apel [4] advocated that although it does not automatically fix
all disadvantages of either approach, some benefits from both still holds after blending.
Additionally, we did not carry out an evaluation of any benefits or drawbacks originated
specifically from the JavaScript language – it would require software engineers with
deep knowledge of both the language and at least some of these characteristics, which we
were not able to recruit a reliable sample. In fact, these assertive are rather general ones
regarding all languages.

Additionally, from Table 4.1, it can be seen that the RiPLE-HC resorts from better
modularization (SoC) to provide better handling of feature interactions (Listing 4.1).
Some sort of scattering should not be seen as a design flaw when kept under a defined
threshold [68]. Thus, although the scattering code traceability and the maintenance of
the variability may be affected by the scattering introduced by conditional compilation,
the provided tool support minimizes such effect.

Benefits and limitations of compositional approaches: The compositional ap-
proaches implement features in distinct modules (i.e., it aims to eliminate code tangling).

46 JAVASCRIPT HYBRID COMPOSITION (RIPLE-HC)

The benefits of using them include: (i) modularization – they compose selected modules
to bind a product instance; (ii) traceability – it is straightforward the location of the
code implementing each feature of the feature model; and (iii) language support for vari-
ability – the languages are designed in a disciplined and well-defined way being aware
of variability. As the drawbacks, they entail (i) feature interactions handling – although
there are significant gains in terms of modularization, handling feature interactions is still
a challenge in compositional approaches; (ii) coarse granularity – which is too restrictive
for implementing variability, especially in the occurrence of feature interactions ; and (iii)
difficult adoption, which is usually for the introduction of new language concepts and
raised complexity of the SPL implementation [4].

Benefits and limitations of annotative approaches: The benefits of using an
annotative approach include: (i) the simple programming model – code is annotated
and removed; (ii) the fine granularity – arbitrary code fragments can be marked; (iii)
the variability despite the feature interactions – they are able to handle the interaction
between dependent features. Conversely, it also has its drawbacks as follows: (i) the
separation of concerns – the modularity and traceability are likely the biggest problems
with preprocessors; and (ii) the code obfuscation – the use of preprocessors at a fine
granularity with nesting (e.g., indisciplined annotations [27]) can make difficult to read
and follow the control flow of the code [4].

4.6 CHAPTER SUMMARY

This chapter presented the lack of technical support to SPL engineering in JavaScript
software systems, which motivated us to develop the novel hybrid composition approach
to fill such gap called RiPLE-HC. Thus, we introduced the concept of the approach that
blends compositional and annotative approaches to handle fine and coarse granularity.
Later, we detailed both the architecture and the implementation of the plugin as and
extension of the FeatureIDE capabilities, including the visualization support for the
maintenance while dealing with the scattered annotations dependent features. Finally,
we carried out a brief discussion on the inherited characteristics from compositional and
annotative approaches.

Next chapter presents a set of empirical studies aimed at to assess the viability and
the scalability of the approach.

Chapter

5
RIPLE-HC EVALUATIONS

This chapter discusses the empirical studies conducted to assess the feasibility – as the
ability to handle variability in real world JavaScript systems (Section 5.2) – and the
robustness – as the ability to scale to large JavaScript systems (5.3) – of the RiPLE-HC
approach. They were carried out in industry and academic settings. In addition to the
previous chapter, they covered the Research Goal 1 (pg. 5).

The chapter consists of five main sections. Section 5.1 discusses the planning of our
preliminary studies. Section 5.2 discusses the industrial case study – a supervised mi-
gration of a set of K-12 learning objects products into SPL [20]. Section 5.3 discusses
the manual refactoring of open-source systems into SPL versions from six selected open-
source projects [21]. Section 5.4 highlights strengths and weaknesses identified regarding
the proposed approach. Finally, Section 5.5 discusses the identified threats to validity
during the preliminary evaluation.

5.1 GOAL-QUESTIONS-METRICS (GQM)

In this section, we present the planning of two empirical studies that evaluated the pro-
posed approach. Next, we present our Goal-Question-Metric (GQM) statement [69] ap-
plied to formalize the planning, execution, and report of the results of the studies:

Analyze RiPLE-HC for the purpose of characterization with respect to its
feasibility and scalability from the point of view of the software engineers in the

context of industrial projects.

We carried out two preliminary empirical studies with the goal to observe RiPLE-HC
feasibility and scalability. Both studies have the point of view of software engineers. The
first study is a case study in industry, which aims at showing the ability of RiPLE-HC
to handle variability in a real world context. Thus, it addresses the feasibility and we
aimed to answer the following research question:

47

48 RIPLE-HC EVALUATIONS

RQ1: Does RiPLE-HC handle variability in JavaScript software projects in industrial
context?

In this first study, we discuss the results regarding the characterization of an SPL
built and the effort needed to complete the project. In other words, we underlay our
discussion based on measures, such as the number of features and the time spent in the
development of the variants to answer the research question.

The second one is an empirical study with open-source systems from different sizes
and domains, which aims at showing whether the proposed approach could be suitable
to projects from different application domains and sizes. Therefore, it addresses the scal-
ability and we aimed to answer the following research question:

RQ2: Does RiPLE-HC scale to systems from different domains and sizes?

In this second study, we discuss the results regarding the characterization of SPL built
and the effort needed to complete their build. In other words, we ground our discussion
based on measures, such as the number of features, modules, annotation directives, scat-
tering of the annotations and the time to build a variant selecting all the available features
to answer the research question. Therefore, the metric used to measure scalability is then
the build-time.

5.2 INDUSTRIAL CASE STUDY

We first conducted a case study in the industrial setting. More specifically, we supervised
the development of an SPL project in a software development company based in Salvador,
Brazil, named Recôncavo Institute of Technology.1 Next, we describe the experience and
the feedback we gained from such a partner.

5.2.1 Domain

The advent of Web-based digital interactive technologies has led teaching and learning
methodologies to a next instructional setting level. The goal is to use such technologies
to stimulate the learners’ knowledge formation and retention. This instructional technol-
ogy concept is known as “learning object”. Learning objects are generally understood to
be digital entities deliverable over the Internet, making them accessible and usable by
multiple users in parallel [70]. They have a great potential for reusability, generativity,
adaptability, and scalability. This principle is based upon the idea that a course or lesson
can be built from reusable instructional components which can be built separately but
modified to user’s needs [71].

In this scenario, our industry partner has developed a series of learning objects, in-
tended for K-12 education, as a subcontractor for one of the leading provider of online
educational content to K-12 schools in Brazil.

The previous stage to adopt an SPL approach was that applications were usually
developed one at a time. Applications were implemented in the ActionScript language,

1<http://www.reconcavotecnologia.org.br>

http://www.reconcavotecnologia.org.br

5.2 INDUSTRIAL CASE STUDY 49

LearningObject

Engine

PlayAndWatch Article

Framei

NavigationControl VolumeControll

PageCreation PageManager Text Main

Legend:

Mandatory
Optional
Alternative
Abstract
Concrete

Figure 5.1 Excerpt from the MDC Learning Objects feature model.

until they decided to turn their applications platform-independent. As of this point, new
applications would be implemented in HTML5 - mainly JavaScript and HTML -, so that
their applications could reach a greater number of customers, due to the cross-platform
capabilities of these technologies.

As reuse was merely opportunistic in their development cycle, the problem with cost
and scale was imminent. Since opportunistic reuse can be more expensive than a sys-
tematic reuse of software artifacts, our partnership enabled their software development
process to transition to an SPL approach. Hence, the SPL selected for this study was
part of this project, in the Web-based learning systems domain.

5.2.2 Data Collected

The project, called MDC Learning Objects, comprises a set of 42 features. Figure 5.1
shows an excerpt of the feature model of the MDC Learning Objects. The core features
has, together, around 3.7 Thousand Lines of Code (KLOC). The MDC project has 23
boolean configuration variables and can, in theory, be deployed in over 3800 different
configurations. However, it is worth saying that such number is not realistic, due to a
set of very specialized requirements for each individual learning object, which demands
concrete features to be implemented and selected prior to deliver a product configuration.
That is, we can generate thousands of different configurations, but for a single product
variant to run properly, a series of product-specific features should be implemented, so
as to match specific requirements. Those features mainly include the management of
metadata, such as the media scripts, particular to every single learning object, and as
such must be shared with other objects at all.

Thus, for this particular case study we consider three different products, fully func-
tional, generated from the core asset base. Due to the mutual confidentiality and non-dis-
closure agreement, we cannot describe applications’ name, and some features’ name are
also omitted. Thus, we will herein call the product variants as APP1, APP2, and APP3.
Tables 5.1 and 5.2 show data about our target SPL. The former shows code metrics
extracted from each product2, such as Lines of Code (LOC), number of files, functions,
number of declarative (which name a variable, constant, or procedure, and can also spec-
ify a data type) and executable statements (which initiate actions). The latter shows the
product configurations, highlighting the variable features selected for each product.

2Metrics gathered with the Understand tool, available at <http://www.scitools.com/download>

http://www.scitools.com/download

50 RIPLE-HC EVALUATIONS

Table 5.1 Products metrics generated from the SPL.

LOC Files Functions DS ES

Core 3,778 47 421 796 2,003

APP1 5,568 62 510 972 3,243

APP2 5,188 61 518 964 3,039

APP3 6,520 63 514 978 4,027

DS: Declarative Statements, ES: Executable Statements.

Table 5.2 Variant configuration matrix.

MDC Features APP1 APP2 APP3

1 PageCreation 4 4 4

2 WatchPage 4 4

3 PlayPage 4 4

4 ArticlePage 4

5 MatchColsTask 4

6 FillInTask 4

7 SubtitleManager 4 4 4

8 VideoManager
9 AnimationManager 4 4 4

10 AudioManager 4 4 4

11 NavigationControl 4 4 4

12 Article 4

13 BP 4

14 PlayAndWatch 4 4

15 ACJC 4

16 AGR 4

17 Animations 4 4 4

18 Background 4 4 4

19 Buttons 4 4 4

20 Environment 4 4

21 Locutions 4 4 4

22 Music 4 4

23 Effects 4 4 4

4: Selected feature.

5.2 INDUSTRIAL CASE STUDY 51

APP2

APP1 APP2 APP3 ...

SPL Core

<< refactoring >>

APP1

Figure 5.2 Reactive SPL process adopted.

Table 5.3 Development time.

Application Development Time

APP1 720 engineer-hours
APP2 + SPL Core 448 engineer-hours
APP1 Refactoring 160 engineer-hours
APP3 122 engineer-hours

The MDC project employed a reactive SPL approach [72], in which a single product
is subsumed into an SPL. In this approach, not all possible variations are implemented
beforehand, but instead only those variations needed in current products are implemented,
in an incremental fashion. Figure 5.2 shows the process, which is explained next.

The APP1 was the first application to be implemented. Based on this first application,
APP2 was implemented. Next, by analyzing existing assets, and defining the SPL com-
monalities and variabilities, it was possible to define the SPL Core. It was necessary to
refactor part of APP1 into the core architecture. Then, the following application could
be developed, by systematically reusing the core, and integrating the product-specific
parts. Unfortunately, the absence of a managed software process in the culture of our
industry partner left us with no data available to answer questions, such as “What kind
of refactorings were used in the SPL extraction process?”, “How the correctness of the
refactorings was evaluated?”, “Does any kind of tool support was used in the process?” or
“What was the used refactoring procedure?”.

At the end of this evaluation, the project MDC deployed three different products, shar-
ing parts of the implementation. Table 5.3 shows the time spent in the MDC SPL imple-
mentation, comprising the implementation of both core and products-specific parts. All
three applications used the hybrid composition and the choice of the three products was
made by the comercial demmand of contractors.

The initial development of the APP1 took 45 working days of two software engineers,

52 RIPLE-HC EVALUATIONS

working around 8 hours a day each on this project, for a total of around 720 engineer-
hours. The work in this first application comprised tasks such as domain analysis, design,
and implementation of the application, identifying opportunities for reuse, and customer
validation of the implemented features.

Next, developers took 13 working days, for a total of 208 engineer-hours, to build the
APP2. In order to identify reuse opportunities in both applications, and systematize what
could be leveraged as both common and variable parts, it took an another 15 working
days. A total of 240 engineer-hours was employed to build the SPL Core, turning the
project into a reusable platform.

After establishing the SPL Core, it took an additional ten working days to refactor
the APP1 for performance increases, and accommodate changes in code so as to make
the applications run smoothly on the Android platform, a requirement that was identified
during APP2 implementation. This task took a total of 160 working hours. APP3 was
developed within a 7-day period, and took developers about 122 engineer-hours.

Although we planed to investigate the gains in the development, such as the impact in
time, costs, and maintainability, we were not able to do so. This case study was interrupted
prior to the execution of scheduled activities due to the ending of the contract between
our partner and their contractor for commercial reasons. Additionally, employees we had
contact with left the company and we could collect information whether they kept using
RiPLE-HC or not.

Next, we discuss the first research question of this study.

5.2.3 RQ1: Does RiPLE-HC handles variability in JavaScript software project in
industrial context?

This case study has suggested that the RiPLE-HC can handle variability in industrial
JavaScript software projects. In addition, it may positively impact both the development
cost and time, and the maintainability of the overall SPL. Our industry partner reported
gains in development time, what might result in order of magnitude cost reductions in next
products’ releases. By looking at Table 5.3, we may observe a reduction in the development
time employed in the third product, although it is larger in size than preceding ones, as
listed in Table 5.1. This fact corroborates with literature that states that SPL projects
reach a break-even point around three systems [73, 74]. In fact, as the core platform was
well-established, the time demanded was mainly dedicated to build the product-specific
parts.

The capability of the strategy to manage variability at implementation level, by the
blend of annotation and feature composition, is way more significant than simply handling
variability at modeling level. Especially in the development with JavaScript and HTML, in
which composition rules are not robust enough, counting solely with mixin operations to
augment functions properties is not either safe nor cost-effective. The use of preprocessor
directives also enables inner-function statements to behave differently depending on the
feature selected for a given product configuration. Thus, the feature-oriented approach
can provide the adequate support for changing an entire function to a final product.

5.3 RIPLE-HC WITH OPEN SOURCE SYSTEMS 53

5.3 RIPLE-HC WITH OPEN SOURCE SYSTEMS

We manually migrated six open-source systems into SPL by using the RiPLE-HC ap-
proach. After the industrial case study, we would like to know whether RiPLE-HC could
handle systems from different domains and sizes. Therefore, the goal of the study was
twofold: (i) to assess whether our approach could be used in other contexts than the one it
was formerly conceived; (ii) to assess the scalability of the approach to JavaScript-based
systems with size representative of real world applications.

The process of transformation of each system consisted basically of three phases:
(i) feature selection, (ii) refactoring, and (iii) build. The feature selection relied on the
available documentation found in the project website and (or solely in the information
found in the) GitHub. The refactoring consisted in moving the JavaScript modules that
concern to each feature to their respective code hierarchy and the annotation of scattered
pieces of code. The build was to make sure that the composition had been successfully
accomplished, as well as the preprocessing of the annotation blocks. In this case, we
randomly chose annotated blocks to check whether the blocks were removed or not. We
took around one month to perform all refactorings.

Table 5.4 Characterization metrics of the target systems, extracted from the qualitas.js corpus.

System(v) LOC # Modules # Features(CT) Domain

algorithms.js (0.20) 1,594 29 28 (6) miscelaneous
jasmine (2.0.0) 2,956 48 4 (-) testing
floraJS (1.0.0) 3,325 26 18 (-) simulation
video.js (4.6.1) 7,939 38 13 (-) video player
TimelineJS (2.25.0) 18,237 89 15 (-) web library
brackets (0.41) 122,971 403 13 (1) text editor

v: version; CT: Number of cross-tree constraints;

The systems were selected from qualitas.js corpus of real world JavaScript-based
systems dataset [12]. Silva et al. [12] composed the dataset with the most popular systems
from GitHub. We selected systems to refactor into SPL ranging from small to large
systems. Table 5.4 shows descriptive metrics reproduced from the qualitas.js – such as
(i) lines of code (LOC) and (ii) number of modules of each system – and the metrics
extracted from the SPL versions of the systems, such as, (iii) the number of features and
cross-tree constraints.

Table 5.4 shows the characterization of the refactored versions of each system as
follows: (i) algorithms.js-SPL has 28 concrete features and 6 cross-tree constraints –
when a feature from one branch of the feature model imposes one restriction to the
selection of (or is imposed by) other feature; (ii) video.js-SPL has 13 features and no
cross-tree constraints; (iii) floraJS-SPL has 18 concrete features and no cross-tree con-
straints; (iv) jasmine-SPL has 4 concrete features and no cross-tree constraints; and the

54 RIPLE-HC EVALUATIONS

(v) TimelineJS-SPL has 15 concrete features and no cross-tree constraints. The rationale
for some important aspects regarding the use of RiPLE-HC is discussed next.

RiPLE-HC slightly modified how the JavaScript-based systems should be struc-
tured. In comparison with the current state-of-the-practice, instead of using an ad-hoc
organization (i.e., there is no standard followed by all the projects), RiPLE-HC requires
a more systematic way to organize the source code, regarding the features. Regardless of
the notable differences in the code organization, there was no additional effort for feature
code location in maintenance tasks.

5.3.1 Granularity

RiPLE-HC enables developers to adjust the granularity of the variability by annotating
the corresponding scattered variability. Thus, at least two main levels of granularity could
be experienced: modules dedicated to a given feature processed by composition, and the
scattered feature code by pre-processing the conditional compilation annotations.

While extracting the SPL from the target systems, we did not experience any issues
but those regarding the build of the products from systems with annotated nested blocks.
In addition, we realized that some systems (e.g., algorithms.js and jasmine.js) lack
a systematic source code organization, which means that most modules are placed in the
same folder. In fact, as soon as the systems increase in size and/or complexity some folder
organization is used, according to modules’ functionalities, which recalls to the feature-
oriented way to organize the code. Although such a characteristic was not statistically
checked, the way the code is organized may be a factor of influence on the demanded
effort to migrate a set of single systems to an SPL with RiPLE-HC.

5.3.2 Scalability

Table 5.5 shows metrics collected in order to evaluate the scalability of the approach.
More specifically, the metrics are (i) the number of annotated blocks processed; (ii)
the number of files with annotated blocks; (iii) the average time of build (measured in
seconds). All these metrics were calculated by the RiPLE-HC plugin itself. We executed
a full product build with all the features selected 10 times to compute the average of time
needed. Figure 5.3 shows the time to build in each iteration. All iterations were executed
using a 2.3GHz Intel Core i5 processor, with 16GB 1333 MHz DDR3 memory module.
We used the build time as a measure of scalability because it shows whether the time
needed grows indefinitely or it stays in reasonable range, in the sense that it would not
make the project unfeasible.

To investigate scalability issues, we included in the analysis both small and large-sized
JavaScript projects. The qualitas.js dataset was built with the most popular reposito-
ries from GitHub. We believe there is no JavaScript-based project of size and variability
equivalent to the Linux kernel, therefore we also believe that such systems are represen-
tative of the scalability demmanded by the real world systems. Moreover, we faced no
difficulties apart from to extract SPL from the brackets project (i.e., the second biggest
project in the corpus) with nested annotated blocks. This problem can happen when more
than one feature impose behavior changes in a piece of code. The implications of do not

5.3 RIPLE-HC WITH OPEN SOURCE SYSTEMS 55

0.00

10.00

20.00

30.00

40.00

50.00

1 2 3 4 5 6 7 8 9 10

Build	Time	(in	seconds)

algorithms florajs timeline video jasmine brackets

Figure 5.3 Case studies build time in each iteration.

have support for nested annotated blocks is that developers are forced to use discplined
annotations [27]. When the nested blocks were left aside, the build occurred in around 40
seconds. We could observe that the measures number of features and number of existing
annotated blocks may impact on the time to build as both yield more I/O operations.
For instance, algorithms.js took more time than the remaining systems smaller than
brackets. Additionally, the build time gets larger as the number of annotated blocks
increases. The case studies showed that RiPLE-HC can provide support to handle most
of the JavaScript projects, since the case studies successfully accomplished are repre-
sentative of the corpus, given that about 75% of them are smaller than 4,85 KLOC in
size, and 50% of them are smaller than 1,3 KLOC. Next, we discuss the second research
question of this study.

Table 5.5 Target systems characterization metrics.

System(v) # Directives # Files Build(s) Domain

algorithms.js (0.20) 6 4 11.89 programming
jasmine (2.0.0) 14 4 3.52 testing
floraJS (1.0.0) 16 2 4.27 simulation
video.js (4.6.1) 29 10 7.03 video player
TimelineJS (2.25.0) 75 6 9.98 web library
brackets (0.41) 107 19 42.27 text editor

Directives: Number of annotated blocks processed; Files: Number of files with annotated blocks; Build: Average
of time to build; s: seconds.

56 RIPLE-HC EVALUATIONS

5.3.3 RQ2: Does RiPLE-HC scales to systems of different domains and sizes?

This case study has suggested that RiPLE-HC can scale to systems of different domains
and sizes. Even though this evaluation has unveiled some limitations of the approach (e.g.,
nested blocks), the different characterization of the used systems allowed us to observe
how the approach can be used to manage variability in a set of real world open-source
systems with size ranging from small to large in different domains. Additional work is
needed to overcome the discussed limitations, but the results are enough to encourage
further improvements in the approach and tool support.

5.4 STRENGTHS AND WEAKNESSES

After these two empirical studies we can enumerate some lessons learned throughout the
evaluation process, as well as the strengths and weaknesses of RiPLE-HC.

The use of RiPLE-HC may serve as a useful resource to foster SPL development
in JavaScript-based systems. The implemented hybrid approach enables the system-
atic reuse of code between products by the separation of the software functionalities in
features. Besides, by mapping features and preprocessor directives with the help of the
auxiliary views, RiPLE-HC unveils the set of files where annotation concerning each
feature can be found, which in turn might improve maintenance tasks.

On the other hand, the prototype nature of the RiPLE-HC plugin ended up by pre-
venting a more robust experience of the approach. More specifically, the use of comment
blocks to introduce the annotations is definitely not the best way to it, but rather the
easier to accomplish. A better option would be extend the language to accommodate the
annotation keywords, as well as built an preprocessor with support to solve logical ex-
pressions in the variability points (i.e.the begging of each annotation block) and a proper
engine to solve nested annotation blocks.

5.5 THREATS TO VALIDITY

In this section, we discuss potential threats to the validity of the evaluation. We believe
that presenting such detailed information may contribute to a clear understanding of
what is being presented herein. Next, we detail the main threats according to external,
internal, construct, and conclusion validity.

5.5.1 External Validity

As the main threat to the validity of this study, the limited and constrained evidence we
have at our disposal prevent us from drawing general conclusions on the results. However,
the studies conducted serve the purpose of gathering initial evidence on the feasibility and
the scalability of the method and its tooling support. They also served to gather insights
about open rooms for improvement in the strategy, as well as further investigation.

5.6 CHAPTER SUMMARY 57

5.5.2 Internal Validity

The selection of features to the refactoring in the open source systems was made by only
one person without any revision. Such fact may pose a threat to the validity of these
studies since the extracted features may not be representative of the variable character-
istics of the real world scenarios. Hence, we included systems of different domains trying
to mitigate such lack of industrial standpoint analysis.

5.5.3 Construct Validity

The main gathered data refers to the development time as a function of the product
variant size. It is an important area of concern. Given that there was not previous data
to serve as baseline values, the reduction in development time (industrial case study) for
the n-ary variant releases might be caused by a maturation effect. The issue observed
while preprocessing nested annotated blocks, might also lead to flawed results and must
be considered in future evaluations.

5.5.4 Conclusion Validity

It is worth mentioning that these studies were not designed to draw quantitative con-
clusions based on descriptive statistics, for instance, regarding the scalability of the tool
support. However, we relied our discussion concerning the benefits and drawbacks of the
use of RiPLE-HC solely in the data gathered and the informal feedback of our partner.
This fact serves to a clear purpose of reinforce conclusion validity.

5.6 CHAPTER SUMMARY

This chapter presented empirical studies carried out to evaluate the proposed hybrid ap-
proach supporting feature-oriented JavaScript-based software systems. The case studies
were carried both in the industrial and open source systems. While the former addressed
the viability in the real development context, the latter addressed mainly scalability with
open source projects.

These studies showed that RiPLE-HC can handle real-world systems from small to
large-sized projects, as well as systems from different domains. As expected from the
literature, the time needed for building a new variant seems to be associated with the
number of features defined and the number of existing annotated blocks. Scalability prob-
lems were faced with nested blocks, as such, they are not recommended in the current
stage of the prototype implementation. Additionally, we observe that even with no sys-
tematic way to structure the code, as soon as the systems increase in size, the project
structure tends to assume characteristics of feature-oriented organization, which may in-
dicate that larger projects might benefit from this novel approach. Moreover, the study
in the industry showed the payoff would occur in the third product, which required only
17% of the engineer-hours of the first product.

Next chapter presents the family of experimental studies we carried out to investigate
the impact of FOSD variability representations on program comprehension.

PART IV

VARIABILITY IMPLEMENTATION
COMPREHENSION

Chapter

6
A FAMILY OF EXPERIMENTS ON PROGRAM

COMPREHENSION

This chapter presents a family of experiments we carried out to address the Research
Goal 2 of this thesis. More specifically, the goal of these experiments is to gather evidence
regarding the influence of different variability representations on program comprehension
of the feature-oriented software. This chapter consists of three main sections. Section
6.1 presents an overview of the family of experiments by presenting the context of each
member of the family. Section 6.2 discusses the planning of the family of experiments,
including the characterization of the Target Systems used for experimentation in this
thesis. Section 6.3 shows variations in the experimental design throughout the carried
studies.

In the end of this chapter, we should have a macro overview of the studies planning,
the understanding of how they were organized, as well as a discussion about the aspects
of program comprehension in feature-oriented software development addressed in the
following chapters of this thesis.

6.1 FAMILY OVERVIEW

This section presents the family of empirical studies on the comprehension of software in
the presence of variability. Henceforth, we call the family of experiments as Variability
Implementation Comprehension Comprehension (VICC)). We planned and executed four
studies as part of the VICC family, out of which three were controlled (quasi-)experiments
(quantitative studies) and one a focus group (qualitative study). Each study is named
after the family by the VICCi acronym, where i is an integer indicating the order to
which the study was carried out.

Given the lack of studies on the differences regarding the comprehension of software
variability implementation with different paradigms (Chapter 3), we took the experience
on carrying out experiments on program comprehension reported by Siegmund et al.[28]
as an inspiration to compose this family of studies.

61

62 A FAMILY OF EXPERIMENTS ON PROGRAM COMPREHENSION

The experimental studies were carried out with Software Engineering students with
different levels of expertise (e.g., undergraduate, master, and Ph.D.). Each experiment is
supposed to address different comprehension aspects on the software maintenance phase
with different systems, which we present later in this chapter. More specifically, the exper-
iments’ tasks consider two of the most used programming languages nowadays, namely
JavaScript and Java, as well as its respective feature-oriented variability representa-
tions, respectively, the proposed RiPLE-HC [21] and FeatureHouse [1].

The reason we split several tasks through a family of experiments is explained next.
We may observe a series of issues regarding working time and amount of tasks assigned
during during experiments [18]. For example, fatigue due long periods of concentration
is frequently cited as a confounding parameter in software engineering experiments and
the recommendations found are of sessions no longer than two hours [15]. As we need
several tasks to address the impact of the variability representation during maintenance,
it is infeasible and unsuitable to perform all of them in only one experiment. Otherwise,
experiment’s participants would take longer than two hours to finish their assignments. In
fact, we are aware that there is a number of maintenance tasks that should be consider,
however some of them will remain uncovered by the executed experiments. Next, we
describe the context of each experiment.

VICC1 – the first experiment of the family addresses the concept location prob-
lem [75]. It was carried with systems implemented using the common approach to de-
velop JavaScript-based systems, named here as Standard, and using the proposed
approach, RiPLE-HC. Given that no previous annotative approach has been proposed
for JavaScript, the experiment investigated the impact of RiPLE-HC feature-oriented
way to organize the code in terms of efficiency – regarding response time variable –, and
correctness of the answers – regarding precision, recall, and f1-score. Chapter 7 reports
details on the planning and execution of VICC1.

VICC2 – the second experiment of the family was planned as a exact replication
[52] of Siegmund’s pilot [28]. Their pilot evaluated whether separating source code con-
cerns in a feature-oriented fashion would improve program comprehension in terms of
correctness/response time. Their study compared participants’ behavior while inspecting
two versions of MobileMedia implemented twice with different variability representations
(i.e., conditional compilation and FeatureHouse). The experiment consists of five bug-
fixing tasks and compare how students approach the code implemented using the different
paradigms to solve the maintenance tasks, i.e. they investigated the differences on how
the subjects addressed bug fixing tasks. Chapter 8 reports details on the planning and
execution of VICC2.

VICC3 – the third experiment of the family extends Siegmund et al. [28] design to
use a second study object from a different domain: information systems. We developed
five new bug-fixing tasks equivalent to the original ones used in VICC2. This time, the
study compares the subjects’ behavior while inspecting the two versions of MobileMedia
and another two versions of RiSEEvent in two different rounds. Chapter 8 also reports
details on the planning and execution of VICC3.

VICC4 – the last experimental study of the family. To cope with the importance
of addressing other aspects of program comprehension in our experimental studies, we

6.2 OVERALL PLANNING 63

decided to address data-flow and feature precedence comprehension tasks. The tasks were
followed by carrying out a focus group [19] with the participants. Chapter 9 reports details
on the planning and execution of VICC4.

The aspects that can be measured in program comprehension controlled experiments
range from observational [51] to cognitive facets [76]. However, although the measuring
from the former facet might be unprecise due confounding parameters [15], the latter
is costly and demands large interdisciplinary experience. Therefore, we plan to rely on
quantitative and qualitative analysis of different aspects from the observational facet
point of view. Thus, the VICC family experimental studies are supposed to improve the
amount of evidence regarding the comprehension of FOSD.

6.2 OVERALL PLANNING

In this section, we describe the factors involved and the actions used to control the
environment for the experiment. The investigation should follow the guidelines for an
experimental setup described by Wohlin et al. [18] and the Siegmund’s framework for ex-
perimentation [11]. Moreover, this empirical study was backed up with the Goal-Question-
Metric paradigm proposed by Basili and Rombach [69]. This is used as a mechanism for
formalizing the characterization, planning, construction, analysis, learning, and feedback
of our experiment.

6.2.1 Research Questions

One major goal of this thesis is to built an evidence corpus on the influence of FOSD on
program comprehension. Therefore, each experimental study hold its specific micro goals
to contribute to such corpus. In this sense, we detail their specific research questions in
their respective chapters (VICC1 – Chapter 7 –, VICC2 and VICC3 – Chapter 8, and
VICC4 – Chapter 9).

6.2.2 Target Systems

In the VICC family, we employed four distinct target systems. For each experimental
study, there were two equivalent versions of the system, implemented with a different
variability representation. Thus, in this section, we present the target systems we used
in our studies. All of them, 4 in total, have two comparable versions implemented ei-
ther with a feature-oriented paradigm or with conditional compilation, which covers the
representations detailed, annotative, compositional and hybrid. We present the systems
grouped by the two reference languages (JavaScript and Java).

6.2.2.1 JavaScript-based Systems. We selected two JavaScript-based systems
(algorithms.js and video.js) and with their respective refactored SPL versions.1 They
were chosen because they represent a familiar domain to subjects and both are small

1Both versions of both systems are available at: <https://github.com/riselabs-ufba/
RiPLE-HC-ExperimentalData>.

https://github.com/riselabs-ufba/RiPLE-HC-ExperimentalData
https://github.com/riselabs-ufba/RiPLE-HC-ExperimentalData

64 A FAMILY OF EXPERIMENTS ON PROGRAM COMPREHENSION

sized. Next, we describe each of them.

algorithms.js is a small system that implements a set of classic algorithms and data
structures in JavaScript. They range from searching (e.g., depth-first search, bi-
nary search), ordering (e.g., bubble sort, merge sort, insertion sort), up to math
algorithms (e.g., fibonacci, Newton’s square root). Figure 6.1 shows the feature
model of the version refactored into an SPL. algorithms.js-SPL has 28 concrete
features and 6 cross-tree constraints.

video.js is a small Web video player system that supports HTML5 and Flash video, as
well as YouTube and Vimeo formats, through the use of plugins. The tool supports
video playback on desktops and mobile devices. The project was started in mid
2010, and it has been used by over 100K websites. Figure 6.2 shows the feature
model of the version refactored into an SPL. (ii) video.js-SPL has 13 features and
no cross-tree constraints.

6.2.2.2 Java-based Systems. In addition, we conducted an experimental study in-
cluding systems implemented in Java and with their respective refactored SPL versions
using FeatureHouse [1]. This is convenient because the experiment round should run in
academic environment and Java is still one of the most used programming languages. Be-
sides, FeatureHouse is language-independent, which strengthen eventual conclusions
we should draw from the experiments. Next, we introduce the chosen systems that have
both versions available, namely MobileMedia2 and RiSEEvent [77].3

Table 6.1 shows metrics of the packages (as in the FeatureHouse version there are
several packages duplications, we decided to add the number of feature-code containers),
classes, and lines of code for each version. Next, we briefly describe each of the two
systems.

Table 6.1 Target systems characterization.

MobileMedia RiSEEvent
CC FH CC FH

Packages 9 35* 8 40*
Classes 52 52 496 559
Lines of Code ∼3000 3823 26457 28771

CC: Conditional Compilation; FH: FeatureHouse; *:
Number of feature code containers.

2Both versions of MobileMedia are available at: <http://fosd.net/experiments>.
3Both versions of RiSEEvent are available at: <https://github.com/riselabs-ufba/

RiSEEventSPL-FH>.

http://fosd.net/experiments
https://github.com/riselabs-ufba/RiSEEventSPL-FH
https://github.com/riselabs-ufba/RiSEEventSPL-FH

6.2 OVERALL PLANNING 65

6.2.3 Tasks and Measures

Tasks. While pursuing the evidence on the maintenance effort required by each variability
representation, it makes sense to design tasks to assess the impact of such representation in
a software evolution context. In our case, we planed the experiment tasks regarding three
categories, namely concept location – tasks required when the developers are addressing
improvement requests, such as the implementation of a new feature or functionality for
a given software system –, bug fixing – tasks required from the subjects to find and
fix incorrect of code leading to deviations of the software system behavior – and data-
flow comprehension – tasks required from the subjects to explain/demonstrate how the
feature relationships are taking place for a given configuration. VICC1 addresses the first
category, VICC2 and VICC3 address the second, and VICC4 the third. The tasks of
each experimental study are further addressed in the following chapters.

Measures. Figure 6.5 shows the dependent variables of each central topic of the
family of experimental studies. There is a set of such variables in each study, which in
turn is associated to the measures used to discuss the experimental study findings. The
measures themselves are detailed in the respective experimental study chapter.

6.2.4 Support Material

During the different phases of the experimental studies, we used a set of supporting
artifacts. Next, we briefly describe the programming environment we used and how the
training sessions took place.

6.2.4.1 Programming Environment. To avoid bias from either the familiarity with
the Integrated Development Environment (IDE) or the lack of it, we used the PROPHET4

[41] infrastructure in our experiment. It allows planning the experiment with a clean and
HTML fashioned user interface in a way that researchers could control the additional
tools provided, such as the search (global or local) and the possibility to go back and
forth. For the experiment tasks, the only artifacts provided to the students were the
feature model of the systems under analysis and the codebase.

6.2.4.2 Training. It is common to run a training session with the subjects, specially
when it involves new approaches or tools evaluation. Although feature-oriented is not our
proposal or a new approach, we decided to run a training session because the subjects
might not know it since the heterogenous nature of the courses we plan to run the ex-
periment sessions. Therefore, we plan to prepare the session as a class in the scope of
the experiment. The training session has two phases, the oral presentation of the con-
cepts and details of how the experiment will be carried and a warming up task to help
the subjects in the familiarization with the programming environment, the programming
language, and the code organization (just in case). In this task, participants should count
the occurrence of a feature (Conditional Compilation version) or how often a class
is refined (FeatureHouse version).

4PROPHET is free and open-source available at: <https://github.com/feigensp/Prophet/>

https://github.com/feigensp/Prophet/

66 A FAMILY OF EXPERIMENTS ON PROGRAM COMPREHENSION

6.3 VARIATIONS IN THE EXPERIMENTAL SETUP

Figure 6.5 shows the variations in the experimental setup of the VICC family. The four
dashed rectangles show a summary of each study design, whereas the three central rect-
angles enumerate their dependent variables. The gray arrow shows the timeline, i.e., the
execution ordering of the experiments. Next, we present these variations.

Study type. Three out of the four studies carried were planned and executed as con-
trolled (quasi-)experiments (VICC1, VICC2, and VICC3). Only the fourth study
was conducted as a focus group (VICC4). We believe replications play an impor-
tant role in the empirical software engineering research, yet, at the same time, the
use of different research methods to address a topic is also important and may be
beneficial as it allows to interpret results from different sources [19, 52, 78].

Study design. Each of the experiments had a different design. VICC1 and VICC3 had
a crossover design executed in two rounds with two groups, whereas the VICC2
had two groups and was executed in one round only. This happened, because we
decided to perform an exact replication of the Siegmund et al. [28] pilot first and
than extends their design with a second round and observe whether the results differ
from one design to another.

Participants background. All studies used a set of students to perform the designed
tasks, VICC1 used undergraduate (computer science) students and the other three
only graduate (computer science) students. First, we relied on students in all exper-
iments both by convenience and because they perform similarly professionals when
they apply a development approach in which they are inexperienced [79]. Second, we
justify the shift from undergraduate to graduate students with the complexity that
variability introduces in the code. As variability may be an advanced topic, after
VICC1, we decided to avoid such bias and rely on graduate students in follow-up
studies.

Study tasks. All four studies involved software maintenance tasks or at least a part of it.
The VICC1 participants addressed concept location tasks, the VICC2 and VICC3
participants addressed bug-finding tasks, and those in VICC4 addressed both con-
cept location and data-flow comprehension tasks. We are aware of the importance
of the investigation of different kinds of maintenance (adaptative, perfective, cor-
rective, and preventive) [80]. However, the nature of controlled experiments require
tasks to be as simple as possible to allow participants to finish them in a short time.
Besides, as the focus of the thesis is the program comprehension rather than the
maintenance tasks itself, we planed tasks with only part of maintenance activities,
such as the target concept location and bug-fixing.

Programming Languages. After the first experiment (VICC1), we found hard to re-
cruite a good sample of JavaScript developers willing to participate in further
experimentation. Therefore, we switched from JavaScript to the Java program-
ming language, which is another popular language, with open-source systems with

6.4 CHAPTER SUMMARY 67

equivalent versions implementing variability available, and we managed to recruite
a good sample of participants.

One of the main reasons of such variations in their design is the possibility to analyze
different dependent variables in each study, which can bring complementary findings
regarding the FOSD comprehension.

6.4 CHAPTER SUMMARY

This chapter presented the overall planning as well as the variations of the setup of our
family of experimental studies (VICC). The goal of the VICC family is to gather evidence
regarding the program comprehension of the feature-oriented software using both RiPLE-
HC and FeatureHouse approaches. We presented the domain and basic information of
the four target systems used in the VICC experiments. Finally, we detailed the planning,
subjects, tasks, support material, and experimental design.

Next chapter presents the execution of the first experiment of the family (VICC1).

68 A FAMILY OF EXPERIMENTS ON PROGRAM COMPREHENSION

AlgorithmsJS

Base

GraphBased

Algorithms

MathBased

StringRelated

LinkedList

BST

Graph

Heap

Queue

Stack

DataStructures

SingleQueue

PriorityQueue

EditDistance

KarpRabin

HeapSort

InsertionSort
SortingBased

BubbleSort

CountingSort

BinarySearch

DFS

NewtonSQRT

BFS

MergeSort

QuickSort

SearchRelated

FischerYates

GCD

SPFA

TopologicalSort

BellmanFord

Dijkstra

ExtendedEuclidean

Fibonnacci

Legend:

Mandatory
Optional
Alternative

concrete

abstract

OR

Dijkstra => PriorityQueue
BFS => SingleQueue

SPFA => SingleQueue
HeapSort => Heap

TopologicalSort => Stack
Queue => LinkedList

Figure 6.1 algorithms.js SPL feature model.

6.4 CHAPTER SUMMARY 69

AutoSetup

VideoJS

FullScreen

BigPlayButton

Mozilla

Microsoft

BrowserAPISupport

WebKit

OldWebKit

Mute

PlaybackRate

ControlBar

Base

LoadingSpinner

Legend:

Mandatory
Optional
Alternative

concrete

abstract

OR

Figure 6.2 video.js SPL feature model.

MobileMedia

Legend:

Mandatory
Optional
Alternative

concrete

abstract

OR

MediaManagement

DeleteAlbum

CreateAlbum
AlbumManagement

Music

Video

Photo

MediaSelection

Favourites

BasicMediaOperations

Sorting

SMSTransfer

CopyMedia

PlayVideo

ViewPhoto

CaptureVideo

PlayMusic

CapturePhoto

SetFavourites

ViewFavourites

CreateMedia

DeleteMedia

EditMediaLabel

ReceivePhoto

SendPhoto

Figure 6.3 MobileMedia SPL feature model.

70 A FAMILY OF EXPERIMENTS ON PROGRAM COMPREHENSION

RiSEEvent

Base

SubmissionCompleta

SubmissionParcial

InsertAuthors

Submission AssignmentChairIndication

AssignmentAutomatic

Legend:

Mandatory
Optional
Alternative

concrete

abstract

OR

Activity

Organizer

Reviewer

Speaker

User

Reports

ReportsFrequencyPerEvent

ReportsFrequencyPerActivity

ReportsListOfAuthors

EventProgram
EventReports

EventImportantDates

RegistrationSpeakerActivity

RegistrationOrganizerActivity

RegistrationUserActivity

Registration

ActivityWorkshop

ActivityMainTrack

ActivityPainel

ActivityMinicurso

ActivityTutorial

Receipt

Review
ReviewRoundOfReview

ReviewSimpleReview

AssignmentIndications
Assignment

Conflicto

BugTrack

CheckingCopyAtestado
CheckingCopy

CheckingCopyCertificado

ConflictoInterestAuthors

Speaker => RegistrationSpeakerActivity
Payment => Receipt

InsertAuthors => SubmissionCompleta
InsertAuthors => SubmissionParcial

Figure 6.4 RiSEEvent SPL feature model.

6.4 CHAPTER SUMMARY 71

Legend

Concept location

i. response time
ii. correctness Bug-finding

i. response time
ii. correctness
iii. understanding
iv. influence perception

Comprehension
i. strategies
ii. easing factors
iii. hindering factors
iv. maintainability

VICC1

a) Undergraduate students
b) 2 Groups crossover
c) 2 Rounds
d) Standard vs RiPLE-HC

VICC2

a) Graduate students
b) 2 Groups
c) 1 Round
d) Antenna vs FEATUREHOUSE

VICC3

a) Graduate students
b) 2 Groups crossover
c) 2 Rounds
d) Antenna vs FEATUREHOUSE
e) Javapp vs FEATUREHOUSE

VICC4

a) Graduate students
b) 1 Group
c) Antenna vs FEATUREHOUSE

Experimental Design Dependent VariablesTimeline

(Focus Group) (Controlled (quasi-)Experiement)

(Controlled (quasi-)Experiement)(Controlled (quasi-)Experiement)

Figure 6.5 Variations in the experimental setup of the VICC family.

Chapter

7
VICC1: ON THE IMPACT ON CONCEPT LOCATION

This chapter reports the first controlled experiment (VICC1). We present each of its
phases, as well as we discuss the results of this empirical evaluation. The idea is to
gather evidence on the effort demanded by RiPLE-HC from students to accomplish
concept location tasks for maintenance purpose. We compare our approach to the current
state-of-the-practice – which is based on control-flow structures and parametrization (i.e.,
variables controlling the data flow). A controlled experiment is the cheaper – since we
carried it out with Software Engineering students – and yet a reasonable evaluation
method to analyze one factor by measuring the effect of two different treatments.

This chapter consists of five main sections. Section 7.1 presents the planning of VICC1,
including tasks, metrics, participants, support material, experiment design and variables.
Section 7.2 shows how we performed the experiment, which includes the participants
characterization and the preparation. Section 7.3 discusses the results of the experiment
regarding response time, correctness. Section 7.4 highlights participants’ feedback. Section
7.5 presents the threats to validity identified during the evaluation.

7.1 PLANNING

In this section, we present the controlled experiment planning. The factors involved are
described as well as the actions used to control the environment for the experiment.
This investigation followed the guidelines for an experimental setup described by Wohlin
et al.[18]. Moreover, this empirical study was backed up with the Goal-Question-Metric
paradigm [69]. This is used as a mechanism for formalizing the characterization, planning,
construction, analysis, learning and feedback of our experiment. We can define the GQM
statement for this experiment:

Analyze variability representations for the purpose of characterization with respect
to their influence on the concept location effectiveness from the point of view of the

researcher in the context of undergraduate students working with source code.

73

74 VICC1: ON THE IMPACT ON CONCEPT LOCATION

More specifically, the goal of this empirical study was to compare the impact of two
approaches to organize the source code in feature location from the point of view of
novice developers, regarding response time and correctness : the ad-hoc approach, i.e.,
tacit knowledge of the software engineers, hereinafter referred to as Standard – with no
systematic way to organize the code – and the RiPLE-HC– with a feature-oriented code
organization. Therefore, we pursue the answers for the following research questions:

RQ1: Does the code organization based on RiPLE-HC approach reduce the time re-
quired for feature code location in maintenance tasks?

RQ2: Does the code organization based on RiPLE-HC approach improve the correctness
of feature code location in maintenance tasks?

Each question embraces a couple of hypotheses. Table 7.1 presents the null (H0) and
alternative (H1) hypotheses. In the former, the observation is that RiPLE-HC (R) code
organization approach does not affect the time needed (H01) to locate a feature, i.e.,
Standard (S) yields better results. The same rule applies to f1-score calculations (H02),
explained next.

Table 7.1 Hypotheses tested in the controlled experiment.

Null hypotheses Alternative hypotheses

H01 µ(TimeS) ≥ µ(TimeR) H11 µ(TimeS) < µ(TimeR)

H02 µ(F1S) ≥ µ(F1R) H12 µ(F1S) < µ(F1R)

7.1.1 Metrics

To measure the performance of the participants, and to test the hypotheses, we leveraged
four metrics: response time, precision, recall, and f1-score. The response time relates to
the effort spent by the participant to accomplish each task, precision relates to correct-
ness and indicates how the student assigned a piece of code to the feature of a given task.
The recall also relates to correctness and indicates how much from the source code that
belongs to a given feature the student managed to find in a given task. Finally, f1-score
is an harmonic mean of precision and recall and it subsumes the results achieved by the
participants regarding the perspectives of both metrics.

Precision and recall were obtained by checking the participants answers to an oracle.
The oracle was manually built by the author using the code shadowing technique [26],
which consists of coloring each line of code belonging to a feature with a specific color. The
answers were either correct or incorrect whether they match with the shadowed oracle.
Despite the hard work on manually shadowing the code, th use of such a technique
contributes to improve the reliability of the measurement procedure, as it avoids double
judgment in similar cases for different participants. Regarding the f1-score, it depends

7.1 PLANNING 75

only on the precision and recall values. The time values were measured in seconds, by
using the PROPHET1 tool [41].

7.1.2 Subjects

Nineteen senior undergraduate students enrolled in a Software Engineering course took
part in the experiment. We designed a questionnaire to gather background information
regarding their programming experience. Although the target systems were written in
JavaScript, we also included questions about programming experience in other lan-
guages. The design followed the guidelines from Siegmund et al. [41], in which authors
observed that programmers holding skills in varying programming languages could yield
better results in program comprehension tasks. Appendix B describes the questionnaire.

The answers showed that 32% of the students had previous industry experience. All
of them had been enrolled in the university for at least three years. Before joining the
experiment, they had taken at least five programming courses. Their programming expe-
rience was evaluated with a 5-point likert scale (1 to 5, in which 1 is the lowest value and
5 is the highest one). More than 70% of the participants ranked themselves as 4 or higher
experience in C programming; regarding Java programming, over 60% of them reported
as being experienced programmers; and a small set of about 33% had previous experience
in JavaScript programming.

7.1.3 Tasks

We considered two versions of the open-source JavaScript systems we presented in the
Chapter 6: algorithms.js and video.js. They were chosen because they belong to dif-
ferent domains and have different sizes. We designed 21 static feature location tasks, i.e.,
without counting on a running system. Locating feature code for maintenance purposes is
a typical task for a developer – which helps developers became aware of the system code-
base – and perhaps it is one of the most time-consuming maintenance activities. Although
it is not representative of the entire effort a maintenance request demands, it can surely
present helpful insights on which direction the RiPLE-HC support should follow, as well
as developers who decide for a different approach during their project development.

In the tasks, the participants had to find the code of both, modular (when the feature
is implemented in a single file or in set of files placed together) and scattered (when the
code of a single feature is spread over several source files) features. Then, the codebase was
organized following both approaches. Figure 7.1 illustrates how each observed approach
– namely Standard (A) and RiPLE-HC (B) – organizes the code. Next, the participants
were asked to find the code implementing a given feature of the target system, and fill in
a text field with the names of the files containing the code of the given feature.

Tables 7.2 and 7.3 show some data about the features used in the experiment. For each
target system, there is column that identifies the task, the feature addressed, its type,
size (LOC), and scattering degree (SD). As scattering degree, we consider the number
of files containing source code of the feature, which is the same in both used variability

1<https://github.com/feigensp/Prophet/>

https://github.com/feigensp/Prophet/

76 VICC1: ON THE IMPACT ON CONCEPT LOCATION

Bfeatures▼

FeatureA

FeatureB▼

com.example▼
amodule.js

FeatureC
othermodule.js
anothermodule.js

▼
<empty folder>

▼

src▼

com.example▼
amodule.js

othermodule.js
anothermodule.js

A

Figure 7.1 Code organization examples.

representations. Features are then defined as either modular, if SD = 1, or scattered,
otherwise.

Table 7.2 algorithms.js (Round 1) features characterization.

Task Feature Type Size (LOC) SD

Task 1 KarpRabin Modular 57 1
Task 2 BellmanFord Modular 43 1
Task 3 PriorityQueue Scattered 34 2
Task 4 Fibonacci Modular 28 1
Task 5 BinarySearch Modular 13 1
Task 6 Dijkstra Modular 33 1
Task 7 Heap Scattered 73 3
Task 8 InsertionSort Modular 16 1
Task 9 MergeSort Modular 24 1
Task 10 Stack Scattered 13 2
Task 11 CountingSort Modular 35 1

LOC: Lines of Code; SD: Scattering Degree.

7.1.4 Support Material

In order to avoid bias from the familiarity with the IDE environment, we used the
PROPHET2 [40] infrastructure in our experiment. It allows planning the experiment in a
way that researchers can control the additional tools provided, such as the search (global
or local) and the possibility to go back and forth with a clean and HTML fashioned user
interface. For the experiment tasks, the artifacts provided to the students were the system
feature model and their codebase.

2PROPHET is free and open-source and it is available at: <https://github.com/feigensp/Prophet/>

https://github.com/feigensp/Prophet/

7.1 PLANNING 77

Table 7.3 video.js (Round 2) features characterization.

Task Feature Type Size (LOC) SD

Task 1 AutoSetup Scattered 35 2
Task 2 FullScreen Scattered 173 7
Task 3 PlaybackRate Scattered 88 3
Task 4 Mute Scattered 59 5
Task 5 WebKit Modular 11 1
Task 6 OldWebKit Modular 11 1
Task 7 Mozilla Scattered 19 2
Task 8 Microsoft Modular 10 1
Task 9 BigPlayButton Scattered 13 3
Task 10 LoadingSpinner Scattered 23 3

LOC: Lines of Code; SD: Scattering Degree.

7.1.5 Experiment Design and Variables

Figure 7.2 illustrates the experiment design, which consisted of “one factor (code organi-
zation) with two treatments (Standard and RiPLE-HC)”. The experiment was composed
of two rounds, in which all participants could use each tool. In round #1 (R1), the
Group A (n=11) addressed the system using Standard, and the Group B (n=8) with
RiPLE-HC. In round #2 (R2), the groups were then exchanged, so that the Group A
addressed the system with RiPLE-HC and the Group B the other way round. From the
planned 21 tasks, 11 were addressed in R1 and 10 in R2. Each task involved only one
feature of the target system. Tables 7.2 and 7.3 show each of them. Hereinafter, round
#1 and round #2 will be referred to as R1 and R2, respectively.

G
ro

up
 A

(1
1

st
ud

en
ts

)
G

ro
up

 B
(8

 s
tu

de
nt

s)

VICC1
(19 students)

Round 2
(video.js)

Round 1
(algorithms.js)

Standard
(10 tasks)

RiPLE-HC
(11 tasks)

RiPLE-HC
(11 tasks)

Standard
(11 tasks)

timeline

Figure 7.2 Experiment design.

Three groups of variables were considered in this experiment: independent, dependent,

78 VICC1: ON THE IMPACT ON CONCEPT LOCATION

and confounding variables. The first one comprised the approaches used in this study,
namely Standard and RiPLE-HC. The second group considered the time – as a
measure of effort – and the correctness – as a measure of effectiveness. The latter
encompassed different variables that may affect the task analysis, as follows: the level
of modularity, each round, the target systems, and the size of each system . By
level of modularity we mean the nature of the feature (modular or scattered); the rounds
stand for the order in which a participant addressed the system with a given approach;
target system stands for the familiarity of the participants with them (it might be the
case that participants are familiar with algorithms.js but not with video.js); and,
finally, the size of the system stands for the extent to which the differences in the target
systems influenced the analysis of the source code.

7.2 PREPARATION AND EXECUTION

This Section describes the participants characterization and the preparation for the exper-
iment execution. This phase in this experiment comprised the planning and the execution
of a pilot study. The pilot study consisted of the execution of the experiment with two par-
ticipants not involved in the actual execution to identify bottlenecks in both preparation
and execution of the study. Both participants answered the characterization form, none
of them had previous knowledge of neither the RiPLE-HC approach nor JavaScript
programming; and the feedback form, they reported positively for the time, size, and
content of the tasks. We identified some opportunities for improving the study, thus we
made some adjustments in the experiment materials, such as reducing the amount of
tasks and updating the training presentation.

In the experiment session itself, the training session took about 60 minutes. It con-
sisted of establishing a common vocabulary, explanations on the environment where they
had to report the results, and the forms the participants had to fill out. Next, both
rounds were performed. R1 took about 50 minutes and R2 took about 30 minutes. The
confounding variables, such as the “maturing effect” and “fatigue” may explain the ob-
served difference in execution time between the rounds. After the execution session, the
participants reported the answers and fill out a feedback form (Appendix C).

7.3 RESULTS AND DISCUSSION

In this section, we present and discuss raw data, and the impact of both approaches on
the dependent variables time and correctness. While the former produces evidence on the
cost of maintenance tasks, the latter produces evidence on whether developers may or
may not benefit from using RiPLE-HC over Standard.

We started the analysis by applying the Shapiro-Wilk test to verify the normality
of each sample, namely Time and F1_score in both, R1 and R2. Table 7.4 shows the
results of the test considering each round and treatment. Results pointed out normality
in the samples generated in R1, concerning to time values for both treatments (RiPLE-
HC and Standard). Besides, we carried out a data transformation on the values from
R2, by applying a logarithmic function to adjust the statistical differences found. Then,

7.3 RESULTS AND DISCUSSION 79

Table 7.4 Shapiro-Wilk normality test data.

Round 1 Round 2

Time F1-score Time F1-score
RHC STD RHC STD RHC STD RHC STD

before log transformation

Yes Yes No Yes No No Yes No
after log transformation

Yes Yes No No No No No No

RHC: RiPLE-HC; STD: Standard

(a) Round 1

0	

100	

200	

300	

400	

500	

600	

700	

T01	
 T02	
 T03	
 T04	
 T05	
 T06	
 T07	
 T08	
 T09	
 T10	
 T11	

Av
er
ag
e	

of
	
 T
im

e	

(s
)	

algorithms.js	

RiPLE-­‐HC	
 Standard	

(b) Round 2

0	

50	

100	

150	

200	

250	

300	

T01	
 T02	
 T03	
 T04	
 T05	
 T06	
 T07	
 T08	
 T09	
 T10	

Av
er
ag
e	

of
	
 T
im

e	

(s
)	

video.js	

RiPLE-­‐HC	
 Standard	

Figure 7.3 Average time spent in each task in the VICC1.

we carried out the hypothesis testing, by applying the independent T-Test to assess
Time (R1), and the non-parametric Mann-Whitney U test was used for Time (R2) and
F1_score (in both R1 and R2).

7.3.1 Execution Time

Figure 7.3 shows the average time spent in each task, in seconds. We may observe similar
results between tasks carried out by the groups A and B. In both, the earlier tasks
demanded more time to produce the results. The lack of familiarity with the tools may
explain those values. As the participants gained confidence on the source code, the time
spent decreased. Indeed, the similarity in time spent refutes the arguments in favor of
the harmfulness of the code scattering. To a certain extent, the scattered code produced
using RiPLE-HC approach did not demand extra effort.

Although both target systems are small, there is a significant size difference among
them. However, such a difference does not affect the effort to locate features. Participants
spent less time analyzing the second system – Figure 7.3(b), than the preceding one –
Figure 7.3(a). The lower values in R2 can be a result of the likely maturation effect, given
that participants were already familiar with the activity.

Most participants spent less time on average to perform feature location when the
target system was organized with the RiPLE-HC. RQ1 is primarily interested in an-

80 VICC1: ON THE IMPACT ON CONCEPT LOCATION

Table 7.5 Mann-Whitney U Test of hypothesis for Time spent.

Round 1 Round 2
Approach Mean Rank p-value Mean Rank p-value

RiPLE-HC 137.48 .539* 9.30
.36

Standard 171.05 .542** 11.70

*: Equal variances assumed; **: Equal variances not assumed.

Table 7.6 Mann-Whitney U Test results for F1_score.

Round 1 Round 2
Approach Mean Rank p-value Mean Rank p-value

RiPLE-HC 13.27
.20

10.80
.82

Standard 9.73 10.20

alyzing whether the RiPLE-HC approach reduces the time needed to locate features.
The hypothesis test was performed in both rounds by considering the average time spent
by the participants in each task. Table 7.5 shows that the participants that used the
RiPLE-HC spent less time to perform their tasks. The significant difference on the mean
values is due to the mentioned data transformation. However, with a p-value higher than
.05, it is impossible to refute the null hypothesis (H01) in any rounds.

7.3.2 Correctness

The results indicate that both approaches produced similar impact on feature location
for modular and scattered features. In most cases in R1, the F1_score of both approaches
were higher than 50%. (Figure 7.4(a)). However, both approaches had worse results in R2
(Figure 7.4(b)). Although the RiPLE-HC does not excel Standard results in tasks T01,
T03, and T04, the results were good in all the other tasks. Subjects inspecting source
code organized with the RiPLE-HC yielded slightly better results when compared to
the Standard approach. In fact, in R1, while the median of RiPLE-HC was around
0.8, in the Standard approach was around 0.6. In R2, the difference was around 20%.
We believe that participants might have been affected by the novelty on how the code
is organized in the RiPLE-HC prior to the training section of the experiment. Such
an impact might explain the perceived reductions in gains concerning to the source code
organization. Besides, we could not indentify any errors pattern in the participants errors.
Compositional and annotative approaches yielded good and bad results depending on the
task addressed by participants. In addition, we did not carry any analysis regarding only
those who had correct answers due the size of the remaining sample and to avoid fishing
for results during the analysis.

Regarding the analysis of correctness, as RQ2 stands out, the hypothesis testing con-
sidered the average of the F1_score of the participants in every task. Table 7.6 shows the

7.4 PARTICIPANTS’ FEEDBACK 81

(a) Round 1

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

T01	
 T02	
 T03	
 T04	
 T05	
 T06	
 T07	
 T08	
 T09	
 T10	
 T11	

Av
er
ag
e	

of
	
 F
1-­‐
Sc
or
e	

algorithms.js	
 RiPLE-­‐HC	
 Standard	

(b) Round 2

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

T01	
 T02	
 T03	
 T04	
 T05	
 T06	
 T07	
 T08	
 T09	
 T10	

Av
er
ag
e	

of
	
 F
1-­‐
Sc
or
e	

video.js	

RiPLE-­‐HC	
 Standard	

Figure 7.4 Average f1-score in each task in the VICC1.

observed results. The participants who used the RiPLE-HC approach got better results
in both rounds. However, we see that p-value is greater that .05 in both rounds, thus, we
cannot refute null hypothesis (H02) in any of them.

7.4 PARTICIPANTS’ FEEDBACK

By the end of the experiment, the participants were asked to fill out a feedback form, only
13 finished such a request. They were supposed to describe their point of view regard-
ing the likely benefits and drawbacks of each approach. About 67% of the participants
reported that the RiPLE-HC approach fits best for JavaScript development and 33%
still preferred the Standard approach. Next, we provide a detailed description on the
participants’ reported standpoints.

Standard: The benefits reported by the students about this approach was that it is
similar to the way they learned how to program. It may facilitate the approach learning, if
compared to the experimental one, and give freedom to developers to program as they are
used to. On the other hand, some participants pointed out some drawbacks. For instance,
38% (5 out of 13) of them reported it was difficult to locate features, which reportedly
demands a good searching tool. In addition, they mentioned that using Standard makes it
harder to carry out a feature driven approach and might increase the project complexity.

RiPLE-HC : The participants (53% – 7 out of 13) found out RiPLE-HC to be
simpler to use than Standard. They also reported that associating features and folders
might improve feature location, and that a strong point in favor is that the RiPLE-HC
approach exercises the so-called hybrid composition and annotation. This characteristic
could improve the way JavaScript developers program to different platforms. However,
some participants believe that the RiPLE-HC is messy and that the novelty on the way
of developing features may find resistance to be adopted in practice.

7.5 THREATS TO VALIDITY

In this section, we discuss potential threats to the validity of this empirical study. We
believe that presenting such detailed information may contribute to further research and
replications of this study [18], which may be built upon the results presented herein.
Next, we detail the main threats according to external, internal, construct, and conclusion

82 VICC1: ON THE IMPACT ON CONCEPT LOCATION

validity.

7.5.1 External Validity

We identified some threats that may limit the ability to generalize the results. For ex-
ample, the study was carried out in an in-vitro setting, which means a sample selected
pseudo-randomly. In addition, most of the participants were characterized as inexperi-
enced with industry projects, which poses a threat to the study. We attempted to mitigate
such a threat by characterizing and reporting the environmental settings of the experi-
ment, since it is unfeasible to reproduce a realistic environment.

7.5.2 Internal Validity

There are possible threats that may happen without the researcher’s knowledge affecting
individuals from different perspectives, such as (i) the maturation and learning effects,
(ii) the testing repetition since several tasks were carried out, and (iii) the experiment
instrumentation. These threats were mitigated by choosing different features for each task,
as well as by randomizing the sequence of task’s execution to omit possible relationships.
Finally, the only artifacts used were the source code which participants were already
familiar with, and the feature models and the PROPHET tool, explained in the training
session.

7.5.3 Construct Validity

Confounding constructs may affect the findings. For instance, the presence or the absence
of knowledge about a particular programming language may not explain the causes of
failures in the feature location tasks. In fact, the differences may depend on the partic-
ipants’ experience, which was controlled with the characterization form, to ensure that
participants had substantial experience to accomplish the tasks. Besides, the manual con-
struction of the oracle by shadowing and analysis of the answers might also have affected
the results.

7.5.4 Conclusion Validity

We observed from the results a likely low statistical power, which concerns to the power of
used tests to reveal a true pattern in the data. Employing well-known measures mitigated
such a threat. Another observed threat is the fishing for a specific result, which we
mitigated by relying the analysis only on the gathered data. There is a threat on the
reliability of treatment implementation, when participants are treated differently, which
was minimized by avoiding communication with the participants and leaving time for
discussion of the experiment between the training and the experiment sessions. Finally,
the random heterogeneity of participants, which was measured by the characterization
form and presented, but no additional actions were taken to control it since the experiment
took place in the context of an academic course.

7.6 CHAPTER SUMMARY 83

7.6 CHAPTER SUMMARY

This chapter presented the first controlled experiment of the VICC family, which ad-
dressed the impact of the new constructs of RiPLE-HC in the feature code location tasks
in JavaScript-based systems. We detailed the planning and execution of the VICC1,
while discussing metrics, participants, tasks, support material, experiment design, and
variables. We also highlighted the experiment execution and presented a detailed discus-
sion on the results of the experiment.

In all the four scenarios defined for the experiment (Rounds 1 and 2 regarding both
hypotheses: time to complete the task – 2 scenarios – and correctness of the answers –
2 scenarios), the mean of the results of the subjects indicated slightly better result in
favor of our approach. However, the data points did not allow us to statistically refute
the null hypotheses. Therefore, it is not possible to generalize that developers address-
ing feature location tasks in current state-of-the-practice code organization take longer,
neither that they make more errors than those addressing the code structured with the
proposed approach. In addition, the study produced evidence on the benefits of system-
atic code organization. However, the feedback of the participants suggested points to
further investigation (i) the RiPLE-HC provides better code organization regarding the
systems functionalities; (ii) the composition can ease the product development for dif-
ferent platforms; and (iii) that their unfamiliarity with the approach may have hindered
better results.

Finally, we enumerated a number of threats to validity identified during the different
phases of the experiment. Next chapter presents the planning, execution, results of the
VICC2 and VICC3.

Chapter

8
VICC2 AND VICC3: ON THE INFLUENCE ON

BUG-FIXING

This chapter reports the second and the third controlled experiments (VICC2 and VICC3).
We present each of its phases, as well as we discuss the results of this empirical evalu-
ation. We extend the evidence corpus of the influence of the use of different variability
representations on program comprehension by comparing Conditional Compilation
against FeatureHouse. This time, the experiments rely on bug-fixing tasks, another
common activity of the SDLC.

The chapter consists of five main sections. Section 8.1 describes the planning, prepara-
tion, and execution of the (quasi-)experiments, including the addressed research questions
and hypotheses. Section 8.2 presents the results of the controlled experiments and Sec-
tion 8.3 discusses the results of the confounding parameters survey with the participants.
Section 8.4 discusses the influence of participants’ motivation and difficulty perception
concerning their results in our replications comparing the current to the original study,
as well as the answers to our research questions. Finally, Section 8.5 discusses threats to
validity of this study.

8.1 STUDY SETTINGS

In this section, we present the VICC2 and VICC3 studies, which were performed as
replications [52] and also followed Wohlin et al.guidelines [18]. In summary, both studies
can defined with the following GQM statement:

Analyze variability representations for the purpose of characterization with respect
to their influence on the bug-fixing effectiveness from the point of view of the

researcher in the context of graduate students working with source code.

We proceed by presenting research questions, hypotheses, planning, and execution of
them.

85

86 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

In these studies, we used systems written in Java, considering the following vari-
ability representations: FeatureHouse and Conditional Compilation annotations.
We choose them, because FeatureHouse is a language-independent approach [1] and
Conditional Compilation is likely the most widely used variability mechanisms [6].
In addition, FeatureHouse is representative of the group of techniques that physically
separate the implemented features, whereas Conditional Compilation is representa-
tive of the group of approaches that virtually separate the implemented features.

8.1.1 Research Questions, Hypotheses, and Variables

In this section, we present the research questions, hypotheses, and variables. While the
research questions guide our study, the hypotheses state specifically what we are going
to test against the gathered data. In this sense, we associated each hypothesis with a
measure to be able to test it. Next, we describe each research question, the associated
hypotheses, and how we proceeded to gather data to test them.

RQ1: What are the differences in the developers’ effectiveness while performing
program-comprehension tasks addressing software systems implemented with Fea-
tureHouse and Conditional Compilation?

The main claim in favor of variability representations, such as FeatureHouse is its
supposed benefits regarding the improved modularity [10]. Therefore, in the context of
maintenance tasks, feature-oriented systems written using FeatureHouse might facili-
tate the understanding of problems triggering software bad functioning. This allow us to
state the following hypothesis:

H1 It is easier to understand FeatureHouse code rather than Condi-
tional Compilation code.

For hypothesis H1, we asked the participants to answer “why the problem was oc-
curring” and “how to fix such an issue” in every task. The tasks did not require the
participants to write any source code, but they had to provide a textual description for
each of these questions. We coded the answers in a three-point scale. Complete under-
standing (2) when participants answered both questions correctly, partial understanding
(1) when either the problem or the solution was described correctly, and no understanding
(0) when no question was answered correctly. We call this measure understanding.

In fact, it makes sense to believe that a good understanding of an issue being addressed
is more likely to provide developers with means to improve the functionalities of a software
system. Besides, Conditional Compilation has proved its value as a suitable strategy
to implement variability in software systems [6], there is evidence regarding optional
features that FOP adheres more closely to the Open-Closed principle than Conditional
Compilation [61, 81]. However, we can say little about the likeliness of FOP yields more
correct answers in comparison to Conditional Compilation annotations. We capture
this rationale in the following hypothesis:

8.1 STUDY SETTINGS 87

H2 Developers addressing change requests using FeatureHouse provide
more correct answers compared to developers using Conditional Compi-
lation.

For hypothesis H2, we asked the participants in each task to describe the “class”, the
“line of code”, and, in case of a FeatureHouse task, also the “feature folder” where the
error occurs. Again, we coded the answers in a three-point scale. Complete correctness (2)
when the participants correctly answered both questions, partial correctness (1) when a
participant only described the class (and the feature folder in case of a FeatureHouse
task) correctly, and no correctness (0) when neither of these questions were correctly
answered, or even when only the line of code was answered correctly. We call this measure
correctness.

Time is a scarce resource in software development. Although some developers could
produce the same correct answers with both variability representations, the differences
on the program comprehension while addressing an issue during a maintenance task
could lead teams to undesired costs. This fact makes the response time a factor worth
to investigate. We suspect – by considering the arguments in favor of the benefits of
modularity – that the response time needed to accomplish tasks is likely to be different,
which led us to state the next hypothesis:

H3 Developers addressing change requests with FeatureHouse code can fin-
ish their tasks faster than those with Conditional Compilation code.

For hypothesis H3, the PROPHET tool [82] recorded the time spent by the partici-
pant in each task in milliseconds. We then converted the time measure to minutes to ease
the analysis.

Next, we present our second research question. The rationale we present serves a
twofold purpose: (i) the better understanding of the results of the experiments and
the whole process of program comprehension; and (ii) to aid in the design of future
comprehension-focused experiments.

RQ2: What are the differences between software systems implemented with Feature-
House and Conditional Compilation regarding developers’ perception of the in-
fluence of confounding parameters while performing comprehension tasks?

There are numerous confounding parameters when performing controlled experiments
either with students or professionals [15]. In fact, these parameters hinder the complete
understanding of how practitioners actually comprehend the source code. Therefore, we
believe that the understanding of individual perception of such confounding parameters
may help researchers to better design follow-up research studies addressing program com-
prehension. We wrap up this in our last hypothesis:

H4 Developers addressing change requests with FeatureHouse code per-
ceive the influence of confounding parameter differently than when they use
Conditional Compilation.

88 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

Table 8.1 Measures, their descriptions, and the associated hypothesis.
Measure Description Hypotheses

Independent variable
variability
representation

The type of variability representations used by a par-
ticipant in a given task.

H1-H4

Dependent variables: Tasks measures (RQ1)
understanding Describes to what extent a participant understood a

given task.
H1

correctness Describes to what extent a participant answered a
given task correctly.

H2

response time Describes how long it took to finish a given task. H3

Dependent variables: Feedback measures (RQ2)
influence
rating

Perceived severity of the influence of a confounding
parameter in a task by the participants.

H4

Finally, for hypothesis H4, we conducted a survey with the participants after they
finished the experiment session. In the survey, they rated in a 4-point Likert-scale [83]
ranging from “no influence” (1) to “high influence” (4). We used the ratings to identify
the differences regarding the perceived influence of such aspect.

In summary, each hypothesis concerns a main aspect: (H1) understanding; (H2) cor-
rectness; (H3) response time; and (H4) developers’ perception of confounding parameters.
The variability representations used in the target systems are our two independent vari-
ables. Thus, we are going to refer to the group of developers addressing the Conditional
Compilation code as “Group CC” and to the group addressing the FeatureHouse
as “Group FH”. Table 8.1 summarizes the measures, their descriptions, as well as their
association with the addressed hypotheses.

8.1.2 Planning

The planning of an experiment concerns the experiment design, the selection of the par-
ticipants, the tasks performed, and the supporting material available to the participants
during the experiment session. Next, we detail each of them.

8.1.2.1 Design. We carried out the experiments in the form of two replications, con-
sisting of three rounds. All rounds were inspired by the pilot carried by Siegmund et
al. [28]. The participants were all Computer Science graduate students from the Federal
University of Bahia’s (UFBA). Figure 8.1 shows the design of the replications. In fact,
the first replication was executed in one round (Round 1) as an exact replication [52] of
Siegmund et al.’s pilot. The second replication is a conceptual replication [52], executed
in two rounds (Round 2 and 3). Round 2 is exactly the same as Round 1; in Round 3,
we designed the tasks trying to reproduce the same level of difficulty of the Siegmund’s
pilot in a second system, which was executed one week after Round 2.

8.1 STUDY SETTINGS 89

ESE Replication
(21 students)

Round 1
(MobileMedia)

G
ro

up
 F

H
(9

 s
tu

de
nt

s)
G

ro
up

 C
C

(1
2

st
ud

en
ts

)

(6
 s

tu
de

nt
s)

(6
 s

tu
de

nt
s)

Conditional
Compilation
(5 tasks - A)

FeatureHouse
(5 tasks - A)

timeline

ES
E

Su
rv

ey

R
iS

E
Su

rv
ey

RiSE Replication
(12 students)

Round 3
(RiSEEvent)

Round 2
(MobileMedia)

FeatureHouse
(5 tasks - B)

Conditional
Compilation
(5 tasks - A)

Conditional
Compilation
(5 tasks - B)

FeatureHouse
(5 tasks - A)

Figure 8.1 Experiment design.

In total, 33 students took part in our experiments. We recruited 21 from an “Empir-
ical Software Engineering” (ESE) course to participate in Round 1. The other 12 were
recruited from the members of the Reuse in Software Engineering1 (RiSE) research group
to participate in Rounds 2 and 3. Each participant worked at an individual workstation
and they were not allowed to communicate among themselves.

In both replications (ESE and RiSE), we arranged the participants in two groups
addressing a different variability representation, which we are going to call throughout
this chapter the CC group and the FH group. We created homogeneous groups according
to their programming experience by using balancing. In the ESE replication, the grouping
is unbalanced by three students in the group FH due to their absence in the experiment
session. In the RiSE replication, we used a cross-over design where the participants of the
FH group in Round 2 switched to the CC group to perform the tasks of Round 3 and
vice-versa. We split the groups in the same way we did in ESE replication.

8.1.2.2 Target Systems. We used MobileMedia and RiSEEvent. Both systems were
described in Chapter 6.

8.1.2.3 Tasks. We reused the Siegmund et al. [28] pilot study tasks in the first and
second rounds of our replications, because we believe they are well balanced and had a
feasible difficulty level for one experiment session. Each round consisted of five bug-finding
tasks. We introduced five bugs of equivalent difficulty level in the second target system,
relying on the task design of the original study. It is worth notice that all annotations of
the systems are disciplined [27, 84].

Table 8.2 describes the tasks defined for each target system used in the experiment. In
addition, Figure 8.2 shows a code snippet from the RiSEEvent target system from which
the Task 1 was created. The error was introduced in the Line 17 by using the variable
statement instead of idActivity in the delete SQL query. The bugs were chosen randomly.
Table 8.3 shows the example of a correct answer.

1<www.rise.com.br>

www.rise.com.br

90 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

Table 8.2 Experiment tasks defined for each target system used in the experiment.

MobileMedia RiSEEvent

Task 1 Instead of setting the counter to the
actual value, it is set to 0.

The code uses the wrong activity ID
variable in the delete query.

Task 2 A false identifier is used (SHOWPHOTO
instead of PLAYVIDEO).

The code calls “gerarCarne(...)” in-
stead of “gerarBoleto(...)”.

Task 3

Instead of showing a list of favorite
items when requested by clicking in
the “View Favorites” menu, the ap-
plication shows nothing.

The notification was not imple-
mented yet.

Task 4
Instead of show a list of pictures or-
dered by the number of visualiza-
tions, they appear unordered.

The Register menu was added a sec-
ond time instead of adding the Re-
ports menu.

Task 5

A wrong label for deleting a pic-
ture is used, such that the check
for the user rights provided by the
access control feature is never exe-
cuted and a user can delete a pic-
ture without according rights.

The option “JFrame.DO_NOTH-
ING_ON_CLOSE” was used
instead of “JFrame.EXIT_ON_-
CLOSE”.

8.1.2.4 Support Material. No additional support material was provided during the
experiment sessions. The participants only had access to the task descriptions, the ques-
tions to answer, and the source-code of the target system. All these items were provided
through the Prophet2 experimental workbench [82]. We extended the tool by translat-
ing the complete environment to Brazilian Portuguese to carry out the experiments in
the participants mother language.

Figure 8.3 shows the two screens of the Prophet workbench. Figure 8.3(a) shows
in the left the tasks description window, which guided a participant throughout the
experiment displaying the tasks descriptions, the appropriate place to hold the partic-
ipant’s answers, including those regarding the feedback form. In the other side, Figure
8.3(b) shows the source-code inspector, which the participants used to search through
the source code. In this window, the participant could use the functionalities of “local
search” (À) and “global search” (Á). In addition, the participant could navigate through
the source project tree in the left part of the window (Â) and open multiple source-code
files at same time, which the window shows in right tabbed panel (Ã).

8.1.3 Preparation and Execution

Next, we present details on the preparation and the execution of the experiments. For
the purpose of preparation, we conducted training sessions. For the purpose of execution,

2Prophet is free and open-source and available at <https://github.com/feigensp/Prophet/>

https://github.com/feigensp/Prophet/

8.1 STUDY SETTINGS 91

1 package rise.splcc.repository;

2

3 // <several imports>

4

5 public class ActivityRepositoryBDR

6 implements ActivityRepository {

7 // <70 more lines>

8 @Override

9 public void remove(int idActivity)

10 throws ActivityNotFoundException,

11 RepositoryException {

12 try{

13 Statement statement =

14 (Statement) pm.getCommunicationChannel();

15 int i = statement.executeUpdate(

16 "DELETE FROM Activity "+

17 "WHERE idActivity = ’"+ idActivity+"’");

18 // <3 more lines>

19 } catch(PersistenceMechanismException e){

20 // <8 more lines>

21 }

22 // <300 more lines>

23 }

3

Figure 8.2 Original RiSEEvent code snippet used in the Task 1.

we gathered data for the characterization of participants, and asked them to perform a
warm-up task, so that they could get familiar with the experiment tasks.

8.1.3.1 Training. We carried out different training sessions to cope with the different
knowledge of the sample in each replication, ESE and RiSE. In the first replication, we
presented a seminar about variability with practical examples, including differences and
peculiarities about each of the variability representations, FeatureHouse and Condi-
tional Compilation. As for the second, since the participants were already familiar
with the concept of variability, we developed and provided the participants with written
material for training prior to the actual experiment session for the purpose of familiar-
ization with the experiments object of study.

In both training sessions, we included references to real software projects (other than
those used either in the training sessions) using each technique, such as the Linux kernel
for the Conditional Compilation and other projects available at the SPL2Go reposi-
tory (<http://spl2go.cs.ovgu.de/>) for FeatureHouse. Apart from the references and
the recommendation to inspect any of the referenced projects, no activity was required
prior to the warm-up task.

http://spl2go.cs.ovgu.de/

92 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

Table 8.3 RiSEEvent Task 1 correct answer.

Question Answer

Feature folder ActivityMainTrack
Class rise.splcc.repository.ActivityRepositoryBDR

Line of code 75*
Problem A wrong variable was used instead of correct one.

Solution Change SQL query to use the variable idActivity in-
stead of statement.

*: the actual line number.

8.1.3.2 Participants Characterization. Appendix B shows the questionnaire used
to measure the programming-experience in both replications, except a couple of spe-
cific questions regarding participants’ knowledge of FeatureHouse and Conditional
Compilation to the RiSE participants. This different treatment is justified because the
RiSE group of participants have a solid knowledge about variability, which might include
the addressed variability representations, which in turn would influence in the balance of
the groups distributions.

The questionnaire serves the purpose of gathering basic information and details on
the programming experience of each participant. More specifically, we asked about their
industrial experience, as well as their background knowledge in different programming
paradigms and languages. Table 8.4 summarizes the characterization of the participants.
Half of them were female in both replications. The age medians were 33 in the ESE
replication and 29 in the RiSE. In the ESE, 13 wereMaster students and 8 Ph.D. students,
whereas in the RiSE 3 were Master students and 9 Ph.D. students. In a 5-point Likert
scale, 16 of the ESE group and all the RiSE group have at least mediocre level (3 out
of 5 points) experience with the object-orientation paradigm. Lastly, 52% (11 out of 21)
from the ESE group and 92% (11 out of 12) from the RiSE group have at least one year
of working experience.

We asked the participants to compare themselves against their classmates and pro-
fessional developers with 20 years of experience. Figure 8.4 shows the answers for both
questions in both replications. The comparison with their classmates are identified by the
key “Students”, whereas the comparison with the developers with the key “Professionals”.
Figure 8.4(a) shows that most participants from the ESE replication see themselves at
least as experienced as their classmates and at most as experienced as the professionals.
Figure 8.4(b) shows a similar pattern in the RiSE replication, except that no one judged
him/herself as less experienced as their classmates or more experienced than profession-
als. The RiSE answers are not split by groups (CC or FH) because they all took place
in both of them. The experience of the participants picture them as two heterogenous
groups with sufficient experience for the replications.

8.1 STUDY SETTINGS 93

(a) Tasks description window

(b) Source code inspector

1

2

2

1

3 4

Figure 8.3 PROPHET workbench: the two screens used by the participants to solve the
assigned tasks.

8.1.3.3 Example Task. All participants completed a warm-up task just before the
actual experiment session in each round with two main purposes: (i) for the familiariza-
tion with the experiment environment (Prophet Workbench); (ii) a first contact with

94 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

(a) ESE

44%

75%

33%

8%

22%

17%

22%

33%

33%

25%

44%

42%

Students

Professionals

100 50 0 50 100

FH

IFDEF

FH

IFDEF

Percentage

variable 0.Clearly worse 1.Worse 2.Identical 3.Better 4.Clearly better

(b) RiSE

0%

75%

42%

0%

58%

25%Professionals

Students

100 50 0 50 100

Percentage

variable 0.Clearly worse 1.Worse 2.Identical 3.Better 4.Clearly better

Figure 8.4 Participants’ programming experience (self assessment) against their classmates
and professional developers with 20 years of experience.

the source-code of the target system. The task required the participants (FH group)
to identify in how many features a class (“PhotoViewScreen”) had been refined; or (CC
group) to identify in how many files a feature (“includeFavourites”) had been implemented
to.

8.2 RESULTS RQ1

RQ1: What are the differences in the developers’ effectiveness while performing
program-comprehension tasks addressing software systems implemented with Fea-
tureHouse and Conditional Compilation?

This section presents and analyzes the results achieved by the participants during the
assigned tasks. The section is organized according to the three hypotheses associated to
our first research question. For each hypothesis, we present the raw results of each of
the three rounds of the experiment – ESE replication (Round 1) and RiSE replication
(Rounds 2 and 3).

8.2 RESULTS RQ1 95

Table 8.4 Participants’ experience summary.

Characteristic ESE RiSE

Gender 11 male and 10 female. 6 male and 6 female.
Age Median is 33. Median is 29.
Degree 13 Master students and 8

Ph.D. students
3 Master students and 9
Ph.D. students.

OO experience (5-point
scale; 1=no and 5-high)

16 have at least mediocre
level (3)

All have at least mediocre
level (3).

Working experience (at
least 1 year)

11 out of 21 11 out of 12

H1 It is easier to understand FeatureHouse code rather than Conditional Compila-
tion code.

To complete this task, participants should describe why a problem occurs and how this
problem could be fixed. Figure 8.5 shows raw data for the three rounds of replication.
The scale ranges from (0) no understanding; (1) partial understanding; (2) complete
understanding. In all three rounds, most participants failed at locating the problem and
proposing a solution.

However, in some tasks of the RiSE replication rounds, half of the group reached a
complete understanding. If we compare Rounds 1 and 2, in which groups with different
background performed the same tasks, we can say the CC group from the RiSE replication
had slightly better results, whereas the results are inconclusive for the FH groups. On
the other hand, by comparing Rounds 2 and 3, in which the same group switched the
variability representation between rounds, the results of FH groups are similar, whereas
the results from Round 3 looks slightly worse than Round 2.

We tested H1 regarding understanding. We then used the Shapiro-Wilk Test to
discover whether the raw data sample had a non-normal distribution. Besides, since we
have one independent variable (variability representation) with two levels (“FH”
and “CC”) and one ordinal dependent variable (understanding), we used the Mann-
Whitney U Test to test the H1. To test H1, we considered all observations (i.e., from the
three rounds) regarding understanding from each group (“FH” and “CC”) as our sample.
The resulting p-value from the test was 0.9947 with 95% of confidence, which indicates
both groups yielded identical populations.

H1: Rejected. There was no statistical difference in the understanding and
in the task of describing the bugs and eventual solutions between the pop-
ulations using either FeatureHouse or Conditional Compilation code.

96 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

T1 T2 T3 T4 T5

R
ound 1 (E

S
E

)
R

ound 2 (R
iS

E
)

R
ound 3 (R

iS
E

)

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0.0

2.5

5.0

7.5

10.0

12.5

0

2

4

6

0

2

4

6

Understanding

N
um

be
r

of
 P

ar
tic

ip
an

ts

Group CC FH

Figure 8.5 Overall participants understanding of “why the problem happened?” and “how to
solve” in each round of the experiments. Scale: (0) no understanding; (1) partial understanding;
(2) complete understanding.

H2 Developers addressing change requests using FeatureHouse provide more correct
answers compared to developers using Conditional Compilation.

To complete this task, participants should describe what class, line of code, and for those
in the FH group the feature folder where they had located the error. Figure 8.6 shows the
raw results for three replication rounds. The scale range comprised the following values:
(0) no correctness; (1) partial correctness; (2) complete correctness. As expected, with
a flawed understanding of the problem in all three rounds, many participants failed to
locate both the class and the line containing the wrong piece of code. Nevertheless, on
several occasions, participants managed to partially locate at least the class in which the
problem occurs.

If we compare Rounds 1 and 2, we can state that the participants of both groups (FH
and CC) from the RiSE replication achieved proportionally better results than those who
performed the same tasks in the ESE replication.

We tested H2 with regard to correctness. We then used the Shapiro-Wilk Test
to discover whether the raw data sample had a non-normal distribution. Besides, since
we have one independent variable (variability representation) with two levels (“FH”
and “CC”) and one ordinal dependent variable for each hypothesis (correctness), we used

8.2 RESULTS RQ1 97

T1 T2 T3 T4 T5

R
ound 1 (E

S
E

)
R

ound 2 (R
iS

E
)

R
ound 3 (R

iS
E

)

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0.0

2.5

5.0

7.5

10.0

12.5

0

1

2

3

4

5

0

1

2

3

4

5

Correctness

N
um

be
r

of
 P

ar
tic

ip
an

ts

Group CC FH

Figure 8.6 Overall participants correctness of the description of what “class”, “line of code”, and
“feature folder” in each round. Scale: (0) no correctness; (1) partial correctness; (2) complete
correctness.

the Mann-Whitney U Test to test the H2. To test H2, we also considered all observations
(i.e., from the three rounds) regarding understanding from each group (“FH” and “CC”)
as our sample. The resulting p-value from the test was 0.7579 with 95% of confidence,
which indicates both groups yielded identical populations.

H2: Rejected. There was no statistical difference in the locating bugs be-
tween the populations using either FeatureHouse or Conditional Com-
pilation code.

H3 Developers addressing change requests with FeatureHouse code can finish their
tasks faster than those with Conditional Compilation code.

Figure 8.7 shows the raw results for three rounds regarding the response time of the
participants. It can be seen that all tasks yielded similar time ranges for both variability
representations, regardless of the experience with variability of the group (ESE and RiSE)
or the addressed target system. The response times ranged (considering the 1st and the
3rd quartiles) from 20 to 30 minutes in Round 1, and from 20 to 50 minutes in Rounds
2 and 3 for Tasks 1 and 2. The following tasks were performed in a smaller amount of

98 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

time.

T1 T2 T3 T4 T5

R
ound 1 (E

S
E

)
R

ound 2 (R
iS

E
)

R
ound 3 (R

iS
E

)

T1 T2 T3 T4 T5

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

Tasks

Ti
m

e
(m

in
)

Groups CC FH

Overall Time
(Round 1,2, and 3)

Figure 8.7 Overall response time of the participants in each round.

Finally, we also tested H3 with regard to the response time. We then used the
Shapiro-Wilk Test to discover whether the raw data sample had a non-normal distribu-
tion. Besides, since we have one independent variable (variability representation)
with two levels (“FH” and “CC”) and one interval dependent variable for each hypothesis
(response time), we used the Mann-Whitney U Test to test the H3. To test H3, we
also considered all observations (i.e., from the three rounds) regarding understanding
from each group (“FH” and “CC”) as our sample. The p-value resultant from the test was
0.6011 with 95% of confidence, which indicates both groups yielded identical populations.

H3: Rejected. There was no statistical difference in the response time of the
populations using either FeatureHouse and Conditional Compilation
code.

8.3 RESULTS RQ2:

RQ2: What are the differences between software systems implemented with Fea-
tureHouse and Conditional Compilation regarding developers’ perception of
the influence of confounding parameters while performing comprehension tasks?

In this section, we discuss developers’ perception of the influence of confounding pa-
rameters on the activities during the experiments tasks regarding each of the variability

8.3 RESULTS RQ2: 99

representations.

8.3.1 Confounding Parameters Classification

We start by presenting the confounding parameters considered in the survey and its clas-
sification. According to Siegmund et al. [15], they can be separated into three groups
regarding individuals: (i) background; (ii) knowledge; and (iii) circumstances. The first
group concerns “color blindness”, “gender”, “culture”, and “intelligence”, which we believe
are inappropriate to our analysis. However, we took into consideration the other two
groups and also added study-specific confounding parameters. Table 8.5 shows the con-
founding parameters considered from each one, which we detail next.

Table 8.5 Confounding parameters took into consideration for the comprehension analysis.

Type Confounding parameters

Individual knowledge
Ability, Domain knowledge, Education, Familiarity with
study object, Familiarity with tools, Programming expe-
rience, and Reading time.

Individual circumstances Fatigue, Motivation, and Treatment preference.

Study specific Programming language (Java) knowledge, Code organiza-
tion, Experience in the programming paradigm.

8.3.1.1 Individual knowledge parameters. This first group describes parameters
that are influenced by learning and experience [15]. We are aware of some of these char-
acteristics may concern different aspects of the comprehension process. However, it is
important to measure such general parameters to explore their relationship with the
more specific ones.

Ability (CP01) in our context can be understood as a participant’s skill level, in
which he/she relied on to accomplish an assigned task.

Domain knowledge (CP02) in our context can be understood as a participant’s knowl-
edge about mobile phone’s application (MobileMedia Tasks) or scientific event manage-
ment systems (RiSEEvent Tasks).

Education (CP03) describes what they learned in their studies. Participants may
have taken different kinds of courses and subjects prior to their participation in the
study, which could have influenced their performance.

Familiarity with study object (CP04) refers to the target software systems, i.e., their
experience with MobileMedia or RiSEEvent. Those with few or no experience in software
maintenance are expected to report differently from experienced ones.

Familiarity with tools (CP05) refers to how experienced participants are with the
tools used in the evaluation. In this particular case, we explore how well the participants
are familiarized with the Prophet environment, as well as its capabilities.

Programming experience (CP06) refers to the previous experiences the participants
had so far with writing and understanding source code . In our study, we asked them

100 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

about their experience in the background questionnaire applied prior to the experiments.
Reading time (CP07) refers to how fast the participants can read.

8.3.1.2 Individual circumstances parameters. This second group describes how
participants feel during the time of the experiment [15].

Fatigue (CP08) refers to how participants get tired and lose concentration. This
parameter was also measured in the feedback questionnaires. In our case, the only mea-
sure taken was the participants subjective judgment of how this could influence in their
performance.

Motivation (CP09) refers to how motivated the participants were during the execu-
tion of each task. This parameter was also measured in the feedback questionnaires.

Treatment preference (CP10) refers to the preference of the participants for any of
the used techniques or particularly in this study for any of the programming paradigms.
This parameter was also measured in the feedback questionnaires.

8.3.1.3 Study-specific parameters. This last group describes those factors particu-
lar to this study, which are mainly associated to the variability representation techniques.

Programming language (Java) knowledge (CP11) refers specifically with their knowl-
edge of the language of the target systems. We asked about their knowledge in the back-
ground questionnaire.

Code organization (CP12) refers to the organization of the target system’s source
code. More specifically, the systems version using conditional compilation has the usual
object-oriented organization and the other one using feature orientation was organized
in containment hierarchies [10]. This parameter was also measured in the feedback ques-
tionnaire.

Experience in the variability representation (CP13) refers to the experience either in
feature-orientation with Conditional Compilation or FeatureHouse. This param-
eter was also measured in the background questionnaire.

8.3.2 Participants’ Perception of Confounding Parameters

In this section, we present the results of the survey with the participants. To the best of
our knowledge, this the first exploratory study on the influence of confounding parameters
in the feature-oriented software comprehension. We inspired ourselves by the Santos and
Mendonça work [85] – who analyzed decision drivers of guiding god class detection – to
conduct such an analysis of confounding parameters based on participants’ perception.
We used the survey method to gather participants’ feeling about the influence of each
confounding parameters in the accomplishment of their experiments tasks. We carried
out the surveys differently in each replication of the experiment.

In the ESE replication, we asked the participants to order four confounding param-
eters – namely, familiarity with tools (CP05), Programming knowledge (CP11), Code
organization (CP12), and their Programming experience (CP13) regarding their influ-
ence on the complete understanding of why the error occurred and how it could be
solved (H1), as well as the correctness of their answers of where the error was located

8.3 RESULTS RQ2: 101

(H2). In the RiSE replication, we asked the participants to judge the influence of each of
the confounding parameters described in the previous section with a four-point Likert-
scale [83]: (i) No influence; (ii) Little influence; (iii) Moderate influence; and (iv) High
influence. Next, we proceed with the analysis of the gathered data.

2

2

3

0

5

2

3

5

2

0

2

1

5

2

2

2

1

4

3

2

2

2

1

1

3

1

3

1

2

2

0

3

1

4

1

5

0

1

1

2

CC FH

1st 2nd 3rd 4th 1st 2nd 3rd 4th

<No Answer>

Experience

Java

Organization

Prophet

Ordering

C
on

fo
un

di
ng

 P
ar

am
et

er
s

Figure 8.8 Overall confounding parameters in each task of the ESE experiment.

Figure 8.8 shows a bubble plot from the ordering provided by the 21 participants
of the ESE execution. We split the plot by the variability representation group ratings.
Each participant could mention a parameter only once and should, ideally, answer with
a 4 -tuple. Unfortunately, some participants did not answer the feedback properly, which
forced us to include fifth line in the plot (“<No Answer>”) to represent the missing
ratings. The columns are ordered by the participants influence ratings (1st had higher
influence and 4th had lower influence). While the bubbles’ size indicates how many times
they cited the confounding parameter, the darkest their coloring is, the higher was the
influence parameter in the activity.

In both groups (FH and CC), the lack of knowledge or the lack of functionalities in
the Prophet workbench played higher influence on their activities, which eventually
might have hindered their success. In addition, the “Code Organization” is the less cited
as the greater influence, which corroborates with the results of the hypotheses H1, H2,
and H3. Both, their “knowledge of Java” and their “Programming Experience” were cited
the same amount of times for either variability representation. On the other hand, the
“Programming Experience” was the most cited by the FH group of participants as the
one with less influence, whereas in the CC group the “Code Organization” assumed this

102 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

place.
We then proceeded with the feedback collection differently in the RiSE replication.

Table 8.6 shows the questionnaire used to collect the rating feedback of programming
experience. Instead of ordering the confounding parameters, we elaborated more by using
a structured survey questionnaire to collect more complete information from the partici-
pants.

Table 8.6 Questionnaire used for measuring the influence of the confounding parameters on
the comprehension tasks of the experiments.

Influence
Confounding Parameter No Little Moderate High

(CP01) Ability q q q q

(CP02) Domain knowledge q q q q

(CP03) Education q q q q

(CP04) Familiarity with study object q q q q

(CP05) Familiarity with tools q q q q

(CP06) Programming experience q q q q

(CP07) Reading time q q q q

(CP08) Fatigue q q q q

(CP09) Motivation q q q q

(CP10) Treatment preference q q q q

(CP11) Programming language (Java) knowledge q q q q

(CP12) Code organization q q q q

(CP13) Experience in the programming paradigm q q q q

Figure 8.9 shows the plots of the ratings by the 12 participants of both groups – 6 using
FH in Round 2 and 6 using FH in Round 3, similarly for CC– in the RiSE replication.
It is worth mentioning that each participant completed the feedback questionnaire twice
(in Rounds 2 and 3), with each one concerning a different variability representation,
which explains the n = 12 for each confounding parameter. The darkest colors represent
“No” or “Little influence” in the comprehension tasks – the bars in the left-hand side
of the axis –, whereas the lighter colors “Moderate” or “High influence” – the bars in
the right-hand side of the axis. 50% or more of the participants rated the confounding
parameters Familiarity with the study object (CP05), Reading Time (CP07), Fatigue
(CP08), Treatment preference (CP10), Programming language knowledge (CP11), and
Experience in the programming paradigm (CP13) of moderate to high influence while
using either of the variability representation. In fact, most participants rated only the
formal Education (CP03) with the opposite level of influence between the two groups.
In other words, while most of the FH group participants rated CP03 with moderate to
high influence in the comprehension, most of the CC group participants rated it having
low to no influence in their tasks.

8.3 RESULTS RQ2: 103

(a) FH

66.6%

33.3%

66.7%

66.7%

50.0%

50.0%

83.3%

16.7%

66.7%

25.0%

66.7%

41.6%

25.0%

33.3%

66.6%

33.3%

33.3%

50.0%

50.0%

16.7%

83.4%

33.4%

75.0%

33.3%

58.3%

75.0%

CP13 (n=12)

CP12 (n=12)

CP11 (n=12)

CP10 (n=12)

CP09 (n=12)

CP08 (n=12)

CP07 (n=12)

CP06 (n=12)

CP05 (n=12)

CP04 (n=12)

CP03 (n=12)

CP02 (n=12)

CP01 (n=12)

100% 80% 60% 40% 20% 0% 20% 40% 60% 80% 100%

High Impact Moderate Impact Little Impact No impact

(b) CC

58.4%

41.7%

66.7%

91.7%

66.6%

58.3%

58.3%

16.6%

83.3%

16.7%

25.0%

41.7%

16.6%

41.7%

58.4%

33.3%

8.3%

33.3%

41.6%

41.6%

83.4%

16.7%

83.3%

75.0%

58.4%

83.3%

CP13 (n=12)

CP12 (n=12)

CP11 (n=12)

CP10 (n=12)

CP09 (n=12)

CP08 (n=12)

CP07 (n=12)

CP06 (n=12)

CP05 (n=12)

CP04 (n=12)

CP03 (n=12)

CP02 (n=12)

CP01 (n=12)

100% 80% 60% 40% 20% 0% 20% 40% 60% 80% 100%

High Impact Moderate Impact Little Impact No impact

Figure 8.9 Participant’s perception of the confounding parameters during the tasks execution.

In addition, some participants reported the fact they are used to have proper debug-
ging tools to performing such bug-finding tasks. In fact, in Round 1, the “Familiarity
with the tools” was reported in the feedback survey to have the highest influence on their
comprehension tasks regardless of the group. The FH group members mentioned “Expe-
rience” and “Code organization” as having little influence in the comprehension, whereas
the CC participants had a heterogeneous rating regarding the remaining parameters.
In Rounds 2 and 3, “Familiarity with the tools”, “Treatment preference”, and “Program-
ming language knowledge” were the most cited as having moderate to high influence in

104 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

the comprehension and consequently in the successfully accomplishment of the assigned
tasks.

We conducted a more in-depth analysis of the relationship among the confounding
parameters by calculating the correlation (cor) and (dis)similarity (d = 1−cor) among
the addressed confounding parameters. We choose dendograms [86] – a tree-like hierar-
chical clustering plot – to show the similarity and dissimilarity among the parameters. In
our case, the (dis)similarity says how different/similar the parameters are regarding the
influence ratings of the participants.

Figure 8.10 shows the dendograms built from the feedback of participants when using
each of the variability representation addressed in this study. Each leaf is more similar to
those leaves located in its same branch, whereas the distance among branches shows the
dissimilarity among groups of leaves. For instance, in Figure 8.10(a), which shows the FH
feedback, the left-most branch shows CP13, CP10, and CP11, which indicates that they
are more similar among each other than to those in the right side of the branch. Yet, at
the same time, CP10 and CP11 are more similar among each other than to CP13. In a
lowest level of granularity, when we consider the participants using FeatureHouse, the
pairs (CP10, CP11), (CP05, CP09), (CP03, CP08), (CP04, CP12), and (CP01, CP06)
are the more similar, whereas when we consider the participants using Conditional
Compilation, the pairs (CP05, CP08), (CP07, CP12), (CP09, CP10), (CP03, CP11),
and (CP01, CP04) are the more similar.

(a) FH

C
P

13

C
P

10

C
P

11 C
P

02

C
P

05

C
P

09

C
P

07

C
P

03

C
P

08

C
P

04

C
P

12

C
P

01

C
P

060.
0

0.
4

0.
8

1.
2

Dissimilarity = 1 − Correlation

hclust (*, "complete")

H
ei

gh
t

(b) CC

C
P

13

C
P

02

C
P

05

C
P

08 C
P

07

C
P

12

C
P

09

C
P

10

C
P

03

C
P

11

C
P

06

C
P

01

C
P

04

0.
0

0.
4

0.
8

1.
2

Dissimilarity = 1 − Correlation

hclust (*, "complete")

H
ei

gh
t

Figure 8.10 Dendograms showing the hierarchical clustering of the confounding parameters
regarding their (dis)similarity.

Figure 8.11 shows the correlation matrix of how the participants perceive the influ-
ence of the confounding parameters in the comprehension tasks while using the different
variability representations. This matrix complements the analysis of the dendograms. In
fact, the ordering of the matrix follows the similarity order presented by them. The darker
coloring of the bubbles in the plot shows the participants’ feeling was more similar among
them while using FeatureHouse.

For the FH group, there are several pairs of parameters with moderate correlations
with values above 0.6, such as (CP10, CP11), (CP05, CP09), (CP07, CP03), and (CP03,
CP08). Only (CP04, CP12) had a strong correlation. In contrast, for the CC group’
ratings, there are several weak correlations, with the exception of the strong correlation
between the pair (CP01, CP04). For both groups, there were no strong negative corre-

8.4 DISCUSSION 105

(a) FH

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

CP13

CP10

CP11

CP02

CP05

CP09

CP07

CP03

CP08

CP04

CP12

CP01

CP06

0.25

0.25

−0.48

−0.12

0

−0.32

−0.12

0

−0.41

−0.25

0

−0.16

0.62

0.24

0.25

0

0.16

0.25

0.35

0

0.12

0

−0.16

0.24

0.25

0

0.16

0.25

0.35

0

0.12

0.41

0.32

0.6

0.51

0.38

0.24

0.51

0.68

0.48

0.29

0.53

0.71

0.16

−0.12

0.35

0.41

0.5

0

0.32

0.45

0.35

0.67

0.58

0.71

0.19

0.45

0.63

0.45

0.26

0.32

0.26

0.2

0.71

0.41

0.5

0.41

0.32

0.58

0.71

0.58

0.45

0.82

0.56

0.77

0.41

0.63 0.77

(b) CC

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

CP13

CP02

CP05

CP08

CP07

CP12

CP09

CP10

CP03

CP11

CP06

CP01

CP04

0.37

0.53

0.31

0.31

0.37

−0.24

−0.25

0.1

0.12

−0.08

−0.08

−0.08

0.38

0.37

−0.31

0.31

0.24

0.25

0.29

0.24

0.08

0.08

0.08

0.53

0.08

0.38

0.16

−0.13

0.26

0.16

−0.4

0.2

0.2

−0.03

0.37

0.48

0.36

0.1

0.12

−0.08

0.38

0.38

0.37

−0.24

−0.25

0.1

−0.24

0.38

−0.08

−0.08

0.24

0.25

−0.1

−0.12

0.08

0.08

0.08

0.43

0.41

−0.12

−0.16

0.32

0.32

0.17

0.43

0.13

0.13

0.13

0.41

0.26

0.26

0.26

0.32

0.32

0.32

0.4

0.4 1

Figure 8.11 Correlations matrices of the participant’s perception of the confounding parame-
ters.

lations. In summary, FH and CC groups differ in the strength of positive correlations,
which it indicates evidence of the different perception of the confounding parameters by
the participants.

H4: Accepted. There was evidence of different perception of confounding
parameters by participants while engaging maintenance tasks either in Fea-
tureHouse or Conditional Compilation code.

8.4 DISCUSSION

First, in this section, we present the participants’ perception of their motivation and
tasks’ difficulty during our study and compare whether they are replicate results from
Siegmund et al. pilot [28]. Then, we present how the replications’ results correlate to the
participants’ motivation and the tasks difficulty. Later, we discuss the answers to our
research questions in the light of the raw data presented in the previous sections, the
participants’ motivation and the tasks’ difficulty.

8.4.1 On the Participants’ Motivation, Tasks’ Difficulty, and Results

We asked the participants to rate their motivation while performing each task and their
perception of the difficulty of each task after they finished the experiment activities. We
decided to present both motivation and difficulty, because we believe both are related
since harder tasks can easily decrease or increase participants’ motivation. We use a five-
points Likert scale [83] to code their answers. The scale range comprised the following
values: (0) Very difficult/unmotivated; (1) Difficult/unmotivated; (2) Normal difficul-
ty/motivation; (3) Easy/motivated; and (4) Very easy/motivated. Figure 8.12 shows the

106 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

participants’ feedback regarding difficulty and Figure 8.13 shows their feedback regarding
their motivation. In addition, we are going to use quotes from the original study [28] to
guide our discussion.

T1 T2 T3 T4 T5

R
ound 1 (E

S
E

)
R

ound 2 (R
iS

E
)

R
ound 3 (R

iS
E

)

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

2

4

6

0

1

2

3

4

0

1

2

3

4

Difficulty

N
um

be
r

of
 P

ar
tic

ip
an

ts

Group CC FH

Figure 8.12 Overall feeling of difficulty of the participants in each round. Scale: (0) Very
difficult; (1) Difficult; (2) Normal difficulty; (3) Easy; and (4) Very easy.

“ Regarding the opinion of participants, we find a tendency that the CC group
found the tasks easier to solve, except for Task 2.

Siegmund et al.[28] ”
In Round 1, both groups of participants’ responses of the ESE replication had similar

tendency. Both groups responses concentrated the rating of the tasks difficulty as “normal”
or “easy”. Thus, the FH group answers did not follow Siegmund et al. [28] observations.
In Round 2, where the RiSE replication participants performed the same tasks of the
Round 1, their responses were closer to the results observed by Siegmund et al. [28]. For
the FH group, the three first tasks mostly (very) difficult, whereas only Task 2 was rated
as difficult level by the CC group, which shows the FH group felt the tasks harder than
the CC group. In Round 3, in which the participants targeted at a different system, their
responses seemed to be homogeneous, regardless of the variability representation in the
addressed code, rating the tasks mostly (very) difficult. This results indicate that the
RiSE group might have an equivalent background knowledge to the those participating
in the original study, whereas the ESE group show signs of having a deficient background.

8.4 DISCUSSION 107

T1 T2 T3 T4 T5
R

ound 1 (E
S

E
)

R
ound 2 (R

iS
E

)
R

ound 3 (R
iS

E
)

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

2

4

6

0

2

4

6

0

1

2

3

4

Motivation

N
um

be
r

of
 P

ar
tic

ip
an

ts

Group CC FH

Figure 8.13 Overall feeling of motivation of the participants in each round. Scale: (0) Very
unmotivated; (1) Unmotivated; (2) Normal motivation; (3) Motivated; and (4) Very motivated.

“ For motivation, there is a tendency that participants of the CC group are
more motivated to solve a task. This tendency might be caused by the fact
that two participants of the FH group were unhappy to be in that group (as
they told us). Thus, the FH version appears more difficult to participants and
they did not like it. This can affect their performance, such that they work
slower.

Siegmund et al.[28] ”
Regarding motivation, both groups in all three rounds had equivalent motivation

results, with the exception of Tasks 3 and 4 in Round 3. In Round 1, most ESE group
participants’ motivation reached the scale values from unmotivated to normal, whereas
in the Rounds 2 and 3 the RiSE participants’s motivation reached the scale values from
normal, with the exception of the Task 3 in Round 3 – in which they felt unmotivated.
Some of the participants from both groups mentioned they increased their motivation
when they started to get familiar with the code they were working on, and the opposite
effect as they stepped through the tasks with difficulty to answer them. Although the
ESE group participants (Round 1) feeling of easy tasks during the experiment, they felt
unmotivated, which make us reinforce the claim of deficient background knowledge. On
the other side, the RiSE participants (Rounds 2 and 3) felt the tasks mostly hard to solve,
but kept motivated during their tasks, which show the consciousness of the participants
of the situation. We believe this happened because their familiarity with the context of
the experiment activities.

We now present Spearman correlations among the participants’ motivation, tasks’ dif-

108 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

ficulty perception and the results of our replications in terms of three dependent variables
(correctness, understanding, and response time) to compliment the analysis. Table
8.7 shows in the first row the correlations between participants’ motivation and the ex-
periment dependent variables, whereas the correlations between the difficulty perception
and each variables are shown in the second row. The correlations coefficients show signif-
icant (p < .05) moderate correlations between the participants’ motivation and both the
correctness and the understanding variables. This makes sense, since the motivation
of the participants is what keeps them focused in their activity and helps them extract
most of their abilities to transform in the effort needed to successfully complete the tasks.

Table 8.7 Correlations between the participant motivation and their feeling of difficulty and
each dependent variable of this study.

Variable correctness understanding response time
FH CC FH CC FH CC

motivation 0.589 0.705 0.758 0.676 0.136 0.359
difficulty 0.135 0.322 -

0.109
0.320 -

0.254
0.177

Gray cells denote significant correlations (p < .05).

8.4.2 On the Answers to the Research Questions

Research Question 1: “What are the differences regarding developers’ effectiveness
while performing program-comprehension tasks addressing software systems implemented
with FeatureHouse and Conditional Compilation?”

Regarding the first research question, we can enumerate two main findings, which we
discuss in the following.

Finding 1: there was no difference between the results from FH and CC
groups in none of the rounds regarding understanding.

This means that the variability mechanism does not seem to have an effect in the
overall comprehension of the source code and the difficulty in the maintenance task may
have reasons other than how the variability is realized. In addition, both partial correct-
ness and understanding had few occurrences in any of the rounds. This fact reinforces the
claim that without a complete understanding the correct answer can be compromised.
In fact, high quality and proper debugging tools seem to play an important role on the
program comprehension of unfamiliar code, specially when it comes to bug-finding tasks.
The Prophet tool functionalities are rather limited to global and local searches and
does not allow the execution or compilation of the code, which can be one of the reasons
of participants failure.

Moreover, the plots of the replications results are not clear enough, so we could draw
any conclusions on whether the strong foundations on variability of the RiSE group

8.4 DISCUSSION 109

played any the difference in achieving better results than the participants of the ESE
group. On the other hand, the raw data about the participants’ perception of the tasks’
difficulty might help to explain why they fail to complete understand the code. While
participants with superficial variability knowledge (ESE Group) mostly found tasks easy,
the participants with strong foundations of variability (RiSE Group) weren’t that excited.
Our claim is that, although most participants failed to complete understand, those with
the specific background required to the maintenance task are the ones who had the
conscious commitment to the experiment. This fact may point out to the importance
of the background knowledge of the sample for future replications. We conjecture that
a deep understanding of each of the particular mechanism is key to find the origin of a
problem in unfamiliar code while addressing change requests.

Finding 2: the response time range clearly decreased after the second task
in all three rounds.

Despite the decreasing of the response time demanded to finish follow-up tasks, we
observed neither increasing nor decreasing in the understanding and correctness levels.
We did observed the increase of the motivation after initial tasks in the RiSE partici-
pants, which can explain the the decrease of the range of time spent to answer the final
tasks. Surprisingly, we found a weak correlation between motivation and the response
time. We claim that the low motivation of the ESE participants may have influenced in
this result, since they are bigger in number of participants. The differences in the time
range of the between the beginning and ending tasks may point out to the time needed
for the participants to familiarize with the source code and also be associated to little
unmotivation in the first tasks.

Research Question 2: “What are the differences between software systems imple-
mented with FeatureHouse and Conditional Compilation regarding developers’ perception
of the influence of confounding parameters while performing comprehension tasks?”

Regarding the second research question, we can enumerate one main finding, which
we discuss in the following.

Finding 3: participants estimated the influence of confounding parameters
differently depending on the group.

First, on the side of the contrasting perceptions, we believe participants estimated
the influence of the confounding parameter “Education” differently because participants
associated the training of each variability representation to their education. Since 92%
of the RiSE group had at least one year of working experience and all of than at least
mediocre level of knowledge of the object-orientation, the Conditional Compilation
can more similar to the programming environment (e.g., programming languages and
code organization) they used to work with. In fact, the different constructs of Feature-
House might have influenced most, once none of them have had contact with it prior
to the experiment, whereas 58% (7 out of 12) had prior contact with Conditional
Compilation in academia previously.

110 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

Second, on the side of the agreeing perceptions, Participants seemed to agree, un-
der the addressed conditions, about the no or little influence of three of confounding
parameters (the Ability – CP01 –, the Familiarity with study object – CP04 –, and the
Programming experience – CP06) on the program comprehension. Indeed, the program-
ming experience characterization of the participants have highlighted their confidence
regarding their programming skills, which are definitely an important asset in these kind
of maintenance tasks. Perhaps, their failure to understand and provide correct answers
have more to do with the amount of cognitive effort demanded by the tasks, which were
expected to be finished in a short time range due to the experimental time constraints.
Indeed, this fact was highlighted in FH group feedback, in which the confounding param-
eter Reading time (CP07) was perceived as having the higher influence on the complete
understanding and accomplishment of the tasks.

Regarding the confounding parameters of higher influence, participants seemed to
agree about the moderate or high influence of three confounding parameters (Familiarity
with tools – CP05 –, Treatment preference – CP10 –, Programming language knowledge
– CP11). All these confounding parameters have something do to with the training in
the specific abilities demanded during the tasks assigned to the participants. This fact
may point out shortcomings in the training of the tools and the addressed variability
representations; or even to the lack of functionalities the participants are used to work
with, as discussed above.

8.4.3 Implications and Lessons Learned

The evidence raised in these replications are preliminary due to the exploratory nature
of the study, but bring the opportunities of rethinking the way we are going to carry
out future experiments. They highlighted the peculiarities of the experimentation on
the influence of differences of variability representations on program comprehension. For
instance, it is hard to assure equivalent knowledge of both variability representations
under evaluation by training the participants prior to the experiment session, which is
important to assure the results are comparable. Especially because FeatureHouse is
an emerging technology, most developers are about to have the first contact during the
experiment activities.

8.5 THREATS TO VALIDITY

In this section, we discuss threats to the validity of this empirical study. Next, we detail
the main threats according to external, internal, construct, and conclusion validity.

8.5.1 External Validity

We identified some threats that may limit the ability to generalize the results. For ex-
ample, the study was carried out in an in-vitro setting, which means a sample selected
by convenience. The issue here is that conclusions may be impossible to generalize the
findings to professionals, although there is evidence showing students and professionals
perform similarly when they apply a development approach in which they are inexperi-

8.6 CHAPTER SUMMARY 111

enced [79]. In this sense, we recruited students with different experience levels, as showed
by the characterization questionnaire applied prior to the experiments. This fact, makes
our sample an important population.

8.5.2 Internal Validity

There are possible threats that may happen without researcher’s knowledge affecting
individuals from different perspectives, such as (i) maturation and learning effects and
(ii) the experiment instrumentation. These threats were mitigated by choosing different
features for each task, as well as by controlling communication among the participants
in all the rounds.

Confounding constructs may affect the findings. For instance, the motivation and the
difficulty of each task might have affected the participants perception of the influence
of the variability representations on the tasks comprehension. The issue here is that we
cannot assure the tasks were not too hard to be solved by the group of participants
we recruited for the experiments. However, we believe this threat was mitigated in our
study by the attempt of balance the difficulty with pilot studies and using the same
artifacts from previous experiments. Regardless of such threat, results are still important
to research community as it can guide future research on the matter.

8.5.3 Construct Validity

Construct validity refers to the fact that the construct (i.e., developers’ effectiveness)
was not operationalized correctly. Perhaps, the way we coded the understanding and
correctness regarding the answers of the participants places a threat, because of the used
pseudo-ordinal measure scale. The fact that only a few partial understandings/correctness
might be a sign of such threat. As the participant’s understanding cannot be measured
easily by others, we tried to mitigate the threat by being as objective as possible to have
a clear idea of what was being measured for each one.

8.5.4 Conclusion Validity

Our discussions were based on a rather small sample, which limits the power of used tests
to reveal a true pattern in the data. We mitigated such a threat by employing well-known
measures to conduct our analysis. Another observed threat is the fact that the results of
the recruited groups (ESE and RiSE) might not be comparable, since they have different
background. We are aware of this fact and tried to alleviate it by comparing the results
both inter and inner groups. In addition, we believe to have exploited the available data
from different statistical analysis, which strengthens the carried analysis.

8.6 CHAPTER SUMMARY

This chapter presented the second and the third controlled experiments of the VICC fam-
ily, which addressed the influence of the use of two variability representations (Conditional
Compilation and FeatureHouse) on program comprehension. We detailed the plan-

112 VICC2 AND VICC3: ON THE INFLUENCE ON BUG-FIXING

ning and execution of the VICC2 and VICC3, while discussing metrics, participants, tasks,
support material, experiment design, and variables. We also highlighted the experiment
execution and presented a detailed discussion on the results of the experiment.

The experiments investigated two research questions. The first one, regarding the dif-
ferences in participants’ effectiveness while addressing bug-fixing tasks in feature-oriented
software using such variability representations. The second one, regarding participants’
perception of the influence of confounding parameters on program comprehension. The
results showed no statistical difference on the understanding and correctness of partici-
pants’ answers, whereas different perception of the influence of the confounding param-
eters whether the participants addressed the experiments tasks in the Conditional
Compilation or the FeatureHouse group.

Finally, we enumerated a number of threats to validity identified during the different
phases of the experiment. Next chapter presents the planning, execution, results of the
VICC4.

Chapter

9
VICC4: ON THE DEVELOPERS PERCEPTION OF

DEMANDED EFFORT

This chapter reports the last experimental study of the VICC family (VICC4). We present
each of its phases, as well as we discuss its results. We intend to gather evidence on the
aspects driving the developers in the process of understanding variable code implemented
with Conditional Compilation and FeatureHouse. We used the focus group qual-
itative approach [19] to pursue such goal, while merging the participants assessment with
the gathered evidence from the previous studies. In addition to the Chapters 6, 7, and 8,
this one covers the Research Goal 2 (pg. 5).

This chapter consists of six main sections. Section 9.1 presents the study setting of
VICC4, including the planning, and the execution. Section 9.2 presents the data collection
procedures. Section 9.3 presents and discusses the results of the study regarding the
individual feedback collected from the participants. Section 9.4 discusses participants’
answers to the focus group questions. Section 9.5 discusses the research questions with
regarding to the gathered data. Section 9.6 presents the threats to validity identified
during the evaluation.

9.1 STUDY SETTINGS

This section presents the pursued research questions, the planning, and the execution of
this final experimental study.

9.1.1 Research Questions

In the following, we present the research questions guiding our experimental study. Un-
like the previous studies we do not state any hypotheses, since our goal was to gather
evidence from a qualitative study and add them to the observations from the prior em-
pirical evaluations performed. In this sense, no metric is previously defined, once data
was gathered from the coding of the textual transcripts from the focus group interviews
and the applied feedback questionnaire. Next, we describe each research question.

113

114 VICC4: ON THE DEVELOPERS PERCEPTION OF DEMANDED EFFORT

RQ:Which aspects impact the developers comprehension of variability implementation
in the maintenance of feature-oriented software?

This is rather a general research question aiming at covering all aspects to be consid-
ered while analyzing the comprehension bottlenecks involved in the maintenance process.
In order to go deeper in the analysis of such aspects, we split this general question into
three research questions.

RQa: How do developers approach the variability implementation com-
prehension?
Rationale: since the code are rearranged from Conditional Compilation to
FeatureHouse and there is a different set of tools available for each of them,
our hypothesis is that developers might have to change their strategy to address
unfamiliar code in the different variability representations.

RQb: Which aspects hinder variability implementation comprehension?
Rationale: given the different nature of how developers program either in Condi-
tional Compilation or FeatureHouse, in this question, we investigate specific
factors from either of them hindering comprehension.

RQc: Which aspects ease variability implementation comprehension?
Rationale: conversely, the differences in the programming models may incur in dif-
ferent positive factors, each. In this question, we look for those aspects playing in
favor of the variability representation.

9.1.2 Planning

Alike previously reported empirical studies in this thesis, the planning concerns the exper-
imental design, the selection of the participants, the tasks performed, and the supporting
material available to the participants during the experiment session. Next, we detail each
of them.

9.1.2.1 Design. The design of this study was a mix of controlled experiment with a
focus group in the end. More specifically, the experimental study was performed in three
phases:

Phase 1 where the participants performed three technical tasks using Condi-
tional Compilation and FeatureHouse (the tasks are described later). This
phase serves the purpose of familiarizing the participants with the novelty of the
FeatureHouse and its capabilities.

Phase 2 where they fulfilled a feedback form. This phase serves the purpose of
getting an individual perception of the participants. We thought this might be
needed in case some of them kept wordless during the follow-up phase, what actually
happened.

9.1 STUDY SETTINGS 115

Phase 3 was the actual execution of the focus group. The idea behind the fo-
cus group is to identify aspects impacting the comprehension of both variability
representations (Conditional Compilation and FeatureHouse) through the
coding of the dialogs’ transcriptions.

In total, 10 graduate students took part in our experimental session. All of them
recruited from a Software Reuse course, which is an optional course in the Federal Uni-
versity of Bahia’s Computer Science Graduate program. Each participant worked on an
individual workstation until they finish Phase 2. Afterwards, we get them together to
Phase 3.

9.1.2.2 Tasks. Table 9.1 describes each of the three tasks the participants had to
answer prior to the actual focus group session. They took around 50 minutes to finish
the tasks. These tasks were designed in order to force the participants to understand the
source-code as a whole, including aspects of data-flow, which was needed to perform the
Tasks 2 and 3. Task 1 is probably the easiest one and it was used to allow the participants
to familiarize with the system.

9.1.3 Execution

In the experimental session, we introduced the study, as well as its goals and procedures
to the participants. This phase took around 35 minutes. Next, we described the tasks
they had to perform and defined 40 minutes as the desired time we expected they to
finish it. In fact, we did not use this as a hard deadline and some participants took a
couple of minutes more to finish.

9.1.3.1 Subjects Characterization. Appendix B presents the questionnaire used
to characterize the subjects programming experience. As the participants were at the time
taking part in a Software Reuse course, which includes the implementation of software
product line in the syllabus, we did not include questions regarding this topic.

We asked the participants to compare themselves against their group-mates and pro-
fessional developers with 20 years of experience. Figure 9.1 shows the answers of the group.

Table 9.1 Tasks defined for MobileMedia in the focus group session.

Tasks Description

Task 1
Find the exact place – Class, Line of Code, (and Feature) – where the
video controller is being initialized in both implementations (Conditional
Compilation and FeatureHouse);

Task 2
Analyze the source-code in order to identify which features must be selected
in order to make this part of the code (video controller initialization) avail-
able in a final product;

Task 3 Is there any precedence between/among the features? Please, justify.

116 VICC4: ON THE DEVELOPERS PERCEPTION OF DEMANDED EFFORT

The comparison with their group-mates are identified by the key “Students”, whereas the
comparison with the developers with the key “Professionals”. This comparison shows ap-
proximately one third the participants see themselves as less or more experienced as
their mates and 40% as equally experienced. In addition, only 10% self-assessed as more
experienced than the those professionals.

30%

70%

30%

10%

40%

20%Professionals

Students

100 50 0 50 100

Percentage

variable 0.Clearly worse 1.Worse 2.Identical 3.Better 4.Clearly better

Figure 9.1 Subjects’ programming experience self-assessment.

9.1.3.2 Support Material. From the experience acquired from the previous exper-
iments, we decided this time to provide the complete FeatureIDE infrastructure to
the participants. This fact contributes to the observation of the actual impact of avail-
able tools in the participants comprehension tasks. The participants also had the feature
model of both versions in hands while they analyzed the target system during the session.

9.1.3.3 Pilot. The original idea was to carry out a (quasi-)experiment [18] addressing
data-flow tasks. In this sense, in order to balance the study in a way we could extract the
best from it, we performed a pilot with three Master students from the Technical School of
Würzburg-Schweinfurt (FHWS) located in Germany, while they were working at UFBA in
a research collaboration project between both institutions. The german students had only
superficial knowledge of SPL engineering, conditional compilation, and FeatureHouse
in opposition to the background of those recruited from the Software Reuse course, which
led us to believe we would have low to no success given the complexity of the tasks. In fact,
they found the tasks to be hard. Therefore, we decided to maintain the tasks with lower
importance in the study in favor to add a new phase, the focus group. In addition, they
contributed with the factors that might have impacted in their success in the assigned
tasks, which we considered while refining the study and helped in the construction of the
individual feedback form.

9.2 DATA COLLECTION

This section presents how we collected the data to proceed with the analysis. We antic-
ipated in the design session, we collected data by three different ways: (i) the answers
form in the Phase 1; (ii) the feedback form in the Phase 2; and (iii) the transcription of
the focus group available in Portuguese language in Appendix E. However, as the sample

9.2 DATA COLLECTION 117

is small and we would be unable to draw any strong conclusions, we decided then to focus
on the last two phases of the study.

9.2.1 Individual Feedback Collection

This section describes how the feedback was individually collected from the participants
after the tasks. One of the primarily reason we considered to construct such a ques-
tionnaire is that we anticipated some of them with few or no contribution during the
focus group session. In this sense, we elaborated one question – What was the impact
of the following factors in the comprehension in source-code? – with a set of predefined
impact factors concerning each of the paradigms addressed in this task (Conditional
Compilation and FeatureHouse). Additionally, we asked two questions to an overall
evaluation of how hard it was for them to perform the tasks. Some of the predefined
factors were already addressed in the previous studies, some of them are new. Next, we
discuss each of these groups of questions.

Tables 9.2 and 9.3 show the questions regarding the pre-defined factors concerning the
Conditional Compilation and the FeatureHouse paradigms, respectively. All the
questions were rated in a five-point Likert-scale [83] with values ranging from “too easy/no
impact” to “too hard/high impact”. We summarized these factors based on two main
sources of evidence. The first, the experience acquired by the author of this thesis while
refactoring the Conditional Compilation version of RiSEEvent to FeatureHouse.
The second, the evidence raised in the previous experimental studies.

Table 9.2 Predefined impact aspects used for the participants individual feedback.

ID Conditional Compilation Factors

(CC-Q1) this factor concerns the “quantity of variation points”, i.e., the number
of the annotations present in the source-code;

(CC-Q2)
perhaps, the existence of “variations points scattered” throughout the
entire project might also impact in the tasks of dealing with unfamiliar
code;

(CC-Q3) the existence of “logical expressions in the variation points”, can also
impact in the comprehension;

(CC-Q4)
we are interested in the analysis of the impact of “long fragments of
variable code”, which is the code between the openings (#ifdef X) and
the endings (#endif) of annotations blocks.

(CC-Q5) we are also interested in the comprehension of the “data-flow” in the
different variability representation code;

(CC-Q6)
the “tool support” was one of the factors most mentioned in the previous
studies. Therefore, we added this it here one more time check whether
the ratings would change.

118 VICC4: ON THE DEVELOPERS PERCEPTION OF DEMANDED EFFORT

Table 9.3 Predefined impact aspects used for the participants individual feedback.

ID FeatureHouse Factors

(FH-Q1)

One intrinsic characteristic of the feature-oriented programming with
FeatureHouse is the “class refinements”, which produces duplicated
classes and eventually the high number might impact in the compre-
hension.

(FH-Q2) Another characteristic is the feature-based “source-code organization”.
We asked the participants about the impact of this factor.

(FH-Q3)
At first, the “features precedence” might not be noticed at first sight,
the participants perceived impact can help on the understanding of how
hard it is to get this information from the context being addressed.

(FH-Q4) We are also interested in the comprehension of the “data-flow” in the
different variability representation code;

(FH-Q5) As well as the class refinements, the “method overloading” might also
be hard to detect while programming.

(FH-Q6) In addition to the method overloading, the“method refinements” might
also be hard to detect while programming.

(FH-Q7)
the “tool support” was one of the factors most mentioned in the previous
studies. Therefore, we added this it here one more time check whether
the ratings would change.

9.2.2 Focus Group Data Collection

This section describes the questions used to collect data during the focus group session.
Table 9.4 shows the questions. They are both closed- and open-ended questions. Since the
closed-ended questions lack of stimulus for the participant to give a long and elaborated
answer, we did not include them among the questions while planning the questionnaire.
However, they did happen in the focus group session to complement the open-ended
questions during the discussion.

We transcribed the audio recording of the focus group session to resort on the coding
technique. More specifically, we are going to use two coding levels [19]: (i) open coding –
where the main rule is to segment the transcription text into similar groupings in order
to identify preliminary categories of information about the phenomenon under analysis
–; (ii) axial coding – the open coding allows the researcher to concatenate similar ideas
concerning specific aspects under a more general statement or concept/themes.

9.3 INDIVIDUAL FEEDBACK RESULTS

This section presents the raw data and discuss the individual feedback of the participants
collected with the feedback form in the experimental study.

9.3 INDIVIDUAL FEEDBACK RESULTS 119

Table 9.4 Focus group questions.

Order Questions

Question 1 What were your first impressions of each paradigm?
Question 2 What could make you more effective in your tasks?

Question 3 What were your feelings about each paradigm? Fatigue, tiredness,
paradigm preference.

Question 4
What tool or strategy have you adopted during the tasks to compre-
hend unfamiliar code? Have you changed the strategy to address the
FeatureHouse code?

Question 5 The worse thing about Conditional Compilation is. . .
Question 6 The worse thing about FeatureHouse is. . .
Question 7 The best thing about Conditional Compilation is. . .
Question 8 The best thing about FeatureHouse is. . .
Question 9 While using Conditional Compilation, the first thing I did was. . .
Question 10 While using FeatureHouse, the first thing I did was. . .

Question 11 Would you like to elaborate a bit more about the maintenance difficulty
of each approach?

Question 12 Have you noticed precedence among features, regarding the methods
refinements?

9.3.1 Influence Drivers

Figure 9.2 summarizes the subjects rating of the impact the predefined factors detailed
previously (Tables 9.2 and 9.3). We can identify the rating for each factor in the figure by
the identifiers from these tables (ID). The bars are ordered in decreasing order of impact,
i.e., the predefined factors with highest impact comes first.

If we look to each paradigm individually, we can see the “Long fragments of variable
code” (CC-Q4) was rated as the most impactful factor among those from the Condi-
tional Compilation paradigm, whereas the “quantity of class refinements” (FH-Q1)
is by far the most impactful among those from the FeatureHouse paradigm. On the
other hand, the “Tool support” for Conditional Compilation showed up with the
lowest ratings, whereas only 10% of the participants found the FeatureHouse “Code
organization” a factor of several impact. In fact, the participants rated the impact of
most factors listed in the FeatureHouse tasks mostly as indifferent, with the exception
of “Code organization” (FH-02) and “Tools support" (FH-07), which most participants
rated with few to no impact in the comprehension.

120 VICC4: ON THE DEVELOPERS PERCEPTION OF DEMANDED EFFORT

(a) CC

10%

10%

20%

30%

20%

50%

60%

50%

40%

40%

40%

30%

30%

40%

40%

30%

40%

20%

CC−Q1

CC−Q2

CC−Q3

CC−Q4

CC−Q5

CC−Q6

100 50 0 50 100

Percentage

variable Considerable Impact Few Impact High Impact Indiferent No impact

(b) FH

20%

60%

30%

20%

30%

70%

20%

40%

30%

20%

20%

20%

10%

10%

40%

10%

50%

60%

50%

20%

70%

FH−Q1

FH−Q2

FH−Q3

FH−Q4

FH−Q5

FH−Q6

FH−Q7

100 50 0 50 100

Percentage

variable Considerable Impact Few Impact High Impact Indiferent No impact

Figure 9.2 Subjects rating of the impact the predefined aspects.

9.3.2 Tasks’ Difficulty Perception

We relied on two general questions to assess the overall difficulty of the executed tasks:
(i) “Generally speaking, how difficult were the tasks?” and (ii) “Generally speaking, how
difficult was to understand the system source-code?”. Figure 9.3 shows the answers to
them regarding each variability representation Conditional Compilation and Fea-
tureHouse. The answers show an equivalence in terms of difficulty. In addition, half of
the participants found the tasks to have usual difficulty both in a general way or in terms
of comprehension effort.

9.4 FOCUS GROUP QUESTIONS ANSWERS

In this section, we proceed with the analysis of the focus group session transcriptions.
The focus group questions can be subset in four main group of questions: (i) the ques-
tions concerning the strategies adopted by the software engineers while addressing code
using Conditional Compilation and FeatureHouse; (ii) the questions concerning

9.4 FOCUS GROUP QUESTIONS ANSWERS 121

40%

40%

10%

10%

50%

50%

40%

30%

10%

20%

50%

50%

Generally speaking, how difficult were the tasks?

Generally speaking, how difficult was it to
understand the system source−code?

100 50 0 50 100

FH

IFDEF

FH

IFDEF

Percentage

variable Easy Hard Too Easy Too Hard Usual Difficulty

Figure 9.3 Answers to the questions to assess the overall difficulty of the tasks.

the factors hindering the best performance of the software engineers; (iii) the questions
concerning factors easing the maintenance work with each variability representation; and
(iv) the general observations questions. Tables 9.5 and 9.6 enumerate all benefits and
drawbacks identified in the participants’ speeches during the focus group. We discuss the
more important of them in the following while presenting the focus groups questions
answers.

9.4.1 Group 1: Comprehension Strategies

Three questions are in this group: questions 4, 9, and 10. Each of these questions concern
the way developers handle the comprehension of unfamiliar source code. Depending on the
strategy they used to accomplish their task, different kind of tools would yield different
results in terms of effectiveness. Next, we discuss the finding of each of these questions.

Question 4 explicitly asked the participants about the tools and strategies they adopted
while addressing the comprehension tasks. In addition, we asked whether they had to
change their usual strategy to address unfamiliar code, because of the implementations
using Conditional Compilation and FeatureHouse. Question 9 and 10 asked the
participants what were their first attitude to comprehend the source code using either
Conditional Compilation or FeatureHouse, respectively. The idea was to identify
whether the first action follows a different pattern depending on the variability represen-
tation.

We identified mainly two groups of participants, those who relied only on the search
tools and those who resort of additional tools. In the first group, a participant stated
to have addressed both versions code with the same strategy, as shown by the following
quote.

“ I ended up by using the same strategy I used in the other. (. . .) To search
and than identify the artifacts. I repeat for both.

Focus Group Participant ”
Other two participants of this first group made use of their previous game development

122 VICC4: ON THE DEVELOPERS PERCEPTION OF DEMANDED EFFORT

Table 9.5 Benefits identified in the answers to the focus group questions.

Conditional Compilation

To read the code is enough to understand the variability.
It is good in cases of several variation points in the same file.
The search is enough to find the feature annotations.
Background knowledge was useful to the working strategy.
Modularization and architecture may alleviate the annotation scattering problem.
The programming model is simple.

FeatureHouse

Variability, constraints, and configurations visualization are straightforward.
The configuration management tool had some use to understand features constraints and
boosted effectiveness.
Background knowledge was useful to the working strategy.
The configuration management helps in the troubleshooting and debugging.
Collaboration diagram is faster than search for annotations.
Valid configurations visualization.
Code readability (i.e.clean code)
It is better than Conditional Compilation in cases of scattered variability.
The visual organization is interesting.
Collaboration diagram provides a good overview about each feature
Code obfuscation is not a problem.
FeatureIDE views are useful to novice programmers.
It has good traceability.
To locate the maintenance-target code for maintenance seems straightforward
The feature code traceability can produce gains in the development.
The error propagation seems to be lower than Conditional Compilation due the feature-
based modularization
The collaboration diagram is more comfortable to work with than a traceability matrix.

experiences, which can be seen in the following quote.

“ I have already worked a bit with game development, so it was straightforward
to me to search for a “init” method. In the way that, in the place I found a
variable declaration with this method call, than it should be the one i was
looking for. This means I did not look to feature or other stuff, just looked
for the declaration.

Focus Group Participant ”
On the other hand, participants of the second group approached the code using differ-

9.4 FOCUS GROUP QUESTIONS ANSWERS 123

Table 9.6 Drawbacks identified in the answers to the focus group questions.

Conditional Compilation

Code obfuscation is a huge problem (Excessive amount of annotation).
Lack of visualization tools supporting annotations (e.g., colors, block folding)
Lack of traceability tools (justified with lack of training)
Maintenance of Conditional Compilation might be bottleneck for both large and small
systems.
Good programming practices may also alleviate the annotation scattering problem.
Annotations turns the maintenance harder.
The use of feature tags in comments hinder comprehension (e.g., searching process) when
the annotation mechanism is not a native construct, such as in Java.
OO does not require a feature-oriented mindset, which turns up to be too flexible to imple-
ment variability and requiring additional effort from developers to handle such construct.
Although Conditional Compilation works, it is probably not the best solution to use
in large systems.
To locate the maintenance-target code requires global search.
Conditional Compilation is error propagation prone

FeatureHouse

It is a FH problem the amount of clicks to reach the source code files.
Lack of traceability tools (justified with lack of training).
Lack of visualization tools support.
Too much duplicated classes.
It is hard to keep a big picture of the implementation (e.g., memory allocation problem,
method overriding.)
It is required to understand the composition problem in order to comprehend how the
variability is being implemented.
Feature precedence is harder to notice for novices.
Big effort needed to manage the shared resources.

ent strategies. While using using Conditional Compilation, they relied on the search
tools only, whereas they resort of the feature model/configuration management and the
collaboration diagram tools to solve the tasks with FeatureHouse. The quote below
shows the behavior of one of the participants.

“ As soon as I discovered the FeatureHouse had that small tree1, I preferred
to create a configuration, unselect all features non-mandatory, than I verified,
selected the features I did not want and saw that everything built automati-
cally. This made me solve my problem infinitely faster.

Focus Group Participant ”

124 VICC4: ON THE DEVELOPERS PERCEPTION OF DEMANDED EFFORT

Regarding the first action, we did not identify any different behavior other than the
use of the global search tool by the participants addressing Conditional Compilation
code. On the other hand, we identified that some participants prefer to use first the
collaboration diagram, others the feature model while using FeatureHouse. None of
the participants mentioned the change of strategies to address unfamiliar code. However,
it is clear by the use of these new tools the deviation from the usual strategies.

9.4.2 Group 2: Hindering Factors

Three questions are in this group: questions 3, 5, and 6. Each of these questions aimed at
the identification of aspects that might hinder the comprehension of the source code. It
is important to distinguish aspects of each variability representation hindering compre-
hension, because it would be possible to mitigate the effect of such factors in the daily
activity of developers.

Question 3 asked the participants to elaborate on the different feelings (e.g., Fatigue,
tiredness, variability representation preference) during the execution of the technical tasks
using each of the variability representations. Question 5 and 6 asked the participants what
was the worse thing they found while working either with Conditional Compilation
or FeatureHouse during the comprehension tasks, respectively.

The following quote regarding the superiority of FeatureHouse concerning to the
maintainability of the addressed variability representations points to the overall feedback
of the participants majority.

“ I have the feeling that it is unanimous that FeatureHouse is better than
Conditional Compilation. By thinking on the maintenance of that Con-
ditional Compilation code, it would be an headache to me.

Focus Group Participant ”
Later, the same participant claimed the maintenance issue would appear regardless

of the system’s size. Although none of the other participants raised objections, some
raised arguments in favor of a balance between both Conditional Compilation and
FeatureHouse highlighting the importance of the best use of each one, as shown by
the following quote.

“ The Conditional Compilation code is highly obfuscated. However, if you
use the search tool to look for “annotations2” it makes your life easier. You
go straight to the point. You click Find and all the annotations you expect
to find will be in your hands. At the same time, when using FeatureHouse
you can identify them in the (collaboration) diagram. You go faster to the
right point. Therefore, I believe you need to know how to use the available
resources. It is a balance.

Focus Group Participant ”
Regarding the hindering aspects itself, the participants mentioned mostly factors from

the Conditional Compilation representation. Besides the hindering aspects already

9.4 FOCUS GROUP QUESTIONS ANSWERS 125

known (Code obfuscation, Excessive amount of annotations), we also identified the fol-
lowing factors.

The use of feature tags in the comments: according to the participants, this prac-
tice can both cause misunderstandings and turn the search for annotations in time
of maintenance harder.

The lack of feature-orientation mindset: according to them, differently from the
FeatureHouse, the object-orientation paradigm does not force the software en-
gineer to think in terms of features, which requires additional effort for them to
handle such additional construct.

Regarding the hindering aspect identified in the FeatureHouse variability repre-
sentation, we extracted the following from participants observations.

There is too much duplicated classes: according to them, the amount of classes with
the same name turns it harder to understand and follow the code. For instance, it
is hard to keep track memory allocation and deallocation –, which may not be a
problem in Java, but certainly is in C/C++ – or method overriding.

It is hard to keep a big picture of the implementation: according to them, still
the number of duplicated classes, in conjunction with the amount of clicks needed to
get to the actual code in the features folder hinder comprehension and consequently
the execution of maintenance tasks.

9.4.3 Group 3: Facilitators Factors

Three questions are in this group: questions 2, 7, and 8. Each of these questions aim at the
identification of aspects that might ease the comprehension of the source code. It is impor-
tant to enumerate the aspects of each variability representation hindering comprehension,
because it would be possible to use them as inspiration to improve the supporting tools
of the daily work of developers. Question 2 asked the participants about what could make
their work more effective while using either Conditional Compilation or Feature-
House. In addition, the questions 7 and 8 asked them about the best thing they found
about working with Conditional Compilation and FeatureHouse, respectively.

The participants pointed out the lack of tools supporting annotations as a set of
effective-oriented enhancements that might help in the comprehension and consequently
in the maintenance activities. Among these tools, the participants mentioned visualization
tools and also tools to help with the identification of annotations of interest.

“ A software visualization tool for this (to be more effective) would help. For
both variability representations.

Focus Group Participant ”
Additionally, the available tools are too Eclipse dependent and the participants who

do not use it in daily work had difficulties to address their tasks.

126 VICC4: ON THE DEVELOPERS PERCEPTION OF DEMANDED EFFORT

“ For me, to both variability representations, as I do not use Eclipse, I found
difficulties to use the tools functionalities and to look for the files.

Focus Group Participant ”
9.4.4 Group 4: General Observations

Three questions are in this group: questions 1, 11 and 12. Question 1 asked the partici-
pants about their first impressions of each variability representation, whereas the Question
11 asked the participants to elaborate more about the difficulty to maintain code written
in each variability representation. Question 12 asked whether the participants noticed any
kind of precedence among features, regarding the methods refinements in the variability
representations.

Regarding their impressions, although the participants did not present any strong
objections to the use of Conditional Compilation, it seems they would prefer to use
the FeatureHouse to implement variability. They claimed the tool support available
to FeatureHouse helped them to best approach the tasks. The following quotes show
this feeling of them.

“ The variability representation with Conditional Compilation is interest-
ing when we have a concentration of variation points inside a single source
code file. (. . .) However, when the variability starts to be scattered, then the
FeatureHouse seems to be interesting, because we can easily see the project
structure. The bad side is the many clicks we need to reach the source code
files.

Focus Group Participant ”

“ There is also that tool, which shows the feature “Base” and where it was
implemented. . . [Collaboration Diagram] Exactly. I think it helps to get an
overview of how the feature is implemented. On the other hand, while using
Conditional Compilation it just use the search to find the annotations,
which is also interesting and you can also walk through the source code.

Focus Group Participant ”
Regarding to answers to the maintainability (Question 11), the participants pointed

out the benefits of the improved traceability of FeatureHouse in comparison with
the Conditional Compilation. Besides, the fact that the development team changes
constantly, according to the participants this quality of FeatureHouse would be ben-
eficial in such situations, which demands maintenance knowledge management – usually
accomplished with traceability matrix.

“ Traceability is the biggest need. Because something that worries me is how
scattered is the source code, since the more scattered the code, the bigger

9.5 RESEARCH QUESTIONS DISCUSSION 127

the error proneness of the source code. [With FeatureHouse,] I would go
straight to that package and perform the needed changes.

Focus Group Participants ”
Moreover, none of the participants claimed to have perceived the existing precedence

among features in FeatureHouse in binding time. In fact, one of them clearly stated
he did not perceive, instead he pointed out to potential issues while programming with
FeatureHouse. As in FeatureHouse several duplicated classes might exist through-
out the entire project, the management of shared resources (e.g., memory) might be
problematic, as discussed in the RQb.

9.5 RESEARCH QUESTIONS DISCUSSION

In this section, we discuss our macro research question by answering their sub-questions.
The answer to this general question together with their sub-questions can help future
research to pursue the enhancement of processes and tool support for maintenance tasks
of software in the presence of variability. To this end, we take into consideration the raw
data presented in the previous sections and the possible implications of the identified
influence factors on program comprehension to future research. We now use each of those
defined subsets to answer both the sub-questions and the macro research question.

9.5.1 RQa: How do developers approach the variability implementation compre-
hension?

According to the presented answers for the questions of Group 1, participants rely on the
search tools regardless of the variability representation. More specifically, global search to
find all the Conditional Compilation annotation tags and local search inside the files
of the target feature folder. In addition, we can point out that they also made use of visu-
alization tools available in the FeatureIDE to support FeatureHouse development,
such as the “Collaboration Diagram”, the “Feature Model", and the “Configuration Man-
agement”. Moreover, the background knowledge of each participant has heavily influenced
in the way they approached the tasks. While some participants with game development
background just searched for similar keywords, the one with traceability matrix experi-
ence preferred to use the collaboration diagram.

9.5.2 RQb: Which aspects hinder variability implementation comprehension?

According to the presented answers for the questions of Group 2, the factors making the
tasks accomplishment harder are different regarding the variability representations. In
Conditional Compilation, the scattering of feature annotations, the code obfusca-
tion caused by the excessive amount of annotations, as well as the use of annotation tags
inside the comments are the most mentioned factor hindering variability comprehension.
Conversely, in the FeatureHouse, the number of occurrences of the duplicated classes
and the amount of clicks needed to reach the source code files were the ones more empha-

128 VICC4: ON THE DEVELOPERS PERCEPTION OF DEMANDED EFFORT

sized as the factors hindering program comprehension in this variability representation.
Regarding the bottlenecks of each variability representation, the focus of participants’

complaints have shifted slightly in comparison to our preceding experiments in the VICC
family. While in our previous studies with bug-finding tasks, the participants complained
about the lack of proper debugging tools, in this study where the tasks demand basi-
cally comprehension effort, they suggested an improvement in the set of visualization
and search tools available. They raised these enhancements as a mean to improve their
effectiveness in the maintenance tasks.

9.5.3 RQc: Which aspects ease variability implementation comprehension?

According to the presented answers for the questions of Group 3, the factors making the
tasks accomplishment easier are also different regarding the variability representations.
In Conditional Compilation, participants were unanimous that the search tool is
the first tool they have in mind to accomplish their tasks. They also found the pro-
gramming model simpler than the FeatureHouse option, since it was enough to read
the code to become aware of its purpose. On the other hand, in FeatureHouse, the
code organization was pinpointed as an interesting factor of this variability representa-
tion. Additionally, participants found the collaboration diagram and the configuration
management tools highly useful to accomplish the tasks.

9.5.4 RQ: Which aspects impact the developers comprehension of variability im-
plementation in the maintenance of feature-oriented software?

Each of the sub-questions have led us to identify some of the referred aspects subject
of investigation under this research question. As those aspects were already discussed
previously, we now focus on those highlighted in the presented answers for the questions
of the Group 4. This group concerned general observations regarding the maintainability
of the code using each of the variability representation under investigation in this thesis.

The available tools supporting the maintenance activities have high impact on the
first impressions of the participants of our focus group. In addition to the search tools
and the feature models available of both representations, there were a couple of tools
available only for FeatureHouse. What might have favored this representation against
the Conditional Compilation regarding the traceability of artifacts. Such difference
was not a misplanned action, but rather a reproduction of the situation they would be
exposed in the real world. To the best of our knowledge, apart from the configuration
management used in the Linux Kernel build system (KBuild), which have functionalities
similar to the configuration management of the FeatureIDE, there is no equivalent tool
to the collaboration diagram or the FeatureIDE Outline3 available to Conditional
Compilation.

All these observed points are subject to further investigation to better understanding
of the influence of such factors on the program comprehension of software in the presence
of variability.

3The FeatureIDE Outline is a tool that aggregates all the duplicated classes in only one tree view.

9.6 THREATS TO VALIDITY 129

9.6 THREATS TO VALIDITY

In this section, we discuss potential threats to the validity of this empirical study. We
believe that presenting such detailed information may contribute to further research and
replications of this study [18], which may be built upon the results presented herein.
Next, we detail the main threats according to external, internal, construct, and conclusion
validity.

External validity. As a qualitative study, the results cannot be generalized to all
software engineers and practitioners. However, this is the fourth study of a family of com-
plementary studies providing evidence from different sources, which allow us to observe
and make observations based on the whole experimentation experience context. Indeed,
the approach of this study enabled deep insight to emerge from participants’ perspectives
that can be later tested for generalization in other contexts.

Internal validity. There are possible threats that may happen without researcher’s
knowledge affecting individuals from different perspectives, such as (i) the maturation
effect, which we mitigated disregarding their answers to the tasks and focusing on their
feedback and free speeches data; (ii) the tasks instrumentation – concerning the artifacts
and forms used during the study session –, which we mitigated with the review of the
study design and artifacts by more experienced researchers of our research group.

Construct validity concerns generalizing the result of the experiment to the concept
or theory behind the experiment [18]. It might have to do with the preoperational expla-
nation of constructs, which means that the concepts are not well defined before translated
to measures or treatments. We mitigate this threat by using the same concepts through-
out the whole family of studies and using only consolidated experimental designs already
used in the literature. Confounding constructs may affect the findings. For instance, the
difficulty of each task might have affected the participants perception of the impact of
the variability representations on the tasks comprehension. We believe this threat could
be mitigated since participants felt mostly the same level of difficulty.

Conclusion validity threats are concerned with issues that affect the ability to
draw the correct conclusion about relations between the treatment and the outcome of
an experiment [18]. As the goal of this study was to identify a set of aspects worth of
further investigation rather than draw any conclusions about them, we found this validity
not applicable to our context.

9.7 CHAPTER SUMMARY

This chapter presented a focus group on the influencing factors on program comprehen-
sion in the presence of variability regarding Conditional Compilation and Feature-
House. More specifically, we discussed the influence of predefined factors extracted from
previous studies on the focus group participants program comprehension. Afterwards, we
presented the results of the factors extracted from the free speech session of the focus
group. Next chapter presents the concluding remarks and future directions of this thesis.

PART V

CONCLUSIONS

Chapter

10
CONCLUSIONS AND FUTURE WORK

The main cost of the software life cycle is the maintenance phase and one of its most
time-consuming and tedious tasks is understanding source code, which makes software
engineers avoid it whenever it is possible [39]. This fact raises the importance of ease
such tasks as much as possible. On top of that, the presence of variability in feature-
oriented software makes program comprehension even harder. Thus, research on program
comprehension can help both researchers and practitioners to understand how software
engineers approach unfamiliar code, specially in the presence of variability. Next, we
present the contributions made by this thesis and directions to future work.

10.1 THESIS CONTRIBUTIONS

In this thesis, we pursued a twofold, but complementary goals:

• First, we extended the umbrella of feature-oriented software development to cover
JavaScript-based software systems.

• Second, we contributed to the evidence corpus on the understanding of the influ-
ence of different variability representations (namely, compositional and annotative
approaches) on program comprehension tasks.

Each of these goals were addressed individually and reported in two parts separately
(Parts III and IV), in which we made the following contributions to fulfill our goals:

1. A hybrid composition approach tool support for JavaScript product lines engineer-
ing (RiPLE-HC– Chapter 4).
RiPLE-HC relies on FeatureIDE capabilities to support software engineers who
eventually decide to engineer a JavaScript product line. At this point, the RiPLE-
HC workbench together with the external plug-ins works in conjunction providing
several features: feature modeling; preprocessing annotations and code composition
accordingly to a given variant configuration; annotations scattering location support

133

134 CONCLUSIONS AND FUTURE WORK

through a tree visualization; and feature collaboration graph visualization to each
existing variant configuration. In addition, it can be extended with functionality
due to its Eclipse plug-in architecture. Thus, we could identify more requirements
by literature survey or by asking software engineers what functionality they need.

2. Evaluation of RiPLE-HC with empirical case studies (Chapter 5).
We conducted two proof-of-concept empirical studies evaluating the proposed ap-
proach considering both, industry and academia settings. The industry case study
showed considerable reduction of the time needed to built a learning objects product
line for K-12 education. On the other hand, the academic empirical study carried
out with free open-source JavaScript systems showed the ability to handle the
implementation of crosscutting features with annotations and the scalability of the
approach to systems sized up to 122KLOC.

3. Extended empirical evidence of how feature-oriented software development affects
program comprehension (Chapters 7, 8, and 9).
We presented a family of empirical studies focused on program comprehension tasks
in feature-oriented software. In Chapter 6, we introduced each of the four studies and
presented the variations in the experimental setup among them. Next, we enumerate
the main findings in each of them.

VICC1 (Chapter 7) addressed the impact on feature location while using either
the Standard or RiPLE-HC. The study recruited undergraduate students and
showed no statistical difference among the groups using each approach regarding
response time and correctness of their answers.

VICC2 and VICC3 (Chapter 8) addressed the lack of empirical evidence on the dif-
ference of the influence of traditional (Conditional Compilation) and emerging
(FeatureHouse) variability representations. To the best of our knowledge, there
was only one pilot study carried out so far addressing this particular context of such
an important aspect in feature-oriented software.

Besides, this was the first exploratory study on the influence of confounding pa-
rameters on feature-oriented software comprehension. To this end, we explored in
different directions, such as (i) trying to identify the differences imposed by such
variability representations and (ii) trying to establish a relationship among con-
founding parameters while maintaining software using either FeatureHouse or
Conditional Compilation.

The results of our study allowed us to make the following conclusions:

• There is evidence of the equivalence regarding the (i) demanded effort to
understand, (ii) to find flawed source-code, and (iii) the time demanded to
finish bug-finding maintenance tasks while using FeatureHouse and Con-
ditional Compilation paradigms;

• There is evidence of a perceived high influence of the following confounding
parameters in the program comprehension and maintenance of software devel-

10.1 THESIS CONTRIBUTIONS 135

oped using either FeatureHouse or Conditional Compilation: Famil-
iarity with the study object ; Reading Time; Fatigue; Treatment preference; Pro-
gramming language knowledge; and Experience in the programming paradigm.

• There is evidence of a different perceived influence of the confounding pa-
rameter formal education on the comprehension and maintenance of software
developed using either FeatureHouse or Conditional Compilation.

• There is a moderate correlation between the motivation of software engineers
and their efficiency to perform comprehension tasks correctly.

VICC4 (Chapter 9) used a qualitative method called focus group to identify poten-
tial aspects to produce initial insights and guide future research on the program
comprehension of software in the presence of variability. More specifically, to com-
pare and understand the differences and implications of the use of the variability
representations such as those used in our studies, Conditional Compilation
and FeatureHouse.

We can group our main findings in four main categories regarding the aspects that
might have influence on the comprehension and consequently the maintenance of
feature-oriented software. These groups are enumerated in the following and may
point out the direction of the next steps of the research community.

Comprehension Strategies: by understanding how the software engineers ad-
dress the comprehension of unfamiliar code can produce insights on the con-
struction of more effective methods, processes, and tools to support mainte-
nance of feature-oriented software. Among our findings in this category are
the use tools other than the search to address unfamiliar code. We conjecture
that visualization tools, such as the “Collaboration Diagram” and the “Con-
figuration management” can contribute to the comprehension code using both
Conditional Compilation and FeatureHouse.

Hindering Factors: by understanding what makes the comprehension tasks harder,
we can build tools to facilitate such an important process in the software main-
tenance. Among our findings in this category are already well known [6] by
the practitioners using annotations, the excessive amount of annotations and
the highly scattering of them. Regarding the composition approach, we found
the number of duplicated classes, as well as the amount of clicks to reach
the source code as bottlenecks of the existing code organization tools and are
worth further investigation and improvements.

Facilitators Factors: by understanding what makes the comprehension tasks eas-
ier, we can concentrate the effort on research to make these factors of some
use to enhance the already available tools to comprehend software. Among our
findings in this category are the simple programming model of Conditional
Compilation and the good way of code organization of FeatureHouse.
This finding corroborates with those in the hindering factors category, since

136 CONCLUSIONS AND FUTURE WORK

although the participants like the way the code is organized, they were un-
comfortable with the amount of clicks to get to it.

General Observations: by understanding the feelings of the software engineers
regarding to the first contact with unfamiliar variability representations, we
can also look for improvements in such aspects causing negative and lack of
motivated of software engineers facing the decision of using one or another op-
tion. Among our findings in this category is the difficulty to novice developers
using FeatureHouse to perceive the importance of the precedence among
the features in the binding time. This fact should be more explicitly addressed
in supporting tools. Additionally, the participants pointed out the traceability
is an important asset in the comprehension of such kind of code, which we
agree and suggest also further investigation in the facet.

4. Reusable experimental designs.
All of our experimental settings were designed to be reusable. We used common
guidelines to present our set up, and made all material available at the project
website (<http://rise.com.br/riselabs/vicc/>).

Such contributions set new direction for new and complimentary research in the field.
We discuss the limitations and future work next.

10.2 LIMITATIONS

We put a lot of effort in the planning and performing each of the presented studies.
Although we pursued the best experimental setup in each one, we know some edges
remained uncovered, in other words, we are aware of different aspects that limit our
findings and are worth mentioning.

• The programming language switch. We believe the use of two different pro-
gramming languages in our experimental studies can play both roles, strengthen the
findings or threat the general conclusions. Specially, if we consider the differences
in sintax and the peculiarities of each language.

• The limited number of addressed maintenance tasks. This is definetly a
limitation, still it would be necessary several studies to cover each or at least most
of these kind of tasks. A good point in favor of the generalization of our findings
would be checking whether they are recurrent in different maintenance tasks.

• The expressiveness of annotations in Java and JavaScript. Some may ques-
tion the expressiveness of the Conditional Compilation emulation in these
languages. It is true the use of annotations through comments in code are rather
limited if compared to the native C/C++ annotations. Thus, the influence of the
“emulated” annotations in our results might not reflect the influence of native an-
notations for different variability representation.

http://rise.com.br/riselabs/vicc/

10.3 FUTURE WORK 137

• The discipline of the annotations. Due to the limation of the expressiveness of
the annotations emulation in Java and JavaScript, our experimental setup covered
only disciplined annotations. This point should also be further investigated in future
research.

10.3 FUTURE WORK

We are aware that these findings are far from describing the relationship among vari-
ability representation chose and the different confounding parameters associated to com-
prehension tasks in software engineering. As our studies were limited as discussed in the
previous section, there is a number of other research directions that remain open. Thus,
we enumerate a set of directions to further research in this topic.

RiPLE-HC tool support improvement – It is possible to enhance the current im-
plementation of the RiPLE-HC tool support, such as the filtering the scattering
graphs and to integrate the workbench to use the recent improvements of Fea-
tureIDE [87]. There is a need to improve the tool support to better handle nested
annotated blocks and to provide consistency checking of the annotations against
the feature model constraints [7].

Empirical evidence on program comprehension feature-oriented software – It
is also important to address other maintenance activities, such as additive and per-
fective maintenance in the software components. Another possible direction is the
comparison of the influence of different tools supporting program comprehension
in the different variability representations, such as collaboration diagram and the
FeatureIDE Outline [88]. Additionally, it would be interesting to observe profes-
sional programmers working with code using Conditional Compilation and/or
Composition to observe how they work with different variability mechanisms and
compare with the students results.

Case Studies/Survey – Additional case studies and/or surveys with developers to bet-
ter investigate the synergy of the hybrid composition with the dynamic nature of
JavaScript, such as global scope, function redefinition, weakly typing, as well as
the usage of different current available frameworks such angular and react are pos-
sible directions to further investigation. Furthermore, it is also possible to assess
the fine-grained feature dependencies [89] impact on the comprehension of feature-
oriented software systems.

REFERENCES

1 APEL, S.; KäSTNER, C.; LENGAUER, C. Language-independent and automated soft-
ware composition: The FeatureHouse experience. IEEE Transactions on Software Engi-
neering, v. 39, n. 1, p. 63–79, 2013.

2 APEL, S.; LEICH, T.; ROSENMüLLER, M.; SAAKE, G. FeatureC++: On the sym-
biosis of feature-oriented and aspect-oriented programming. In: Proceedings of the 4th
Generative Programming and Component Engineering. Berlin, Germany: Springer-Verlag,
2005. p. 125–140. ISBN 978-3-540-29138-1.

3 BATORY, D. S. Feature-oriented programming and the AHEAD tool suite. In: Pro-
ceedings of the 26th International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2004. p. 702–703. ISBN 0-7695-2163-0.

4 KäSTNER, C.; APEL, S. Integrating compositional and annotative approaches for
product line engineering. In: Proceedings of the Workshop on Modularization, Compo-
sition, and Generative Techniques for Product Line Engineering. Nashville, Tennessee:
Universität Passau, 2008. p. 1 – 6.

5 SPENCER, H.; COLLYER, G. #ifdef considered harmful, or portability experience
with C news. In: Proceedings of the USENIX Summer 1992 Technical Conference. San
Antonio, TX: USENIX, 1992. p. 185–197.

6 MEDEIROS, F.; KÄSTNER, C.; RIBEIRO, M.; NADI, S.; GHEYI, R. The love/hate
relationship with the C preprocessor: An interview study. In: Proceedings of the 29th Eu-
ropean Conference on Object-Oriented Programming. Prague, Czech Republic: Dagstuhl
Publishing, 2015. p. 495–518.

7 SANTOS, A. R.; ALMEIDA, E. S. Do #ifdef-based variation points realize feature
model constraints? Software Engineering Notes, ACM, New York, NY, USA, v. 40, n. 6,
p. 1–5, 2015.

8 APEL, S.; KäSTNER, C. An overview of feature-oriented software development. Jour-
nal of Object Technology, v. 8, n. 5, p. 49–84, jul 2009. ISSN 1660-1769.

9 BATORY, D. Feature models, grammars, and propositional formulas. In: Proceedings
of the 9th International Software Product Lines Conference. Berlin, Germany: Spring-
Verlag, 2005. p. 7–20.

10 APEL, S.; BATORY, D.; KäSTNER, C.; SAAKE, G. Feature-Oriented Software Prod-
uct Lines: Concepts and Implementation. Berlin, Germany: Springer-Verlag, 2013. ISBN
978-3-642-37521-7.

139

140 REFERENCES

11 SIEGMUND, J. Framework for Measuring Program Comprehension. Tese (Doutorado)
— Otto-von-Guericke-Universität Magdeburg, 2012.

12 SILVA, L.; RAMOS, M.; VALENTE, M. T.; BERGEL, A.; ANQUETIL, N. Does
javascript software embrace classes? In: Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering. Québec, Canada: IEEE,
2015. p. 73–82.

13 KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature
Reviews in Software Engineering. [S.l.], 2007.

14 KITCHENHAM, B. A.; BUDGEN, D.; BRERETON, P. Evidence-Based Software
Engineering and Systematic Reviews. [S.l.]: Chapman and Hall/CRC, 2015. 399 p. ISBN
9781482228656.

15 SIEGMUND, J.; SCHUMANN, J. Confounding parameters on program comprehen-
sion: a literature survey. Empirical Software Engineering, Springer-Verlag, v. 20, n. 4, p.
1159–1192, 2014.

16 SIEGMUND, J. Program comprehension: Past, present, and future. In: Proceedings
of the 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). Washington, DC, USA: IEEE Computer Society, 2016. v. 5, p. 13–20.

17 WOHLIN, C. Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering. New York, NY, USA: ACM, 2014.
p. 38:1–38:10. ISBN 978-1-4503-2476-2. Disponível em: <http://doi.acm.org/10.1145/
2601248.2601268>.

18 WOHLIN, C.; RUNESON, P.; HöST, M.; OHLSSON, M. C.; REGNELL, B.; WESS-
LéN, A. Experimentation in Software Engineering. Berlin, Germany: Springer-Verlag,
2012. ISBN 978-3-642-29044-2.

19 SHULL, F.; SINGER, J.; SJØBERG, D. I. Guide to Advanced Empirical Software En-
gineering. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007. ISBN 184800043X.

20 MACHADO, I. C.; SANTOS, A. R.; CAVALCANTI, Y. a. C.; TRZAN, E. G.; SOUZA,
M. M. a. de; ALMEIDA, E. S. Low-level variability support for web-based software prod-
uct lines. In: Proceedings of the 8th International Workshop on Variability Modelling of
Software-Intensive Systems. New York, NY, USA: ACM, 2014. p. 15:1–15:8. ISBN 978-
1-4503-2556-1.

21 SANTOS, A. R.; MACHADO, I. C.; ALMEIDA, E. S. RiPLE-HC: Javascript systems
meets SPL composition. In: Proceedings of the 20th International Systems and Software
Product Line Conference. New York, NY, USA: ACM, 2016. p. 154–163. ISBN 978-1-
4503-4050-2.

http://doi.acm.org/10.1145/2601248.2601268
http://doi.acm.org/10.1145/2601248.2601268

REFERENCES 141

22 SANTOS, A. R.; MACHADO, I. C.; ALMEIDA, E. S. RiPLE-HC: Visual support
for features scattering and interactions. In: Proceedings of the 20th International Systems
and Software Product Line Conference. New York, NY, USA: ACM, 2016. p. 320–323.

23 SANTOS, A. R.; MACHADO, I. C.; ALMEIDA, E. S. Aspects influencing feature-
oriented software comprehension: Observations from a focus group. In: Proceedings of
the 11th Brazilian Symposium on Software Components, Architectures, and Reuse. New
York, NY, USA: ACM, 2017. p. 1–10.

24 SANTOS, A. R.; MACHADO, I. C.; ALMEIDA, E. S.; SIEGMUND, J.; APEL, S. Ex-
ploring the influence of variability representations on program comprehension. Empirical
Software Engineering, Springer US, x, n. x, p. 1–34, 2018. ISSN 1382-3256.

25 SANTOS, A. R.; OLIVEIRA, R. P.; ALMEIDA, E. S. Strategies for consistency check-
ing on software product lines: A mapping study. In: Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering. New York, NY, USA:
ACM, 2015. p. 5:1–5:14. ISBN 978-1-4503-3350-4.

26 FIGUEIREDO, E.; CACHO, N.; SANT’ANNA, C.; MONTEIRO, M.; KULESZA,
U.; GARCIA, A.; SOARES, S.; FERRARI, F.; KHAN, S.; FILHO, F. C.; DANTAS, F.
Evolving software product lines with aspects: An empirical study on design stability. In:
Proceedings of the 30th International Conference on Software Engineering. New York,
NY, USA: ACM, 2008. p. 261–270. ISBN 978-1-60558-079-1.

27 LIEBIG, J.; KäSTNER, C.; APEL, S. Analyzing the discipline of preprocessor anno-
tations in 30 million lines of c code. In: Proceedings of the 10th International Conference
on Aspect-oriented Software Development. New York, NY, USA: ACM, 2011. p. 191–202.
ISBN 978-1-4503-0605-8.

28 SIEGMUND, J.; KäSTNER, C.; LIEBIG, J.; APEL, S. Comparing program compre-
hension of physically and virtually separated concerns. In: Proceedings of the 4th Interna-
tional Workshop on Feature-Oriented Software Development. New York, NY, USA: ACM,
2012. p. 17–24. ISBN 978-1-4503-1309-4.

29 PREHOFER, C. Feature-oriented programming: A fresh look at objects. In: Proceed-
ings of the 11th European Conference on Object-Oriented Programming. Berlin, Germany:
Springer-Verlag, 1997. p. 419–443. ISBN 978-3-540-63089-0.

30 BATORY, D. S.; SARVELA, J. N.; RAUSCHMAYER, A. Scaling step-wise refine-
ment. IEEE Transactions on Software Engineering, v. 30, n. 6, p. 355–371, 2004.

31 KäSTNER, C.; APEL, S.; KUHLEMANN, M. A model of refactoring physically and
virtually separated features. In: Proceedings of the 8th International Conference on Gen-
erative Programming and Component Engineering. New York, NY, USA: ACM, 2009. p.
157–166. ISBN 978-1-60558-494-2.

142 REFERENCES

32 KOENEMANN, J.; ROBERTSON, S. P. Expert problem solving strategies for pro-
gram comprehension. In: Proceedings of the 3rd Conference on Human Factors in Com-
puting Systems. New York, NY, USA: ACM, 1991. p. 125–130. ISBN 0-89791-383-3.

33 BROOKS, R. Using a behavioral theory of program comprehension in software en-
gineering. In: Proceedings of the 3rd International Conference on Software Engineering.
Piscataway, NJ, USA: IEEE Press, 1978. p. 196–201.

34 SHAFT, T. M.; VESSEY, I. The relevance of application domain knowledge: Char-
acterizing the computer program comprehension process. Journal of Management Infor-
mation Systems, v. 15, n. 1, p. 51–78, 1998.

35 SOLOWAY, E.; EHRLICH, K. Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-10, n. 5, p. 595–609, Sept 1984. ISSN 0098-
5589.

36 PENNINGTON, N. Stimulus structures and mental representations in expert com-
prehension of computer programs. Cognitive Psychology, v. 19, n. 3, p. 295 – 341, 1987.
ISSN 0010-0285.

37 SHNEIDERMAN, B.; MAYER, R. Syntactic/semantic interactions in programmer
behavior: A model and experimental results. International Journal of Computer & Infor-
mation Sciences, v. 8, n. 3, p. 219–238, 1979. ISSN 1573-7640.

38 MAYRHAUSER, A. von; VANS, A. M. From program comprehension to tool require-
ments for an industrial environment. In: Proceedings of the 2nd Workshop on Program
Comprehension. Washington, DC, USA: IEEE Computer Society, 1993. p. 78–86. ISSN
1092-8138.

39 MAALEJ, W.; TIARKS, R.; ROEHM, T.; KOSCHKE, R. On the comprehension of
program comprehension. ACM Transactions on Software Engineering and Methodology,
New York, NY, USA, v. 23, n. 4, p. 31:1–31:37, set. 2014. ISSN 1049-331X.

40 FEIGENSPAN, J.; APEL, S.; LIEBIG, J.; KASTNER, C. Exploring software mea-
sures to assess program comprehension. In: Proceedings of the 5th International Sympo-
sium on Empirical Software Engineering and Measurement. Washington, DC, USA: IEEE
Computer Society, 2011. p. 127–136. ISSN 1949-3770.

41 SIEGMUND, J.; KäSTNER, C.; LIEBIG, J.; APEL, S.; HANENBERG, S. Measuring
and modeling programming experience. Empirical Software Engineering, Springer US,
v. 19, n. 5, p. 1299–1334, 2014. ISSN 1382-3256.

42 FEIGENSPAN, J.; SIEGMUND, N.; HASSELBERG, A.; KöPPEN, M. PROPHET:
Tool infrastructure to support program comprehension experiments. In: Proceedings of
the 5th International Symposium on Empirical Software Engineering and Measurement.
Washington, DC, USA: IEEE Computer Society, 2011. Poster Session.

REFERENCES 143

43 FEIGENSPAN, J.; SIEGMUND, N. Supporting comprehension experiments with hu-
man subjects. In: Proceedings of the 20th International Conference on Program Compre-
hension. Passau, Germany: IEEE, 2012. p. 244–246. ISBN 1092-8138.

44 MAYRHAUSER, A. V.; VANS, A. M. Program comprehension during software main-
tenance and evolution. Computer, IEEE, Washington, DC, USA, v. 28, n. 8, p. 44–55,
1995.

45 STOREY, M.-A. Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal, v. 14, n. 3, p. 187–208, 2006. ISSN
1573-1367.

46 RAJLICH, V.; WILDE, N. The role of concepts in program comprehension. In: Pro-
ceedings of the 10th International Workshop on Program Comprehension. Washington,
DC, USA: IEEE Computer Society, 2002. p. 271–278.

47 BURKHARDT, J.-m.; DÉTIENNE, F.; WIEDENBECK, S. Object-oriented program
comprehension: Effect of expertise, task and phase. Empirical Software Engineering, v. 7,
n. 2, p. 115–156, 2002. ISSN 1382-3256.

48 PENTA, M. D.; STIREWALT, R. E. K.; KRAEMER, E. Designing your next em-
pirical study on program comprehension. In: Proceedings of the 15th IEEE International
Conference on Program Comprehension. Washington, DC, USA: IEEE Computer Society,
2007. p. 281–285. ISSN 1092-8138.

49 SIEGMUND, J.; KÄSTNER, C.; APEL, S.; PARNIN, C.; BETHMANN, A.; LEICH,
T.; SAAKE, G.; BRECHMANN, A. Understanding understanding source code with func-
tional magnetic resonance imaging. In: Proceedings of the 36th International Conference
on Software Engineering. New York, NY, USA: ACM, 2014. p. 378–389.

50 KOSAR, T.; MERNIK, M.; CARVER, J. C. Program comprehension of domain-
specific and general-purpose languages: comparison using a family of experiments. Em-
pirical Software Engineering, v. 17, n. 3, p. 276–304, 2012. ISSN 1573-7616.

51 FEIGENSPAN, J.; KäSTNER, C.; APEL, S.; LIEBIG, J.; SCHULZE, M.;
DACHSELT, R.; PAPENDIECK, M.; LEICH, T.; SAAKE, G. Do background colors
improve program comprehension in the #ifdef hell? Empirical Software Engineering,
Springer US, v. 18, n. 4, p. 699–745, 2013. ISSN 1382-3256.

52 SHULL, F. J.; CARVER, J. C.; VEGAS, S.; JURISTO, N. The role of replications
in empirical software engineering. Empirical Software Engineering, Springer, Berlin, Ger-
many, v. 13, n. 2, p. 211–218, 2008. ISSN 1573-7616.

53 ROBILLARD, M. P.; COELHO, W.; MURPHY, G. C. How effective developers inves-
tigate source code: An exploratory study. IEEE Transactions on Software Engineering,
v. 30, n. 12, p. 889–903, 2004.

144 REFERENCES

54 FRITZ, T.; BEGEL, A.; MüLLER, S. C.; YIGIT-ELLIOTT, S.; ZüGER, M. Using
psycho-physiological measures to assess task difficulty in software development. In: Pro-
ceedings of the 36th International Conference on Software Engineering. New York, NY,
USA: ACM, 2014. p. 402–413. ISBN 978-1-4503-2756-5.

55 MELO, J.; BRABRAND, C.; Wąsowski, A. How does the degree of variability affect
bug finding? In: Proceedings of the 38th International Conference on Software Engineer-
ing. New York, NY, USA: ACM, 2016. p. 679–690. ISBN 978-1-4503-3900-1.

56 ALIMADADI, S.; MESBAH, A.; PATTABIRAMAN, K. Understanding asynchronous
interactions in full-stack javascript. In: Proceedings of the 38th International Conference
on Software Engineering. New York, NY, USA: ACM, 2016. p. 1169–1180. ISBN 978-1-
4503-3900-1.

57 GALSTER, M.; WEYNS, D.; TOFAN, D.; MICHALIK, B.; AVGERIOU, P. Variabil-
ity in software systems: A systematic literature review. IEEE Transactions on Software
Engineering, v. 40, n. 3, p. 282–306, 2014.

58 PETTERSSON, U.; JARZABEK, S. Industrial experience with building a web portal
product line using a lightweight, reactive approach. Software Engineering Notes, ACM,
New York, NY, USA, v. 30, n. 5, p. 326–335, 2005. ISSN 0163-5948.

59 CAPILLA, R.; DUENAS, J. Light-weight product-lines for evolution and maintenance
of web sites. In: Proceedings of the 7th European Conference on Software Maintenance
and Reengineering. Washington, DC, USA: IEEE Computer Society, 2003. p. 53–62. ISSN
1534-5351.

60 TRUJILLO, S.; BATORY, D.; DIAZ, O. Feature oriented model driven development:
A case study for portlets. In: Proceedings of the 29th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2007. p. 44–53. ISBN 0-
7695-2828-7.

61 FERREIRA, G. C. S.; GAIA, F. N.; FIGUEIREDO, E.; MAIA, M. A. On the use
of feature-oriented programming for evolving software product lines - a comparative
study. Sci. Comput. Program., Elsevier North-Holland, Inc., Amsterdam, The Nether-
lands, v. 93, p. 65–85, nov. 2014. ISSN 0167-6423.

62 FISCHER, S.; LINSBAUER, L.; LOPEZ-HERREJON, R. E.; EGYED, A. Enhancing
clone-and-own with systematic reuse for developing software variants. In: Proceedings of
the IEEE International Conference on Software Maintenance and Evolution. Washington,
DC, USA: IEEE Computer Society, 2014. p. 391–400.

63 GAIA, F. N.; FERREIRA, G. C. S.; FIGUEIREDO, E.; MAIA, M. A. A quantitative
and qualitative assessment of aspectual feature modules for evolving software product
lines. Sci. Comput. Program., Elsevier North-Holland, Inc., Amsterdam, The Netherlands,
v. 96, n. P2, p. 230–253, dez. 2014. ISSN 0167-6423.

REFERENCES 145

64 LIU, J.; BATORY, D.; LENGAUER, C. Feature oriented refactoring of legacy ap-
plications. In: Proceedings of the 28th International Conference on Software engineering.
New York, NY, USA: ACM, 2006. p. 112–121. ISBN 1-59593-375-1.

65 PIERCE, B. C. Basic category theory for computer scientists. Cambridge, Mas-
sachusetts, United States: MIT press, 1991.

66 THüM, T.; KäSTNER, C.; BENDUHN, F.; MEINICKE, J.; SAAKE, G.; LEICH, T.
FeatureIDE: An extensible framework for feature-oriented software development. Science
of Computer Programming, v. 79, p. 70–85, 2014. ISSN 0167-6423.

67 CUTSEM, T. V.; MILLER, M. S. Robust trait composition for javascript. Science of
Computer Programming, 2012. ISSN 0167-6423. In Press, Corrected Proof.

68 QUEIROZ, R.; PASSOS, L.; VALENTE, M. T.; HUNSEN, C.; APEL, S.; CZAR-
NECKI, K. The shape of feature code: An analysis of twenty C-preprocessor-based sys-
tems. Journal of Software and Systems Modeling, Springer-Verlag, p. 1–29, 2015.

69 BASILI, V.; ROMBACH, H. The TAME project: towards improvement-oriented soft-
ware environments. IEEE Transactions on Software Engineering, IEEE, v. 14, p. 758–773,
Jun. 1988. ISSN 0098-5589.

70 COMMITTEE, L. T. S. IEEE Standard for Learning Object Metadata. Washington,
DC, USA, 2002.

71 WILEY, D. A. Connecting learning objects to instructional design theory: A definition,
a metaphor, and a taxonomy. In: The Instructional Use of Learning Objects. Bloomington,
IN, USA: Association for Educational Communications and Technology, 2000.

72 KRUEGER, C. W. Easing the transition to software mass customization. In: Proceed-
ings of the 4th International Workshop on Software Product-Family Engineering. Berlin,
Germany: Springer-Verlag, 2001. p. 282–293. ISBN 3-540-43659-6.

73 WEISS, R. C. T. L. D. M. Software product-line engineering: a family-based software
development process. Boston, Massachusetts, United States: Addison-Wesley, 1999.

74 POHL, K.; BöCKLE, G.; LINDEN, F. J. van der. Software Product Line Engineering:
Foundations, Principles and Techniques. Berlin, Germany: Springer-Verlag, 2005. ISBN
3540243720.

75 MARCUS, A.; SERGEYEV, A.; RAJLICH, V.; MALETIC, J. I. An information re-
trieval approach to concept location in source code. In: Proceedings of the 11th Working
Conference on Reverse Engineering. Washington, DC, USA: IEEE Computer Society,
2004. p. 214–223.

76 SIEGMUND, J.; BRECHMANN, A.; APEL, S.; KäSTNER, C.; LIEBIG, J.; LEICH,
T.; SAAKE, G. Toward measuring program comprehension with functional magnetic

146 REFERENCES

resonance imaging. In: Proceedings of the 20th International Symposium on the Foun-
dations of Software Engineering. New York, NY, USA: ACM, 2012. p. 24:1–24:4. ISBN
978-1-4503-1614-9.

77 NETO, P. A. M. S.; SANTANA, T. L.; ALMEIDA, E. S.; CAVALCANTI, Y. a. C.
RiSE Events: A testbed for software product lines experimentation. In: Proceedings of
the 1st International Workshop on Variability and Complexity in Software Design. New
York, NY, USA: ACM, 2016. p. 12–13. ISBN 978-1-4503-4176-9.

78 SEAMAN, C. B. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering, IEEE, v. 25, n. 4, p. 557–572, 1999.

79 SALMAN, I.; MISIRLI, A. T.; JURISTO, N. Are students representatives of pro-
fessionals in software engineering experiments? In: Proceedings of the 37th International
Conference on Software Engineering - Volume 1. Piscataway, NJ, USA: IEEE Press, 2015.
p. 666–676. ISBN 978-1-4799-1934-5.

80 COMMITTEE, S. . S. E. S. 14764-2006 - ISO/IEC International Standard for Soft-
ware Engineering - Software Life Cycle Processes - Maintenance. Washington, DC, USA,
2006. 1-46 p.

81 MEYER, B. Object-oriented software construction. Upper Saddle River, New Jersey,
United States: Prentice Hall, 1988. v. 2.

82 FEIGENSPAN, J.; SIEGMUND, N.; HASSELBERG, A.; KöPPEN, M. PROPHET:
Tool infrastructure to support program comprehension experiments. In: Proceedings of
the 5th International Symposium on Empirical Software Engineering and Measurement.
Washington, DC, USA: IEEE Computer Society, 2011. Poster Session.

83 RENSIS, L. A technique for the measurement of attitudes. Archives of Psychology,
v. 22, n. 140, p. 5–55, 1932.

84 MALAQUIAS, R.; RIBEIRO, M.; BONIFáCIO, R.; MONTEIRO, E.; MEDEIROS,
F.; GARCIA, A.; GHEYI, R. The discipline of preprocessor-based annotations - does
#ifdef tag n’t #endif matter. In: Proceedings of the 25th International Conference on
Program Comprehension. [S.l.: s.n.], 2017. (ICPC’17), p. 297–307.

85 SANTOS, J. A. M.; MENDONçA, M. G. Exploring decision drivers on god class detec-
tion in three controlled experiments. In: Proceedings of the 30th Annual ACM Symposium
on Applied Computing. New York, NY, USA: ACM, 2015. (SAC ’15), p. 1472–1479. ISBN
978-1-4503-3196-8.

86 EVERITT, B. S.; SKRONDAL, A. The Cambridge dictionary of statistics. 4. ed.
Cambridge: Cambridge University Press, 2010. ISBN 9780521766999.

87 MEINICKE, J.; THüM, T.; SCHRöTER, R.; KRIETER, S.; BENDUHN, F.; SAAKE,
G.; LEICH, T. Featureide: Taming the preprocessor wilderness. In: Proceedings of the 38th

REFERENCES 147

International Conference on Software Engineering Companion. New York, NY, USA:
ACM, 2016. p. 629–632. ISBN 978-1-4503-4205-6.

88 LEICH, T.; APEL, S.; MARNITZ, L.; SAAKE, G. Tool support for feature-oriented
software development: featureide: an eclipse-based approach. In: Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange. San Diego, California: ACM, 2005.
p. 55–59. ISBN 1-59593-342-5.

89 RODRIGUES, I.; RIBEIRO, M.; MEDEIROS, F.; BORBA, P.; FONSECA, B.;
GHEYI, R. Assessing fine-grained feature dependencies. Information and Software Tech-
nology, Elsevier, v. 78, p. 27–52, 2016.

90 ANDERSON, T. W.; FINN, J. The new statistical analysis of data. New York City,
New York, United States: Springer, 1996.

91 ANDERSON, T. W.; RUBIN, H. Statistical inference in factor analysis. In: Proceed-
ings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume
5: Contributions to Econometrics, Industrial Research, and Psychometry. Berkeley, Calif.:
University of California Press, 1956. p. 111–150.

92 COSTELLO, A. B.; OSBORNE, J. W. Best practices in exploratory factor analysis:
Four recommendations for getting the most from your analysis. Practical Assessment,
Research & Evaluation, v. 10, p. 173–178, 2005.

Appendix

A
Standing in the shoulder of giants.

LITERATURE VENUES

A.1 DBLP VENUES

Table A.1 describes each of the selected forums considered in the for the manual litera-
ture review of the published papers from 2011 until June 2016. The search was conducted
completelly in the DBLP1 library. We selected ESE as leading platform for empirical re-
search in the field of software engineering. We included TOSEM and TSE as leading
journals in software engineering. ICPC is the leading conference for research regarding
program comprehension. ICSE and FSE are the leading conferences on software engi-
neering. Additionally, we chose ESEM as platform in the empirical-software-engineering
domain. From these venues, we selected all papers that reported evidence-based studies
concerning program compreension on feature-oriented configurable problems.

A.2 SIEGMUND AND SCHUMANN SURVEY VENUES

Table A.2 describes each of the selected forums considered in the Siegmund and Schumann
survey [15].

1The computer science library, available at <http://dblp.dagstuhl.de>.

149

 http://dblp.dagstuhl.de

150 LITERATURE VENUES

Table A.1 Selected research forums from DBLP.

Venue Acronym

Journals

Empirical Software Engineering ESE
Transactions on Software Engineering TSE
Transactions on Software Engineering and Methodology TOSEM

Conferences

Software Product Lines Conference SPLC
International Conference on Software Reuse ICSR
International Conference on Generative Programming GPCE
International Conference on Program Comprehension ICPC
International Conference on Software Engineering ICSE

Symposiums

Symposium on the Foundations of Software Engineering FSE
International Symposium on Empirical Software Engineering and Mea-
surement

ESEM

Workshops

International Workshop on Variability Modelling of Software-intensive
Systems

VAMOS

International Workshop on Product LinE Approaches in Software Engi-
neering

PLEASE

International Workshop on Feature Oriented Software Development FOSD

A.2 SIEGMUND AND SCHUMANN SURVEY VENUES 151

Table A.2 Selected research forums from Siegmund and Schumann survey [15].

Venue Acronym

Journals

Empirical Software Engineering ESE
Journal of Software: Evolution and Process JSEP
Transactions on Software Engineering TSE
Transactions on Software Engineering and Methodology TOSEM

Conferences

Software Product Lines Conference SPLC
International Conference on Software Reuse ICSR
International Conference on Generative Programming GPCE
International Conference on Program Comprehension ICPC
International Conference on Software Engineering ICSE
Working Conference on Reverse Engineering WCRE
International Conference on Human-computer Interaction CHI
International Conference on Software Maintenance and Evolution ICSM

Symposiums

Symposium on the Foundations of Software Engineering FSE
International Symposium on Empirical Software Engineering and Mea-
surement

ESEM

Symposium on Visual Languages and Human-Centric Computing VLHCC
Symposium on Human-Centric Computing Languages and Environments HCC2

Workshops

International Workshop on Program Comprehension IWPC3

International Workshop on Cooperative and Human Aspects of Software
Engineering

CHASE

International Workshop on Variability Modelling of Software-intensive
Systems

VAMOS

International Workshop on Product LinE Approaches in Software Engi-
neering

PLEASE

Appendix

B
CHARACTERIZATION QUESTIONNAIRE

Table B.1 Questionnaire for measuring the programming experience of the participants. Ex-
tracted from Siegmund’s et al. work [41]

ID Question

Q1 Higher Academic Degree
Q2 Course of Study
Q3 For how many years are you programming?
Q4 How many courses were you enrolled in which you had to program?
Q5 How experienced are you with Java?
Q6 How experienced are you with C?
Q7 How experienced are you with Haskell?
Q8 How experienced are you with Prolog?
Q9 In how many more programming languages are you experienced at least to a

mediocre level?
Q10 How experienced are you with the Logical programming paradigm?
Q11 How experienced are you with the Functional programming paradigm?
Q12 How experienced are you with the Imperative programming paradigm?
Q13 How experienced are you with the Objected-oriented programming paradigm?
Q14 Have ever worked on one or more large programming projects in a company or

at the university or are you currently working on a large programming project?
Q15 Since when are you working in a company/at the university on larger projects?
Q16 In which domain were/are those projects?
Q17 How many lines of code did these projects usually have?
Q18 How do you estimate your programming experience with other students of this

course?
Q19 How do you estimate your programming experience with programmers that have

20 years of experience?

153

Appendix

C
VICC1 FEEDBACK FORM

1. Which approach you find best for Javascript development? (Standard or RiPLE-
HC)

2. Which are the points in favor of the Standard way of development?

3. Which are the points against of the Standard way of development?

4. Which are the points in favor of the RiPLE-HC way of development?

5. Which are the points against of the RiPLE-HC way of development?

6. Do you think RiPLE-HC can be generalized for other programming languages?
Justify your answer

155

Appendix

D
MODELING PROGRAMMING EXPERIENCE

This appendix presents the replication of the Siegmund et al. [41] effort to model pro-
gramming experience. In discussion with Janet Siegmund, she advised to left it out of
this discussion due the size of the sample, as well as out of the scope of this study. As
the work was done, we decided to include it in the Appendix D.

D.1 CORRELATIONS ANALYSIS

Siegmund et al. [41] strived to model programming experience of the participants with a
reduced number of variables. However, they did not manage to reduce the dimensionality
of the problem with no doubts remaining. In this sense, we decided to go for a conserva-
tive path and analyzed the correlation of each of the characterization variables with the
number of correct answers in our experiment replications. Table D.1 shows the variables
actually used to measure their experience.

Table D.2 shows an overview of the correlation between each of the analyzed dependent
variables (correctness, understanding, and response time) and the data collected
for each independent variable in the characterization questionnaire (Table D.1). More
specifically, as we had five values for correctness and understanding (T1, T2, T3, T4,
and T5), we added up the participants scores in each task (0, 1, or 2), which gave us a
number between zero (0) – in case of no correct answers – and ten (10) – in case of 5
complete correct answers.

Since we correlated ordinal data, we used the Spearman rank correlation [90]. We
can assume the following correlation categories regarding the correlation coefficient (r):
no correlation (0 ≤ |r| < 0.1); weak correlation (0.1 ≤ |r| < 0.5); moderate correlation
(0.5 ≤ |r| < 0.8); and strong correlation (0.8 ≤ |r| ≤ 1). Most of the characterization
variables taken individually have weak or no correlation with our addressed dependent
variables (correctness, understanding, and response time). The only exception is the
moderate correlation between the number of years the participant have been programming
and the response time of the IFDEF group.

157

158 MODELING PROGRAMMING EXPERIENCE

Table D.1 Description of the variables used for measuring the participants’ programming
experience. Extracted from Siegmund’s et al. work [41].

ID Variable Description Scaling

Q1 degree The higher academic degree of the participant. 1:Bachelor;
2:Specialist;
3:Master.

Q3 prog-years Number of many years programming. x ∈ Z
Q4 courses-takenNumber of courses taken so far in which the

participants had to program.
x ∈ Z

Q5 java The participant experience in Java. LikertA
Q6 c The participant experience in C. LikertA
Q7 haskell The participant experience in Haskell LikertA
Q8 prolog The participant experience in Prolog. LikertA
Q9 other-l Number of other programming languages the

participant know at least to a mediocre level.
x ∈ Z

Q10 logical Participant experience in the Logical program-
ming paradigm.

LikertA

Q11 functional Participant experience in the Functional pro-
gramming paradigm.

LikertA

Q12 imperative Participant experience in the Imperative pro-
gramming paradigm.

LikertA

Q13 oo Participant experience in the Objected-oriented
programming paradigm.

LikertA

Q14 large-proj Whether the paricipant worked with a large
software project or not.

0: No;
1: Yes.

Q15 work-years Years working with large projects. x ∈ Z
Q17 proj-size The actual size of the project in lines of code. 0: None;

1: Small;
2: Medium;
3: Large.

Q18 students Programming experience self-assessment
against group-mates.

LikertB

Q19 professionalsProgramming experience self-assessment
against programmer with 20 years of experi-
ence.

LikertB

ID: refers to the question identifier (Appendix B). LikertA: x ∈ {0: Very inexperienced; 1: Inexperienced; 2:
Mediocre; 3: Experienced; 4: Very inexperienced.} LikertB: x ∈ {0: Clearly worse; 1: Worse; 2: As good as; 3:
Better; 4: Clearly better.}

D.2 FACTOR ANALYSIS 159

Table D.2 Correlations between each characterization independent variable and each depen-
dent variable of this study.

Variable correctness understanding response time
FH CC FH CC FH CC

degree -0.185 0.293 -0.143 0.347 0.424 0.185
courses-taken 0.271 -0.218 0.454 -0.282 0.262 -0.101

imperative 0.167 0.208 0.298 0.177 -0.061 0.237
c 0.303 0.376 0.351 0.392 0.029 0.254

functional 0.121 -0.037 -0.106 -0.012 0.079 -0.247
haskell 0.340 0.014 0.436 -0.132 0.188 -0.289

oo 0.189 0.261 0.407 0.305 -0.053 0.123
java -0.011 0.242 0.198 0.306 0.078 0.165

logical -0.084 -0.113 0.056 -0.045 0.037 -0.300
prolog 0.118 0.080 0.335 -0.143 0.032 -0.050

other-l -0.164 0.309 0.291 0.276 0.020 0.299
prog-years -0.016 0.360 0.179 0.329 0.160 0.504
work-years -0.017 0.433 0.276 0.379 0.107 0.372
large-proj 0.434 0.376 0.425 0.335 0.067 0.379
proj-size 0.098 0.425 0.322 0.336 0.149 0.319
students -0.012 0.456 0.205 0.374 -0.231 0.263

professionals -0.123 0.416 0.237 0.271 0.027 0.317

Gray cells denote significant correlations (p < .05).

D.2 FACTOR ANALYSIS

We are aligned with Siegmund et al. [41] goals of selecting questions to conveniently and
reliably measure programming experience in different experimental settings. To cope with
such a long run goal, we also used factor analysis [91] to extract a model of programming
experience from the data. The goal is to reduce a number of observed variables to a small
number of underlying latent variables or factors (i.e., variables that cannot be observed
directly). The factors group the variables that better describe the data under analysis
relying in their inter-correlations.

Table D.3 shows the results of our exploratory factor analysis. The numbers in the
table denote correlations or factor loadings of the variables in our questionnaire with
identified factors. By convention, factor loadings that have an absolute value of smaller
than .32 are omitted, because they are too small to be relevant [92].

The first factor of our analysis summarizes the variables oo, java, other-l, large-proj,
proj-size, and students. This means that these variables have a high correlation

160 MODELING PROGRAMMING EXPERIENCE

amongst each other and can be described by this factor. This seems to make sense since
Java and its corresponding paradigm are the similar and often taught at undergraduate
courses. Besides, we conjecture that large-proj and proj-size also loads on this factor,
because they explain the projects the graduate students eventually had to work with.

Additionally, since all participants are graduate students, it is normal they have to
work with a number of different languages (other-l) other than those they learned
at the university. In fact, those participants who have any professional experience with
programming estimate their experience higher compared to their class mates(students).
Except from the variables c and imperative – which were grouped by the third factor,
more on this later –, this factor looks like a merge of the two most representative factors
identified by Siegmund et al. [41].

The second factor summarizes the variables work-years and prog-years, which
seems also reasonable since the number of years professional experience are intrinsically re-
lated to the amount of programming experience years. Actually, the variable prog-years
was introduced in the questionnaire to provide means to measure the programming ex-
perience of those participants with no professional experience. This factor seems to cor-
roborate with the fourth factor identified by Siegmund et al. [41].

The third factor summarizes the imperative and c. In fact, the value of the load-
ings of these variables are pretty similar to their loadings in the first factor. Perhaps,
it would be reasonable to disregard this factor in favor of the first one with no or low
representativeness loss.

The fourth factor summarizes the courses-taken, which represents the amount of
courses taken in the university in which the participant had to program. In the Siegmund
et al. [41] model this variable appeared together with the programming years – our second
factor. Indeed these variables are related, the fact were grouped separately here might be
explained by the differences in the size of the sample.

D.2 FACTOR ANALYSIS 161

Table D.3 Factor analysis of each characterization independent variable of the characteriza-
tion.

Variable Factor 1 Factor 2 Factor 3 Factor 4

degree
courses-taken 0.662

imperative 0.598 0.682
c 0.601 0.620

functional
haskell 0.378

oo 0.733 0.427
java 0.676 0.379

logical 0.370
prolog 0.414 0.356

other-l 0.664 0.545 0.380
prog-years 0.540 0.750
work-years 0.560 0.781
large-proj 0.990
proj-size 0.885
students 0.623 0.546

professionals 0.440 0.566

Only 4 factor are shown due p= .032 for hypothesis test of sufficiency. Gray cells denote main factor loadings.

Appendix

E
(in Portuguese)

VICC4 - FOCUS GROUP TRANSCRIPTION

0’00”
[Researcher] O início do focus group, então, está começando às 10:40h.
Eu tenho um conjunto de questões que desenvolvi e a gente vai discutir, mais no nível

de conversa mesmo.
Eu queria ouvir de cada um, queria que vocês pudessem falar razoavelmente alto para

que eu pudesse conseguir gravar razoavelmente bem, aqui.
Aí eu vou querer resposta individual sem ser em ordem pré-estabelecida. Quem quiser,

levanta a mão e fala, sobre a experiência que vocês tiveram com as tarefas – com a análise
do código, tanto com compilação condicional, quanto com FeatureHouse.

Todo mundo entendeu como vai ser o esquema, né? Eu vou fazer uma pergunta,
quem quiser levanta a mão e fala, de preferência, a maioria falando. E sem avaliação, é
exatamente o que você percebeu, o que você sentiu sobre a coisa.

A primeira pergunta: eu gostaria que vocês dissessem, por exemplo, qual foi as suas
primeiras impressões com cada um dos paradigmas. Vocês podem falar em ordem não
estabelecida, quem gostaria de começar?

[Focus Group Participant] O paradigma da compilação condicional é interessante
quando você tem muita variação dentro de um arquivo só. Aí você consegue enxergar
de maneira bem clara, onde estão os pontos de variação. Só que quando isso começa a
espalhar, aí já a abordagem do FeatureHouse pareceu interessante, porque você enxerga
direitinho, né, a estrutura do projeto. Só que, a parte ruim é que pra chegar lá tem muitos
cliques. Tem lá “core”, tem “ui”, tem que ir clicando. Então, quando também o projeto
vai ramificando muito, tem que clicar muito, mas em termos de organização visual ele
pareceu bastante interessante.

[Researcher] Entendi.
[Focus Group Participant] E também tem a outra ferramenta que vai mostrando,

por exemplo, tinha “Base”, e tinha onde ele tá implementado...
[Researcher] é o diagrama de colaboração!?

163

164 VICC4 - FOCUS GROUP TRANSCRIPTION

[Focus Group Participant] isso. Ali acho que dá pra você ter uma noção de como
tá implementada aquela feature, no caso. Ajuda também. Agora no outro paradigma,
tem um fator interessante, que você consegue dar um find lá e pesquisar pelas anotações.
Então, você consegue também navegar. Então, no final das contas, se você souber usar
essas duas formas você consegue localizar o nível de espalhamento. Então, basicamente,
foi o que eu fiz, então, eu consegui encontrar. [(tirando algumas coisas, talvez)2’ 50” está
inaudível]

2’ 53”
[Focus Group Participant] o paradigma da compilação condicional, na minha per-

cepção, tem um grande problema, que você deixa o código muito sujo. Ele fica difícil de
você entender o código, devido à quantidade de anotações que você tem. Já em compara-
ção ao outro paradigma, ele fica [inaudível] essencialmente, com a parte funcional mesmo,
e facilita a manutenção da aplicação.

[Focus Group Participant] nesse sentido, talvez, uma ferramenta de visualização
de código, pra você conseguir compreender ali, [inaudível] pra mostrar, seja com cor, seja
com identação, nesse código da compilação condicional, talvez seja interessante. Porque
você olha no inicio do if e [inaudível] você tem que procurar, num tá identado, num tá
nada. Isso acaba também que, mais uma coisa que você tem que procurar no sistema pra
ver se algum outro [inaudível].

[Researcher] Entendi.
4’ 00”
[Focus Group Participant] Agora acho que, nas tarefas que a gente fez, a ferra-

menta também ajudou. Pra mim, que já conhece também o FeatureHouse e não usou
[inaudível] o eclipse também [inaudível]

[Researcher] Entendi.
[Focus Group Participant] Eu nunca usei e realmente eu tive, a segunda ferra-

menta, o segundo projeto, foi muito mais simples pra mim. Extremamente mais simples.
[Researcher] quando você fala que nunca usou, nunca usou o que? O eclipse?
[Focus Group Participant] não, nunca usei o eclipse pra... já usei o eclipse em nível

profissional mesmo. E pra mim a segunda foi muito mais fácil. Porque eu demorei um
pouquinho também pra ir lá no eclipse e buscar os ifdefs, eu também utilizei isso, e pra
mim não foi tão simples. Mas no segundo, como já tem aquela arvorezinha já pra mim
foi trivial entender ali.

[Researcher] Certo. Uma próxima questão, se vocês não tiverem mais nada à adi-
cionar... Durante a execução das tarefas com o paradigma, seja compilação condicional,
seja com o featurehouse... (acho que até alguém já levantou alguns pontos, mas talvez se
a gente pudesse enumerar, assim, seria uma boa) O que que poderia ter auxiliado vocês
a ser mais eficaz? Assim, na atividade. Vamo começar por compilação condicional, o que
teria ajuda você a ser mais eficaz na tua tarefa?

[Focus Group Participant] uma ferramenta de visualização de software pra isso,
ajudaria.

[Researcher] mais alguém queria pontuar alguma coisa?
5’27”
[Focus Group Participant] no meu caso, pra ambos os paradigmas, como eu não

VICC4 - FOCUS GROUP TRANSCRIPTION 165

uso o eclipse, senti dificuldade no sentido dos recursos da ferramenta, pra poder buscar
os arquivos. Saber onde que tá cada controlador. Isso, pra mim, gerou um pouco de
dificuldade.

[Focus Group Participant] até a própria, automatização dessa busca, por meio
também de uma ferramenta seria interessante.

[Researcher] e para FeatureHouse?
[Focus Group Participant] pra mim vale pros dois.
[Researcher] a ferramenta, no caso, de busca, pra os dois.
[Focus Group Participant] no caso, tava falando assim, dentro do eclipse né, eu

fiquei sabendo que existe uma maneira de buscar lá fora, eu também não utilizo o eclipse,
uso mais o netbeans.

[Focus Group Participant] eu falei aqui né? No começo.
[Focus Group Participant] não, eles tavam falando... você pode tá fazendo, tal e

tal... aí o que que acontece? Uma maneira de você localizar é diferente de uma ferramenta
pra outra. Aí você também fica acostumado a usar uma só, direto. Você termina tendo
dificuldade. Uma coisa que também achei interessante no trabalho foi exatamente isso,
né? Mas assim, você realmente colocou a informação à disposição no início, mas dentro do
questionário em si, não tem nenhum campo pra identificar o conhecimento da ferramenta
ou da linguagem [inaudível]. Isso também seria interessante, até pra conseguir medir
o grau de conhecimento de cada um que tá participando do estudo, né? [inaudível] já
conhece a ferramenta...

7’ 17”
[Researcher] Assim, qual o sentimento de vocês na hora da tarefa, por exemplo,

alguma das abordagens, a compilação conditional, a FeatureHouse, chegou a dizer: “Pô
isso aqui tá me deixando muito cansado!” ou “Muita fadiga” ou “Eu prefiro esse a B,
prefiro B a C”. Vocês querem comentar um pouco sobre isso?

[Focus Group Participant] eu acho que pra mim, é unânime que a segunda abor-
dagem é melhor que a [inaudível]. Eu acho que, eu pensando em manutenção daquele
código ali, com aqueles ifdefs, pra mim seria uma dor de cabeça.

[Researcher] um sistema grande né?
[Focus Group Participant] um projeto grande... [inaudível]. Tanto nesse projeto

em si acho que ia ser ruim [inaudível].
[Focus Group Participant] o código com ifdef fica muito sujo [inaudível]. Em con-

trapartida, se você vai usar o “Ctrl+F” lá pra buscar as coisas, ele simplifica. Você já vai
direto ao ponto. Dá um find lá, ele lista todas visões que tem aquela anotação que você
está esperando. Agora, a outra abordagem, quando você identifica pelo diagrama, aí você
já vai no porto certo. Aí é mais rápido. Então, você precisa saber usar o recurso. Eu acho
que é um equilíbrio, né?

[Focus Group Participant] outro ponto muito interessante pra mim da ferramenta,
da segunda, é que você consegue entender se o modelo você tá gerando uma configuração
ali, ele tá colocando como válida, aonde não é o que você queria. Por que você tem o
visual, e você olha, “pô selecionei esta feature aqui e aqui tá liberado?” Então, se tem
uma restrição que não tá funcionando. Você consegue ver muito mais fácil do com um
ifdef. Você teria que gerar o produto, ver que deu erro. Coisas nesse sentido. Acho que

166 VICC4 - FOCUS GROUP TRANSCRIPTION

isso daí é algo que melhora muito.
9’10”
[Focus Group Participant] ajuda. Ajuda na hora da configuração da linha de

produto né!? Você consegue identificar as dependências de forma muito mais fácil do que
com ifdef.

[Researcher] Acho que a gente já pontuou aqui bastante sobre ferramentas. Na hora
que vocês estão tentando entender algum código que vocês, que é a primeira vez que vocês
estão lhe dando com aquele código, que não é familiar pra vocês. Qual é a ferramenta ou
estratégia que vocês utilizam e se vocês tiveram que mudar essa estratégia que vocês usam
normalmente, pra utilizar, por exemplo, FeatureHouse, que é uma coisa mais nova pra
vocês. Vocês tiveram que mudar essa estratégia ou vocês utilizaram a mesma estratégia
que utilizam normalmente?

[Focus Group Participant] tem uma coisa. Esse código que você fez, ele tem al-
gumas semelhanças com o que você aplicou no período passado. Então, acho que pra
alguns participantes aqui, esse código não é totalmente novo, não. No outro experimento
tinha algumas pessoas aqui, que já viram esse código antes. Porque parece que é o mesmo
software, né? acho que já é um segundo contato com esse código-fonte.

tá. Mas e questão de estratégia? Assim...
[Focus Group Participant] eu acabei utilizando a mesma que utilizei no outro né...

[inaudível]. Você fazer a busca lá. E a partir dessa busca fazer o rastreamento. Usei nas
duas... [inaudível].

[Focus Group Participant] eu, depois que eu descobri que a segunda ferramenta
tinha aquela arvorezinha, eu preferi criar um... desselecionar tudo... deselecionei todas
as features que não eram obrigatórias, fui lá e verifiquei, selecionei as features que eu
não queria, vi que gerava automaticamente, solucionei infinitamente mais rápido o meu
problema.

[Focus Group Participant] eu, eu já mexi com alguma coisa de programação de
jogos, então pra mim já foi automático procurar aquele init lá. Então, onde estivesse
aquele init lá, tivesse uma variável inicializando a get, então pra mim aquele seria o
lugar. Então eu não olhei feature, essas coisas assim, onde estava aquela declaração, eu
fui atrás dela.

[Focus Group Participant] primeiro, eu também usei essa estratégia. [inaudível].
12’20”
[Researcher] Certo. A pior coisa que achei em compilação condicional foi?
[Focus Group Participant] o excesso de anotação. Eu acho o processo de anotação

muito ineficaz.
[Researcher] ineficaz?
[Focus Group Participant] pra manutenção.
[Focus Group Participant] não é que ele seja ineficaz, porque ele funciona à muito

tempo. Tem em muito lugar. Agora assim...
[Focus Group Participant] é isso. Veja em C né...o próprio kernel do Linux...
[Focus Group Participant] o problema é você dar manutenção nisso. Eu acho que

é um caos, assim.
[Researcher] então eficaz, talvez ele seja, eficiente, talvez eficiente, não.

VICC4 - FOCUS GROUP TRANSCRIPTION 167

[particpantes] [inaudível]. Variável.
[Focus Group Participant] mas aí vocês tão falando do nível de espalhamento do

concern, por exemplo, a feature A, o código que implementa ela tá espalhado ao longo
de N partes no meu código.

[Focus Group Participant] é. aí se eu tiver que corrigir uma coisinha nisso daí, vou
ter que ir em 300 classes. Talvez na abordagem... [inaudível].

[Focus Group Participant] mas assim... não é nem que você esteja errado. É que
depende de como você modularizou o software na hora de construir e não o ifdef em si.

[Focus Group Participant] exatamente isso.
[Focus Group Participant] porque ele é utilizado aí, em vários artigo aí, o linux, o

kernel, principalmente, como uma linha de produto enorme. Então, assim. Eu acho que
talvez é a forma como você projetou aquela arquitetura pra ela ter o mínimo de difusão,
de espalhamento lá do concern. Acho que é detalhe.

[Focus Group Participant] isso que gera um esforço a mais né?
[Focus Group Participant] se tiver coeso o código, eu acho que talvez não dê tanta

complexidade. Porém você tem um código mais (não sei se a palavra correta é “sujo”) por
conta de anotações, que você tem que... agora também as ferramentas, algumas IDE’s se
você usar a pesquisa, ele lista, tipo de forma a você identificar toda aquela anotação. Se
você dá o find por ela, ela vai listar todas ali, bem como os arquivos que elas estão. Se
você está desenvolvendo em Java e você usa aquela prática de cada arquivo do Java só
ter apenas uma classe, facilita a vida porque você vai ter todas ali e você sabe onde vai
mecher. Agora se você não tem isso, você tem... como já vi alguns programas, que você
abre um arquivo .java e tem 4, 5 classes dentro.

[Focus Group Participant] o que acontece ao utilizar a mesma tag, o mesmo nome
lá... no comentário? Dá algum erro?

[Researcher] não, ali é só se você tiver a palavra reservada ifdef.
[Focus Group Participant] imagine que... a gente tá dando manutenção no código

e o cara fala “olha... eu achei que essa feature aqui não é necessária.” Você começa escrever
alguns comentários lá utilizando... acaba tendo uma quantidade maior de informação, não
sei... pode acabar confundindo um pouco. Até por esse processo de busca. Acho que é
algo muito primário, assim... muito cru. Não tem como você fazer algo...

[Researcher] No caso do Java é porque não tem suporte a isso, né!? Isso foi meio
adaptado. Mas pro C já tem a palavra reservada, já tem sintaxe na mesma natureza do
código.

15’ 53”
[Focus Group Participant] tem outra coisa que eu vi, talvez como o FeatureHouse

talvez não tem como gerenciar é...
[Researcher] ...agora é compilação condicional, se guarda aí...
[Focus Group Participant] é da parte que... como o Glaydson tava falando, quando

você tá trabalhando essa ideia de condicional, a gente não pode dizer que ela não tem o
seu lugar, por que ela tem. Várias, a gente viu isso bastante. O problema mesmo é como a
gente vai construir. Se você não tomar cuidado, você pode criar uma linha de replicações
de código, que aí se torna inviável de qualquer maneira. Que o código... [inaudível]. você
tem que tá fazendo as marcações. isso é um fato. E o código fica até, de certa forma, entre

168 VICC4 - FOCUS GROUP TRANSCRIPTION

aspas “sujo”, né? que você tem que fazer as marcações. Mas no final das contas, mesmo
no Java, como você disse, que é adaptado, não é uma coisa nativa ali. Mas o código não
fica tão obscuro, pouco fácil de você entender o que ele tava sendo feito. Nesse caso! De
repente, a gente pode tropeçar com um código que seja extremamente confuso. Ele falou,
tem cara que coloca 4, 5 classes [inaudível] vai complicar bastante.

[Focus Group Participant] é... mas essa [inaudível] da compilação condicional, ela
não te obriga a seguir features. Igual, por exemplo...

[Focus Group Participant] ela te obriga ou não te obriga?
[Focus Group Participant] compilação condicional não te obriga. Assim, como por

exemplo, você pode... existem livros que falam que você pode programar orientado a
objeto em uma linguagem estruturada, mas só que a própria linguagem não te força isso,
isso não meio que natural. Acho que, o que fica meio que faltando é... o programador tem
que tá ciente disso toda vez que ele tá implementando. Então, o gerenciamento é dele.
Não tem nada da ferramenta que dá o suporte natural pra ele né!?

[Focus Group Participant] ou obrigue ele a seguir isso...
[Focus Group Participant] isso!
[Focus Group Participant] mas isso dá uma ideia, assim, ainda de uma coisa

muito... uma adaptação muito inicial. É mais ou menos, como você programar Web, em
Java, em Servlet. É muito baixo nível ali. Você gerar a sua html direto. É como se...
pra mim a analogia correta é essa assim. Pra mim é como programar em Java utilizando
servlet. É algo que funciona? Funciona. Se eu quiser fazer um sistema, vai funcionar. Mas,
um sistema grande é inviável... trabalhar com servlet. No ifdef você tem técnicas de fazer
como sua modelagem se adapte da melhor maneira a isso. Assim como tem gente que faz
adaptação e trabalha com servlet.

[Researcher] e mudando agora para o FeatureHouse. A pior coisa que eu achei em
FeatureHouse foi...

19’08”
[Focus Group Participant] acho que a replicação das classes, quando você tem

diversas classes com o mesmo nome, acho que isso pode pode dificultar um pouco. [in-
audível].

[Focus Group Participant] essa aplicativo era meio que um jogo, alguma coisa
assim, né? aplicação de mídia.

[Researcher] uma aplicação de gerenciamento de mídia.
[Focus Group Participant] então, eu queria realmente ver, essa aplicação não tem

problema né... a pessoa não tá trabalhando com gerenciamento de memória. Eu imagino
se a pessoa tivesse que alocar e desalocar memória, com essas features todas espalhadas,
ia ser um... [pedaço de inferno]. A pessoa ver onde ela alocou tal espaço, onde liberou.
Nesse contexto, acho que seria muito complicado você fazer esse “rastreio” de memória.

[Focus Group Participant] a melhor coisa que eu vi em compilação condicional
foi...

20’01”
[Focus Group Participant] visualização da variabilidade, da restrição, de várias

configurações ali, pra mim
[Researcher] em compilação condicional...

VICC4 - FOCUS GROUP TRANSCRIPTION 169

[Focus Group Participant] ah! Eu acho que é mais simples de você [inaudível].
[Focus Group Participant] a pergunta seria mais assim... você tava falando sobre

a replicação de features, ela é realmente necessária naquele modelo?
[Researcher] a gente tá falando de compilação condicional...
[Focus Group Participant] não, é isso. Porque assim... na compilação condicional,

a anotação, ela já faz essa parte do trabalho, entendeu? Você consegue, lendo o código,
você já vai entendendo ele todo. É diferente da outra, que é necessário compreender um
pouquinho, o processo, pra você entender o que vai acontecer. A condicional não, ela tá
lá dentro, [inaudível] você já consegue com uma certa experiência entender.

[Researcher] tá. Você tá querendo dizer que, à medida que você vai programando
você já está vendo que a variabilidade vai acontecer ali. Enquanto que no outro lado,
você tem que ver uma visão maior, uma big picture do projeto, pra conseguir ver a
variabilidade acontecendo.

Interessante! A gente já falou do melhor ponto de compilação condicional e sobre o
que foi a melhor coisa de FeatureHouse.

21’47”
[Focus Group Participant] visualizar as configurações válidas.
[Focus Group Participant] eu achei a legibilidade do código.
[Researcher] a legibilidade do código?
[Focus Group Participant] é... é mais limpo.
[Focus Group Participant] acho que como o rapaz tá dizendo, a legibilidade do

código... é mais limpa.
[Focus Group Participant] mais direto ao ponto.
[Focus Group Participant] é. Preciso.
[Focus Group Participant] porque é a questão do tracking dos artefatos, né? Você

tem o feature model e você tem o código e eles são correspondentes. Agora na compilação
condicional não é direto, assim.

[Focus Group Participant] como já foi citado, nesse caso, a manutenção é direta.
Se eu tenho que dar manutenção numa feature “X” lá, eu já vou direto nela. Mesmo que
existam outros pontos que usem ela, mas eu só quero aquela feature li de fato, que eu vou
dar manutenção. A gente tem ali, eu num preciso procurar, como se fosse na condicional,
vendo onde ela tá sendo implementada num conjunto de classes. Tá lá, é justo o que eu
quero, acabou. Ele é mais simples a manutenção.

[Researcher] quando eu tava usando condicional, a primeira coisa que eu fiz foi?
Qual foi a primeira coisa que vocês fizeram? 23’06”

[Focus Group Participant] Ctrl+F (outros, concordam!)
[Researcher] buscar, local, global?
[Focus Group Participant] pesquisa no projeto, por todos os arquivos.
[Researcher] e FeatureHouse?
[Focus Group Participant] aí, no caso da FeatureHouse, eu fui no diagrama de

colaboração mesmo, pra ver onde a feature estava sendo utilizada e procurei depois nas
partes lá.

[Focus Group Participant] eu olhei o feature model pra saber se tinha alguma
restrição àquela feature, depois fui no diagrama de colaboração, e aí dei um find, porque

170 VICC4 - FOCUS GROUP TRANSCRIPTION

tinha me equivocado com a feature que eu tava procurando ou a linha lá do init. Foi esses
três caminhos aí: o diagrama, o feature model e o find só pra ver se eu tava no lugar
certo.

[Researcher] o colega de vocês falou aqui sobre manutenção. Vocês queriam elaborar
mais sobre a dificuldade de manutenção entre uma abordagem e outra.

[Focus Group Participant] olha! Ao meu ver é importante, porque quando você
pensa assim numa linha de produtos é claro que com o passar do tempo essa equipe muda.
Então, a facilidade de manutenção dos paradigmas, pra mim, no meu ver, no dia-a-dia
é importante. Tanto que eu citei o seguinte: se eu tiver que dar manutenção na feature
de Photo, do lado, lá no FeatureIDE, vejo onde tá o pacote dela e já vou direto naquela
feature e já dou manutenção. Quando a gente vai pro paradigma que usa anotação, eu
tenho que dar um find pra saber, até porque eu não sei qual é o nível de espalhamento
lá da feature nas minhas classes. Eu tenho que dar um find, saber onde é que tá todo
implementado aquele concern, depois que eu entender, eu parto pra manutenção. Usando
uma abordagem como a do FeatureIDE, eu já sei onde que tá aquela feature, eu vou
direto nela e faço a manutenção que eu preciso. Então isso é mais direto ao ponto.

[Researcher] Você acha que isso, ao decorrer do tempo, isso vai trazer ganhos no
desenvolvimento, no caso, essa rastreabilidade maior.

[Focus Group Participant] isso. Você já vai direto a linha da manutenção. Se você
precisar fazer evolução naquela feature, você já vai de forma direcionada, você não precisa
tá olhando o, a composição do concern inteiro, você só vai ali naquele pacote.

[Focus Group Participant] É a necessidade maior é a rastreabilidade.
[Focus Group Participant] porque uma coisa que me preocupa é o quanto é difun-

dido este concern no seu código. Já que...
[Researcher] por difundido você quer dizer espalhado?
[Focus Group Participant] isso. Quanto mais... maior o espalhamento, maior é

possibilidade de erro naquele lugar, o índice de erros naquele lugar. Essa é a minha visão.
Eu vou direto naquele pacote, faço a correção e é mais simples. E isso, o nível de impacto
é isolado. Eu só mexi ali. Qualquer coisa é mais fácil eu saber, se a minha correção inseriu
erro, do que a outras correções que foram feitas.

26’ 24”
[Focus Group Participant] fora que ali também dá pra você ter a ideia de que

você mexendo aqui, aonde mais... pode se tornar um problema. Se eu mexer aqui, pode
acontecer um problema em tal local. No outro caso, onde você faz anotação, até isso você
tem que ter anotado. A essa “Photo” aqui vai estar interagindo com tal feature. Então,
você pra mexer aqui você vai ter sempre que estar prestando atenção se não vai gerar
uma falha. Lá tem coisas que você não vai poder poder mexer de jeito nenhum. E nessa
abordagem, você já consegue enxergar isso melhor. Ifdef já não, se você tem que ter o
hábito de registrar tudo.

[Focus Group Participant] por exemplo, eu já participei de alguns projetos, que a
gente tinha uma matriz de... uma planilha no Excel, que era a matriz de rastreabilidade.
Se eu mexesse em tal funcionalidade, você tinha que olhar A, B, e C. Na marra, entendeu!?
[inaudível] O cara dizia que não mexeu numa classe, quando vai olhar, você mexeu... você
mexeu numa classe “X”, mas que essa classe tinha várias funcionalidades que um grupo

VICC4 - FOCUS GROUP TRANSCRIPTION 171

de módulos utilizava. Na marra! Era a solução que nós encontramos pra contornar o
problema, mas da forma que o FeatureIDE mostra o paradigma de [inaudível] acho muito
mais

[Focus Group Participant] natural, né!?
[Focus Group Participant] natural.
27,’40”
[Researcher] aí você falou uma coisa interessante, que chama de “propagação de

mudanças”. Você chegou a dizer que no FeatureIDE isso talvez não ocorra, talvez isso não
exista. Foi isso mesmo que você quis dizer? Eu entendi bem ou entendi mal?

[Focus Group Participant] era isso que eu tava falando. A minha visão inicial dela
é que talvez... então, teria que ter um pouquinho mais de maturidade para puder afirmar
se ocorre ou não. Mas pelo que a gente foi apresentado, não ocorre tanto quanto com a...
[inaudível]

[Researcher] é... talvez... não sei se vocês perceberam, mas talvez a precedência das
coisas seja um problema. É tanto que tem uma pergunta lá na tarefa. Por exemplo, se
você está fazendo uma implementação e você resolve refinar aquele método muitas vezes,
a ordem que você coloca a classe no código vai mudar totalmente a ordem que você tá
programando. Isso talvez, a propagação não fique tão clara quanto... vocês perceberam
isso ou não foi tão claro ao primeiro olhar? Vocês não chegaram a imaginar isso?

[Focus Group Participant] eu particularmente, não.
[Focus Group Participant] eu enxerguei assim sabe... tem alguns recursos ali que

são compartilhados que se você não pensar muito bem na hora de programar usando a
FeatureIDE, você pode ter alguns problemas. Por exemplo, você tem uma tela que você
desenha as coisas, eu enxerguei isso, as vezes você pode ter desenhado alguma coisa e
na outra feature, em outra parte da implementação você desenhou também, aí você dá
um efeito que não quer. E eu acho que, talvez pra você resolver isso não fique tão direto
assim. Você vai ter que pensar mais, aonde você pode ter criado algum desenho. Porque
um recurso único, né!? que é a tela vai ser sempre a mesma. Não importa quantas features
você tenha. Então, a pessoa, ela ganha a naturalidade na hora de mexer com as features,
mas tem alguns recursos que são únicos, então tem que saber gerenciar isso.

[Focus Group Participant] mas isso você tá falando da metodologia de trabalho
na manutenção?

[Focus Group Participant] Não, não. Eu tô falando assim... que você pode gerar
resultados indesejados por, às vezes pensar de uma maneira tão espalhada, tão isolada. O
que eu estou falando é que por exemplo, numa aplicação multimídia você tem uma tela.
Aí você especializa várias vezes e aí depois coloca várias features, pode ser que tenha, sei
lá... feature interaction, né!? e a pessoa tem que fazer as coisas mais espalhadas e isso pode
ser mais difícil do que, por exemplo, se tivesse em compilação condicional você veria tudo
no mesma tela, no mesmo código, é nessa tela, é nessa hora e esse aqui eu não desenho.
Então, você vai ter 20, 30 features trabalhando...20 trechos de código trabalhando com a
mesma tela...

[Researcher] acho que talvez o exemplo que ele dá... por exemplo, se você tem
a especificação de uma feature por exemplo... a tela aqui vai ter que fazer, tem esse
comportamento... aí na outra feture você diz ah! vai fazer o contrário... e aí na outra

172 VICC4 - FOCUS GROUP TRANSCRIPTION

feature você diz ah! num vai fazer nenhum dos dois. Então, se você bota isso numa
determinada ordem, isso vai mudar determinada o comportamento da aplicação. Acho
que é isso que tu tá querendo dizer.

[Focus Group Participant] é. Esse exemplo também cabe.
[Focus Group Participant] ...e o problema é você não enxergar isso.
[Focus Group Participant] é que tenho mais uma pergunta, fiquei na dúvida, é o

seguinte. Quando ele geraria as classes, ele gera um pacote com o nome das features e o
conjunto de classes dele. Se eu vou lá e especializo, eu estou especializando aquela feature
e não as anteriores mesmo que eu tenha dependência.

[Researcher] na hora que você vai gerar o produto, você vai ter que selecionar, colocar
a ordem que você vai juntar aquelas coisas. É isso que eu estou querendo dizer. Talvez a
precedência delas... não sei se ficou...

[Focus Group Participant] você não conseguiu visualizar porque eu tava pensando
no nível de features...

[Researcher] é exatamente isso que ele tava dizendo. Não fica tão fácil você entender
e você perceber isso.

[Focus Group Participant] agora deixa eu fazer aqui uma pergunta. Que na aula
passada, a gente tratou um pouco disso aqui na sala, com o colega também... é... à respeito
do seguinte. Vamos pensar aqui no sistema de instalação da Microsoft, que você tem um
dvd só e você faz a seleção do produto ali na hora da instalação. Você tem do starter ao
ultimate, passando por várias etapas. Aí dentro, pra cada etapa daquelas, com certeza
são separados módulos que vão ser instalados e disponibilizados no equipamento. Neste
caso, nesse caso, esse modelo de implementação porque uma vez que você consegue pegar
dentro da abordagem o que é que é importante, o que é que vai, e criar pacotes, grupos,
vamos supor grupos ao invés de fazer essa derivação a caso. Não ajudaria a evitar que isso
ocorresse? aí vai cair no que a gente tá falando... vai ficar bem fechadinho. Não vai ter
essa coisa de mover demais, de misturar demais? Não seria algo que conseguisse ficar mais
controlado? Porque se assim for, a abordagem vai ficar praticamente perfeita, né? vai ser
o verdadeiro sonho de consumo de programador. Isso pode [inaudível] criar manutenção
no futuro. Você vai direto no ponto. Mas isso ai é uma suposição, tá!? Eu não tenho essa
visão ainda, da abordagem, pra poder dizer se é ou se não é, mas se fosse, seria perfeito.
Porque a dependência você já deixa tudo definido na seleção. Ou seja, você selecionou
isso aqui, tudo que vem dali já tá pre-estabelecido, já tá selecionado, já tá...

[Researcher] isso aí já está lá definido no feature model, nas restrições do feature
model já é automaticamente definido. É isso. Alguém quer dar mais algum comentário?
Quem ficou aí mais tímido, as meninas ali... que ficaram mais...

Então tá bom. Obrigado aí pela colaboração de vocês!

This volume has been typeset in LATEXwith the UFBAThesis class (<www.dcc.ufba.br/~flach/
ufbathesis>). For details about this document, click here.

www.dcc.ufba.br/~flach/ufbathesis
www.dcc.ufba.br/~flach/ufbathesis

	I Overview
	Chapter 1—Introduction
	Motivation
	Objectives
	Research Method
	Out of Scope
	Contributions
	Thesis Outline

	II Background
	Chapter 2—Fundamental Concepts
	Feature-Oriented Software Development (FOSD)
	Annotation-based Approaches
	Composition-based Approaches
	Hybrid Approaches

	Program Comprehension
	Chapter Summary

	Chapter 3—Literature Review
	Method
	Selection Process
	Inclusion/Exclusion Criteria

	Data Collection
	Results
	Literature Reviews
	Understanding Program Comprehension
	Reports on Experimental Studies

	Related Work
	Chapter Summary

	III JavaScript Feature-Oriented Software Development
	Chapter 4—JavaScript Hybrid Composition (RiPLE-HC)
	Motivation
	Reuse in javascript-based Systems
	Concept
	Implementation
	Architecture
	FeatureJS: The Core Bundle
	Coarse-grained Variability
	Fine-grained Variability
	Scattering Support

	Inherited Characteristics
	Chapter Summary

	Chapter 5—RiPLE-HC Evaluations
	Goal-Questions-Metrics (GQM)
	Industrial Case Study
	Domain
	Data Collected
	RQ1: Does RiPLE-HC handles variability in JavaScript software project in industrial context?

	RiPLE-HC with Open Source Systems
	Granularity
	Scalability
	RQ2: Does RiPLE-HC scales to systems of different domains and sizes?

	Strengths and Weaknesses
	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity
	Conclusion Validity

	Chapter Summary

	IV Variability Implementation Comprehension
	Chapter 6—A Family of Experiments on Program Comprehension
	Family Overview
	Overall Planning
	Research Questions
	Target Systems
	JavaScript-based Systems.
	Java-based Systems.

	Tasks and Measures
	Support Material
	Programming Environment.
	Training.

	Variations in the Experimental Setup
	Chapter Summary

	Chapter 7—VICC1: On the Impact on Concept Location
	Planning
	Metrics
	Subjects
	Tasks
	Support Material
	Experiment Design and Variables

	Preparation and Execution
	Results and Discussion
	Execution Time
	Correctness

	Participants' Feedback
	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity
	Conclusion Validity

	Chapter Summary

	Chapter 8—VICC2 and VICC3: On the Influence on Bug-Fixing
	Study Settings
	Research Questions, Hypotheses, and Variables
	Planning
	Design.
	Target Systems.
	Tasks.
	Support Material.

	Preparation and Execution
	Training.
	Participants Characterization.
	Example Task.

	Results RQ1
	H1 It is easier to understand FeatureHouse code rather than Conditional Compilation code.
	H2 Developers addressing change requests using FeatureHouse provide more correct answers compared to developers using Conditional Compilation.
	H3 Developers addressing change requests with FeatureHouse code can finish their tasks faster than those with Conditional Compilation code.

	Results RQ2:
	Confounding Parameters Classification
	Individual knowledge parameters.
	Individual circumstances parameters.
	Study-specific parameters.

	Participants' Perception of Confounding Parameters

	Discussion
	On the Participants' Motivation, Tasks' Difficulty, and Results
	On the Answers to the Research Questions
	Implications and Lessons Learned

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity
	Conclusion Validity

	Chapter Summary

	Chapter 9—VICC4: On the Developers Perception of Demanded Effort
	Study Settings
	Research Questions
	Planning
	Design.
	Tasks.

	Execution
	Subjects Characterization.
	Support Material.
	Pilot.

	Data Collection
	Individual Feedback Collection
	Focus Group Data Collection

	Individual Feedback Results
	Influence Drivers
	Tasks' Difficulty Perception

	Focus Group Questions Answers
	Group 1: Comprehension Strategies
	Group 2: Hindering Factors
	Group 3: Facilitators Factors
	Group 4: General Observations

	Research Questions Discussion
	RQa: How do developers approach the variability implementation comprehension?
	RQb: Which aspects hinder variability implementation comprehension?
	RQc: Which aspects ease variability implementation comprehension?
	RQ: Which aspects impact the developers comprehension of variability implementation in the maintenance of feature-oriented software?

	Threats to Validity
	Chapter Summary

	V Conclusions
	Chapter 10—Conclusions and Future Work
	Thesis Contributions
	Limitations
	Future Work

	Appendix A—Literature Venues
	DBLP Venues
	Siegmund and Schumann Survey Venues

	Appendix B—Characterization Questionnaire
	Appendix C—VICC1 Feedback Form
	Appendix D—Modeling Programming Experience
	Correlations Analysis
	Factor Analysis

	Appendix E—VICC4 - Focus Group Transcription

