
Universidade Federal da Bahia
Instituto de Matemática

Programa de Pós-Graduação em Ciência da Computação

EFFICIENT SHADOW ANTI-ALIASING
TECHNIQUES USING SILHOUETTE

REVECTORIZATION

Márcio Cerqueira de Farias Macedo

TESE DE DOUTORADO

Salvador
28 de Maio de 2018

MÁRCIO CERQUEIRA DE FARIAS MACEDO

EFFICIENT SHADOW ANTI-ALIASING TECHNIQUES USING
SILHOUETTE REVECTORIZATION

Esta Tese de Doutorado foi apresen-
tada ao Programa de Pós-Graduação
em Ciência da Computação da Uni-
versidade Federal da Bahia, como
requisito parcial para obtenção do
grau de Doutor em Ciência da Com-
putação.

Orientador: Prof. Dr. Antônio Lopes Apolinário Júnior

Salvador
28 de Maio de 2018

TERMO DE APROVAÇÃO

MÁRCIO CERQUEIRA DE FARIAS MACEDO

EFFICIENT SHADOW ANTI-ALIASING
TECHNIQUES USING SILHOUETTE

REVECTORIZATION

Esta Tese de Doutorado foi julgada ade-
quada à obtenção do t́ıtulo de Doutor em
Ciência da Computação e aprovada em sua
forma final pelo Programa de Pós-Graduação
em Ciência da Computação da Universidade
Federal da Bahia.

Salvador, 28 de Maio de 2018

Prof. Dr. Antônio Lopes Apolinário Júnior
Universidade Federal da Bahia

Prof. Dr. Karl Philips Apaza Aguero
Universidade Federal da Bahia

Prof. Dr. Vinicius Moreira Mello
Universidade Federal da Bahia

Prof. Dr. Esteban Walter Gonzalez Clua
Universidade Federal Fluminense

Prof. Dr. Ricardo Guerra Marroquim
Universidade Federal do Rio de Janeiro

ACKNOWLEDGEMENTS

Here, I would like to express my gratitude to everyone who has directly supported me
during my Ph.D. studies.

First, I would like to thank my advisor Prof. Dr. Antônio Lopes Apolinário Júnior
for his enthusiasm, guidance and patience throughout my time at the Federal University
of Bahia, supporting my ideas and providing insightful suggestions that greatly helped
me in these last years.

Next, I owe a special thanks to Prof. Dr. Karl Apaza Agüero for being a reviewer of
some papers related to this project, sharing his opinions with respect to the work being
developed. Also, I wish to express my gratitude to my former advisor and also good friend
Prof. Dr. Antonio Carlos dos Santos Souza, for introducing me to the field of Computer
Graphics and initiating my passion in all the aspects related to real-time rendering.

I am grateful to all my colleagues from the Computer Graphics Laboratory at the
Federal University of Bahia and the Labrasoft at the Federal Institute of Bahia for their
help and discussion. Special thanks go to Rafaela Souza Alcantara, always ready to
exchange ideas about my work, and Almir Vinicius Teixeira, who helped me to implement
a shadow algorithm in a well-known game engine.

I am thankful to Vladimir Bondarev for helping me to understand the theoretical
principles of the shadow silhouette revectorization in the beginning of my Ph.D. work.

With respect to the financial support, I would like to thank Coordenação de Aper-
feiçoamento de Pessoal do Nı́vel Superior (CAPES) for the scholarship program. Fur-
thermore, I would like to thank the NVIDIA Corporation, who provided the hardware
used in the experimental setup through the GPU Education Center Program.

Finally, I would like to dedicate this work to my friends and my family. In special,
I would like to thank my mother Vilma for the good advices that help me to keep the
focus to achieve my goals. Next, I would like to thank my grandmother Lucidalva and
my father Edson for always estimulating me to study. I would like to thank my brother
Danilo, for sharing the fun times with me during these last years. Last, but not least, I
would like to thank my girlfriend Verônica, for her love, support and patience with me
and my long hours of study and dedication. Looking at me with her beautiful smile, she
was always ready to share her optimistic view of the life with me, mainly when I got
frustrated or confused about my work.

Thank you very much!

v

RESUMO

A renderização em tempo real de sombras de alta qualidade é um problema desafiador na
área de computação gráfica. A técnica de mapeamento de sombras é a mais adotada para
resolver tal problema, porém ela introduz artefatos de serrilhamento ao longo da silhueta
das sombras e não é capaz de simular o efeito de penumbra. As técnicas capazes de
simular penumbra são computacionalmente muito custosas, provendo desempenho muito
mais lento do que o necessário para o tempo real. Nesta tese, é apresentada a técnica de
mapeamento de sombras baseada em revetorização, uma técnica que leva em consideração
a resolução do ponto de vista da câmera e a forma da silhueta da sombra para prover anti-
serrilhamento com um baixo custo adicional de processamento. Levando em consideração
a melhoria na qualidade visual obtida com a técnica de revetorização de sombras, a função
de visibilidade baseada em revetorização é estendida para a proposição de um conjunto
de técnicas que proveem anti-serrilhamento de alta qualidade para sombras com ou sem
penumbra. A transformada de distância Euclidiana também é integrada com a função de
visibilidade baseada em revetorização para prover escalabilidade e desempenho em tempo
real para a simulação de penumbras. Os resultados, avaliados em termos de qualidade
visual e tempo de renderização, mostram que as técnicas propostas produzem menos
artefatos visuais do que os trabalhos relacionados, enquanto mantém o desempenho em
tempo real, principalmente para o cálculo de sombras sem penumbra.

Palavras-chave: Renderização, Tempo Real, Anti-Serrilhamento, Sombras, Revetor-
ização, Transformada de Distância.

vii

ABSTRACT

Real-time rendering of high-quality shadows is a challenging problem in computer graph-
ics. Shadow mapping is widely adopted for real-time shadow rendering, but introduces
aliasing artifacts along the shadow silhouette and is not able to simulate the penumbra
effect. Techniques that simulate penumbra are computationally expensive, providing per-
formance far from real time. In this thesis, we present the revectorization-based shadow
mapping, a technique that takes advantage of the camera-view resolution and the shadow
silhouette shape to suppress shadow aliasing artifacts at little additional cost. Inspired
by the superior visual quality obtained with the shadow silhouette revectorization, we
extend the revectorization-based visibility function to propose a set of techniques that
provide high-quality anti-aliasing for both shadow rendering and penumbra simulation.
We further integrate the Euclidean distance transform into the revectorization-based
visibility function to provide scalability and real-time performance for the penumbra
simulation. The results, evaluated in terms of visual quality and rendering time, show
that the proposed techniques produce less visual artifacts than related work, while keep-
ing the real-time performance, mainly for the shadow rendering without the penumbra
simulation.

Keywords: Rendering, Real Time, Anti-Aliasing, Shadows, Revectorization, Distance
Transform.

ix

CONTENTS

Chapter 1—Introduction 1

1.1 Motivation . 1
1.2 Hypothesis . 6
1.3 Contributions . 6
1.4 Organization . 7

Chapter 2—Background and State-of-the-Art Review 9

2.1 Rendering Equation . 9
2.2 Shadow Rendering . 12
2.3 Hard Shadows . 16

2.3.1 Warping . 16
2.3.2 Partitioning . 17
2.3.3 Silhouette Recovery . 18

2.4 Filtered Hard Shadows . 20
2.5 Visually Plausible Soft Shadows . 22

2.5.1 Percentage-Closer Soft Shadows 22
2.5.2 Back-Projection . 24
2.5.3 Pre-Filtering . 25
2.5.4 Screen-Space Filtering . 26

2.6 Accurate Soft Shadows . 27
2.7 Discussion . 29
2.8 Summary . 30

Chapter 3—Revectorization-Based Shadow Mapping 31

3.1 Revectorization-Based Conservative Shadow Silhouette Recovery 32
3.1.1 Overview . 32
3.1.2 Shadow Silhouette Locatization 33
3.1.3 Shadow Silhouette Traversal . 35
3.1.4 Shadow Silhouette Normalization 37
3.1.5 Hard Shadow Anti-Aliasing Visibility Function 38

3.2 Revectorization-Based Non-Conservative Shadow Silhouette Recovery . . 39
3.2.1 Overview . 40
3.2.2 Shadow Silhouette Locatization 40
3.2.3 Shadow Silhouette Traversal . 41
3.2.4 Shadow Silhouette Normalization 42

xi

xii CONTENTS

3.2.5 Hard Shadow Anti-Aliasing Visibility Function 43
3.3 Results and Discussion . 44

3.3.1 Experimental Setup . 44
3.3.2 Visual Quality Evaluation . 45
3.3.3 Rendering Time Evaluation . 53
3.3.4 Limitations . 55

3.4 Summary . 55

Chapter 4—Revectorization-Based Filtered Shadow Mapping 57

4.1 Revectorization-based Percentage-Closer Filtering 57
4.1.1 Filtered Hard Shadow Anti-Aliasing Visibility Function 58
4.1.2 Revectorization-Based Filtering 59

4.2 Euclidean Distance Transform Shadow Mapping 63
4.2.1 Overview . 63
4.2.2 Euclidean Distance Transform Shadowing 63
4.2.3 Euclidean Distance Transform Filtering 65

4.3 Results and Discussion . 66
4.3.1 Experimental Setup . 67
4.3.2 Visual Quality Evaluation . 67
4.3.3 Rendering Time Evaluation . 70
4.3.4 Limitations . 74

4.4 Summary . 75

Chapter 5—Revectorization-Based Soft Shadow Mapping 77

5.1 Variable-Size Penumbra Estimation . 77
5.2 Euclidean Distance Transform Soft Shadow Mapping 78
5.3 Revectorization-Based Soft Shadow Mapping 80
5.4 Screen-Space Revectorization-Based Soft Shadow Mapping 82
5.5 Results and Discussion . 83

5.5.1 Experimental Setup . 83
5.5.2 Visual Quality Evaluation . 83
5.5.3 Rendering Time Evaluation . 87
5.5.4 Discussion . 88
5.5.5 Limitations . 90

5.6 Summary . 91

Chapter 6—Revectorization-Based Accurate Soft Shadow Mapping 93

6.1 Revectorization-Based Accurate Soft Shadow Rendering 93
6.1.1 Adaptive Light Source Sampling 93
6.1.2 Final Rendering . 97
6.1.3 Temporally Coherent Soft Shadow Computation 98

6.2 Results and Discussion . 99

CONTENTS xiii

6.2.1 Experimental Setup . 99
6.2.2 Visual Quality Evaluation . 100
6.2.3 Rendering Time Evaluation . 102
6.2.4 Limitations . 105

6.3 Summary . 108

Chapter 7—Concluding Remarks 109

7.1 Conclusion . 109
7.2 Future Work . 110

Appendix A—Revectorization-Based Shadow Mapping Source Code for GLSL 125

A.1 Overview . 125
A.2 Shadow Silhouette Localization . 126
A.3 Shadow Silhouette Traversal . 126
A.4 Shadow Silhouette Normalization . 128
A.5 Conservative Revectorization-based Shadow Mapping (RBSM) Visibility

Function . 128
A.6 Summary . 128

Appendix B—Revectorization-Based Shadow Mapping Source Code for Unity 131

B.1 Shadows in Game Engines . 131
B.2 Shadows in Unity . 132
B.3 Revectorization-Based Shadow Mapping in Unity 134
B.4 Summary . 137

LIST OF FIGURES

1.1 An illustration of umbra, penumbra and lit effects. 1
1.2 Shadows enhancing the visual understanding of the scene. 2
1.3 Examples of applications that make use of shadows. 3
1.4 Factors that influence the size of a penumbra. 4
1.5 Shadows produced with aliasing artifacts in different game titles. 5
1.6 Shadows in Tom Clancy’s The Division. 6

2.1 An overview of ray tracing. 12
2.2 An overview of shadow volume. 13
2.3 An overview of shadow mapping. 14
2.4 Aliasing artifacts produced by shadow mapping. 15
2.5 False self-shadowing produced by shadow mapping. 15
2.6 Shadow anti-aliasing by warping. 16
2.7 Shadow anti-aliasing by partitioning. 17
2.8 Shadow anti-aliasing by silhouette recovery. 19
2.9 Shadow anti-aliasing by hard shadow filtering. 20
2.10 Visually plausible soft shadow rendering with PCSS. 23
2.11 Visually plausible soft shadow rendering with back-projection. 24
2.12 Visually plausible soft shadow rendering with screen-space filtering. . . . 26
2.13 Accurate soft shadows produced by different techniques. 28

3.1 Normalized relative position of a pixel in a shadow map texel. 32
3.2 An overview of RBSM for conservative hard shadow anti-aliasing. 33
3.3 Orientation of a lit fragment inside an aliased shadow silhouette. 35
3.4 Artifacts generated by RBSM in the shadows produced by sloped surfaces. 36
3.5 Shadow silhouette shapes handled by conservative RBSM. 37
3.6 RBSM conservative anti-aliasing for three different shadow silhouette shapes. 39
3.7 An overview of RBSM for non-conservative hard shadow anti-aliasing. . . 40
3.8 Orientation of a shadowed fragment inside an aliased shadow silhouette. . 41
3.9 Additional shadow silhouette shapes handled by non-conservative RBSM. 42
3.10 RBSM non-conservative anti-aliasing for distinct shadow silhouette shapes. 43
3.11 Visual comparison of hard shadow techniques for a 10242 shadow map. . 45
3.12 Visual comparison of hard shadow techniques for a 20482 shadow map. . 46
3.13 Visual comparison of hard shadow techniques for a 40962 shadow map. . 47
3.14 Visual comparison of shadow mapping and RBSM for simple scenarios. . 48
3.15 Visual comparison of shadow mapping and RBSM for a 10242 shadow map. 49
3.16 Visual comparison of shadow mapping and RBSM for a 20482 shadow map. 49

xv

xvi LIST OF FIGURES

3.17 Visual comparison of shadow mapping and RBSM for a 20482 shadow map. 50
3.18 Visual comparison of shadow mapping and RBSM for a 20482 shadow map. 51
3.19 Visual comparison of hard shadow techniques for a 5122 shadow map. . . 54

4.1 An overview of RBSM for filtered hard shadow anti-aliasing. 58
4.2 Filtered hard shadow rendering of RBSM for a U-shaped shadow silhouette. 59
4.3 The penumbra effect produced by RPCF for different penumbra sizes. . . 59
4.4 An overview of the optimized implementation of RPCF. 60
4.5 An overview of Euclidean Distance Transform Shadow Mapping (EDTSM). 62
4.6 A more in-depth overview of EDTSM. 64
4.7 Skeleton artifacts generated by EDT and their suppression by mean filtering. 65
4.8 Visual comparison of filtered hard shadow techniques for YeahRight. . . . 68
4.9 Visual comparison of filtered hard shadow techniques for Bunny. 69
4.10 Visual comparison of filtered hard shadow techniques for SanMiguel. . . . 70
4.11 Visual comparison of filtered hard shadow techniques for a noisy surface. 71
4.12 Visual comparison between EDTSM and ground-truth. 74

5.1 An overview of Euclidean Distance Transform Soft Shadow Mapping (EDTSSM). 78
5.2 An overview of Revectorization-based Soft Shadow Mapping (RBSSM). . 80
5.3 Visual comparison of soft shadow techniques for YeahRight. 84
5.4 Visual comparison of soft shadow techniques for SanMiguel. 85
5.5 Visual comparison between soft shadow techniques for SanMiguel. 86
5.6 Time usage of soft shadow techniques for YeahRight. 87
5.7 Time usage of soft shadow techniques for SanMiguel. 88
5.8 Time usage of soft shadow techniques for YeahRight. 89
5.9 Time usage of soft shadow techniques for SanMiguel. 89
5.10 Visual comparison between soft shadow techniques for a large penumbra. 91

6.1 An overview of the revectorization-based accurate soft shadow mapping. 94
6.2 Accurate soft shadow rendering by RBSM and RPCF. 98
6.3 Accurate soft shadows produced by different techniques for Armadillo. . . 100
6.4 Accurate soft shadows produced by different techniques for YeahRight. . 101
6.5 Accurate soft shadows produced by different techniques for QuadBot. . . 102
6.6 Comparison between soft shadow techniques under distinct penumbra sizes.103
6.7 Temporal coherency provided by accurate adaptive sampling approaches. 104
6.8 Limitation of the proposed approach. 108

LIST OF TABLES

2.1 A brief comparison between filtered hard shadow mapping techniques. . . 22
2.2 A brief comparison between visually plausible soft shadow techniques. . . 27

3.1 Processing time of hard shadow techniques for a 720p window size. 50
3.2 Processing time of hard shadow techniques for a 10242 shadow map. . . . 51
3.3 Processing time of shadow mapping and RBSM for an 1080p window size. 52
3.4 Processing time of shadow mapping and RBSM for a 10242 shadow map. 53

4.1 Processing time of filtered hard shadow techniques for a 720p window size. 71
4.2 Processing time of filtered hard shadow techniques for a 10242 shadow map. 72
4.3 Processing time of filtered hard shadow techniques for a 720p window size. 72
4.4 Processing time of each individual step of EDTSM for a 10242 shadow map. 73

6.1 Processing time of different sampling strategies for a 720p window size. . 104
6.2 Processing time of different sampling strategies for a 10242 shadow map. 105
6.3 Processing time per step of the proposed approach for a 720p window size. 106
6.4 Processing time per step of the proposed approach for a 10242 shadow map.107

B.1 List of variables available in Unity for shadow mapping with spot lights. 132
B.2 List of functions available in Unity for shadow mapping with spot lights. 133

xvii

LIST OF ACRONYMS

PCSS Percentage Closer Soft Shadows

PCF Percentage-Closer Filtering

VSM Variance Shadow Mapping

CSM Convolution Shadow Mapping

ESM Exponential Shadow Mapping

EVSM Exponential Variance Shadow Mapping

GSM Gaussian Shadow Mapping

MSM Moment Shadow Mapping

SAVSM Summed-Area Variance Shadow Mapping

CSSM Convolution Soft Shadow Mapping

VSSM Variance Soft Shadow Mapping

ESSM Exponential Soft Shadow Mapping

MSSM Moment Soft Shadow Mapping

SAT Summed-Area Tables

SSPCSS Screen-Space Percentage-Closer Soft Shadows

SSABSS Screen-Space Anisotropic Blurred Soft Shadows

SSSM Separable Soft Shadow Mapping

RBSM Revectorization-based Shadow Mapping

GLSL OpenGL Shading Language

RPCF Revectorization-based Percentage-Closer Filtering

EDTSM Euclidean Distance Transform Shadow Mapping

EDT Euclidean Distance Transform

xix

xx LIST OF ACRONYMS

PBA Parallel Banding Algorithm

CUDA Compute Unified Device Architecture

EDTSSM Euclidean Distance Transform Soft Shadow Mapping

RBSSM Revectorization-based Soft Shadow Mapping

SSRBSSM Screen-Space Revectorization-based Soft Shadow Mapping

Chapter

1
In this chapter, we present the motivation of this work, as well as the main question of research and the

achieved contributions. Finally, we briefly show how the rest of this thesis is organized.

INTRODUCTION

1.1 MOTIVATION

According to the level of visibility with respect to the light source, a point can be classified
as being lit, in penumbra or in umbra. To understand this classification, let us visualize
the scenario shown in Figure 1.1. In this scenario, the blue point (Figure 1.1-(a)) is lit
because it is totally visible by the light source (white circle located at the top-left corner
of Figure 1.1), the green point (Figure 1.1-(b)) is in penumbra because it is partially
visible to the light source, and the red point (Figure 1.1-(c)) is in umbra because it is
not visible to the light source, since all the light rays emitted by the light source in the
direction of the red point are blocked by the cube. On the basis of this classification,
we can define a shadow as a composition of umbra and penumbra points, or, in other
words, as a composition of points that are partially or not visible by the light source.

Figure 1.1 A scene illuminated by an area light source. According to the level of occlusion of
the light source, a point can be located in a lit (a), penumbra (b), or (c) umbra region. Image
is courtesy of (EISEMANN et al., 2011).

1

2 INTRODUCTION

Figure 1.2 (Left) Our visual perception of the scene changes according to the disposition of
the shadows cast by the virtual spheres. (Right) Shadows provide information about the shape
of the objects even if they are not visible in the scene. Left image is in the public domain. Right
image is courtesy of ©IdeaLuz Photography.

In the real world, shadows are important because they enhance our understanding
of the surrounding scene. As shown on the left of Figure 1.2, the presence of shadows
improves our visual perception because they enhance our comprehension with respect
to the spatial disposition of light blocker and shadow receiver objects. Moreover, as
exemplified on the right of Figure 1.2, shadow silhouettes can provide information about
the shape of the objects even if those objects cannot be visualized in the scene.

In computer graphics, shadows enhance the realism of the images rendered from vir-
tual scenes. As shown in Figure 1.3, shadow rendering can be useful for a variety of
applications, being able to:

� Enhance the visual quality of virtual animations generated during movie produc-
tion, as illustrated by the movie picture shown in Figure 1.3-(a). Hence, shadow
rendering is desirable for the industry of film and visual effects (CHRISTENSEN
et al., 2006);

� Improve the realism of virtual players and scenarios, as well as the immersion of the
user in the virtual world. Specially for games (STORY; WYMAN, 2016), whose
example is shown in Figure 1.3-(b), user interactivity is the key factor that motivates
the real-time rendering of shadows, with support to the presence of dynamic light
sources, light blocker and shadow receiver objects;

� Simulate the influence of indoor and outdoor illumination in the interior appear-
ance of rooms and buildings (SCHMIDT et al., 2016). This aspect is useful for
architectural walk-throughs and ergonomic design of offices. An example of such
an application can be seen in Figure 1.3-(c);

1.1 MOTIVATION 3

(a) (b) (c)

(d) (e) (f)

Figure 1.3 Shadows are desirable in several applications, such as: (a) movies (©Rovio En-
tertainment), (b) games (©Blizzard Entertainment), (c) interior design (©3DPower), (d) sim-
ulation (CERQUEIRA et al., 2017), (e) art (WON; LEE, 2016), and (f) augmented reality
(NOWROUZEZAHRAI et al., 2011).

� Increase the visual understanding, allowing the modelling of virtual scenarios to be
done as accurately as possible. This feature is specially important for simulators
and computer vision applications that need to establish a spatial relationship be-
tween the rendered objects and require high-quality shadow rendering (LAWSON;
SALANITRI; WATERFIELD, 2016). An example of such an application is the
sonar simulator shown in Figure 1.3-(d);

� Fool the audience about the shape of the shadow caster. Figure 1.3-(e), for instance,
shows the shadow of an elephant, although the shadow casters are just actors with
different poses. In this sense, art and sculpture can make use of shadows as a part
of the work of art (MITRA; PAULY, 2009; CHEN et al., 2017) or the performance
art (WON; LEE, 2016), enabling new levels of creativity for the artist and new
levels of immersion for the audience;

� Allow the real-time, seamlessly integration of virtual content into an augmented
reality application (FRANKE, 2014). From Figure 1.3-(f), for example, we can see
that the shadow cast by the virtual warrior into the real scene enhances the realism
of the scene visualization;

Specifically for games and augmented reality applications, a successful shadow ren-

4 INTRODUCTION

(a) (b)

Figure 1.4 The penumbra size varies according to (a) the size of the light source and (b) the
distance between light blocker and shadow receiver objects. Image (a) courtesy of (EISEMANN
et al., 2011). Image (b) courtesy of (SCHWARZLER et al., 2012).

dering algorithm must fulfill two essential requirements:

High Visual Quality - To improve the user’s perception of the virtual scene, shadows
must be accurate, temporally coherent, and free from artifacts.

Real-Time Performance - For applications where virtual scenes change dynami-
cally, shadows should ideally be computed in real time, enabling the user to interact with
the application and receive fast feedback (i.e., without too much delay). As pointed by
related work (YANG et al., 2010), shadows should ideally be computed faster than 100
frames per second, saving time for other operations of the application (e.g., geometry
rendering, morphing, collision detection, shading).

These requirements are also desirable for offline applications (e.g., movies) that require
a preview of the shadow effect before running a more costly, non-interactive accurate
shadow rendering solution.

Unfortunately, the methods that compute highly accurate shadows take too much
processing time to be used interactively for dynamic scenes. That happens because a real-
world shadow contains the penumbra effect, that is characterized by the smooth transition
located between lit and umbra regions. The main problem to simulate the penumbra effect
lies in the determination of its size, that varies according to two factors: the size of the
light source, where the larger is the light source, the larger is the penumbra size (Figure
1.4-(a)); the distance of the light source to both light blocker and shadow receiver objects,
where a slight deformation on the receiver surface can cause the penumbra to grow in
size (Figure 1.4-(b)).

The task of computing both umbra and penumbra components of the shadow makes
the shadow rendering algorithm computationally expensive. In this case, the algorithm
needs to perform an accurate visibility evaluation over the light source on the basis of the
geometric information available in the scene. To simplify the shadow rendering problem,
some methods restrict the shadow evaluation only for the fragments visible in the scene.
Also, only the umbra component of the shadow is computed on the basis of an image-
based representation of the light source view. These simplifications make the methods

1.1 MOTIVATION 5

(a) (b)

(c) (d)

Figure 1.5 Shadows produced with perspective aliasing artifacts in different game titles:
(a) The Amazing Spider Man, 2012 (©Activision); (b) Monster Hunter 4 Ultimate, 2013
(©Capcom Co., Ltd.); (c) Besiege, 2015 (©Spiderling Studios); (d) Fallout 4, 2015 (©Bethesda
Game Studios).

feasible for real-time applications, but prone to artifacts that lower the shadow visual
quality. Examples of shadow artifacts are visible in the silhouette of the shadows shown
in Figure 1.5 and in the close up shown in Figure 1.6.

In practice, shadows can be computed from object- or image-based approaches. Object-
based approaches aim to compute accurate shadows by forming a single polygon mesh,
called shadow volume, composed of all the projections between a ray emitted from a point
light source and each vertex located at the object’s silhouette (CROW, 1977). Because
the resolution of the shadow volume is viewpoint independent, artifacts are effectively
suppressed in this solution. Unfortunately, object-based approaches tend to be slower
and less scalable than image-based approaches.

Image-based approaches typically store the depth buffer of the scene rendered from the
light’s viewpoint in a shadow map and use this information to determine, in the camera
view, whether a fragment is in shadow (WILLIAMS, 1978). Despite the advantages of

6 INTRODUCTION

Shadows with light leaking artifacts Accurate shadows

Shadows with light leaking artifacts Accurate shadowsShadows with light leaking artifacts Accurate shadows

Figure 1.6 Shadows produced with (left) and without (right) artifacts in Tom Clancy’s The
Division, 2016 (©Ubisoft).

such a shadow map representation, the limited resolution of the shadow map generates
aliasing (seen in the shadow silhouettes of Figure 1.5), light leaking (seen in the closeup of
Figure 1.6) and temporal incoherency artifacts that still can be seen in games and other
interactive applications, remaining as a challenging problem for image-based approaches.

1.2 HYPOTHESIS

In this work, we aim to answer the following question of research: How can we make an
efficient use of low-resolution shadow maps to achieve high-quality, anti-aliased shadow
rendering in real time?

As we show in the rest of this thesis, our investigations pointed out that the answer to
this question relies on the proposal of the revectorization-based shadow mapping, a new
technique that makes use of the camera-view resolution and the shadow silhouette shape
to reduce the artifacts found in literature, even in the shadows generated from shadow
maps with low resolution. We further extend the concept of shadow revectorization to
provide anti-aliasing for shadows with both umbra and penumbra effects. Also, we make
a novel use of the Euclidean distance transform for high-quality, real-time penumbra sim-
ulation with reduced light leaking artifacts and enhanced scalability in terms of penumbra
size.

1.3 CONTRIBUTIONS

The main contributions to the field of shadow rendering are summarized, in order of
importance, as follows:

1. A real-time, memory-efficient shadow anti-aliasing approach that is able to reduce
the perspective aliasing artifacts commonly found in the umbra regions generated

1.4 ORGANIZATION 7

on the basis of an image-based approach;

2. A set of shadow rendering techniques that are able to produce real-time, high-
quality shadows with fixed-, variable-size penumbra and less artifacts than related
work;

3. An anti-aliasing, screen-space shadow mapping technique that generates shadows
faster than the techniques commonly found in the literature, at the cost of slightly
reduced visual quality;

4. An adaptive light source sampling approach that is able to generate temporally co-
herent, accurate shadows from a few light source samples, speeding up the accurate
shadow computation;

5. A practical implementation of the memory-efficient shadow anti-aliasing technique
in a well-known game engine. This contribution not only shows that the proposed
technique is easy to be implemented and integrated into an application, but also
allows the evaluation of the proposed technique in the context of more complex
environments typically found in games.

1.4 ORGANIZATION

The remainder of this work is organized as follows:
Chapter 2, Background and State-of-the-Art Review. This chapter gives an

overview of relevant work in the field of shadow rendering. The basic concepts of shadow
rendering as well as a review of recent related work are presented.

Chapter 3, Revectorization-Based Shadow Mapping. This chapter presents
the technique proposed to solve the problem of real-time shadow anti-aliasing using the
concept of shadow silhouette revectorization.

Chapter 4, Revectorization-Based Filtered Shadow Mapping. This chap-
ter focuses on the description and evaluation of two techniques that simulate fixed-size
penumbra from revectorized shadows.

Chapter 5, Revectorization-Based Soft Shadow Mapping. This chapter presents
three techniques able to compute anti-aliased variable-size penumbra on the basis of the
techniques shown in Chapters 3 and 4.

Chapter 6, Revectorization-Based Accurate Soft Shadow Mapping. In this
chapter, we introduce the proposed technique able to compute accurate shadows inter-
actively. The concept of shadow silhouette revectorization is used to guide a temporally
coherent adaptive sampling of the area light source.

Chapter 7, Concluding Remarks. This chapter concludes this thesis, showing the
final considerations about this work, and suggesting potential future directions.

Chapter

2
In this chapter, we present the theoretical background behind the field of shadow rendering and review

the most relevant and recent works proposed in the literature.

BACKGROUND AND STATE-OF-THE-ART REVIEW

For the rest of this manuscript, we use the following mathematical notation: boldface
for points and vectors, italics for scalars and non-standard functions, normal font for
traditional mathematical functions (e.g., cos, sin), calligraphic mathematical symbol for
sets (e.g., A), and sans serif for matrices (e.g., S). For convenience, we assume that
scalars and functions are defined in R, points and vectors are defined in R3, unless stated
otherwise. The subscripts x, y and z are used to refer to the positions of the variables in
the 3D space.

2.1 RENDERING EQUATION

The problem of shadow computation can be understood as a part of the global illumi-
nation problem, which is the reproduction of the photorealistic appearance of an object
located inside a 3D scene and illuminated by an area light source. The quantity that
captures the appearance of an object in a 3D scene is called radiance. Radiance ex-
presses how much power arrives at (or leaves from) a certain point on a surface in a given
direction (DUTRE et al., 2006). We refer to radiance by the function L(p,Θ), where p
is the surface point and Θ is the radiance direction. Also, we use the terms L(p → Θ)
and L(p← Θ) to define the radiance leaving and arriving at the point p in the direction
Θ, respectively.

The photorealistic appearance of an object is typically computed by the equilibrium
distribution of light energy inside the scene. However, the light emitted by an area
light source may interact in many ways with the objects in the scene and to model
all the possible behaviours and interactions of the light in the scene is computationally
impracticable. To ease this computation, global illumination methods commonly assume
that light is emitted, reflected, or transmitted from a surface point. Moreover, they
assume that light travels instantaneously in straight lines, without influence of external
factors (DUTRE et al., 2006).

9

10 BACKGROUND AND STATE-OF-THE-ART REVIEW

The formulation of the global illumination rendering equation relies on the principle
of energy conservation. Let us define Le(p → Θ) as the radiance emitted by the point
p in the direction Θ, and L(p → Θ) as the total exitant radiance leaving the point p
in the direction Θ. L(p → Θ) is equivalent to the sum of the emitted and reflected
radiance at the point p in the direction Θ. The reflected radiance is the result of an
interaction between the incoming radiance L(p ← Ψ) and the bidirectional reflectance
distribution function fr(p,Ψ → Θ), which defines how the light is reflected at the point
p according to the radiance incident in direction Ψ and reflected in direction Θ. Hence,
we can formalize the global illumination rendering equation as (KAJIYA, 1986; IMMEL;
COHEN; GREENBERG, 1986)

L(p→ Θ) = Le(p→ Θ) +

∫
Ω+

fr(p,Ψ→ Θ)L(p← Ψ)cos(np,Ψ)dωΨ, (2.1)

where the integral term denotes the total reflected radiance over the hemisphere Ω+

above p and cos(np,Ψ) is the cosine of the angle formed by the normal vector np of the
point p and the ingoing direction Ψ. The bouncing behaviour of the reflected light is
represented by the incoming radiance L(p← Ψ), which depends on the outgoing radiance
L(q→ −Ψ) at a different point q.

An alternative, simpler formulation of the rendering equation replaces the integration
over the hemisphere around the surface point by an integration over all the surfaces visible
to the surface point. In this case, a ray casting operation is used to find the closest point
q visible to the point p at direction Ψ. Using the ray casting operation, we can define a
binary visibility function Vray(p,q) ∈ {0, 1}

Vray(p,q) =

{
0 if p and q are not mutually visible,

1 otherwise.
(2.2)

Using these definitions, we can reformulate the rendering equation as

L(p→ Θ) = Le(p→ Θ) +

∫
A
fr(p,Ψ→ Θ)L(q→ −Ψ)Vray(p,q)G(p,q)dAq, (2.3)

where the set A represents all the surfaces present in the scene and

G(p,q) =
cos(np,Ψ)cos(nq,−Ψ)

||p− q||2
. (2.4)

As the focus of our proposal relies on the shadow computation only, we are more
interested in the computation of the direct illumination that arrives at the surface coming
directly from the area light source. In this sense, we can assume that the integration must
be calculated over all the area light source samples l visible to the point p. Then, the
rendering equation is simplified to

L(p→ Θ) =

∫
L
fr(p,

−→
pl → Θ)Le(l→

−→
lp)Vray(p, l)G(p, l)dLl, (2.5)

2.1 RENDERING EQUATION 11

where the set L represents the surface area of the area light sources present in the scene,

and Le(l →
−→
lp) is the emitted radiance of the area light source sample l visible to the

point p along the direction
−→
lp. We have omitted the emitted radiance term Le(p → Θ)

in (2.5) because we assume that the term is different from zero for light sources only. In
this case, the term is only added to the sum when a light source is visible in the final
rendered image.

If we separate the shading term from the shadow term, we obtain an alternative form
of the direct lighting equation

L(p→ Θ) =

∫
L
fr(p,

−→
pl → Θ)G(p, l)dLl ·

1

|L|

∫
L
Le(l→

−→
lp)Vray(p, l)dLl (2.6)

If we assume that the area light source has homogeneous directional radiation over
its surface and that the area light source is uniformly colored (EISEMANN et al., 2011),

we can reduce the emitted radiance Le(l →
−→
lp) to a constant value L∗e, which is taken

out from the integral. This results in the equation

L(p→ Θ) = L∗e

∫
L
fr(p,

−→
pl → Θ)G(p, l)dLl ·

1

|L|

∫
L
Vray(p, l)dLl (2.7)

Although (2.7) is an approximation of the physically correct solution (2.5), this equa-
tion allows the reproduction of realistic shadows. To solve the integral (2.7) numerically,
we can sample the area light source uniformly

L(p→ Θ) = L∗e

n−1∑
i=0

fr(p,
−→
pli → Θ)G(p, li)Vray(p, li), (2.8)

where n ∈ N is the number of point light source samples.
In practice, by solving (2.8), we are able to produce accurate soft shadows that

simulate both umbra and penumbra effects. However, as pointed by related work (EISE-
MANN et al., 2011), hundreds or thousands of area light source samples are typically
required to allow the estimation of accurate soft shadows from (2.8), making this equa-
tion computationally expensive to be solved in real time.

One alternative to simplify (2.8) relies on the computation of hard shadows that
simulate only the umbra effect. Hard shadows are extremely suitable for real-time appli-
cations because, to compute them, one just needs to replace the visibility sum over the
n light source samples (2.8) to a visibility evaluation over a single point light source l

′
.

Then, the shadow term of the direct-lighting equation becomes just Vray(p, l
′
) in

L(p→ Θ) = L∗efr(p,
−→
pl

′ → Θ)G(p, l
′
)Vray(p, l

′
). (2.9)

Obviously, this alternative equation presents a trade-off between visual quality and
rendering performance, since hard shadows can be easily computed in real time, but are
not as accurate as soft shadows due to the lack of the penumbra simulation. A common
alternative to remedy this situation is to treat Vray(p, l

′
) as a real-valued, continuous

12 BACKGROUND AND STATE-OF-THE-ART REVIEW

Figure 2.1 In ray tracing, the camera sends several view rays into the scene. When these
rays hit an object, they send shadow rays in the direction of the light source. Then, a point is
determined to be in shadow if its corresponding shadow ray hits another point before reaching
the light source. The original image is in the public domain.

visibility function. Therefore, l
′

is considered as an approximation of the area light
source, so that it could enable Vray to estimate how much of the area light source is
visible from a given surface point in the scene. Techniques that use this strategy typically
produce visually plausible soft shadows, since they simulate the variable-size penumbra
effect without sampling the entire area light source. Another alternative to improve the
accuracy of hard shadows is to simply blur the resulting shadows with a fixed-size filter,
generating filtered hard shadows with fixed-size penumbra.

In the next section, we present the most traditional techniques able to compute Vray

and solve (2.9). Next, we review the existing methods that extend these traditional
techniques to compute hard and soft shadows efficiently.

2.2 SHADOW RENDERING

One of the main issues to solve the simplified rendering equation (2.8, 2.9) is how to
compute the binary visibility function Vray(p, l) (2.2), regardless of whether l is a sample
of an area light source (2.8) or just a single point light source (2.9). The most traditional
techniques able to accomplish this task are: ray tracing, shadow volume and shadow
mapping.

Ray tracing (WHITTED, 1980) is a well-known object-based shadow algorithm able
to compute accurate hard shadows. In this technique, a view ray (red arrows in Figure
2.1) is traced from the camera viewpoint to the virtual scene through each pixel in the
image plane (gray grid in Figure 2.1). If the view ray hits a surface point in the scene,
a new shadow ray is traced from the hit point to the light source. If the shadow ray
hits an opaque object before reaching the light source, the surface point hit by the view
ray is in shadow (see the point hit by the lower view ray in Figure 2.1). Otherwise, the

2.2 SHADOW RENDERING 13

Figure 2.2 In shadow volume, a point is in shadow if it is located inside the shadow volume
formed by the extrusion of the vertices located at the silhouette of the shadow caster in the
direction of the rays emitted by the light source. Image is courtesy of (MCGUIRE, 2004).

surface point is directly visible by the light source and is lit (see the point hit by the
upper view ray in Figure 2.1). Ray tracing is not only able to simulate shadows, but also
many other effects (e.g., reflection, refraction), a property that makes this technique a
powerful tool for computing some global illumination effects. Unfortunately, even with
the recent advances in literature (WALD et al., 2014; FUETTERLING et al., 2015;
PERARD-GAYOT; KALOJANOV; SLUSALLEK, 2017), ray tracing does not provide
real-time performance for dynamic scenes. Therefore, it is mostly used for applications
that use offline rendering (e.g., movie production) or for the rendering of precomputed
effects for static or dynamic scenes (MORGAN; PRANCKEVICIUS, 2014).

A faster alternative to ray tracing is shadow volume (CROW, 1977). A shadow
volume consists of a set of polygons formed by an extrusion (dotted lines in Figure 2.2) of
the vertices located at the silhouette of the objects presented in the scene (green caster in
Figure 2.2) in the direction of the rays emitted by the light source (light in Figure 2.2). A
surface point is in shadow (black rectangle in Figure 2.2) if it is located inside the shadow
volume, and is lit otherwise. Shadow volume is an object-based algorithm faster than
ray tracing and generates accurate hard shadows. However, despite the recent advances
towards adapting the use of shadow volume to compute real-time shadows (GERHARDS
et al., 2015; MORA et al., 2016), shadow volume does not provide stable frame rates,
since the shadow rendering time greatly depends on the number of polygons of the shadow
volume seen in the camera view. Moreover, shadow volume still demands higher memory
footprints, because one needs to store the many polygons that form the shadow volume.
Finally, the recent shadow volume techniques are still slow for real-time applications.

A faster, less accurate alternative than both ray tracing and shadow volume is shadow
mapping (WILLIAMS, 1978). Shadow mapping is an image-based shadow algorithm
composed of two passes, whose pipeline is depicted in Figure 2.3. In the first pass, the
technique samples the 3D space viewed from the light source (an example is shown in
the top-middle of Figure 2.3) and rasterizes the distance of the light source to the closest
surface points of the scene into a depth texture called shadow map, as shown in the
top-right of Figure 2.3. In the second pass, each surface point visible in the camera view

14 BACKGROUND AND STATE-OF-THE-ART REVIEW

Figure 2.3 In shadow mapping, the scene (top-left) is rendered from the viewpoint of the light
source (top-middle), and its depth buffer is stored in a shadow map (top-right). Then, a point
is in shadow if its distance to the light source is greater to the one stored in the shadow map
(bottom). Image is courtesy of (EISEMANN et al., 2011).

is projected into the light source view and its distance to the light source is compared to
the one stored in the shadow map (i.e., shadow test). If the surface point is farther from
the light source than its light blocker as stored in the shadow map, the surface point is in
shadow. Otherwise, the surface point is lit and must be shaded accordingly. An example
of the final result produced by shadow mapping is shown on the bottom of Figure 2.3.

The shadow mapping solution has several advantages, such as: simplicity, flexibility,
scalability, hardware support and real-time performance. However, the finite resolution
of the shadow map introduces some problems:

1. Pixels of the shadow map do not correspond to pixels in screen space, as can be
seen in Figure 2.4-(a). This insufficient resolution of the shadow map (gray grid in
Figure 2.4-(a)) generates aliasing artifacts, mainly along the shadow silhouette, as
can be seen in the silhouette of the shadows shown in Figure 2.4-(b);

2. Due to numerical precision issues, pixels of the screen space may lie between pixels
of the shadow map, generating false self-shadowing. In Figure 2.5-(a), false self-

2.2 SHADOW RENDERING 15

(a) (b)

Figure 2.4 Due to the (a) limited resolution of the shadow map (gray grid projected into the
camera view), shadow mapping generates hard shadows with (b) perspective aliasing artifacts.
Images are courtesy of ©Vladimir Bondarev.

(a) (b)

Figure 2.5 Hard shadows (a) with false self-shadowing. (b) Accurate hard shadows.

shadowing is visible by the striped umbra artifacts present in both plane and teapot
objects;

3. Because of the previous artifacts, whenever the camera or the light source moves in
the scene, the shadow’s shape may change in a temporally incoherent, unrealistic
way (EISEMANN et al., 2011). This effect is mainly seen in videos and animations.

While false self-shadowing can be easily solved by adding a fixed (WILLIAMS, 1978)
or adaptive depth bias (DOU et al., 2014) to influence the shadow test, aliasing artifacts
and temporal incoherence are two of the major problems of image-based approaches,
hampering the generation of accurate hard shadows, as exemplified by Figure 2.5-(b).

16 BACKGROUND AND STATE-OF-THE-ART REVIEW

Uniform distribution Non-uniform distribution

Figure 2.6 (Left) A uniform distribution of depth values in the shadow map produces aliased
artifacts along the shadow silhouette. (Right) A non-uniform, perspective distribution of depth
values improves shadow visual quality. Images courtesy of (STAMMINGER; DRETTAKIS,
2002).

In the following sections, we present the different types of shadows that can be sim-
ulated on the basis of shadow mapping and we also discuss many strategies proposed to
alleviate the aliasing problem of shadow mapping. We refer the reader to reference books
(EISEMANN et al., 2011) (WOO; POULIN, 2012) for a more complete review of the
existing shadow rendering algorithms.

2.3 HARD SHADOWS

Hard shadows represent only the umbra component of the shadow, in other words, the
total absence of light. Shadow mapping is the most traditional technique able to solve
(2.9) in real time, at the cost of generating aliased hard shadows. In this section, we
discuss the different strategies that have been proposed to generate anti-aliased hard
shadows in real time with shadow mapping.

2.3.1 Warping

Aliasing artifacts can be reduced by changing the parametrization of the shadow map
generation. In other words, by changing the warping function that transforms world-
space coordinates to shadow map texture coordinates, one can improve the shadow map
resolution in the region near the viewpoint, while lowering the sampling density in the
regions far from the viewpoint. This warping effect can be seen in Figure 2.6. In Figure
2.6-left, the shadow map generation wastes space of the shadow map due to the uniform
distribution of the depth values. Then, as can be seen in Figure 2.6-right, by warping
the shadow map generation with a non-uniform perspective projection, one can make a
better use of the available shadow map resolution, improving the sampling density for
the objects visible in the current camera viewpoint.

Different from the approaches that aim to distribute the depth values uniformly in the
shadow map texture (BRABEC; ANNEN; SEIDEL, 2002), perspective shadow mapping
(STAMMINGER; DRETTAKIS, 2002) is the first technique proposed to warp the shadow

2.3 HARD SHADOWS 17

(a) (b)

Figure 2.7 For a large scene, the use of an insufficient shadow map resolution may generate
aliasing artifacts along the shadow silhouette (a). The efficient distribution of several high-
resolution shadow maps per sub-units of the 3D space helps on reducing these aliasing artifacts
(b). Images courtesy of (LAURITZEN; SALVI; LEFOHN, 2011).

map using non-uniform perspective projection instead of the orthographic one. While
this simple changing of parametrization has hardware support and greatly improves the
quality of the shadow rendering, the algorithm does not handle several special cases and
restrictions, reducing the quality of the shadow map parametrization.

Approaches such as light-space perspective shadow mapping (WIMMER; SCHERZER;
PURGATHOFER, 2004), trapezoidal shadow mapping (MARTIN; TAN, 2004), and per-
spective optimal shadow mapping (CHONG; GORTLER, 2004; CHONG; GORTLER,
2007) try to generalize the use of perspective shadow maps for different scenarios and
light sources, and distribute the error equally among objects located near and far from
the viewer. Logarithmic parametrization (LLOYD et al., 2008) is an alternative approach
to obtain a higher accurate warping algorithm at the cost of lower frame rate.

Warping techniques minimize aliasing artifacts efficiently, but flickering artifacts still
can be seen when the camera or the light source moves in the scene. These flickering
artifacts are caused by the use of the non-uniform sampling strategy, that may change
the warping function per frame, in a temporally incoherent way. Also, even if the warping
strategies make better use of the shadow map resolution, aliasing artifacts are still gen-
erated by such techniques because the shadow map resolution, the source of the aliasing,
remains finite and limited.

2.3.2 Partitioning

An alternative to reduce aliasing artifacts is to make use of several shadow maps generated
from different locations to better sample the depth of the objects located near and far
the camera viewpoint. Figure 2.7 shows shadows generated without and with partitioned
shadow maps.

18 BACKGROUND AND STATE-OF-THE-ART REVIEW

Approaches based on z-partitioning split the 3D space inside the view frustum into
several sub-units along the z-axis and associate a separate shadow map for each sub-
unit (ENGEL, 2006; ZHANG et al., 2006; ZHANG; SUN; NYMAN, 2008; LAURITZEN;
SALVI; LEFOHN, 2011).

Another set of techniques evaluates the error produced by the use of a single low-
resolution shadow map and try to adapt the shadow map configuration, either by gener-
ating more shadow maps or increasing the shadow map resolutions, in order to reduce the
aliasing artifacts caused by the insufficient shadow map resolution (FERNANDO et al.,
2001; ARVO, 2004; GIEGL; WIMMER, 2007b; GIEGL; WIMMER, 2007a; LEFOHN;
SENGUPTA; OWENS, 2007).

Partitioning techniques are useful to reduce aliasing artifacts caused mainly by the
use of a single shadow map in a large-scale virtual environment. To further improve
the accuracy of the solution, these techniques are commonly associated with warping
techniques. Thus, the several shadow maps generated from partitioning approaches are
built using an improved parametrization approach. While this combination may work in
some situations, for simpler scenarios in which high-quality shadows could be rendered
with a single shadow map of high resolution, the use of partitioned shadow maps may only
increase memory usage (although recent works, such as (SINTORN et al., 2014; KAMPE
et al., 2016; SCANDOLO; BAUSZAT; EISEMANN, 2016a; SCANDOLO; BAUSZAT;
EISEMANN, 2016b), have focused on the efficient compression of shadow maps) and
processing time.

2.3.3 Silhouette Recovery

Some techniques aim to compute accurate hard shadows by minimizing the jagged shadow
silhouettes produced by shadow mapping.

Hybrid approaches based on shadow mapping, shadow volume (MCCOOL, 2000;
CHAN; DURAND, 2004), and ray tracing (HERTEL; HORMANN; WESTERMANN,
2009) have been proposed in the literature. As can be seen in the comparison between
Figures 2.8-(a) and 2.8-(b), these methods are able to estimate accurate hard shadows.
However, as shown in Figure 2.8-(c), they compute shadows faster than the reference
solutions, but still much slower than shadow mapping.

To reconstruct accurate shadow silhouettes, some techniques rely on the storage of
additional geometric information. In shadow silhouette mapping (SEN; CAMMARANO;
HANRAHAN, 2003), the vertex that lies on the geometry silhouette is stored in the
shadow map. Fast sub-pixel anti-aliased shadow mapping (PAN et al., 2009) uses pixel’s
position and associated face normal in addition to the shadow map. Sub-pixel shadow
mapping (LECOCQ et al., 2014) stores triangle information (i.e., 3D vertex coordinates
and depth derivatives) with the shadow map. Each one of these techniques has a different
visibility function that uses this augmented information to reconstruct accurate shadow
silhouettes. However, they also increase memory consumption and processing time to
achieve such a goal.

To solve the mismatch problem of shadow mapping, the mapping of each pixel in the
camera view into an exclusive texel in the shadow map, other approaches, such as (AILA;

2.3 HARD SHADOWS 19

(a) (b) (c)

Figure 2.8 Silhouette recovery techniques solve aliasing artifacts (a) by recovering accurate
shadow silhouettes (b). These techniques guarantee high-quality anti-aliasing, however, they
add a high computational overhead for shadow mapping (c). SM - Shadow mapping. H -
Silhouette recovery technique. SV - Shadow volume. Images courtesy of (CHAN; DURAND,
2004).

LAINE, 2004; JOHNSON et al., 2005; WYMAN; HOETZLEIN; LEFOHN, 2015), treat
the shadow map as an irregular data structure to correct the insufficient shadow map
sampling. Unfortunately, the building and management of such data structures demand
additional processing time to the shadow rendering algorithm.

To perform shadow anti-aliasing, shadow map silhouette revectorization (BONDAREV,
2014) embeds shadow silhouettes into a discontinuity space and revectorizes them accord-
ing to their discontinuity directions. While the technique indeed alleviates aliasing, the
method consists of two passes in the shader, increases memory consumption and does not
work well for sloped surfaces, generating artifacts during revectorization. By adapting
this technique to work in a single pass in the shader, revising its theory to reduce memory
consumption, adding support for shadow anti-aliasing in sloped surfaces, and extending
it to support penumbra simulation, we show that we can take advantage of this shadow
revectorization effect to provide high-quality shadow anti-aliasing.

Techniques for reconstructing shadow silhouettes are useful because they can solve the
aliasing problem in an accurate way. However, as exemplified by the performance results
shown in Figure 2.8-(c), most of these techniques add a high computational overhead
to shadow mapping. Also, by incorporating additional geometric information into the
shadow map, these techniques typically add a large memory footprint to the hard shadow
rendering.

Warping and partitioning strategies seem to be well established in industry, since
the state-of-the-art techniques satisfy the requirements of games and other interactive
applications (LAURITZEN; SALVI; LEFOHN, 2011). In this scenario, these strategies
are typically integrated with other strategies, such as silhouette recovery and hard shadow
filtering, to improve the accuracy of the latter ones. On the other hand, shadow silhouette
recovery techniques solve the aliasing problem accurately, but they are not as fast and

20 BACKGROUND AND STATE-OF-THE-ART REVIEW

(a) Shadow Mapping (b) PCF (c) VSM

(a) Shadow Mapping (b) PCF (c) VSM(a) Shadow Mapping (b) PCF (c) VSM(a) Shadow Mapping (b) PCF (c) VSM

Figure 2.9 Hard shadow filtering techniques minimize the shadow aliasing problem of shadow
mapping (a) by simulating fixed-size penumbra. Unfortunately, (b) banding or (c) light leaking
artifacts may affect the visual quality of the penumbra rendering.

lightweight as shadow mapping.
While the simplification of (2.9) guarantees real-time performance, hard shadows tech-

niques are not realistic because they do not generate penumbra natively and produce
shadows with visual quality far from the physically accurate solution. In the next sec-
tion, we discuss alternative solutions that simulate the penumbra effect on the basis of
the filtering of hard shadows.

2.4 FILTERED HARD SHADOWS

To simulate the penumbra effect on the basis of the hard shadows generated by shadow
mapping, some techniques perform filtering over the hard shadows, or over the shadow
map itself, to produce filtered hard shadows with fixed-size penumbra. This effect can
be seen in Figure 2.9. By blurring the hard shadows shown in Figure 2.9-(a), we can
produce fixed-size penumbra, as seen in Figures 2.9-(b) and 2.9-(c).

The most traditional algorithm for fixed-size penumbra simulation is Percentage-
Closer Filtering (PCF) (REEVES; SALESIN; COOK, 1987). As an extension of shadow
mapping, PCF takes the shadow test results performed over a filter region and averages
them to determine the final shadow intensity. By filtering the shadow test results, rather
than the shadow map itself, PCF is not prone to light leaking artifacts, and provides
real-time performance, while keeping low memory consumption for the penumbra simu-
lation. However, PCF does not support texture pre-filtering, does not provide scalability
in terms of filter size, and requires a high number of samples to solve banding artifacts.
An example of banding artifacts produced by PCF can be seen in Figure 2.9-(b).

To make the shadow filtering scalable, Variance Shadow Mapping (VSM) (DON-
NELLY; LAURITZEN, 2006) uses Chebyshev’s inequality, depth and squared depth
stored in the shadow map to determine the shadow intensity of a surface point by means
of a probability of whether the point is in shadow. VSM supports shadow map pre-

2.4 FILTERED HARD SHADOWS 21

filtering and is scalable for the filter size, but generates light leaking artifacts in shadows.
An example of light leaking artifacts produced by VSM is shown in Figure 2.9-(c).

To reduce the light leaking artifacts of VSM, Convolution Shadow Mapping (CSM)
(ANNEN et al., 2007) uses Fourier series to approximate and linearize the shadow test. In
CSM, the shadow map is converted into filtered basis textures that are used to determine
the final shadow intensity as a weighted sum of basis functions stored in basis textures.
CSM supports pre-filtering and reduces light leaking artifacts as compared to VSM, at
the cost of more memory consumption and processing time than VSM.

To minimize the processing time required by CSM, Exponential Shadow Mapping
(ESM) (ANNEN et al., 2008; SALVI, 2008) approximates the shadow test by an ex-
ponential function, rather than Fourier series. ESM stores exponent-transformed depth
values into the shadow map, which are later used for penumbra simulation. ESM is faster
and requires less memory footprint than CSM, while generating visual results similar to
the ones obtained with VSM.

To improve the visual quality of both VSM and ESM, Exponential Variance Shadow
Mapping (EVSM) (LAURITZEN; MCCOOL, 2008) merges both ESM and VSM theories
to produce high-quality fixed-size penumbra simulation. In EVSM, light leaking only
occurs at places where both ESM and VSM techniques generate such an artifact.

As an alternative to both VSM and ESM techniques, Gaussian Shadow Mapping
(GSM) (GUMBAU et al., 2011; GUMBAU et al., 2013) replaces Chebyshev’s inequality
by a Gaussian cumulative distribution function to minimize light leaking. Also, inspired
by EVSM, GSM warps its visibility function to take advantage of the exponential function
proposed in ESM to further reduce light leaking.

Moment Shadow Mapping (MSM) (PETERS; KLEIN, 2015; PETERS, 2017) im-
proves VSM by storing four powers of depth in the shadow map and treating the penum-
bra simulation as a Hamburger or Hausdorff moment problem. MSM reduces the light
leaking artifacts of VSM, generates results similar to EVSM, while keeping nearly the
same rendering time of both techniques, but consuming more memory requirements than
VSM.

Filtering techniques are an efficient alternative to shadow mapping, producing shad-
ows that mimic the appearance of the penumbra effect. In Table 2.1, we show a general
classification of the filtered hard shadow techniques presented in this section with respect
to the relevant attributes discussed so far.

VSM, CSM, ESM, EVSM, GSM, and MSM techniques filter the shadow map by
warping the depth stored in the shadow map into another basis function, making the
penumbra simulation scalable in terms of filter size. However, as shown in Figure 2.9-(c),
these shadow map filtering techniques introduce noticeable light leaking artifacts that
reduce the shadow visual quality. On the other hand, PCF filters the hard shadows
produced with shadow mapping to avoid light leaking. However, PCF is not scalable
with respect to the filter size.

Despite requiring low processing time to minimize the aliasing artifacts produced by
shadow mapping, none of the filtered hard shadow techniques presented in this section
can remove the aliasing artifacts caused by the use of low-resolution shadow maps, since
they work over jagged shadow silhouettes (Figure 2.9-(b)). Increasing the resolution of

22 BACKGROUND AND STATE-OF-THE-ART REVIEW

Property
Method Anti-aliasing Reduced Leaking Scalability Memory Footprint

PCF 6 4 6 Low
VSM 6 6 4 Medium
CSM 6 6 4 High
ESM 6 6 4 Medium

EVSM 6 6 4 Medium
GSM 6 6 4 Medium
MSM 6 6 4 Medium

Table 2.1 Classification of filtered hard shadow mapping techniques proposed in the literature
according to the following attributes: anti-aliasing for shadows produced with low-resolution
shadow maps, reduced light leaking artifact generation, scalability with respect to the filter
size and memory consumption (low if the algorithm uses only the shadow map, medium if
the algorithm uses two or more channels of the shadow map and high if the algorithm uses
additional textures for penumbra simulation).

the shadow map may overcome this issue, at the cost of higher memory consumption and
processing time. But, even in this case, any closeup on the shadow could reveal the alias-
ing artifacts. Larger kernel sizes may also remove the aliasing of the shadows, however,
they severely blur out the shadows, losing too much detail of the shadow silhouette.

As we further state in the next section, filtered hard shadows are more realistic than
hard shadows, but they also lack realism because they are able to simulate only fixed-size
penumbra, meanwhile real-world shadows mostly contain variable-size penumbra.

2.5 VISUALLY PLAUSIBLE SOFT SHADOWS

Differently from the techniques that compute fixed-size penumbra, visually plausible soft
shadow techniques take into consideration the fact that the size of the penumbra varies
according to the distance of the surface point to both light source and other light blocker
surface points. Shadows that are computed on the basis of a single point light source
and that can simulate variable-size penumbra are called visually plausible soft shadows.
Soft shadows because they simulate the variable-size penumbra effect. Visually plausible
shadows because they resemble the visual quality of accurate shadows. An example of a
visually plausible soft shadow is shown in Figure 2.10.

Here, we review the existing soft shadow methods that have been proposed to extend
the concept of hard shadow mapping to compute soft shadows in real time.

2.5.1 Percentage-Closer Soft Shadows

Area light sources produce soft shadows in which the penumbra size varies along the
shadow silhouette, as visible in Figure 2.10. The task of estimating this penumbra size
in a general configuration is non-trivial (EISEMANN et al., 2011).

To ease the task of variable penumbra size estimation, the Percentage Closer Soft
Shadows (PCSS) technique uses an assumption that both light source, light blocker and

2.5 VISUALLY PLAUSIBLE SOFT SHADOWS 23

Figure 2.10 Visually plausible soft shadows have penumbra whose size varies according to the
distance of each surface point to both light source and light blocker objects. Image courtesy of
(FERNANDO, 2005).

shadow receiver objects are all planar and parallel to each other (SOLER; SILLION,
1998). Hence, by the use of similar triangles, the penumbra size can be easily estimated
(FERNANDO, 2005).

The PCSS framework consists of three main steps: the average blocker depth com-
putation, the penumbra size estimation and the soft shadow filtering. First, the shadow
map is searched in a given region and the average distance of the blocker to the light
source is computed. Then, this average distance is used in addition to the light source
size and the receiver depth for the penumbra size estimation. Finally, the PCF is applied
over the penumbra size of the soft shadow filtering. PCSS is easy to implement, provides
anti-aliasing, uses only one shadow map, and requires neither pre-processing nor addi-
tional geometric information. However, PCSS produces aliased shadows for large area
light sources (EISEMANN et al., 2011). Also, this technique scales poorly for large filter
sizes because a large amount of texture lookups for both average blocker depth estimation
and soft shadow filtering steps is required.

Temporal coherence has already been exploited to generate visually plausible soft
shadows on the basis of the PCSS framework (SCHERZER et al., 2009; SCHERZER;
SCHWARZLER; MATTAUSCH, 2011; SCHWARZLER et al., 2013). While these tech-

24 BACKGROUND AND STATE-OF-THE-ART REVIEW

(a) BP (b) VSSM (c) Reference

Figure 2.11 While providing a plausible visual quality for the soft shadow rendering, back-
projection (BP) approaches (such as (GUENNEBAUD; BARTHE; PAULIN, 2007) (a)) are too
much slower than pre-filtering techniques (such as VSSM (b)). Images courtesy of (YANG et
al., 2010).

niques are able to provide realistic soft shadows in real time, they require several frames
to converge to a correct solution. Also, the frame rate may change considerably between
frames for dynamic scenes with moving objects, cameras or light sources, being inade-
quate for applications that demand constant frame rates. Shen et al. (SHEN et al., 2011)
propose an analytical filtering solution to improve the image quality of PCSS, but the
algorithm is inefficient in terms of performance for large filter sizes.

To improve the performance of PCSS, Klein et al. (KLEIN; NISCHWITZ; OBER-
MEIER, 2012) compute the average blocker depth and estimate the penumbra size only
for the fragments located at the hard shadow silhouette. Then, for each fragment outside
the shadow silhouette, a gathering approach and an erosion operation are used to locate
the shadow silhouette and estimate the penumbra intensity of the soft shadows. This
approach is slightly faster than PCSS for large kernel sizes, but is still prone to aliasing
artifacts at the penumbra location.

2.5.2 Back-Projection

Rather than using the PCSS framework to compute soft shadows, back-projection tech-
niques aim to provide an accurate soft shadow solution by unprojecting a micropatch
for each shadow map texel and then using this geometric representation to compute the
amount of the light source occluded by the blocker objects (ATTY et al., 2006; AS-
ZODI; SZIRMAY-KALOS, 2006; GUENNEBAUD; BARTHE; PAULIN, 2006; BAVOIL;
CALLAHAN; SILVA, 2008). Micropatches are approximations of the blocker geometry.
Thus, they may cause shadow overestimation and light leaking. To solve such problems,
the authors of (SCHWARZ; STAMMINGER, 2007) propose the use of an occlusion bit-
mask. In fact, they place sample points on the area light source and use a simple bit
representation to track which of the samples are occluded. Unfortunately, this approach
suffers from performance issues, especially for high-resolution shadow maps. Hierarchi-
cal solutions and techniques based on efficient contour detection are commonly used to

2.5 VISUALLY PLAUSIBLE SOFT SHADOWS 25

reduce the computational cost of the soft shadow mapping (GUENNEBAUD; BARTHE;
PAULIN, 2007; YANG et al., 2009).

Back-projection techniques generate high-quality soft shadows using a single shadow
map, as shown in Figure 2.11-(a). However, these methods are still prone to artifacts
and achieve only interactive performance due to the usage and computation of multiple
shadow maps required to properly track the micropatches into the area light source.

2.5.3 Pre-Filtering

To solve both problems of aliasing and scalability of the PCSS, pre-filtering techniques
commonly use a filterable function to approximate either the average blocker depth esti-
mation, the shadow test or both of them.

Summed-Area Variance Shadow Mapping (SAVSM) (LAURITZEN, 2008) replaces
the PCF step of PCSS by VSM (DONNELLY; LAURITZEN, 2006), which makes the
soft shadow filtering scalable with respect to the filter size. Unfortunately, the average
blocker depth estimation remains costly and the use of VSM for shadow filtering makes
SAVSM more prone to light leaking artifacts than PCSS.

Convolution Soft Shadow Mapping (CSSM) (ANNEN et al., 2008) proposes a constant-
time average blocker depth estimation on the basis of a pre-filtered shadow map and
pre-filtered Fourier series basis images. CSM (ANNEN et al., 2008) is used to perform
soft shadow filtering over the penumbra area. Indeed, CSSM brings scalability to PCSS,
however, suffers from light leaking artifacts and high memory consumption.

Variance Soft Shadow Mapping (VSSM) (DONG; YANG, 2010; YANG et al., 2010)
estimates the average blocker depth efficiently on the basis of a pre-filtered shadow map
and the Chebyshev’s Inequality. VSSM provides performance compatible with related
work, makes use of the VSM theory to estimate the average blocker depth, and generates
soft shadows with reduced light leaking artifacts.

Exponential Soft Shadow Mapping (ESSM) (SHEN; FENG; YANG, 2013) uses the
ESM (ANNEN et al., 2008; SALVI, 2008) theory to estimate the average blocker depth
and compute the final soft shadow intensity in constant time on the basis of a pre-
filtered exponential shadow map. A number of improvements are proposed to alleviate
light leaking artifacts, improve the accuracy of the pre-filtering, and keep the real-time
performance of the approach.

Similarly to VSSM, Moment Soft Shadow Mapping (MSSM) (PETERS et al., 2016;
PETERS et al., 2017) generates a pre-filtered moment shadow map (PETERS; KLEIN,
2015), and use it to estimate the average blocker depth and perform the soft shadow
filtering by solving the Hamburger moment problem. Some schemes to optimize the
approach, as well as to handle numerical precision issues, are presented as well.

Different from the previous approaches, the work proposed by related work (SEL-
GRAD et al., 2015) uses a new pre-filtering method in which a per-texel fragment list of
all blockers is stored in a multi-layer shadow map (XIE; TABELLION; PEARCE, 2007).
Depth and opacity of all the blocker fragments are stored in a hierarchical representa-
tion, where each level stores the average depth and the accumulated opacity of the texels
involved. This shadow map representation is then used to perform shadow filtering.

26 BACKGROUND AND STATE-OF-THE-ART REVIEW

(a) Screen-space filtering (b) PCSS (c) Reference

Figure 2.12 Screen-space filtering (a) is able to generate soft shadows visually similar to the
ones generated by PCSS (b) and the reference solution (c). Images courtesy of (BUADES;
GUMBAU; CHOVER, 2015).

Stochastic soft shadow mapping (LIKTOR et al., 2015) samples a 4D shadow light
field using a stochastic soft shadow map and converts such samples to a pre-filterable
basis. The authors use EVSM to represent the visibility function, but any other pre-
filterable basis could be used.

Pre-filtering techniques are a good alternative to produce real-time visually plausible
soft shadows (an example is shown in Figure 2.11-(b)) with constant-time filtering. Most
of them make use of Summed-Area Tables (SAT) (CROW, 1984) as their pre-filtering
function to avoid the brute-force sampling proposed by the PCSS technique. However, the
time to build the SAT structure increases according to the shadow map resolution used.
So, pre-filtering techniques are typically scalable with respect to the average blocker depth
estimation and soft shadow filtering, but do not provide scalability for high shadow map
resolutions. Furthermore, the drawback shared by the pre-filtering techniques is that they
are prone to light leaking or incorrect shadow computation at contact borders, making
their use unsuitable for complex scenarios.

2.5.4 Screen-Space Filtering

An alternative to improve the performance of the soft shadow computation is to perform
some or all the soft shadow filtering in the screen space. The basic idea behind this
strategy is to generate hard shadows in the camera viewpoint with traditional shadow
mapping, adapt the PCSS theory to estimate a screen-space penumbra size, and blur the
hard shadows by the application of a separable filter over the penumbra region.

Screen-Space Percentage-Closer Soft Shadows (SSPCSS) (MOHAMMADBAGHER et
al., 2010) proposes that the PCSS framework must be fully computed in screen space.
Blocker search and shadow filtering steps are filtered in screen space by the use of a
separable cross bilateral filter (PHAM; VLIET, 2005). Screen-Space Anisotropic Blurred
Soft Shadows (SSABSS) (ZHENG; SAITO, 2011) computes the average blocker depth
in light space and performs screen-space anisotropic Gaussian blur over the penumbra
size to improve the visual quality of SSPCSS. Separable Soft Shadow Mapping (SSSM)
(BUADES; GUMBAU; CHOVER, 2015) proposes a separable algorithm to estimate the

2.6 ACCURATE SOFT SHADOWS 27

Property
Method Anti-aliasing Reduced Leaking Scalability (BD/SF) Working space

PCSS 6 4 6/6 Light space
SAVSM 6 6 6/4 Light space
VSSM 6 6 4/4 Light space
ESSM 6 6 4/4 Light space
MSSM 6 6 4/4 Light space

SSPCSS 6 4 4/4 Screen space
SSABSS 6 4 6/4 Screen space
SSSM 6 4 4/4 Screen space

Table 2.2 Classification of the main visually plausible soft shadow techniques proposed in the
literature according to the following attributes: anti-aliasing for shadows produced with low-
resolution shadow maps, reduced light leaking artifact generation, scalability with respect to
the average blocker depth (BD) estimation and soft shadow filtering (SF), and working space.

average blocker depth and uses the Gaussian filtering to filter the shadows in screen space.

The main advantage of screen-space approaches over related work is that, by the
use of separable filtering techniques, the soft shadow computation can be done faster.
However, while this strategy may work well in scenarios such as the one shown in Figure
2.12, screen-space filtering provides just an approximation of the effect obtained by the
filtering of perspectively deformed kernels in the shadow map (light) space. That is why
the screen-space filtering strategy is not as accurate as the previous strategies.

In Table 2.2, we evaluate the properties of the main techniques proposed for visually
plausible soft shadow rendering. Similar to the filtered hard shadow techniques, none of
the visually plausible soft shadow rendering techniques is able to minimize aliasing arti-
facts for low-resolution shadow maps. Also, only PCSS and the screen-space techniques
are able to reduce light leaking artifacts. Similar to PCF, PCSS uses a solution that does
not provide scalability. In this sense, only the screen-space techniques sacrifice accuracy
to achieve higher performance and scalability for the soft shadow rendering.

Visually plausible soft shadows are more accurate than hard and filtered hard shadows,
but still lack realism because these shadows are computed on the basis of a single point
light source. In the next section, we show the proposed techniques dedicated to solve the
simplified rendering equation (2.8) by means of area light source sampling.

2.6 ACCURATE SOFT SHADOWS

Differently from the other techniques presented in the previous sections, accurate soft
shadow techniques do not work with single point light sources. In order to evaluate the
simplified rendering equation (2.8) correctly, they sample the area light source so that
they can evaluate the binary visibility function Vray correctly.

The most traditional version of ray tracing (WHITTED, 1980) can only reproduce
hard shadows because only one shadow ray is sent to evaluate the visibility condition
of the surface point. By distributing several shadow rays per area light source and

28 BACKGROUND AND STATE-OF-THE-ART REVIEW

(a) (b) (c)

Figure 2.13 Shadows may be computed according to the visibility function proposed by ray
tracing (a), shadow volume (b) or shadow mapping (c). Images (a, b, c) are courtesy of
(BILLEN; DUTRÉ, 2016; WANG et al., 2014; AGRAWALA et al., 2000) respectively.

averaging their results, one can render accurate soft shadows with ray tracing (COOK;
PORTER; CARPENTER, 1984), as shown in Figure 2.13-(a). One problem with this
approach is that the use of regular or random sampling patterns to evaluate the area
light source generates aliasing or noise artifacts along the shadow silhouette. Since then,
several sampling strategies (e.g., stochastic sampling (COOK, 1986), stratified sampling
(MITCHELL, 1996), uniform jitter sampling (OUELLETTE; FIUME, 2001), Poisson
disc sampling (WEI, 2008), adaptive sampling (HACHISUKA et al., 2008; MEHTA;
WANG; RAMAMOORTHI, 2012), line sampling (BILLEN; DUTRÉ, 2016)) have been
used with ray tracing to alleviate aliasing, each one of them which its own advantages
and drawbacks (RAMAMOORTHI et al., 2012; PILLEBOUE et al., 2015). However,
regardless of the sampling strategy used, ray tracing demands seconds to produce accurate
shadows, making this technique unsuitable to generate shadows for interactive or real-
time applications.

An alternative to compute accurate shadows faster than ray tracing relies on the use
of shadow volume (CROW, 1977). To compute accurate soft shadows from shadow vol-
ume, the authors of (BROTMAN; BADLER, 1984) proposed an algorithm that generates
hard shadows of several shadow volumes computed for each point light source randomly
positioned over the area light source and averages the hard shadow intensities to produce
a single soft shadow appearance. This approach produces accurate soft shadows faster
than the alternatives based on ray tracing, at the cost of prohibitively large memory
footprints.

The use of penumbra wedges located in the penumbra regions is an alternative solu-
tion to compute soft shadows from shadow volume (AKENINE-MOLLER; ASSARSSON,
2002; ASSARSSON; AKENINE-MOLLER, 2003; ASSARSSON et al., 2003; LAINE et
al., 2005; FOREST; BARTHE; PAULIN, 2006; LEHTINEN; LAINE; AILA, 2006), al-
though more accurate and faster solutions do exist, such as (MORA et al., 2012; WANG
et al., 2014), as shown in Figure 2.13-(b).

2.7 DISCUSSION 29

Since the development of the accumulation buffer (HAEBERLI; AKELEY, 1990),
many algorithms have been proposed to use shadow mapping to generate hard shadows
in real time and average them using the accumulation buffer.

For a linear light source, the 2D version of an area light source, only two shadow
maps placed at the vertices of the linear light source are required to produce accurate soft
shadows using a two-channel shadow map which stores depth and visibility (HEIDRICH;
BRABEC; SEIDEL, 2000).

For static scenes, visibility precomputation is allowed and some algorithms make
use of this strategy to compute interactive or real-time accurate soft shadows (HERF;
HECKBERT, 1996; HECKBERT; HERF, 1997; HERF, 1997; AGRAWALA et al., 2000;
ST-AMOUR; PAQUETTE; POULIN, 2005), as can be seen in Figure 2.13-(c). The clear
drawback of precomputation is that, for dynamic scenes, the precomputed structures
must be recalculated for every frame, decreasing the efficiency of the solution.

For dynamic scenes, alias-free shadow maps (SINTORN; EISEMANN; ASSARSSON,
2008) have been used for hard shadow estimation per light source sample. In that work,
the authors could generate high-quality, accurate soft shadows at interactive frame rates,
because the alias-free shadow map generation is considerably costly when compared to
alternative shadow mapping approaches. The adaptive sampling solution proposed in
(SCHWARZLER et al., 2012) uses a screen-space subdivision criteria to determine how
many light source samples are needed to generate accurate soft shadows. Although this
technique works well when the camera is far away from the scene, because a few light
source samples are needed to provide visually accurate soft shadows, the subdivision step
consumes too much processing time to determine the number of samples, making this
approach inefficient when the camera is relatively close to penumbra regions, where a
large number of light source samples are required to provide accurate soft shadows.

While the evaluation of (2.8) provides high-quality visual results, the estimation
of the visibility function for several light source samples is computationally expensive
(SCHWARZLER et al., 2012), preventing its use for interactive applications, such as
games and augmented reality.

2.7 DISCUSSION

In this thesis, we aim to propose shadow rendering algorithms for real-time anti-aliasing
of hard and soft shadows on the basis of the concept of shadow revectorization. To
do so, we improve the theory initially proposed by related work (BONDAREV, 2014)
to perform shadow anti-aliasing of higher quality, with a memory footprint as small as
the one required by shadow mapping. Also, we extend the original work on shadow
revectorization to support anti-aliasing of filtered hard shadows, visually plausible soft
shadows, and the rendering of accurate soft shadows.

As shown in Section 2.3, shadow silhouette recovery techniques generally produce
accurate hard shadows, but are inefficient in terms of processing time and memory con-
sumption. In this thesis, we propose a new technique for efficient, accurate shadow anti-
aliasing that works well for both low- and high-resolution shadow maps, while keeping
performance and memory footprint as low as the ones obtained with shadow mapping.

30 BACKGROUND AND STATE-OF-THE-ART REVIEW

Taking advantage of our proposed technique for silhouette recovery, we aim to present
a novel technique that is able to generate anti-aliased filtered hard shadows for both low-
and high-resolution shadow maps, without as much light leaking artifacts as related
work, because we do not rely on shadow map pre-filtering for penumbra simulation. To
achieve the desired scalability for the penumbra simulation, at the cost of higher memory
consumption, we make use of Euclidean distance transform to filter the hard shadows.

On the basis of the developed filtered hard shadow techniques, we propose different
techniques that take advantage of the improved hard shadow silhouette recovery strategy
obtained with shadow revectorization to achieve anti-aliased soft shadow rendering. The
main technique uses a screen-space approach that improves the accuracy of the existing
screen-space soft shadow techniques, while providing real-time performance through the
scalability for the soft shadow filtering.

Finally, our main focus of research in this thesis is the proposition of real-time tech-
niques for efficient shadow artifact minimization. The faster existing strategy to compute
accurate soft shadows relies on the evaluation of the shadow mapping visibility function
over a discrete representation of the area light source. Such a discretization may occur by
the uniform or adaptive sampling of the area light source. While the uniform sampling
may generate several, unnecessary light source samples, which further increases the com-
putational cost of the visibility evaluation over the area light source, the current solution
for adaptive sampling is prone to aliasing, banding artifacts (due to the undersampling
of the penumbra region) and consequent temporal incoherence (SCHWARZLER et al.,
2012).

To improve the performance of the accurate soft shadow generation, while keeping
the high visual accuracy of the solution, we propose an alternative adaptive solution
strategy to generate a few, consistent light source samples to represent the area light
source. By replacing the shadow mapping visibility function by a revectorization-based
visibility function that already provides shadow anti-aliasing, we target to further reduce
the number of light source samples required to generate accurate soft shadows.

2.8 SUMMARY

In this chapter, we have presented the theoretical background for shadow rendering.
Moreover, we have discussed the advantages and drawbacks of the existing shadow ren-
dering techniques with respect to the simulation of hard and soft shadows.

As we show in the next chapters, we propose a set of techniques to solve the main
problem still found in both hard and soft shadow mapping techniques proposed in the
literature: the aliasing artifacts. For hard shadows, we make use of the shadow revector-
ization to achieve the desired high visual quality of the shadow rendering. For filtered
hard shadows and visually plausible soft shadows, we make use of the Euclidean distance
transform to simulate penumbra with high performance and visual quality. Finally, since
the main problem of the existing techniques for accurate soft shadow rendering relies on
its high computational cost, we propose an adaptive solution that uses a revectorization-
based visibility function to speed up the computation of accurate soft shadows.

Chapter

3
In this chapter, we present and evaluate our proposed technique that uses the concept of shadow revector-

ization for real-time hard shadow anti-aliasing. To further state the practical contribution of this work,

we show the results of the proposed technique in the context of a game engine.

REVECTORIZATION-BASED SHADOW MAPPING

Image revectorization may be defined as an anti-aliasing approach that uses the available
image resolution to reduce the jagged pattern of an aliased region by the recovering of
its approximate original color. The main advantage of such an approach is the ability to
generate images of higher visual quality in real time.

In the field of real-time shadows, techniques based on shadow mapping generate alias-
ing artifacts along the shadow silhouette mainly when using low-resolution shadow maps
for the shadow computation. In this case, the revectorization of the aliased shadow is a
useful alternative to improve the shadow visual quality and its temporal coherence, while
keeping the low memory consumption and real-time performance of the rendering. The
first attempt for such a shadow revectorization technique (BONDAREV, 2014) consid-
ered only the aliasing present in hard shadows, required two passes on the shader, did
not handle the artifacts produced by the revectorization on sloped surfaces, and required
an additional texture for shadow anti-aliasing.

In this chapter, we present the Revectorization-based Shadow Mapping (RBSM), our
proposed technique for hard shadow anti-aliasing that alleviates the aforementioned prob-
lems of the shadow revectorization proposed in (BONDAREV, 2014). We show how this
technique can be used for conservative (Section 3.1) and non-conservative anti-aliasing
(Section 3.2). This chapter covers the discussion and results mainly presented in four
authored publications (MACEDO; APOLINÁRIO, 2016; MACEDO; APOLINÁRIO;
AGÜERO, 2017; MACEDO et al., 2017; MACEDO; APOLINÁRIO, 2018).

To ease the explanation of the proposed approach, let us assume that each camera-
view fragment (or pixel) is visually represented by a red square (as can be seen in the red
grid shown in Figure 3.1-(a)), that is projected in a shadow map texel represented by a
yellow square (as can be seen in the yellow grid shown in Figure 3.1-(a)). The normalized
relative position (or sub-coordinates) c ∈ R2 of the camera-view fragment in the shadow
map texel (Figure 3.1-(b)) is estimated by

31

32 REVECTORIZATION-BASED SHADOW MAPPING

(a) (b)

cx = 0.6

c
y

=
0.6

Figure 3.1 Shadow mapping estimates shadow intensities per projected shadow map texel
(each yellow square in the yellow grid) rather than per camera-view fragment (or pixel, repre-
sented by each red square inside the red grid) (a). To help on the minimization of these aliasing
artifacts, we estimate the normalized relative position c of each camera-view fragment (blue
square in (b)) inside the projected shadow map texel.

cx = p̃xn− bp̃xnc
cy = p̃ym−

⌊
p̃ym

⌋
,

(3.1)

where p̃ represents a surface point transformed to the light source viewpoint, n and m
are the shadow map width and height.

From the subtraction with the floor function in (3.1), we know that cx and cy lie in
the closed unit interval [0, 1].

3.1 REVECTORIZATION-BASED CONSERVATIVE SHADOW SILHOUETTE RE-
COVERY

3.1.1 Overview

RBSM is an algorithm that aims to locate shadow silhouette patterns in the scene and
to use the available screen-space resolution provided by the camera view to perform
shadow anti-aliasing through the revectorization of the shadow. To do that efficiently,
the algorithm operates only over the lit side of the shadow silhouette, achieving what we
call a conservative shadow anti-aliasing. An overview of RBSM can be seen in Figure
3.2. A pseudocode of RBSM is shown in Algorithm 1.

To minimize the shadow aliasing, RBSM defines a visibility function that works per
fragment in the camera view. Much like an extension of the morphological anti-aliasing
(JIMENEZ et al., 2011) for hard shadows, RBSM takes as input the shadow map (Line 2
of Algorithm 1) and the scene rendered from the camera viewpoint, with the aliased hard

3.1 REVECTORIZATION-BASED CONSERVATIVE SHADOW SILHOUETTE RECOVERY 33

(a) (g)

(b) (c) (d) (e) (f)

Figure 3.2 An overview of the RBSM pipeline for conservative hard shadow anti-aliasing.
Given the aliased shadow silhouettes generated by shadow mapping (a), a neighbourhood eval-
uation (green arrows in (b)) is conducted to detect aliased lit fragments (b) and also the direc-
tions (green arrows in (c)) of where the shadow silhouette is located (c). Then, the algorithm
traverses (blue arrows in (d)) the light space (yellow grid) to determine the normalized relative
distance (gray shades in (e)) of each camera-view lit fragment (each red square in the red grid)
to the shadow silhouette (e). Finally, the algorithm uses a linear comparison (green line in (f))
to revectorize the shadow silhouette (f, g) in the camera space.

shadows estimated by the shadow test (Figures 3.2-(a, b) and Lines 4-5 of Algorithm
1). After the evaluation of the spatial coherency between neighbours in the shadow map
(Figure 3.2-(b)), the algorithm proceeds by detecting the directions of where aliasing
artifacts are located (Figure 3.2-(c), Line 6 of Algorithm 1). In RBSM, these directions
(green arrows in Figure 3.2-(c)) are represented as discontinuities in the shadowing pro-
cess. On the basis of the discontinuity representation, the next step of RBSM consists
in the traversal of the lit side of the shadow silhouette (Figure 3.2-(d)). This traversal is
performed with the goal of computing not only the size of the aliased silhouette where
the fragment is located, but also the relative position of the fragment in this aliased
silhouette (Line 7 of Algorithm 1). After the traversal is ended for all directions, RBSM
computes the size of the aliased silhouette and the distance of each fragment to the ends
of the shadow silhouette. This distance is normalized to the origin of the local coordinate
system of the aliased silhouette, as shown in Figure 3.2-(e). Finally, a linear comparison
between vertical and horizontal normalized distances is computed to determine whether
a fragment must be revectorized (put in shadow) by the algorithm (Figure 3.2-(f) and
Line 8 of Algorithm 1).

3.1.2 Shadow Silhouette Locatization

The first step of RBSM consists in the generation of the aliased hard shadows as proposed
by shadow mapping. Hence, let us assume p as a surface point in the camera view and

34 REVECTORIZATION-BASED SHADOW MAPPING

Algorithm 1 Revectorization-based shadow mapping

1: for each frame do
2: S ← renderShadowMap;
3: for each surface point p in camera view do
4: p̃← transformToLightSpace(p);
5: VSM ← computeShadowTest(p̃, S);
6: d← computeSilhouetteDirection(VSM);
7: r← estimateRelativePosition(p, p̃, d, S);
8: VRBSM ← performAntiAliasing(r, VSM);
9: end for

10: end for

p̃ is p transformed into the light source view (Line 4 of Algorithm 1). Also, let S be a
shadow map with m rows and n columns, where each pixel S(i, j) ∈ [0, 1], with i ∈ [0, n]
and j ∈ [0,m]. S stores the distance p̃z of the closest surface point p̃ seen from the light
source and projected in the shadow map texture coordinates (i, j) (Line 2 of Algorithm
1). We define the binary shadow mapping test VSM(p̃z, S(i, j)) ∈ {0, 1}, or simply VSM,
as (WILLIAMS, 1978) (Line 5 of Algorithm 1)

VSM =

{
0 if p̃z > S(i, j),

1 otherwise,
(3.2)

which indicates that p is in shadow if its distance p̃z to the light source is higher than
the depth stored in the corresponding shadow map texel S(i, j). In (3.2), the value 0
indicates that p is in the umbra and 1 otherwise.

Unfortunately, the shadow test generates aliasing artifacts along the hard shadow
silhouette, as shown in Figure 3.2-(a). To revectorize these aliased hard shadows, one
needs to detect the directions where the aliased shadow silhouette is located. These
directions can be detected according to the difference between the illumination condition
of neighbour shadow map samples. So, to evaluate the coherency between neighbour
shadow tests and detect shadow silhouette directions, we can define the absolute difference
of neighbour shadow tests d ∈ N4 to map the 4-connected neighbourhood shadow test
evaluation of p̃ to be

d(VSM) = (VSM(p̃z, S(i− 1, j))⊕ VSM(p̃z, S(i, j)),

VSM(p̃z, S(i+ 1, j))⊕ VSM(p̃z, S(i, j)),

VSM(p̃z, S(i, j − 1))⊕ VSM(p̃z, S(i, j)),

VSM(p̃z, S(i, j + 1))⊕ VSM(p̃z, S(i, j))),

(3.3)

where ⊕ denotes the exclusive or (XOR) logical operator.
As shown in (3.3), d is a 4D vector that is used to detect whether the shadow silhouette

is located at the four possible directions of the 2D space (i.e., left, right, top, and bottom
directions). For instance, dx, dy, dz, dw indicate whether the shadow silhouette is located
at left (dx = 1), right (dy = 1), top (dz = 1) or bottom (dw = 1) sides of a fragment.

3.1 REVECTORIZATION-BASED CONSERVATIVE SHADOW SILHOUETTE RECOVERY 35

(a)

dl = −1.4 dr = 0.6

d
b

=
0.6

d
t

=
−

0.4

(b)

rx = 0.3

r
y

=
0.6

Figure 3.3 An example of the orientation used for a fragment located in the lit side of an
aliased shadow silhouette. Given a camera-view (red grid) fragment (blue square) projected
in the shadow map texel (yellow grid), we may compute the distances (d l, dr, d t, d b) of the
fragment to the ends of the shadow silhouette (a). Then, we may orient and normalize these
distances to the origin (green square) of the local shadow aliasing, to estimate the relative
position r of the fragment in the shadow silhouette (b).

In this sense, if the shadow test (3.2) states that a fragment is lit and its visibility
condition is different from at least one of its neighbours in S, the vector d (3.3) is able
to detect where the shadow silhouettes are located and store their directions (Line 6 of
Algorithm 1 and Figure 3.2-(c)).

3.1.3 Shadow Silhouette Traversal

Inspired by morphological anti-aliasing (JIMENEZ et al., 2011), the following step of
RBSM consists in the shadow silhouette traversal, which estimates the distances of the
fragments to the ends of the shadow silhouette, as shown in Figures 3.2-(d) and 3.3-(a).

On the basis of the normalized camera-view fragment position computed from (3.1), a
fragment located in the lit side of a shadow silhouette can be oriented as shown in Figure
3.3. Let us denote dl, dr, dt, and db to be the oriented signed distances of the fragment to
the shadow silhouette computed for left, right, top, and bottom directions, respectively.
In practice, each one of those distances can be computed by a sum of the integer distance
between shadow map texels plus the real-valued relative position c (3.1) of the fragment
in the shadow map texel.

To estimate the aforementioned oriented signed distances, we need to perform, for
each p belonging to the lit side of the shadow silhouette, a traversal in S using p̃ for
all the four directions of the 2D space (i.e., left, right, top, and bottom directions), in
order to detect the ends of the shadow silhouette. For each shadow map neighbour of
a given fragment being accessed in a specific direction, RBSM computes the shadow
test (3.2) for the neighbour sample and detects whether the shadow test result of the

36 REVECTORIZATION-BASED SHADOW MAPPING

(a) (b) (c)

Figure 3.4 Jagged shadow silhouettes (a) are revectorized with RBSM (b). However, artifacts
(pointed by red arrows) may arise for sloped surfaces due to the depth change that affects the
shadow test (b). By using our solution, we can reduce this problem (c).

neighbour is different from the one estimated for the given fragment. In this case, since
the conservative RBSM operates only over lit fragments, a shadowed fragment has been
detected. Therefore, we have detected the end of the shadow silhouette and we need to
end the traversal in that particular direction. On the other hand, if the shadow test is the
same between neighbour shadow map texels, we need to check if the neighbours share at
least one discontinuity direction in common (3.3). If that is not the case, the neighbour
shadow map texel accessed during traversal does not belong to the same shadow silhouette
and the shadow traversal must be ended.

To better understand the shadow silhouette traversal, let us visualize the scenario
shown in Figure 3.2-(d). Only for the lit fragments inside the shadow silhouette, we
perform the shadow silhouette traversal (resulting in the blue arrows depicted in Figure
3.2-(d)). To the right of these fragments, there are shadowed fragments that mark the
end of the shadow silhouette. To the left of these fragments, there are other lit fragments.
However, since these neighbour lit fragments do not have discontinuity directions, they
do not belong to the same shadow silhouette. One important note with respect to this
traversal is that, while the rotation of the light source influences the visual aspect of
the shadow aliasing seen from the camera viewpoint, the generated shadow map is still
aligned with the light source coordinate system. Therefore, the traversal provided by
RBSM over X and Y axis of the shadow map works well regardless of the orientation of
the light source.

For sloped surfaces, the depth of the shadow map sample being accessed may change
in relation to the depth accessed in the initial shadow map texel. If we use the same
depth retrieved from p̃z for shadow test during traversal, artifacts may arise in the cases
where the depth change in S(i, j) affects the shadow test result (Figure 3.4-(b)). To
solve this problem, we use the shadow mapping assumption that p̃z ≥ S(i, j) holds for
every shadow map texel. Thus, to detect this depth change during traversal, we check
whether |p̃z − S(i, j)| < ε holds. If the condition is true, we update p̃z before the shadow
test: p̃z = p̃z − ε. In fact, we use an approach that ensures for fragments in shadow,
p̃z > S(i, j). Conversely, for lit fragments, p̃z < S(i, j). As shown in Figure 3.4-(c), this

3.1 REVECTORIZATION-BASED CONSERVATIVE SHADOW SILHOUETTE RECOVERY 37

dl = −1.4 dr = 0.6

(a)

dl = 1.4 dr = 0.6

(b)

dl = −1.4 dr = −0.6

(c)

(d) (e) (f)

Figure 3.5 Conservative RBSM deals basically with (a) L-shaped, (b) U-shaped and (c) I-
shaped shadow silhouettes. The signed distance computed for each fragment allows the detection
of the shadow silhouette shape in which the fragment is located, as well as the computation of
the relative position of each fragment in the shadow silhouette (d, e, f).

solution alleviates the artifacts caused by the shadow revectorization. To detect only
the cases of depth change, the value of ε must be chosen carefully. In our setup, the
difference between p̃z and S(i, j) is relatively small. Hence, we have empirically defined
ε = 2.5× 10−5, which has sufficed for all our test cases.

3.1.4 Shadow Silhouette Normalization

After the computation of the signed distances of the fragment to the shadow silhouette
(Figure 3.3-(a)), we need to normalize such values to the unit interval, as illustrated in
Figures 3.2-(e) and 3.3-(b).

As depicted in Figure 3.3-(a), each one of the oriented signed distances is positive to-
wards the shadow silhouette and negative otherwise. On the basis of this signed distance,
we can detect the type of shadow silhouette shape in which the fragment is located, as
shown in Figure 3.5. Let T(d1, d2) ∈ {−2, 0, 1} be the folllowing function that, for any
two signed distance values d1 and d2, is defined as

T (d1, d2) =


−2 if (d1 > 0) ∧ (d2 > 0),

0 else if (d1 < 0) ∧ (d2 < 0),

1 otherwise.

(3.4)

38 REVECTORIZATION-BASED SHADOW MAPPING

As shown in Figure 3.5-(a) and Equation (3.4), an L-shaped shadow silhouette has
T (d1, d2) = 1 because both positive and negative distance values are computed for the
fragment located in the shadow silhouette. As seen in Figure 3.5-(b), a lit fragment in a
U-shaped shadow silhouette has T (d1, d2) = −2 for a specific axis, because both signed
distances are positive. Likewise, a lit fragment in an I-shaped shadow silhouette has
T (d1, d2) = 0 for a specific axis because both signed distances are negative, as can be
seen in Figures 3.5-(c).

Assuming that r ∈ R2, illustrated in Figure 3.3-(b), is the relative position of the
fragment in the shadow silhouette, r can be computed as follows

rx = max(T (dl, dr), 2VSM − 1)
|max(T (dl, dr)dl, T (dl, dr)dr)|

|dl|+ |dr|

ry = max(T (dt, db), 2VSM − 1)
|max(T (dt, db)dt, T (dt, db)db)|

|dt|+ |db|
.

(3.5)

For L-shaped shadow silhouettes (T (d1, d2) = 1), as illustrated in Figure 3.5-(d),
Equation (3.5) computes the relative position on the basis of the positive distance values
previously estimated, since they are the output of the right-handed max function. For
fragments on the lit side of U-shaped shadow silhouettes, the function T (d1, d2) changes
the sign of the distances computed, such that r is calculated on the basis of the minimum
distance value, closest to the end of the shadow silhouette, as shown in Figure 3.5-(e).
Also, since T (d1, d2) = −2, the scale by factor 2 is used to normalize r to the interval
[0, 1]. For fragments located on the lit side of I-shaped shadow silhouettes, the function
T (d1, d2) makes the relative position to be 0 since T (d1, d2) for any two negative distance
values d1 and d2 is 0. This is illustrated in Figure 3.5-(f).

3.1.5 Hard Shadow Anti-Aliasing Visibility Function

To produce anti-aliased hard shadows, as depicted in Figures 3.2-(f, g), we need to take
three facts into consideration: the result of the shadow test VSM (3.2), the type of the
shadow silhouette shape in which the fragment is located (Figure 3.6), and the normalized
relative position r of the fragment in the shadow silhouette (Figure 3.3).

Figure 3.6 shows the visual effect that we aim to achieve using RBSM. As shown
in this figure, fragments that were estimated to be in shadow (VSM = 0) by the shadow
test must remain in shadow after the shadow revectorization. On the other hand, the
algorithm must not perform anti-aliasing for I-shaped shadow silhouettes (Figures 3.6-(c,
f)), since the revectorization effect is best suited for L- and U-shaped shadow silhouettes
(Figures 3.6-(a, b, d, e)). Fragments located at I-shaped shadow silhouettes can be easily
detected by checking whether rxry = 0, following (3.5). For lit fragments located in the
L- and U-shaped shadow silhouettes, a simple linear comparison using r (1− rx > ry) is
able to determine whether the fragment must be shadowed or remain lit.

Given those circumstances, the RBSM hard shadow anti-aliasing visibility function
VRBSM(VSM, r) ∈ {0, 1} is defined as follows

3.2 REVECTORIZATION-BASED NON-CONSERVATIVE SHADOW SILHOUETTE RECOVERY39

(a) (b) (c)

(d) (e) (f)

Figure 3.6 Conservative RBSM deals with (a, d) L-shaped, (b, e) U-shaped and (c, f) I-
shaped shadow silhouettes. At the top of the figure, we show the shadow silhouette produced
by shadow mapping. On the bottom of the figure, we show the expected anti-aliasing produced
by the conservative RBSM.

VRBSM(VSM, r) =

{
0 if (VSM = 0) ∨ ((rxry > 0) ∧ (1− rx > ry)),

1 otherwise.
(3.6)

While this way of revectorizing shadow silhouettes is able to suppress aliasing arti-
facts with reasonable accuracy, the algorithm uses a conservative approach to perform
the shadow anti-aliasing because it operates only on the lit side of the shadow silhouette,
achieving a small overhead compared to shadow mapping, but introducing the overesti-
mation of the shadow silhouette. To solve this problem, we propose an adaptation of the
RBSM pipeline to reduce the overestimation of the hard shadow anti-aliasing.

3.2 REVECTORIZATION-BASED NON-CONSERVATIVE SHADOW SILHOU-
ETTE RECOVERY

The main problem of the conservative anti-aliasing provided by RBSM is that, by working
over the lit side of the shadow silhouette, the technique is able to recover an approximate
shadow silhouette, but suffers from overestimation artifacts because the real, accurate
shadow silhouette is not located only in the external part of the shadow produced by
shadow mapping. By analyzing both sides (lit and shadowed), we can reduce the overes-
timation. In this sense, to improve the anti-aliasing provided by RBSM, we propose an
extension of its pipeline to use both lit and shadowed sides of the shadow silhouette for
hard shadow revectorization.

40 REVECTORIZATION-BASED SHADOW MAPPING

(a) (g)

(b) (c) (d) (e) (f)

Figure 3.7 An overview of the RBSM pipeline for non-conservative hard shadow anti-aliasing.
Given the aliased shadow silhouettes generated by shadow mapping (a), a neighbourhood eval-
uation (green arrows in (b)) is conducted to detect aliased fragments (b) and also the directions
(green arrows in (c)) of where the shadow silhouette is located (c), regardless of whether the
fragment is located in the inner- or the outer-side of the shadow silhouette. Then, the algo-
rithm traverses the light space (blue arrows in (d)) to determine the normalized relative distance
(gray shades in (e)) of the camera-view fragments (red grid) located on both sides of the shadow
silhouette to the shadow silhouette itself (e). Finally, taking advantage of this normalized rel-
ative distance, the algorithm computes a dilated version of the revectorized shadow, with less
overestimation artifacts than the conservative approach (f, g).

3.2.1 Overview

An overview of the non-conservative RBSM pipeline is shown in Figure 3.7. Also, this
non-conservative RBSM uses the same pseudocode shown in Algorithm 1. As can be
seen in Figure 3.7-(b), after the shadow map generation, both shadow test (3.2) and
neighbourhood evaluation are computed for all lit and now also shadowed fragments
visible in the camera view. Then, on the basis of the neighbourhood evaluation previously
computed, the algorithm detects all the fragments located in the shadow silhouette using
the discontinuity representation of (3.3) for both sides of the shadow silhouette (Figure
3.7-(c)). For each fragment in the aliased shadow silhouette, a traversal is performed for
both sides of the shadow silhouette (Figure 3.7-(d)) to estimate the aliasing size and the
normalized relative distance of each fragment to the shadow silhouette (Figure 3.7-(e)).
Then, a new visibility function is used to determine the new location of the revectorized
shadow silhouette (Figures 3.7-(f, g)).

3.2.2 Shadow Silhouette Locatization

For non-conservative anti-aliasing, we need to detect the directions where the shadow
silhouette is located in both inner- and outer-sides of the shadow silhouette, because the

3.2 REVECTORIZATION-BASED NON-CONSERVATIVE SHADOW SILHOUETTE RECOVERY41

(a)

dl = 1.6 dr = −0.4

d
b

=
−

0.4
d
t

=
0.6

(b)

rx = 0.8

r
y

=
0.6

Figure 3.8 An example of the orientation used for a fragment located in the shadowed side of
an aliased shadow silhouette. Given a camera-view (red grid) fragment (blue square) projected
in the shadow map texel (yellow grid), we may compute the distances (d l, dr, d t, d b) of the
fragment to the ends of the shadow silhouette (a). Then, we may orient and normalize these
distances to the origin (green square) of the local shadow aliasing, to estimate the relative
position r of the fragment in the shadow silhouette (b).

shadow anti-aliasing will cover both parts of the silhouette, as shown in Figure 3.7-(f).

For every fragment in the camera view, we compute the shadow test (3.2) and the
directions of where the shadow silhouette is located (3.3). As a result of this step, we have
the directions of where the shadow silhouette is located for all the fragments situated in
the aliased shadow silhouette (Figure 3.7-(c)).

3.2.3 Shadow Silhouette Traversal

Similarly to the conservative RBSM, during the traversal of the shadow silhouette (Figure
3.7-(d)), regardless of whether the fragment is located in the lit or shadowed side of the
shadow silhouette, we still need to perform the shadow test (3.2) for each neighbour
shadow map texel being accessed. To detect the end of the shadow silhouette, we check if
the neighbour fragment has a different visibility condition than the one estimated by the
initial fragment of the traversal. In this sense, for lit fragments, the shadow silhouette ends
in a shadowed fragment (Figure 3.3-(a)). On the counterpart, for shadowed fragments,
the shadow silhouette ends in a lit fragment (Figure 3.8-(a)). If the visibility condition
between neighbours is the same, we still compute the discontinuity directions (3.3) and
check whether neighbour fragments share at least one discontinuity direction. If that is
not the case, the traversal has stepped out of the lit/shadowed side of the aliased shadow
silhouette.

The result of this step is the estimation of the oriented signed distance for both lit
(Figure 3.3-(a)) and shadowed (Figure 3.8-(a)) fragments located in the aliased silhouette.

42 REVECTORIZATION-BASED SHADOW MAPPING

dl = 1.4 dr = −0.6

(a)

dl = −1.4 dr = −0.6

(b)

dl = 1.4 dr = 0.6

(c)

(d) (e) (f)

Figure 3.9 Fragments in the shadowed side of the aliasing can be located in (a) L-shaped,
(b) U-shaped and (c) I-shaped shadow silhouettes. The behaviour of the normalized relative
position computation (d, e, f) is different from the one computed for lit fragments.

3.2.4 Shadow Silhouette Normalization

Once the shadow silhouette traversal has ended, we proceed with the computation of the
normalized distance r of each fragment to the corner of the aliased shadow silhouette
(Figure 3.7-(e)). Depending on whether the fragment is located inside or outside the
shadowed part of the silhouette, the origin of this local coordinate system (represented
by the green square in Figures 3.3-(b) and 3.8-(b)) is changed. Nevertheless, the origin
is still located at the corner of the aliasing.

To compute the normalized relative position of the fragment in the shadow silhouette,
we use (3.4) and (3.5), following the orientation shown in Figure 3.9.

As seen in Figure 3.9-(a), an L-shaped shadow silhouette has T (d1, d2) = 1 because we
can measure positive and negative distance values for the fragment located in the shad-
owed part of the aliased silhouette. As depicted in Figure 3.9-(b), a shadowed fragment
in a U-shaped shadow silhouette has T (d1, d2) = 0 for a specific axis because both signed
distances are negative. Finally, as shown in Figure 3.9-(c), a shadowed fragment in an
I-shaped shadow silhouette has T (d1, d2) = −2 for a specific axis, because both signed
distances are positive.

For a shadow fragment located in an L-shaped shadow silhouette, Equation (3.5) com-
putes the relative position r making use of the positive distance values estimated during
the shadow silhoeutte traversal. For fragments located on the shadowed side of both U-

3.2 REVECTORIZATION-BASED NON-CONSERVATIVE SHADOW SILHOUETTE RECOVERY43

(a) (b) (c)

(d) (e) (f)

Figure 3.10 Non-conservative RBSM for three distinct scenarios. At the top of the figure, we
show the shadow silhouette produced by shadow mapping. On the bottom of the figure, we
show the expected anti-aliasing produced by the non-conservative RBSM.

and I-shaped shadow silhouettes, since VSM = 0, the left-handed max function outputs
0 for U-shaped shadow silhouettes (see Figure 3.9-(e)) and −1 for I-shaped shadow sil-
houettes (see Figure 3.9-(f)). That scale factor makes the estimated relative positions to
look like the ones illustrated in Figures 3.9-(e, f).

3.2.5 Hard Shadow Anti-Aliasing Visibility Function

Before proposing the non-conservative anti-aliasing, as depicted in Figures 3.7-(f, g), we
first need to analyze the proposed improved visibility function V ∗RBSM(VSM, r) ∈ {0, 1} for
the separate cases when the fragment is lit (VSM = 1) or is in shadow (VSM = 0)

V ∗RBSM(0, r) =

{
0 if (rxry = 0) ∨ (|rx|+ |ry| > 1

2
),

1 otherwise.
(3.7)

V ∗RBSM(1, r) =

{
0 if (rxry > 0) ∧ (rx + ry <

1
2
),

1 otherwise.
(3.8)

As shown in Figure 3.10, for the originally shadowed part of the shadow silhouette,
whenever the fragment is distant to the corner of the shadow silhouette by more than
a value of 1

2
(see Figure 3.9 for a reference of the relative position computed for every

shadow silhouette shape), the shadowed part is changed to be lit in (3.7). Since r can
be negative for shadowed fragments, according to (3.5), we use the max function to put
this value to 0. Likewise, for the originally lit part of the shadow silhouette, whenever

44 REVECTORIZATION-BASED SHADOW MAPPING

the fragment is distant to the origin of the shadow silhouette by less than a value of 1
2
,

the lit part is put in shadow, as shown in (3.8).

As can be seen in (3.7) and (3.8), the visibility functions are, in some way, comple-
mentary to each other. So, we can define the non-conservative visibility function as

V ∗RBSM(VSM, r) =


0 if (rxry = 2VSM) ∨ ((|rx||ry| > 0) ∧ ((1− VSM)

+(2VSM − 1)(|rx|+ |ry|) < 1
2
)),

1 otherwise.

(3.9)

In the next section, we show a comparison between both implementations of RBSM,
discussing in more details the advantages and drawbacks of each approach.

3.3 RESULTS AND DISCUSSION

In this section, we evaluate different hard shadow techniques in terms of visual quality and
rendering performance. We follow related work (SEN; CAMMARANO; HANRAHAN,
2003; CHAN; DURAND, 2004) and compare both conservative and non-conservative
RBSM with the traditional shadow mapping technique, as well as the stencil shadow
volume (HEIDMANN, 1991) for generating ground-truth hard shadows.

We have tested our RBSM in different scenarios. For the models of Figures 3.11,
3.14 and 3.15, we evaluate how RBSM handles the aliasing artifacts generated by low-
resolution shadow maps in models with low geometric complexity. In Figures 3.12 and
3.16, we evaluate how well RBSM performs anti-aliasing for shadow silhouettes that
contain several intersections and fine details of the object. In Figure 3.13, we show
how RBSM reduces the aliasing of the shadows generated by a complex model with fine
details along its silhouette. In Figure 3.17, we test the anti-aliasing provided by RBSM
in a complex scenario with trees and several overlapping objects that produce holes and
aliased shadows even for high-resolution shadow maps. Finally, in Figure 3.18, we show
an example of the RBSM anti-aliasing for a game-like, outdoor scenario.

3.3.1 Experimental Setup

For all the tests contained in this thesis, a computer equipped with an Intel CoreTM

i7-3770K CPU (3.50 GHz), 8GB RAM, and an NVIDIA GeForce GTX Titan X graphics
card was used to run the experimental tests. For some scenarios, OpenGL (SHREINER
et al., 2013) and OpenGL Shading Language (GLSL) (ROST et al., 2009) were used to
implement RBSM, shadow mapping and shadow volume. For the other scenarios, we
have used the Unity Pro version 5.6.0.f3 and the Cg language (FERNANDO; KILGARD,
2003) to evaluate the performance of the conservative RBSM for distinct, game-like sce-
narios, typical of a game engine. Most of the figures shown in this section do not contain
scenes with high-frequency textures because they could potentially mask shadow render-
ing irregularities. That is why we have chosen to use white textures in the ground planes
and in some of the other objects.

3.3 RESULTS AND DISCUSSION 45

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

Figure 3.11 A visual comparison between (a) shadow mapping, (b) conservative, (c) non-
conservative RBSM and (d) shadow volume for the Armadillo model using a 10242 shadow
map resolution. False color visualizations show the difference between the shadows generated
by different hard shadow techniques (a, b, c) and the ones obtained by the reference shadow
volume solution (d).

3.3.2 Visual Quality Evaluation

In Figures 3.11, 3.12 and 3.13, we compare both shadow mapping, RBSM and shadow
volume for scenarios with different shadow map resolutions. In all the figures, it is visible

46 REVECTORIZATION-BASED SHADOW MAPPING

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

Figure 3.12 A visual comparison between (a) shadow mapping, (b) conservative, (c) non-
conservative RBSM and (d) shadow volume for the Fence model using a 20482 shadow map
resolution. False color visualizations show the difference between the shadows generated by
different hard shadow techniques (a, b, c) and the ones obtained by the reference shadow
volume solution (d).

that RBSM improves the visual quality of the shadows generated by shadow mapping by
removing the aliasing artifacts along the shadow silhouette. In all those figures, the false
color visualizations also show that the non-conservative RBSM produces shadows that
resemble the ones generated by shadow volume. Meanwhile, the conservative RBSM is
able to successfully reduce the aliasing artifacts of shadow mapping, but causing a slight

3.3 RESULTS AND DISCUSSION 47

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

Figure 3.13 A visual comparison between (a) shadow mapping, (b) conservative, (c) non-
conservative RBSM and (d) shadow volume for the YeahRight model using a 40962 shadow
map resolution. False color visualizations show the difference between the shadows generated
by different hard shadow techniques (a, b, c) and the ones obtained by the reference shadow
volume solution (d).

overestimation in the shadow.

In Figures 3.14, 3.15 and 3.16, we show a visual comparison between shadow mapping
and conservative RBSM for different models and shadow map resolutions. We can see

48 REVECTORIZATION-BASED SHADOW MAPPING

Figure 3.14 A visual comparison between shadow mapping (left) and conservative RBSM
(right) for the Chris, Coconut and Dragon models using 2562, 5122 and 10242 shadow map
resolutions.

that, regardless of the shadow map resolution used, shadow mapping generates aliasing

3.3 RESULTS AND DISCUSSION 49

Figure 3.15 A visual comparison between shadow mapping (left) and conservative RBSM
(right) for the Robot model using a 10242 shadow map resolution.

Figure 3.16 A visual comparison between shadow mapping (left) and conservative RBSM
(right) for the Gate model using a 20482 shadow map resolution.

artifacts along the shadow silhouette because the shadow map resolution is finite and
does not match the pixel resolution of the camera view. Then, by traversing the shadow
aliasing silhouette, RBSM is able to minimize the artifacts and improve the shadow visual
quality.

The quality of the shadow revectorization is dependent on the shadow map resolution
used and the quality of the aliased silhouette. RBSM works well for the scenarios shown in
Figures 3.12 and 3.14 despite the use of low (2562) and medium (5122 and 10242) shadow
map resolutions. In these cases, the objects and their shadows are relatively simple,
since there is not much intersection between shadow silhouettes and a few fine details
to be captured by the shadow map. Hence, the aliasing is the most noticeable artifact
that prevents an accurate shadow rendering. So, by the use of RBSM, we can minimize
these artifacts and improve the shadow visual quality efficiently. On the other hand, the

50 REVECTORIZATION-BASED SHADOW MAPPING

Figure 3.17 A visual comparison between shadow mapping (top) and conservative RBSM
(bottom) for the complex San Miguel model using a 20482 shadow map resolution.

Shadow Map Resolution
Scene Method 5122 10242 20482 40962

Figure 3.11

Shadow Mapping 3.28 ms 3.31 ms 3.36 ms 3.68 ms
Conservative RBSM 3.48 ms 3.63 ms 3.82 ms 4.43 ms

Non-conservative RBSM 3.58 ms 3.66 ms 3.86 ms 4.48 ms
Shadow Volume 145.9 ms 145.9 ms 145.9 ms 145.9 ms

Figure 3.12

Shadow Mapping 3.02 ms 3.03 ms 3.10 ms 3.34 ms
Conservative RBSM 3.28 ms 3.38 ms 3.52 ms 4.28 ms

Non-conservative RBSM 3.34 ms 3.41 ms 3.62 ms 4.39 ms
Shadow Volume 153.8 ms 153.8 ms 153.8 ms 153.8 ms

Figure 3.13

Shadow Mapping 9.14 ms 9.25 ms 9.31 ms 9.58 ms
Conservative RBSM 9.44 ms 9.51 ms 9.64 ms 10.27 ms

Non-conservative RBSM 9.52 ms 9.56 ms 9.72 ms 10.39 ms
Shadow Volume 338.9 ms 338.9 ms 338.9 ms 338.9 ms

Table 3.1 Rendering performance for different hard shadow techniques for varying shadow
map resolution. Scenes were rendered at an output 720p resolution.

shadows shown in the red closeups of Figures 3.13, 3.15 and in the green closeup of Figure
3.16 have a more complex shape, with several intersections in the shadow silhouette and
fine details captured by the shadow map, respectively. In these cases, RBSM minimizes

3.3 RESULTS AND DISCUSSION 51

Figure 3.18 A visual comparison between shadow mapping (top) and conservative RBSM
(bottom) for the exterior environment of the Unity’s Adam model using a 20482 shadow map
resolution.

Output Resolution
Scene Method 480p 720p 1080p

Figure 3.11

Shadow Mapping 2.92 ms 3.31 ms 4.00 ms
Conservative RBSM 3.17 ms 3.63 ms 4.39 ms

Non-conservative RBSM 3.19 ms 3.66 ms 4.45 ms
Shadow Volume 80.31 ms 145.9 ms 307.6 ms

Figure 3.12

Shadow Mapping 2.70 ms 3.03 ms 3.69 ms
Conservative RBSM 2.95 ms 3.38 ms 4.01 ms

Non-conservative RBSM 3.01 ms 3.41 ms 4.24 ms
Shadow Volume 81.43 ms 153.8 ms 333.3 ms

Figure 3.13

Shadow Mapping 8.91 ms 9.25 ms 9.94 ms
Conservative RBSM 9.15 ms 9.51 ms 10.2 ms

Non-conservative RBSM 9.19 ms 9.56 ms 10.3 ms
Shadow Volume 190.1 ms 338.9 ms 713.9 ms

Table 3.2 Rendering performance for different hard shadow techniques for varying output
resolution. Scenes were rendered at a 10242 shadow map resolution.

the aliasing artifacts at the cost of causing a shadow overestimation, suppressing some
details of the original shadow silhouette.

52 REVECTORIZATION-BASED SHADOW MAPPING

Shadow Map Resolution

Scene Method
Low

(2562)
Medium
(5122)

High
(10242)

Very High
(20482)

Figure 3.14-top
Shadow Mapping 4.96 ms 4.99 ms 5.01 ms 5.03 ms

RBSM
5.03 ms
(1.41%)

5.07 ms
(1.60%)

5.10 ms
(1.79%)

5.12 ms
(1.78%)

Figure 3.14-medium
Shadow Mapping 5.14 ms 5.16 ms 5.17 ms 5.20 ms

RBSM
5.14 ms
(0.00%)

5.19 ms
(0.58%)

5.20 ms
(0.58%)

5.21 ms
(0.19%)

Figure 3.14-bottom
Shadow Mapping 5.06 ms 5.09 ms 5.11 ms 5.12 ms

RBSM
5.14 ms
(1.58%)

5.16 ms
(1.37%)

5.20 ms
(1.76%)

5.22 ms
(1.95%)

Figure 3.15
Shadow Mapping 5.08 ms 5.11 ms 5.12 ms 5.14 ms

RBSM
5.14 ms
(1.18%)

5.16 ms
(0.97%)

5.18 ms
(1.17%)

5.22 ms
(1.55%)

Figure 3.16
Shadow Mapping 5.07 ms 5.08 ms 5.14 ms 5.16 ms

RBSM
5.12 ms
(0.98%)

5.14 ms
(1.18%)

5.15 ms
(0.19%)

5.18 ms
(0.38%)

Figure 3.17
Shadow Mapping 5.02 ms 5.03 ms 5.04 ms 5.04 ms

RBSM
5.08 ms
(1.19%)

5.10 ms
(1.39%)

5.11 ms
(1.38%)

5.13 ms
(1.78%)

Figure 3.18
Shadow Mapping 7.43 ms 7.46 ms 7.48 ms 7.69 ms

RBSM
7.46 ms
(0.40%)

7.51 ms
(0.67%)

7.57 ms
(1.20%)

7.74 ms
(0.65%)

Table 3.3 Rendering performance (including percentual of overhead) for shadow mapping and
RBSM for varying shadow map resolution. Scenes were rendered at an output 1080p resolution.

In Figure 3.17, we show a more complex scenario that contains many structures with
fine details (trees), non-planar shadow receivers (chairs on the floor) and multiple objects
that overlap each other. In this case, shadow mapping not only generates the aliasing
artifacts, but is also not able to capture the fine details of the light blocker objects, causing
the appearance of holes along the shadow silhouette (see the blue rectangles in Figure
3.17). RBSM helps on the minimization of shadow aliasing artifacts (see the closeups
of Figure 3.17), but is not able to solve the problem of the shadow holes caused by the
insufficient shadow map resolution used.

In Figure 3.18, we show that our shadow anti-aliasing implementation works not
only for indoor environments, but also for large outdoor environments with high-detailed
structures, such as vegetations, streets and buildings. The closeups in Figure 3.18 show
that a shadow map with insufficient resolution for outdoor scenes clearly generates shadow
aliasing artifacts that can be effectively suppressed by RBSM. Hence, we can see that
RBSM is an algorithm able to provide shadow anti-aliasing for planar (e.g., shadows
seen in the white ground planes of Figures 3.11, 3.12 and 3.13) and non-planar shadow
receivers (Figure 3.17), simple (Figures 3.11, 3.14 and 3.15) and complex scenarios in

3.3 RESULTS AND DISCUSSION 53

Output Resolution
Scene Method 720p 1080p 2160p

Figure 3.14-top
Shadow Mapping 5.01 ms 5.03 ms 5.04 ms

RBSM
5.11 ms
(1.99%)

5.12 ms
(1.78%)

5.12 ms
(1.58%)

Figure 3.14-medium
Shadow Mapping 5.19 ms 5.20 ms 5.20 ms

RBSM
5.19 ms
(0.00%)

5.21 ms
(0.19%)

5.22 ms
(0.38%)

Figure 3.14-bottom
Shadow Mapping 5.11 ms 5.12 ms 5.14 ms

RBSM
5.16 ms
(0.97%)

5.22 ms
(1.95%)

5.34 ms
(3.89%)

Figure 3.15
Shadow Mapping 5.02 ms 5.14 ms 5.21 ms

RBSM
5.18 ms
(3.18%)

5.22 ms
(1.55%)

5.24 ms
(0.57%)

Figure 3.16
Shadow Mapping 5.05 ms 5.16 ms 5.17 ms

RBSM
5.10 ms
(0.99%)

5.18 ms
(0.38%)

5.25 ms
(1.54%)

Figure 3.17
Shadow Mapping 4.99 ms 5.04 ms 5.07 ms

RBSM
5.03 ms
(0.80%)

5.13 ms
(1.78%)

5.14 ms
(1.38%)

Figure 3.18
Shadow Mapping 7.49 ms 7.69 ms 15.08 ms

RBSM
7.63 ms
(1.86%)

7.74 ms
(0.65%)

15.55 ms
(3.11%)

Table 3.4 Rendering performance (including percentual of overhead) for shadow mapping and
RBSM for varying output resolution. Scenes were rendered at a 10242 shadow map resolution.

small (Figure 3.13), medium (Figure 3.17) and large (Figure 3.18) scale.

3.3.3 Rendering Time Evaluation

Tables 3.1 and 3.2 show timing results obtained from different hard shadow techniques in
our developed application. Shadow mapping and RBSM techniques are almost two orders
of magnitude faster than shadow volume, generating shadows in real time, regardless of
the shadow map or output resolution used. It is worthy to note that RBSM is less than 1
millissecond slower than shadow mapping, while providing an improved visual quality for
the hard shadow rendering. Meanwhile, to reduce the overestimation of the conservative
RBSM, non-conservative RBSM demands an overhead of less than 0.3 millisseconds to
provide an improved hard shadow anti-aliasing.

To corroborate the results shown in Tables 3.1 and 3.2, we measured the average
processing time obtained in the Unity game engine to run the scenarios shown in Figures
3.14, 3.15, 3.16, 3.17 and 3.18. The results were reported in Tables 3.3 and 3.4, for
varying shadow map and output resolutions. Similarly to the shadow mapping technique,
RBSM becomes slower as long as both shadow map (Table 3.3) and output resolutions

54 REVECTORIZATION-BASED SHADOW MAPPING

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

(a) Shadow Mapping (b) Conservative RBSM

(c) Non-Conservative RBSM (d) Shadow Volume

Figure 3.19 A visual comparison between (a) shadow mapping, (b) conservative, (c) non-
conservative RBSM and (d) shadow volume for the Fence model using a 5122 shadow map
resolution.

(Table 3.4) are increased. Fortunately, the percentage of overhead added by RBSM keeps
small regardless of the shadow map or output resolution used, proving that the RBSM
technique is scalable with respect to these changes in resolution and adds a small overhead
of processing time to shadow mapping.

Both Table 3.3 and Table 3.4 show that the RBSM technique is about 0.01 to 0.5
milliseconds (or between 0.1% and 3.9%) slower than shadow mapping for the hardware
setup used. Meanwhile, we can see from all the figures shown in this paper that RBSM
greatly improves the visual quality of the shadow. Hence, we believe that RBSM proved
to be an efficient hard shadow anti-aliasing technique, because it can leverage the shadow
visual quality, while adding a pretty small overhead of ∼1.2%, in average, in the total
frame time of a popular game engine.

3.4 SUMMARY 55

3.3.4 Limitations

Similar to other image-based hard shadow techniques, the main limitation of the anti-
aliasing provided by RBSM relies on its accuracy, that is highly dependent on the shadow
map resolution used. For instance, as can be seen in Figure 3.19, for a low-resolution
shadow map, RBSM minimizes the aliasing problem, but does not recover an accurate
shadow silhouette at the shadowed region, introducing shadow overestimation (Figure
3.19-(b)) or producing shadowed shapes (Figure 3.19-(c)) that deviate from the ones
obtained by accurate hard shadow techniques (Figure 3.19-(d)). By comparing Figures
3.12 and 3.19, we can see that just by increasing the shadow map resolution, we can
minimize such a problem.

Because the technique does not rely on additional geometric details to perform the
anti-aliasing, RBSM does not handle holes caused by the use of an insufficient shadow map
resolution. Moreover, for models with fine details, the revectorization does not perform
well for low-resolution shadow maps, since the shadow map is not able to capture the
fine geometric details of the model.

The visibility functions of both conservative and non-conservative RBSM may intro-
duce some small artifacts along the anti-aliased shadow silhouette due to the shadow
silhouette traversal step, that may compute the oriented signed distances incorrectly due
to small depth changes in the geometry. The solution proposed in Section 3.1.3 helps
minimizing these artifacts.

3.4 SUMMARY

In this chapter, we have presented the RBSM, a hard shadow mapping technique that
does not rely on an additional texture or geometric information to perform real-time
hard shadow anti-aliasing. By traversing the shadow silhouette, RBSM is able to mini-
mize aliasing by the definition of a visibility function that closes the aliased silhouette,
recovering an approximate hard shadow silhouette.

Two ways to perform the shadow revectorization were presented. The first, called
conservative RBSM, operates only over the lit side of the shadow silhouette, achieving
real-time hard shadow anti-aliasing, but promoting shadow overestimation. The second,
called non-conservative RBSM, operates over both lit and shadowed sides of the shadow
silhouette to produce an anti-aliasing with higher accuracy than the one provided by
conservative RBSM, at the cost of slightly increased processing time.

Compared to shadow mapping, RBSM reduces shadow aliasing in real time. Com-
pared to shadow volume, RBSM produces high-quality shadows that resemble the ones
obtained by such an accurate hard shadow technique, but RBSM is pretty much faster
than shadow volume, being more adequate for real-time applications.

To show that RBSM is easy to implement, meanwhile providing a practical contribu-
tion for this thesis, an integration of RBSM into the popular Unity game engine has been
done. In the Unity game engine, we could compare both shadow mapping and RBSM
techniques for different scenarios, ranging from the simplest to the most complex, game-
like ones. In this case, the visual quality and performance obtained by RBSM reinforced

56 REVECTORIZATION-BASED SHADOW MAPPING

the idea that the shadow revectorization is ready to be used for practical applications
that make use of hard shadow rendering.

To further expand the theory of RBSM, in the next chapters we show how RBSM can
be used to enhance the visual quality of shadows that simulate the penumbra effect.

Chapter

4
In this chapter, we present the extension of RBSM to produce filtered hard shadows, or fixed-size penum-

bra, in real time. To do so efficiently, we make a novel use of the concept of Euclidean distance transform

to generate the penumbra effect with high quality.

REVECTORIZATION-BASED FILTERED SHADOW
MAPPING

As discussed in the previous chapter, both conservative and non-conservative versions of
Revectorization-based Shadow Mapping (RBSM) were originally designed to provide anti-
aliasing for hard shadows. In this chapter, we present two new techniques that extend the
RBSM theory to provide anti-aliasing for filtered hard shadows, or fixed-size penumbra.
The first technique, called Revectorization-based Percentage-Closer Filtering (RPCF), is
a direct extension of RBSM for filtered hard shadow rendering. RPCF generates fixed-
size penumbra with higher quality than Percentage-Closer Filtering (PCF) at the cost of
being slower than PCF because of the use of the shadow revectorization as a basis for
the hard shadow filtering. To minimize the overhead of RPCF, keeping its high visual
quality results, we developed another technique, called Euclidean Distance Transform
Shadow Mapping (EDTSM). In this chapter, we present and evaluate both techniques
with respect to the state-of-the-art. This chapter covers the discussion and results mainly
presented in the four following authored publications (MACEDO; APOLINÁRIO, 2016;
MACEDO; APOLINÁRIO; AGÜERO, 2017; MACEDO; APOLINÁRIO JR., 2017a;
MACEDO; APOLINÁRIO, 2018).

4.1 REVECTORIZATION-BASED PERCENTAGE-CLOSER FILTERING

An overview of the pipeline to produce filtered hard shadows can be seen in Figure
4.1. While the pipeline is pretty much similar to the one proposed for non-conservative
RBSM (see Section 3.2), to introduce filtering for the anti-aliased hard shadows, we
need to change the RBSM visibility function such that the algorithm outputs penumbra
intensities, rather than whether a fragment is in shadow.

57

58 REVECTORIZATION-BASED FILTERED SHADOW MAPPING

(a) (g)

(b) (c) (d) (e) (f)

Figure 4.1 An overview of the pipeline for filtered hard shadow anti-aliasing. Similar to non-
conservative RBSM, a neighbourhood evaluation (green arrows in (b)) detects aliased fragments
(b) and shadow silhouette directions (green arrows in (c)) for both shadowed and lit fragments.
Afterwards, the algorithm traverses the light space (blue arrows in (d)) to estimate the normal-
ized relative distance of the camera-view fragments (red grid) to the shadow silhouette itself (e).
Finally, the normalized distance values are used as input for a visibility function that outputs
the distance of each fragment to a revectorization line (green line in (f)).

4.1.1 Filtered Hard Shadow Anti-Aliasing Visibility Function

To produce filtered hard shadows, as shown in Figure 4.1-(f), we need to first change the
way that the relative position r of the fragment inside the shadow silhouette is computed.
For a U-shaped shadow silhouette, as illustrated in Figure 4.2, the revectorization effect
produced by RBSM changes according to the visibility function used. To be clearly able
to detect the shadow silhouette shape in which the fragment is located just by checking
the sign of r, let us compute r as

rx = T (dl, dr)
|max(T (dl, dr)dl, T (dl, dr)dr)|

|dl|+ |dr|

ry = T (dt, db)
|max(T (dt, db)dt, T (dt, db)db)|

|dt|+ |db|
.

(4.1)

From (4.1), a lit fragment is located in an L-shaped shadow silhouette if both rx and
ry are positive. A lit fragment is located in a U-shaped shadow silhouette if rx or ry is
negative, because the T function (3.4) outputs a negative value in this case. Likewise, a
lit fragment is located in an I-shaped shadow silhouette if rx or ry is 0.

Let us define a modified version of the non-conservative RBSM visibility function
V ∗∗RBSM(VSM, r) ∈ [0, 1] for fixed-size penumbra simulation as

4.1 REVECTORIZATION-BASED PERCENTAGE-CLOSER FILTERING 59

(a) (b) (c)

Figure 4.2 For a U-shaped shadow silhouette (a), the revectorization effect provided by non-
conservative RBSM (b) is different from the one produced by RBSM when aiming filtered hard
shadow rendering (c).

(a) (b) (c)

Figure 4.3 The penumbra effect produced by RPCF for different penumbra sizes.

V ∗∗RBSM(VSM, r) =


1− VSM + (2VSM − 1)max(rx, ry) if rxry < 0,

VSM else if rxry = 0,

min(max(1− VSM + (2VSM − 1)(rx + ry), 0), 1) otherwise.

(4.2)

In (4.2), we basically modified Equation (3.9), such that, rather than clamping V ∗RBSM

to be 0 or 1, we use the addition and subtraction operations over r and VSM to determine
the smooth transition that characterizes the filtered hard shadow intensities. With such
a modification, we are able to produce fixed-size penumbra such as the one shown in
Figure 4.1-(g).

4.1.2 Revectorization-Based Filtering

One problem with the use of (4.2) is that the penumbra size is fixed and limited, propor-
tional to the size of the shadow silhouette, which depends on the shadow map resolution.
To enable control over the filter size, we simply incorporate PCF into the revectorization
pipeline, giving name to the RPCF technique (Figure 4.3). For each sample of RPCF,
we set its visibility condition to be the shadow test (3.2) if the sample is located in a
place outside the shadow silhouette. Otherwise, if the sample is located in the lit or
shadowed side of the shadow silhouette, we assume its visibility as the result of Equation
(4.2). Then, the final intensity of a given fragment is computed by the average of shadow

60 REVECTORIZATION-BASED FILTERED SHADOW MAPPING

0

(a)

0

(b)

0

(c)

0 0

(d)

0

(e)

0 0

(f)

0 0 1

0 0 0

0 0 0

(g)

Figure 4.4 An illustration of the optimized implementation of RPCF listed in Algorithm 2.
For each shadow map sample (blue rectangle) inside the filter kernel (orange grid) we compute
its shadow intensity and locate the direction of the shadow silhouette (a). Then, we estimate
the shadow silhouette size (b) and perform the shadow revectorization in the camera-space (red
grid) sample (yellow rectangle) (c). For the next sample (d), the algorithm checks whether
silhouette is located at the same direction of the previous sample (red arrows in (e)), to reuse
the relative position previously estimated for the shadow revectorization (f). In (g), we show
the filter result. This figure shows the filter kernel aligned with the light space, and each shadow
map texel equivalent to a 4× 4 grid in the camera space only for visualization purposes.

intensities computed for every sample located in the RPCF kernel.

In terms of performance, the RBSM step with the most computational cost is the
shadow silhouette size estimation. In a näıve implementation, one would need to traverse
the shadow map several times to locate the ends of the shadow silhouette for every
shadow map sample inside the RPCF kernel. To reduce the computational cost of the
revectorization, we take advantage of the fact that, once we have computed the shadow
silhouette size, we may reuse such an information to define the visibility of neighbor
shadow map samples. This prevents the algorithm from a new traversal over the shadow
map, saving costly shadow map texture lookups. The steps of this revectorization are
given in Algorithm 2 and shown in Figure 4.4.

Given the kernel size for shadow filtering wfilter ∈ N (Line 2 of Algorithm 2), we
sample the neighbourhood of size P of each fragment p̃ projected in the shadow map
S (Line 10 of Algorithm 2, Figure 4.4-(a)). Then, for each sample s̃, we proceed as
proposed in the RBSM algorithm (Algorithm 1), by computing the shadow test (3.2),
the silhouette directions (3.3) (Lines 11-12 of Algorithm 2), estimating the relative po-
sition of s̃ in the aliased silhouette (Lines 16-17 of Algorithm 2 and Figure 4.4-(b)) and

4.1 REVECTORIZATION-BASED PERCENTAGE-CLOSER FILTERING 61

Algorithm 2 Revectorization-based shadow filtering

1: P ← penumbra size;
2: wfilter ← shadow filter size;
3: V ∗∗RBSSM ← 0;
4: dprev ← null;
5: rprev ← null;
6: for each frame do
7: S ← renderShadowMap;
8: for each surface point p in camera view do
9: p̃← transformToLightSpace(p);

10: for each sample s̃ of S in wfilter, neighbour of p̃ in P do
11: VSM ← computeShadowTest(̃s, S);
12: d← computeSilhouetteDirection(VSM);
13: if hasSameDirection(d,dprev) then
14: r← updateRelativePosition(rprev);
15: else
16: s← transformToCameraSpace(̃s);
17: r← estimateRelativePosition(s, s̃, d, S);
18: end if
19: V ∗∗RBSSM ← V ∗∗RBSSM + performAntiAliasing(r, VSM);
20: end for
21: dprev ← d;
22: rprev ← r;
23: end for
24: return V ∗∗RBSSM/wfilter;
25: end for
26:

27: procedure hasSameDirection(d,dprev)
28: for each coordinate c of d do
29: if dc == dprev

c and dc == 1 then
30: return true;
31: end if
32: end for
33: return false;
34: end procedure

performing the revectorization of the fragment using (4.2) (Line 19 of Algorithm 2 and
Figure 4.4-(c)). If the next sample inside the RPCF kernel (Figure 4.4-(d)) is located in
the same silhouette of the previous sample (Line 13 of Algorithm 2 and Figure 4.4-(e)),
we update the relative position previously computed (Line 14 of Algorithm 2) by taking
into consideration the distance between previous and current samples. Then, we use the
updated relative position to perform the revectorization of the current sample (Line 19 of
Algorithm 2 and Figure 4.4-(f)). To detect whether the current sample is located in the

62 REVECTORIZATION-BASED FILTERED SHADOW MAPPING

(a) Shadow Mapping (b) Non-Conservative RBSM

(c) EDT Normalization (d) EDT Filtering

(a) Shadow Mapping (b) Non-Conservative RBSM

(c) EDT Normalization (d) EDT Filtering

(a) Shadow Mapping (b) Non-Conservative RBSM

(c) EDT Normalization (d) EDT Filtering

(a) Shadow Mapping (b) Non-Conservative RBSM

(c) EDT Normalization (d) EDT Filtering

(a) Shadow Mapping (b) Non-Conservative RBSM

(c) EDT Normalization (d) EDT FilteringFigure 4.5 An overview of EDTSM. Given the aliased hard shadows obtained with the tra-
ditional shadow mapping (a), non-conservative RBSM is applied to generate anti-aliased hard
shadows (b). Then, penumbra intensities are computed on the basis of a normalized EDT over
the penumbra region (c). Finally, a mean filter (d) is applied over the normalized EDT to
reduce skeleton artifacts generated by the EDT computation.

same silhouette of the previous sample, we check whether the current sample is located
in a shadow silhouette (i.e., if a single coordinate of d is equal to 1) and whether both
samples share, at least, a single silhouette direction in common (i.e., if both samples have
the same coordinate of d equals to 1) (Lines 27-34 of Algorithm 2). Finally, the final
penumbra intensity of p is computed as an average of the shadow intensities computed
inside the RPCF kernel (Line 24 of Algorithm 2 and Figure 4.4-(g)).

While RPCF is able to suppress the aliasing artifacts commonly generated by PCF,
the technique inherits one of the problems of PCF: non-scalability with respect to the
filter size. To minimize such a problem, we propose another technique that computes
shadows on the basis of separable Euclidean Distance Transform (EDT).

4.2 EUCLIDEAN DISTANCE TRANSFORM SHADOW MAPPING 63

Algorithm 3 Euclidean distance transform shadow mapping

1: P ← penumbra size;
2: wfilter ← mean filter size;
3: for each frame do
4: S ← renderShadowMap;
5: G ← renderGBuffer;
6: R ← revectorizeShadow(S, G);
7: EDT ← performEDTShadowing(R, G, P);
8: F ← filterShadow(EDT, G, wfilter);
9: renderShadowedScene(F, G);

10: end for

4.2 EUCLIDEAN DISTANCE TRANSFORM SHADOW MAPPING

4.2.1 Overview

EDTSM is a technique that uses EDT to simulate the penumbra effect over anti-aliased
hard shadows. In Figure 4.5, we show the steps that are required to simulate fixed-size
penumbra using EDT on the basis of the hard shadows generated by shadow mapping.
The full process is listed in Algorithm 3.

The main assumption of EDTSM is that the penumbra intensity of a fragment can be
approximated by the Euclidean distance of the fragment to the nearest fragment located in
the hard shadow silhouette. Therefore, the first step of EDTSM consists in the generation
of the shadow map texture (Line 4 of Algorithm 3) for real-time hard shadow rendering.
To avoid shadow aliasing (Figure 4.5-(a)), this technique requires the use of a hard shadow
anti-aliasing technique before the fixed-size penumbra simulation. Hence, we make use
of non-conservative RBSM (Figure 4.5-(b) and Line 6 of Algorithm 3) to generate anti-
aliased hard shadows in real time. Also, to restrict shadow and shading computations
to the fragments visible to the camera, as suggested by the deferred rendering pipeline,
we use a G-buffer G (SAITO; TAKAHASHI, 1990) of viewport width w and height h
that stores, for each pixel G(i, j) ∈ R6, the world-space position p and normal n of the
visible surface points in the camera viewpoint. (Line 5 of Algorithm 3). Afterward,
to simulate the penumbra effect, the EDT is computed over the image with the hard
shadows previously estimated. Then, the Euclidean distance is normalized (Figure 4.5-
(c) and Line 7 of Algorithm 3) and filtered (Figure 4.5-(d) and Line 8 of Algorithm 3)
inside a user-defined fixed-size penumbra region, because the penumbra intensity of a
fragment must lie in the interval of intensities between the umbra and lit regions.

4.2.2 Euclidean Distance Transform Shadowing

Let us call seed a fragment that lies in the hard shadow silhouette (green rectangles in
Figure 4.6) and that will be used as a basis for the EDT computation. Even if it is
located in a thin aliased shadow, a seed fragment can be easily located in the screen
space of the camera view by the application of a 3× 3 rectangular filter over the shadows

64 REVECTORIZATION-BASED FILTERED SHADOW MAPPING

(a)

D D

(b)

P

(c)

D ≤ P
2

(d)

1
2
− D

P
1
2

+ D
P

(e)

Figure 4.6 A more in-depth overview of EDTSM. First, non-conservative RBSM is used (a)
to generate anti-aliased shadow silhouettes (green rectangles) in the camera view (red grid).
Then, for every fragment in the screen space, the world-space position is retrieved from the G-
buffer, and the world-space distance D to closest fragment located in the shadow silhouette is
computed (b). Given a user-defined penumbra size P (c), the algorithm restricts the penumbra
computation for fragments located in the penumbra region (d). Finally, the EDT previously
computed is normalized to simulate the smooth transition between lit and umbra regions that
characterize the penumbra effect (e).

produced with non-conservative RBSM. In this case, a fragment is a seed if the hard
shadow intensity of the fragment differs from the hard shadow intensity of one of its
neighbours located in the 8-connected neighbourhood of the fragment in the screen space
(Figure 4.6-(a)).

Once the seed fragments have been detected in the image, the EDT can be computed.
So, for each non-seed fragment, the world-space Euclidean distance D of the fragment
to the nearest seed located in the shadow silhouette is computed (Figure 4.6-(b)), D
being a world-space distance computed on the basis of the world-space position retrieved
from a G-buffer (SAITO; TAKAHASHI, 1990) previously computed. Just by applying
the EDT in the world space, the user does not have control over the desired penumbra
size. To solve this problem, let us assume P as a user-defined parameter which controls
the size of the penumbra that will be simulated. As shown in Figure 4.6-(c), each half
of the penumbra size belongs to one side of the shadow silhouette. Therefore, one can
easily detect whether a fragment belongs to the desired penumbra region by checking if
the distance of the fragment to the shadow silhouette is lower or equal than half of the
penumbra size (i.e., D ≤ P/2) (Figure 4.6-(d)). For the fragments located outside of the
penumbra region, the shadow intensity is given by the shadow test (umbra and lit regions
in Figure 4.6-(d)). Meanwhile, for fragments in the penumbra region, we keep the result
of the EDT as shadow intensity.

As can be seen in Figure 4.6-(d), EDT does not resemble a penumbra mostly because it
is not normalized. The transition between umbra and lit regions in the desired penumbra
is not smooth as it should be to characterize a penumbra. To solve this problem, the
Euclidean distance is normalized to the closed unit interval [0, 1], assuming that umbra
and lit fragments have intensities 0 and 1, respectively. Hence, the final intensity I ∈ [0, 1]
of the fragments located in the penumbra region is

4.2 EUCLIDEAN DISTANCE TRANSFORM SHADOW MAPPING 65

(a) (b)

(a) (b)(a) (b)

(a) (b)(a) (b)

Figure 4.7 After the EDT computation, skeleton artifacts may arise along gradient disconti-
nuities (green closeup of (a)). Also, aliasing artifacts may still remain even after the shadow
revectorization (blue closeup of (a)). By applying a simple mean filter, those artifacts can be
suppressed (b).

I =

{
1
2
− D

P
if the fragment was in shadow,

1
2

+ D
P

otherwise.
(4.3)

As shown in (4.3), the final intensity of each fragment depends on the previous visibil-
ity condition given by RBSM. For instance, knowing that the maximum distance of each
fragment belonging to the penumbra region to the nearest seed is P/2 (Figure 4.6-(d)), if
the fragment was in shadow, as computed by RBSM, the new penumbra intensity of the
fragment must lie in the interval [0, 1

2
], because 0 is the intensity of the fragments located

in shadow and 1
2

is the intensity of the fragments located in the middle of the penumbra
region. Accordingly, lit fragments, as computed by RBSM, must have their penumbra
intensities lying in the interval [1

2
, 1]. By the use of (4.3), EDTSM is able to satisfy these

constraints and simulate the penumbra effect (Figure 4.6-(e)).

4.2.3 Euclidean Distance Transform Filtering

A well-known feature of EDT is the generation of skeletons along gradient discontinuities
(WRIGHT; CIPOLLA; GIBLIN, 1995). This property of EDT is desirable in several

66 REVECTORIZATION-BASED FILTERED SHADOW MAPPING

applications, such as integer medial axis estimation (HESSELINK; ROERDINK, 2008).
However, these skeletons generated by EDT, when visualized inside a penumbra, consti-
tute an artifact because a penumbra does not have skeletons along its silhouette (green
closeup of Figure 4.7-(a)). Moreover, RBSM is able to minimize aliasing artifacts gener-
ated by shadow mapping, but is not able to remove all of them (blue closeup of Figure
4.7-(a)). To minimize both skeleton and aliasing artifacts simultaneously, a simple screen-
space separable mean filter is applied over the shadow silhouette (Figure 4.7-(b)). The
mean filtering was chosen to solve these problems because of its simplicity, low processing
time, separability and effectiveness to suppress the skeleton artifacts even for low-order
filter sizes.

The EDT algorithm is performed in screen space, taking as input the image of the
shadowed scene rendered from the camera viewpoint. In this sense, special care must
be taken to make this process edge aware and viewpoint invariant. Edge awareness
is important because different objects cannot influence on the penumbra computation
of each other. Viewpoint invariance is desirable because the penumbra size must be
kept constant, regardless of the distance of the viewer to the shadowed region. EDTSM
solves both problems by the use of the depth value and world-space position stored
in the G-buffer. Depth information is used to detect edges, which separate different
objects in the scene. In this sense, for instance, a fragment is only considered to be in
penumbra if the depth difference between the fragment and its nearest seed is below a
user-defined threshold (empirically, we have set this depth threshold as 2.5×10−3). Also,
only neighbours with similar depth difference are taken into account for mean filtering.
In counterpart, to make the EDT viewpoint invariant, world-space position is used to
compute the Euclidean distance values D in the EDT. Inspired by screen-space soft
shadow algorithms, the viewpoint invariance of the mean filtering is solved by estimating
the mean filter size wscreen

filter that varies according to the distance of the camera to the
scene. Here, wscreen

filter is measured as (MOHAMMADBAGHER et al., 2010)

wscreen
filter =

wfilterzscreen

pzeye
, (4.4)

zscreen =
1

2tanfovy
2

, (4.5)

where wfilter is the mean filter size defined by the user, pzeye is the distance of the fragment
p to the center of the camera, fovy specifies the vertical field of view angle and zscreen is
the inverse of the viewport scale, in terms of field of view.

4.3 RESULTS AND DISCUSSION

In this section, we compare our EDTSM and RPCF techniques with traditional filtered
hard shadow mapping techniques, such as PCF (REEVES; SALESIN; COOK, 1987),
Variance Shadow Mapping (VSM) (DONNELLY; LAURITZEN, 2006), and Exponential
Variance Shadow Mapping (EVSM) (LAURITZEN; MCCOOL, 2008), as well as the
state-of-the-art fixed-size penumbra simulation technique, Moment Shadow Mapping
(MSM) (PETERS; KLEIN, 2015). These techniques were chosen for evaluation because

4.3 RESULTS AND DISCUSSION 67

they produce fixed-size penumbra, lying in the scope of this chapter. Therefore, tech-
niques that simulate variable-size penumbra (i.e., soft shadows) on the basis of point or
area light sources are not evaluated in this section.

We have tested different penumbra simulation techniques in three distinct scenarios.
Figure 4.8 shows a model with fine detailed structures along its silhouette. Figure 4.9
shows shadows cast on a non-planar model. Figure 4.10 shows a scenario with several
light blocker and shadow receiver objects positioned over each other.

4.3.1 Experimental Setup

For EDT computation, we have used the open-source implementation of the Parallel
Banding Algorithm (PBA) (CAO et al., 2010) implemented in Compute Unified Device
Architecture (CUDA) (KIRK; HWU, 2013). Although many other works have attempted
to compute EDT efficiently (RONG; TAN, 2006; SCHNEIDER; KRAUS; WESTER-
MANN, 2009; WANG; TAN, 2013), in our tests, PBA delivered the fastest and most
accurate EDT computation.

CUDA/OpenGL interoperability was used to optimize resource management and pro-
cessing time. A filter of order 15 × 15 was applied to suppress skeleton and banding
artifacts. Specifically for RPCF, we have used a filter of order 7× 7, since the technique
demands less samples to suppress banding artifacts. In the results, we have tested filters
of higher orders only to determine whether the techniques are scalable in terms of the
filter size.

4.3.2 Visual Quality Evaluation

In the blue closeups of Figures 4.8 and 4.9, we show whether the different shadowing
techniques are able to suppress aliasing artifacts. For small penumbra sizes, the blur
provided by PCF is insufficient to suppress aliasing artifacts (Figures 4.8-(a) and 4.9-
(a)). The same effect is visible for the shadow map filtering techniques (Figures 4.8-(b, c,
d) and 4.9-(b, c, d)), which simulate penumbra with blurred jagged silhouettes along the
shadow. Techniques that use shadow revectorization as basis for penumbra simulation
(RPCF and EDTSM) are able to minimize this artifact efficiently (Figures 4.8-(e, f) and
4.9-(e, f)).

In the red closeups of Figures 4.8, 4.9 and 4.10, we show whether each technique
generates light leaking artifacts inside the shadow. All shadow map filtering techniques
are prone to light leaking artifacts. In this sense, VSM (Figures 4.8-(b), 4.9-(b) and
4.10-(b)) is more susceptible to light leaking than EVSM (Figures 4.8-(c), 4.9-(c) and
4.10-(c)). In terms of visual quality, MSM is better than both VSM and EVSM, greatly
reducing the light leaking artifacts (the effectiveness of MSM is mainly visible in Figure
4.9-(d)). The techniques that filter shadows to simulate penumbra (PCF, RPCF and
EDTSM) are not prone to light leaking artifacts (Figures 4.8-(a, e, f), 4.9-(a, e, f) and
4.10-(a, e, f)).

RPCF and EDTSM support shadow rendering for planar (Figures 4.8-(e, f)) and
non-planar receivers (Figures 4.9-(e, f)). Moreover, both techniques support penumbra
simulation not only for simple scenarios, but also for more complex, game-like scenarios,

68 REVECTORIZATION-BASED FILTERED SHADOW MAPPING

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

Figure 4.8 Fixed-size penumbra produced by different techniques. Each closeup shows whether
the technique handles light leaking (red) and aliasing (blue) artifacts. Images were generated
for the YeahRight model using a 10242 shadow map resolution.

such as the one shown in Figures 4.10-(e, f), where several light blocker and shadow
receiver objects with fine detailed structures (e.g., trees) are located in the same scene.

4.3 RESULTS AND DISCUSSION 69

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

Figure 4.9 Fixed-size penumbra produced by different techniques. Each closeup shows whether
the technique light leaking (red) and aliasing (blue) artifacts. Images were generated for the
Bunny model using a 10242 shadow map resolution.

70 REVECTORIZATION-BASED FILTERED SHADOW MAPPING

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

(a) PCF (b) VSM (c) EVSM

(d) MSM (e) RPCF (f) EDTSM

Figure 4.10 Fixed-size penumbra produced by different techniques. Each closeup shows
whether the technique handles light leaking artifacts. Images were generated for the SanMiguel
model using a 10242 shadow map resolution.

Also, despite being an image-based technique, EDTSM supports penumbra simulation
on noisy surfaces with high-frequency details, as shown in Figure 4.11. In this figure,
we reinforce that EDTSM is able to separate penumbra simulation from self-shadowing,
while properly handling the noisy depth differences distributed over the surface. Hence,
the gamut of scenes shown in this section reveals that both EDTSM and RPCF are able
to generate fixed-size penumbra, with less aliasing and light leaking than related work.

4.3.3 Rendering Time Evaluation

As shown in Tables 4.1 and 4.2, shadow map filtering is an efficient way to simulate
penumbra, being relatively scalable with respect to the shadow map (Table 4.1), view-

4.3 RESULTS AND DISCUSSION 71

Figure 4.11 Fixed-size penumbra simulation on a noisy surface with laterally increasing fre-
quency. Image was generated for the YeahRight model using a 10242 shadow map resolution.

Shadow Map Resolution (ms)
Scene Method 5122 10242 20482 40962

Figure 4.8

PF 10.5 10.6 10.8 12.0
PCF 11.3 11.4 11.4 11.7

EDTSM 12.9 13.0 13.2 13.8
RPCF 26.2 27.3 27.8 30.0

Figure 4.9

PF 1.9 2.1 2.4 3.6
PCF 2.9 3.0 3.1 3.5

EDTSM 4.5 4.6 4.8 5.7
RPCF 10.4 11.0 11.5 12.0

Figure 4.10

PF 126.9 128.2 129.8 133.8
PCF 126.7 129.0 130.3 133.5

EDTSM 129.5 130.9 132.8 136.3
RPCF 138.8 141.2 145.7 148.1

Table 4.1 Processing time for several hard shadow filtering techniques and different scenes
rendered at an output 720p resolution. Measurements include varying shadow map resolution.
PF - Pre-filtering techniques that produce nearly the same processing time results (namely
VSM, EVSM and MSM).

port (Table 4.2) and kernel resolutions (Table 4.3). Moreover, the different shadow map
filtering techniques that we have tested in this chapter provide nearly the same low ren-
dering times, that is why they are refereed by a single row in each table. However, all this
efficiency comes at the price of light leaking artifacts generation inside shadows (Figures

72 REVECTORIZATION-BASED FILTERED SHADOW MAPPING

Output Resolution (ms)
Scene Method 480p 720p 1080p

Figure 4.8

PF 9.9 10.6 11.3
PCF 9.8 11.4 11.9

EDTSM 10.8 13.0 14.9
RPCF 16.4 27.3 30.3

Figure 4.9

PF 0.9 2.1 3.1
PCF 0.9 3.0 4.0

EDTSM 2.3 4.6 6.9
RPCF 4.3 11.0 12.5

Figure 4.10

PF 127.8 128.2 128.8
PCF 127.8 129.0 129.5

EDTSM 129.3 130.9 133.5
RPCF 132.9 141.2 143.7

Table 4.2 Processing time for several hard shadow filtering techniques and different scenes
rendered at a 10242 shadow map resolution. Measurements include varying output image res-
olution. PF - Pre-filtering techniques that produce nearly the same processing time results
(namely VSM, EVSM and MSM).

Kernel Size (ms)
Scene Method 72 152 232 312

Figure 4.8

PF 10.3 10.6 10.8 11.1
PCF 9.8 11.4 13.5 17.0

EDTSM 12.4 13.0 13.5 14.3
RPCF 27.3 77.5 166.6 285.7

Figure 4.9

PF 1.8 2.1 2.4 2.7
PCF 1.2 3.0 5.6 9.3

EDTSM 4.1 4.6 5.3 6.1
RPCF 11.0 65.7 145.3 255.7

Figure 4.10

PF 127.9 128.2 128.4 128.6
PCF 128.3 129.0 130.2 133.5

EDTSM 130.3 130.9 131.6 132.6
RPCF 141.2 200.2 366.3 552.2

Table 4.3 Processing time for several hard shadow filtering techniques and different scenes
rendered at an output 1280 × 720 resolution and using a 10242 shadow map resolution. Mea-
surements include varying kernel size. PF - Pre-filtering techniques that produce nearly the
same processing time results (namely VSM, EVSM and MSM).

4.8-(b, c, d), 4.9-(b, c, d) and 4.10-(b, c, d)). PCF is more scalable to the shadow map
resolution than the shadow map filtering techniques (Table 4.1), but is one of the slowest
techniques for high-order filter sizes (Table 4.3) and is prone to aliasing artifacts along
the shadow silhouette (Figures 4.8-(a) and 4.9-(a)). RPCF is able to suppress aliasing
artifacts (Figures 4.8-(e), 4.9-(e) and 4.10-(e)), but is the slowest penumbra simulation

4.3 RESULTS AND DISCUSSION 73

Output Resolution (ms)
Scene Step 480p 720p 1080p

Figure 4.8

G-buffer 4.1 4.5 4.7
Shadow Map 4.3 4.3 4.3

RBSM 0.2 0.4 0.6
EDT 1.3 2.3 2.9

Mean Filter 0.7 1.2 2.0
Shading 0.2 0.3 0.4
Total 10.8 13.0 14.9

Figure 4.9

G-buffer 0.1 0.3 0.4
Shadow Map 0.2 0.2 0.2

RBSM 0.1 0.4 0.7
EDT 1.1 2.3 3.1

Mean Filter 0.7 1.2 2.2
Shading 0.1 0.2 0.3
Total 2.3 4.6 6.9

Figure 4.10

G-buffer 63.4 63.5 63.6
Shadow Map 63.0 63.0 63.0

RBSM 0.6 0.7 1.0
EDT 1.3 2.3 3.3

Mean Filter 0.7 1.1 2.2
Shading 0.3 0.3 0.4
Total 129.3 130.9 133.5

Table 4.4 Processing time of each individual step of the proposed EDTSM (including G-buffer
and shadow map rendering) for different scenes rendered using a 10242 shadow map resolution.
Measurements include varying output image resolution.

technique, regardless of shadow map (Table 4.1), viewport (Table 4.2) and kernel reso-
lution (Table 4.3). EDTSM is slightly slower than the majority of previous work (Table
4.1) and is not scalable with respect to the output image resolution (Table 4.2), because
EDT is an image-based operation. Finally, EDTSM is more scalable to the filter size
than PCF and RPCF techniques, becoming even faster than these two related work for
high-order filter sizes (Table 4.3).

In Table 4.4, we show the processing time obtained for each step of EDTSM for
varying output resolution. We have not conducted the same analysis for other parameters
because a variation in the shadow map resolution (Table 4.1) affects mainly the shadow
map rendering and RBSM computation steps. Meanwhile, the variation of the kernel size
(Table 4.3) affects only the mean filtering step.

From Table 4.4, we can see that, as expected, the processing times demanded by
G-buffer and shadow map rendering steps vary according to the number of triangles
present in the scene. With respect to the shadowing step of the algorithm, the EDT
computation is the bottleneck of EDTSM. We recall that, to the best of our knowledge,
the algorithm that we use to compute the EDT in real time, the PBA (CAO et al., 2010),

74 REVECTORIZATION-BASED FILTERED SHADOW MAPPING
(a

)
E

D
T

S
M

(b
)

R
ef

er
en

ce

Figure 4.12 A comparison between shadows generated by EDTSM (top) and the ground-truth
technique (bottom) for three scenes shown in this section. Ground-truth images were computed
using the average of 1024 samples from an area light source.

is the fastest algorithm able to compute exact EDT. Even in this case, the algorithm
still demands more than 2 milliseconds to compute the EDT in 720p or higher output
resolutions.

4.3.4 Limitations

In terms of visual quality, both RPCF and EDTSM techniques are based on shadow
mapping and non-conservative RBSM. Hence, similarly to all the techniques evaluated
in this section, the quality of the penumbra simulated with the proposed techniques is
dependent on the resolution of the shadow map used, although the use of RBSM as a
basis for the penumbra simulation increases the quality of the penumbra rendering. Also,
both RPCF and EDTSM techniques lie in the category of shadow mapping techniques
that simulate fixed-size penumbra on the basis of a point light source to achieve real-
time performance (Figure 4.12-(a)). Unfortunately, both RPCF and EDTSM techniques,
similarly to the other fixed penumbra shadowing techniques existing in the literature, are
not able to capture the realism of ground-truth soft shadows (Figure 4.12-(b)), mainly
because real-world penumbra has a variable size that varies according to the distance of
each shadow receiver fragment to both light blocker fragments and the area light source.

4.4 SUMMARY 75

In terms of rendering performance, RPCF is not scalable to the kernel size, similarly
to PCF, although the technique requires a small kernel size to generate penumbra free
from banding artifacts. As for EDTSM, the costly step of the technique is the EDT
computation, making EDTSM slightly slower than the majority of related work for the
same scene configurations. Despite these facts, the quality of the penumbra simulated
stimulates the use of EDTSM for anti-aliased fixed-size penumbra rendering.

4.4 SUMMARY

In this chapter, we have presented two techniques for fixed-size penumbra simulation:
RPCF, a filtered hard shadow mapping technique that extends the non-conservative
RBSM to output penumbra intensities rather than hard shadow intensities; EDTSM,
a technique that simulates penumbra by computing a normalized EDT over the hard
shadows generated by non-conservative RBSM.

Compared to other filtered hard shadow techniques, both RPCF and EDTSM tech-
nique are able to reduce shadow aliasing and light leaking, keeping real-time frame rates
and high-quality penumbra simulation for planar and non-planar receivers, simple and
complex scenarios. By performing the filtering over the light space, RPCF is slightly
more accurate than EDTSM, meanwhile EDTSM is faster than RPCF due to the use of
a separable implementation of EDT to speed up the hard shadow filtering.

Both RPCF and EDTSM share the same limitation of other fixed-size penumbra
simulation techniques that are based on shadow mapping: the quality of the simulation
depends on the accuracy of the shadow map rendered, and fixed-size penumbra is not
much realistic, because real-world penumbra has a variable size along its silhouette.

In the next chapters, we show how to extend both RPCF and EDTSM techniques to
simulate variable-size penumbra on the basis of a single point light source, enhancing the
quality of the shadow rendering, at the cost of a lower frame rate.

Chapter

5
In this chapter, we present the extension of RBSM to provide anti-aliasing for visually plausible soft

shadow rendering. A novel solution that computes soft shadows almost entirely on the screen space is

designed to keep high-quality anti-aliasing, while improving the performance of the revectorization-based

soft shadow rendering.

REVECTORIZATION-BASED SOFT SHADOW
MAPPING

As shown in the previous chapter, Revectorization-based Shadow Mapping (RBSM)
can be adapted for fixed-size penumbra simulation, but this kind of shadow render-
ing lacks realism because real-world shadows contain variable-size penumbra along its
silhouette. In this chapter, we present three new techniques that use the concepts of
shadow revectorization and Euclidean distance transform to provide visually plausible soft
shadow rendering. The first technique, named Euclidean Distance Transform Soft Shadow
Mapping (EDTSSM), is an extension of Euclidean Distance Transform Shadow Map-
ping (EDTSM) for soft shadow rendering. The second technique, named Revectorization-
based Soft Shadow Mapping (RBSSM), improves the accuracy of EDTSSM, at the cost of
loss in performance. The third technique, called Screen-Space Revectorization-based Soft
Shadow Mapping (SSRBSSM), provides a balance between accuracy and performance,
keeping visual quality as accurate as RBSSM, while generating soft shadows faster than
EDTSSM. In this chapter, we present and evaluate all these techniques with respect to
the state-of-the-art in the field of visually plausible soft shadow mapping. This chapter
covers the discussion and results mainly presented in an authored publication (MACEDO;
APOLINÁRIO, 2017).

5.1 VARIABLE-SIZE PENUMBRA ESTIMATION

To estimate the penumbra size of a given region, Percentage Closer Soft Shadows (PCSS)
proposes that one needs to first approximate the scene by objects that are planar and
parallel to each other. The depth of such a planar approximation is given by the average
blocker depth zavg(wavg

k , p̃z, S), or simply zavg, for a kernel with size wavg
k ∈ N (FER-

NANDO, 2005)

77

78 REVECTORIZATION-BASED SOFT SHADOW MAPPING

(a) Anti-aliased
Shadow

(b) Penumbra Size (c) EDT Shadowing (d) EDT Filtering

Figure 5.1 An overview of EDTSSM. We estimate anti-aliased hard shadows in the camera
view with non-conservative RBSM (a). On the basis of PCSS, we estimate the penumbra size of
the fragments located at the hard shadow silhouette (b), and use it to normalize the EDT that
is computed to measure the distance of each fragment to the closest hard shadow silhouette,
simulating the penumbra effect (c). To suppress the skeleton artifacts generated by the EDT,
an edge-aware viewpoint-invariant filtering algorithm is applied over the shadow (d).

zavg =

∑wavg
k

i=0

∑wavg
k

j=0 (1− VSM)S(i, j)

ε+
∑wavg

k
i=0

∑wavg
k

j=0 (1− VSM)
, (5.1)

where ε = 0.001 is a small constant value to avoid the division by zero.

Then, on the basis of the parallel-planar assumption of PCSS, the variable penumbra
size wp(wl, zavg, p̃z), or simply wp, can be estimated according to the light source size wl

as (FERNANDO, 2005)

wp = wl
p̃z − zavg

zavg

(5.2)

In the next sections, we show each one of the proposed techniques make use of those
equations to generate visually plausible soft shadows.

5.2 EUCLIDEAN DISTANCE TRANSFORM SOFT SHADOW MAPPING

In Algorithm 4, we present a high-level overview of the proposed approach to compute
soft shadows on the basis of a normalized EDT. The steps of this approach are depicted
in Figure 5.1. We render the scene from the light source and camera viewpoints (Lines
3 and 4 of Algorithm 4) to produce anti-aliased hard shadows with non-conservative
RBSM (Figure 5.1-(a), Line 5 of Algorithm 4). Then, we estimate the penumbra size of
the fragments located in the hard shadow silhouette (Figure 5.1-(b), Line 6 of Algorithm
4), such that we can apply the normalized EDT to compute the soft shadow (Figure

5.2 EUCLIDEAN DISTANCE TRANSFORM SOFT SHADOW MAPPING 79

Algorithm 4 Euclidean distance transform soft shadow mapping

1: wfilter ← soft shadow filter size;
2: for each frame do
3: S ← renderShadowMap;
4: G ← renderGBuffer;
5: R ← revectorizeShadow(S, G);
6: P ← estimatePenumbraSize(R, S);
7: EDT ← performEDTShadowing(R, G, P);
8: F ← filterShadow(EDT, G, wfilter);
9: renderShadowedScene(F, G);

10: end for

5.1-(c), Line 7 of Algorithm 4) and filter it to suppress the skeleton artifacts generated
by the application of the EDT (Figure 5.1-(d), Line 8 of Algorithm 4).

The key difference between EDTSM and EDTSSM is that the penumbra size is no
longer fixed, determined by the user. Now, for each fragment in the camera view, we
must determine whether the fragment is located in a penumbra region, and what is the
entire variable-sized penumbra region in the world space, such that we can compute the
soft shadows on the basis of an EDT. The PCSS framework proposes that the penumbra
size must be computed for every fragment in the camera view, since this size determines
the area of the shadow map that must be filtered by the algorithm (FERNANDO, 2005).
Similarly to (KLEIN; NISCHWITZ; OBERMEIER, 2012), we optimize such approach
by computing the penumbra size only for the fragments located at the hard shadow
silhouette and propagating such a data for the remaining fragments outside the shadow
silhouette. Differently from (KLEIN; NISCHWITZ; OBERMEIER, 2012), we compute
the penumbra size of the fragments located at the revectorized, anti-aliased hard shadow
silhouette. Also, we propagate the penumbra size in real time using the nearest neighbour
search provided by the EDT algorithm.

Similarly to EDTSM, to determine whether a fragment is located in the shadow
silhouette in the image with the revectorized hard shadows (Figure 5.1-(a)), we check
whether the visibility condition of the current fragment is different from at least one
of the neighbours located inside a 3 × 3 rectangular filter. Then, for each fragment in
the shadow silhouette, we take advantage of the planar-parallel assumption of PCSS to
estimate the penumbra size in real time (Figure 5.1-(b)), following Equations (5.1) and
(5.2).

Once we have the penumbra size wp computed for every fragment located in the
revectorized hard shadow silhouette, we need to propagate this data for the fragments
located outside the shadow silhouette. To do so, for each fragment outside the hard
shadow silhouette, we compute the EDT, that returns exactly the location of the closest
fragment located in the hard shadow silhouette. In this case, since wp was estimated with
respect to the light space, it cannot be directly used to define the size of the penumbra
in the world space, since this task is non-trivial (FERNANDO et al., 2001). Hence,
we multiply wp by a user-defined parameter β, which helps with the definition of the

80 REVECTORIZATION-BASED SOFT SHADOW MAPPING

HSM

Visibility Classification

(a)

Blocker Search Area

zavg

p̃

(b)

wl

zavg

p̃zwp

(c)

RBSM Filter Area

Soft Shadow
(d)

Figure 5.2 An overview of RBSSM. After shadow map and G-buffer rendering, a hierarchical
shadow map (HSM) is built to locate potential penumbra fragments in the camera view (a).
For these fragments, the average blocker depth (zavg in (b)) is computed, then the penumbra
size (wp in (c)) is estimated and filtered using RBSM to generate the soft shadows (d).

penumbra size in the world space. In our experimental tests, we have verified that
β = 750 keeps the penumbra size similar to the one found in the most common soft
shadow mapping algorithm, such as PCSS.

Then, to compute the penumbra intensity of each fragment located in wp, we have
slightly changed (4.3) to take into account the variable-size penumbra

I =

{
1
2
− D

βwp
if the fragment was in the hard shadow,

1
2

+ D
βwp

otherwise.
(5.3)

With (5.3), we are able to compute soft shadows such as the one shown in Figure
5.1-(c). To suppress the skeleton artifacts commonly produced by the use of EDT, we
apply the same mean filtering step shown in Section 4.2.3, using (4.4).

5.3 REVECTORIZATION-BASED SOFT SHADOW MAPPING

Another alternative to compute anti-aliased soft shadows in real time consists in the
direct integration of RBSM into the PCSS pipeline. Hence, RBSSM computes anti-
aliased shadows based on PCSS and RBSM frameworks. Two steps are added into RBSM
to perform penumbra size estimation and soft shadow filtering. To identify potential
fragments located in the penumbra, improving the performance of the approach, we make
use of a hierarchical shadow map (HSM) (GUENNEBAUD; BARTHE; PAULIN, 2006)
H. In this case, H is a two-channel pyramidal-like min-max texture, that, at level l, has
m
2l

rows and n
2l

columns. Each pixel in the first level (l = 0) of H is defined by the shadow
map itself. Then, the subsequent levels of H can be iteratively built by computing both
minimal and maximal values of the depths stored in a 2× 2 region of the previous level.

5.3 REVECTORIZATION-BASED SOFT SHADOW MAPPING 81

Algorithm 5 Revectorization-based soft shadow mapping

1: wl ← light source size;
2: wavg

k ← kernel size for average blocker depth estimation;
3: for each frame do
4: S ← renderShadowMap;
5: G ← renderGBuffer;
6: H ← buildHierarchicalShadowMap;
7: for each surface point p visible in camera view from G do
8: p̃← transformToLightSpace(p);
9: VHSM ← estimateVisibilityFromHSM(p̃, H);

10: if VHSM = umbra or VHSM = lit then
11: VRBSSM ← computeShadowTest(p̃, S);
12: else
13: zavg ← computeAvgBlockDepth(wavg

k , p̃, S);
14: wp ← estimatePenumbraSize(wl, zavg, p̃z);
15: VRBSSM ← computeSoftShadow(wp, p̃, S);
16: end if
17: end for
18: end for

Indeed, the process of computing H works like mip-mapping, but we compute minimal
and maximal values over a region rather than the average of the depth values.

With the map H, given the shadow map region intersected by the frustum formed
by the light source area and the surface point p̃, the depth values zmin ∈ [0, 1] and
zmax ∈ [0, 1] of the corresponding hierarchical shadow map level must be retrieved to
allow the evaluation of the illumination condition of the surface point by the visibility
function VHSM(p̃z, zmin, zmax)

VHSM(p̃z, zmin, zmax) =


lit if p̃z ≤ zmin,

in umbra else if p̃z ≥ zmax,

in penumbra otherwise.

(5.4)

An overview of RBSSM is shown in Figure 5.2 and is listed in Algorithm 5. First, we
generate the shadow map S from the light source viewpoint (WILLIAMS, 1978) (Line
4 of Algorithm 5), the G-buffer G to avoid calculations on hidden fragments, evaluating
the illumination only for the fragments visible to the camera (Line 5 of Algorithm 5),
and the hierarchical shadow map H, to quickly classify the penumbra surface points in
the scene and discard the non-penumbra surface points from the soft shadow calculation
(Line 6 of Algorithm 5 and Figure 5.2-(a)).

Afterwards, we transform each visible surface point p to the light source viewpoint
(Lines 7 and 8 of Algorithm 5) and use H to identify the potential fragments located
in the penumbra using (5.4) (Line 9 of Algorithm 5, Figure 5.2-(a)). The visibility of
the surface points located outside the penumbra is given by the shadow test (3.2) (Lines
10-11 of Algorithm 5). Meanwhile, for the surface points located in the penumbra, we

82 REVECTORIZATION-BASED SOFT SHADOW MAPPING

proceed as proposed in the PCSS, computing average blocker depth (5.1) and penumbra
size (5.2) (Lines 13-14 of Algorithm 5).

Rather than using the typical Percentage-Closer Filtering (PCF) for soft shadow fil-
tering in the penumbra size wp, we replace the PCF technique by Revectorization-based
Percentage-Closer Filtering (RPCF) (Line 15 of Algorithm 5 and Figure 5.2-(d)).

RBSSM is able to generate soft shadows with high visual quality and real-time perfor-
mance. An alternative to reduce its visual quality and improve its rendering performance
consists on the realization of the soft shadow filtering in the screen space, as we show in
the next section.

5.4 SCREEN-SPACE REVECTORIZATION-BASED SOFT SHADOW MAPPING

SSRBSSM is an alternative approach to compute soft shadows on the basis of RBSM
and PCSS frameworks that favors rendering performance rather than visual quality. The
algorithm is much similar to RBSSM, except for the soft shadow filtering step, that is
computed in the screen space.

SSRBSSM computes a shadow map and a G-buffer (Figure 5.2-(a)). Then, the average
blocker depth and penumbra size are estimated in the shadow map space as well (Figures
5.2-(b, c)). However, the penumbra size estimated by RBSSM works well for filtering in
the shadow map space. Since we aim to filter the soft shadows in the screen space, we
estimate a screen-space penumbra size using (4.4).

To produce anti-aliased screen-space soft shadows, we must obtain the information
about the anti-aliased hard shadows in the screen space. To do so, we produce filtered
hard shadows in the screen-space using the RBSM technique (4.2) and save the filtered
hard shadow intensity of each visible fragment. Next, we separate the soft shadow filtering
in two steps: horizontal and vertical filtering in the screen space. In the horizontal pass,
filtering is performed over the filtered hard shadow on the screen-sized penumbra area.
In the vertical pass, filtering is done over the horizontally filtered hard shadows. In this
step, the filtering must be edge-aware, since we lose information about the edge location
in screen space. Hence, we use the separable cross-bilateral filter technique proposed in
(PHAM; VLIET, 2005) for this purpose. Because the bilateral filter is not separable
in essence, striped artifacts may appear during the filtering. We reduce such artifacts
by increasing the bilateral filter sampling rate. Even in this case, since the number of
increased samples is still smaller than the number of samples required for a non-separable
implementation of the bilateral filter, separable bilateral filter is better suited, in terms of
performance requirements, to our solution than the non-separable version of the bilateral
filter.

As we show in the next section, the computation of the screen-space soft shadow
filtering together with the high-quality revectorization-effect makes SSRBSSM an efficient
alternative for simpler scenarios, where high performance is desirable for soft shadow
rendering.

5.5 RESULTS AND DISCUSSION 83

5.5 RESULTS AND DISCUSSION

In this section, we evaluate the techniques in terms of visual quality and performance.
We compare the proposed approaches (EDTSSM, RBSSM and SSRBSSM) with the most
traditional real-time soft shadow technique (PCSS), well-known shadow map pre-filtering
techniques (Variance Soft Shadow Mapping (VSSM) and Moment Soft Shadow Mapping
(MSSM)) and one of the most recent screen-space soft shadow techniques (Screen-Space
Anisotropic Blurred Soft Shadows (SSABSS)). The visual quality is evaluated for the
same shadow map and viewport resolutions and for different scenarios. Performance is
evaluated for different shadow map and viewport resolutions and for different scenarios.
Hard shadow techniques are not evaluated in this section because they are out of the
scope of this chapter.

5.5.1 Experimental Setup

Following related work (PETERS et al., 2016), we fixed the filter size of 9 × 9 for the
blocker search step, and 15×15 for the soft shadow filtering step of PCSS, VSSM, MSSM
and EDTSSM techniques. For RBSSM, we have used a kernel size of 7 × 7 since the
filtering variant (Equation (4.2)) of RBSM requires less samples to effectively minimize
banding artifacts. For the screen-space techniques, namely SSABSS and SSRBSSM, we
have used a kernel size of 31 × 31, similarly to related work (BUADES; GUMBAU;
CHOVER, 2015).

5.5.2 Visual Quality Evaluation

In Figures 5.3, 5.4 and 5.5, we show a comparison between the proposed approaches
for different scenarios. In Figure 5.3, we evaluate the techniques for a complex object,
with fine, detailed structures along its silhouette. In Figures 5.4 and 5.5, we show how
different techniques handle the soft shadow computation for a more complex scenario,
with multiple objects in different scales distributed all over the scene. Not only the
scalability of the methods are evaluated for such a scenario with increased geometry
complexity, but also the accuracy of the methods are evaluated due to the presence of
multiple overlapping objects affecting the appearance of the shadow.

An equal low shadow map resolution comparison between different soft shadow tech-
niques is depicted in Figure 5.3. For the limited 10242 shadow map resolution, PCSS
generates aliasing artifacts along the soft shadow silhouette (Figure 5.3-(a)). VSSM and
MSSM suffer from aliasing and light leaking artifacts (Figures 5.3-(b, d)). SSABSS pro-
vides similar visual quality than PCSS in this scenario (Figure 5.3-(c)). EDTSSM is
not prone to aliasing artifacts, but promotes an overblurring of the shadow (Figure 5.3-
(e)). Both RBSSM and SSRBSSM are able to effectively minimize the aliasing artifacts
without the shadow overblurring (Figures 5.3-(f, g)), producing anti-aliased soft shadows
comparable with ground-truth shadows (Figure 5.3-(h)).

A comparison between different soft shadow techniques for a more complex (game-
like) scenario, due to the presence of several overlapping objects distributed along the
scene and with different geometry complexity, is shown in Figures 5.4 and 5.5. As pointed

84 REVECTORIZATION-BASED SOFT SHADOW MAPPING

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

(a) PCSS (10.8 ms) (b) VSSM (13.1 ms) (c) SSABSS (10.7 ms)

(d) MSSM (12.5 ms) (e) EDTSSM (13.2 ms) (f) RBSSM (15.4 ms)

(g) SSRBSSM (10.8 ms) (h) Ground-Truth (1.14 s)

Figure 5.3 A visual comparison between distinct soft shadow techniques. Shadow map pre-
filtering techniques produce soft shadows with light leaking artifacts (pointed by red arrows).
Images were generated for the YeahRight model using a 10242 shadow map resolution. The
ground-truth image was computed using the average of 1024 area light source samples.

5.5 RESULTS AND DISCUSSION 85

(a) PCSS (127.2 ms) (b) VSSM (136.3 ms) (c) SSABSS (127.2 ms)

(d) MSSM (135.7 ms) (e) EDTSSM (134.5 ms) (f) RBSSM (133.9 ms)

(g) SSRBSSM (127.2 ms) (h) Ground-Truth (12.0 s)

Figure 5.4 An equal low shadow map resolution comparison between soft shadow techniques
for a complex scenario. Aliasing and light leaking artifacts are pointed by red and green arrows.
Images were generated for the San Miguel model using a 10242 shadow map resolution. The
ground-truth image was computed using the average of 1024 area light source samples.

86 REVECTORIZATION-BASED SOFT SHADOW MAPPING

(a) PCSS (127.2 ms) (b) VSSM (136.3 ms) (c) SSABSS (127.2 ms)

(d) MSSM (135.7 ms) (e) EDTSSM (134.5 ms) (f) RBSSM (133.9 ms)

(g) SSRBSSM (127.2 ms) (h) Ground-Truth (12.0 s)

Figure 5.5 An equal low shadow map resolution comparison between soft shadow techniques
for a complex scenario. Aliasing and light leaking artifacts are pointed by red and green arrows.
Images were generated for the San Miguel model using a 10242 shadow map resolution. The
ground-truth image was computed using the average of 1024 area light source samples.

by red arrows, PCSS and SSABSS suffer from aliasing artifacts (Figures 5.4-(a, c) and
5.5-(a, c)). VSSM and MSSM suffer from light leaking artifacts (Figures 5.4-(b, d) and
5.5-(b, d)). Again, we can see that EDTSSM does not suffer from aliasing artifacts, but

5.5 RESULTS AND DISCUSSION 87

overblurs the shadow (Figures 5.4-(e) and 5.5-(e)). RBSSM and SSRBSSM produces
shadows that are more similar to the ground-truth than the other evaluated techniques
(Figures 5.4-(f, g) and 5.5-(f, g)). Unfortunately, screen-space techniques are prone to
light leaking artifacts near the silhouette of the objects if the depth difference of distinct
objects in the scene is too small (see the region pointed by green arrows in Figures 5.5-(c,
g)). In this sense, SSRBSSM is better than related work because it minimizes the aliasing
artifacts (Figure 5.4-(g)).

5.5.3 Rendering Time Evaluation

In Figures 5.6, 5.7, 5.8 and 5.9, we show the performance of the several soft shadow
techniques evaluated in this section under varying shadow map and output resolutions
for the different scenarios evaluated in the previous subsection.

PCSS, SSABSS and SSRBSSM are generally the fastest techniques, regardless of the
scene configuration. PCSS is relatively scalable with respect to the shadow map resolution
(Figures 5.6 and 5.7) and is not scalable in terms of output resolution (Figures 5.8 and
5.9). RBSSM has the same performance characteristics of PCSS, but the additional cost
demanded by the shadow revectorization makes RBSSM slower than PCSS. In this case,
PCSS is faster than RBSSM, meanwhile RBSSM provides better visual quality than
PCSS. On the other hand, VSSM and MSSM techniques handle well varying output
resolution (Figures 5.8 and 5.9), but are not scalable with respect to the shadow map
resolution, becoming two of the slowest techniques for higher shadow map resolutions
(Figures 5.6 and 5.7). This happens because of the time needed to compute the summed-
area table, required for the shadow map pre-filtering, increases as much as the shadow map
resolution is increased. EDTSSM is scalable with respect to the shadow map resolution

5122 10242 20482 40962
10

12

14

16

18

20

Shadow Map Resolution

P
er

fo
rm

an
ce

[m
s] PCSS

VSSM
SSABSS
MSSM

EDTSSM
RBSSM

SSRBSSM

Figure 5.6 Time usage (in milliseconds) for several soft shadow techniques. Rendering times
were measured for the YeahRight model shown in Figure 5.3 at an output 1280×720 resolution.
Measurements include varying shadow map resolution.

88 REVECTORIZATION-BASED SOFT SHADOW MAPPING

(Figures 5.6 and 5.7), but is not scalable in terms of viewport resolution (Figures 5.8 and
5.9), because the Euclidean Distance Transform, the costly step of EDTSSM, is computed
in the screen space. The screen-space techniques (SSABSS and SSRBSSM) are not that
scalable in terms of viewport resolution (Figures 5.8 and 5.9), but they are generally
faster than related work regardless of scene configuration.

5.5.4 Discussion

Comparing solely the results obtained with EDTSSM, RBSSM and SSRBSSM, the screen-
space variant is able to successfully compute soft shadows visually similar to the ones
obtained with RBSSM, while being faster than EDTSSM. This fact can be mainly seen
in Figures 5.3 and 5.4. The greatest advantage of SSRBSSM is that, by performing most
of the computation in the screen space, the technique is faster than both revectorization-
based techniques in all the scenes tested in this chapter. In this sense, RBSSM is suitable
for applications that demand high quality shadow rendering, EDTSSM is desirable
for applications that demand a balance between quality and performance, meanwhile
SSRBSSM is desirable for applications that demand visually plausible soft shadow ren-
dering with high performance.

Compared to related work, all the revectorization-based techniques provide the best
visual quality results and are able to minimize aliasing and light leaking artifacts even for
low-resolution shadow maps (Figures 5.3-(f, g), 5.4-(f, g) and 5.5-(f, g)). Also, RBSSM
is the technique that produces shadows most similar to the ones generated by a dense
uniform sampling of the area light source. In terms of performance, as can be seen in
Figures 5.6, 5.7, 5.8 and 5.9, we clearly have three distinct groups that represent different
behaviours of the soft shadow techniques. The first group composed of the screen-space

5122 10242 20482 40962
125

130

135

140

145

150

Shadow Map Resolution

P
er

fo
rm

an
ce

[m
s] PCSS

VSSM
SSABSS
MSSM

EDTSSM
RBSSM

SSRBSSM

Figure 5.7 Time usage (in milliseconds) for several soft shadow techniques. Rendering times
were measured for the San Miguel model shown in Figures 5.4 and 5.5 at an output 1280× 720
resolution. Measurements include varying shadow map resolution.

5.5 RESULTS AND DISCUSSION 89

480p 720p 1080p

10

12

14

16

18

20

Viewport Resolution

P
er

fo
rm

an
ce

[m
s] PCSS

VSSM
SSABSS
MSSM

EDTSSM
RBSSM

SSRBSSM

Figure 5.8 Time usage (in milliseconds) for several soft shadow techniques. Rendering times
were measured for the YeahRight model shown in Figure 5.3 at an 10242 shadow map resolution.
Measurements include varying output resolution.

480p 720p 1080p
125

130

135

140

145

150

Viewport Resolution

P
er

fo
rm

an
ce

[m
s] PCSS

VSSM
SSABSS
MSSM

EDTSSM
RBSSM

SSRBSSM

Figure 5.9 Time usage (in milliseconds) for several soft shadow techniques. Rendering times
were measured for the San Miguel model shown in Figures 5.4 and 5.5 at an 10242 shadow map
resolution. Measurements include varying output resolution.

techniques and PCSS is the group of the fastest soft shadow techniques, that are scalable
in terms of shadow map resolution, are not scalable with respect to viewport resolution,
and achieve such a low running time by generating shadows prone to aliasing and light
leaking artifacts, except for the SSRBSSM, that uses the revectorization to minimize
aliasing. The second group is composed of the pre-filtering techniques, that are less
sensitive to viewport variation than the screen-space techniques, but have increased pro-

90 REVECTORIZATION-BASED SOFT SHADOW MAPPING

cessing time and generates light leaking artifacts for simple and complex scenarios. The
third group is composed of the other revectorization-based techniques, namely EDTSSM
and RBSSM, whose cost increases according to both shadow map and viewport resolu-
tions. It is worthy to note that the rate of increase in the processing time of RBSSM
for higher viewport resolution is similar to the rate produced by PCSS and EDTSSM.
Moreover, although RBSSM is, in average, 20% slower than the pre-filtering techniques
and 50% slower than the screen-space techniques for the scenario shown in Figure 5.3, for
a more complex scenario (Figures 5.4 and 5.5), in which the overall processing time of the
solution is dominated by the geometry rendering, the technique becomes less than ≈ 5%
more costly than the pre-filtering techniques and less than ≈ 10% more costly than the
screen-space techniques. Given these facts, we can state that SSRBSSM is desirable for
simple scenarios, since the technique is less prone to aliasing and light leaking artifacts
than related work and provides one of the fastest processing times. RBSSM is desirable
for complex scenarios, since even SSRBSSM suffers from light leaking artifacts (Figure
5.5-(g)) and RBSSM is able to provide an improved visual quality with less than 10%
of processing time overhead, as compared to related work. Finally, EDTSSM provides
a balance between SSRBSSM and RBSSM, obtaining competitive performance for both
simple and complex scenarios.

5.5.5 Limitations

One of the limitations shared by all techniques evaluated in this chapter is that the quality
of the generated soft shadow is highly dependent on the resolution of the shadow map.
In this sense, we reinforce that the revectorization-based soft shadow techniques are able
to minimize such a problem efficiently.

As a screen-space technique, SSRBSSM suffers from the same problem of the other
screen-space soft shadow techniques: the screen-space filtering does not approximate the
filtering produced from perspectively deformed kernels used for soft shadow filtering in
the light space, nor takes into account the shadows located outside the view, while it is
still prone to light leaking artifacts if the depth difference between different objects is
too small (Figure 5.5-(g)). That is why the RBSSM technique, by performing the soft
shadow filtering in the light space, has higher accuracy than SSRBSSM.

By using the mean filtering step as an alternative to minimize the skeleton artifacts
generated by EDT, EDTSSM promotes an overblurring of the soft shadows that decreases
the visual quality of the shadow rendering.

In terms of performance, RBSSM generates shadows with higher accuracy than related
work, but is one of the slowest soft shadow mapping techniques.

Finally, all the techniques compared in this chapter compute soft shadows using only
one shadow map, located at the center of the area light source, and assuming that both
light source and blocker objects are planar and parallel to each other. This simplifying
assumption makes the algorithms fast enough to run in real time and to generate visually
plausible soft shadows. However, physical accuracy is lost because that assumption brings
incorrect penumbra size and visibility estimations (EISEMANN et al., 2011). An example
of such a problem is visible in Figure 5.10, where the PCSS algorithm fails to estimate

5.6 SUMMARY 91

(a) PCSS (b) Accurate Shadows

Figure 5.10 For complex, large penumbra sizes, common real-time soft shadow techniques
(a) fail to produce near accurate soft shadows (b) (see the region pointed by the red arrows).
Images were generated for the YeahRight model using 10242 shadow map resolution.

the large penumbra size correctly.

5.6 SUMMARY

In this chapter, we have shown three techniques for visually plausible soft shadow ren-
dering: EDTSSM, a technique that computes soft shadows on the basis of a normalized
EDT, RBSSM, a technique that extends the RBSM approach to compute soft shadows,
and SSRBSSM, a technique that computes soft shadows in the screen space, on the basis
of the filtered hard shadow visibility function of RBSM.

Due to the revectorization effect provided by RBSM, all the proposed techniques are
able to provide anti-aliasing for the soft shadow rendering. EDTSSM and RBSSM reduce
the light leaking artifacts commonly generated by shadow map pre-filtering techniques, at
the cost of more processing time for the shadow rendering. On the other hand, despite the
limitations caused by performing the shadow filtering in the screen space, the SSRBSSM
technique has shown promising results with respect to visual quality, while being one of
the fastest soft shadow techniques compared to the other evaluated works.

None of the techniques proposed for visually plausible soft shadow rendering can
compute accurate soft shadows because they approximate an area light source by a single
point light source in order to simplify the shadow rendering problem. In the next chapter,
we show how the revectorization effect can benefit the reproduction of accurate soft
shadows computed on the basis of an adaptive area light source sampling.

Chapter

6
In this chapter, we present an algorithm that takes advantage of the improved accuracy obtained with

RBSM to generate accurate soft shadows from a few light source samples, while producing temporally

coherent soft shadows at interactive frame rates.

REVECTORIZATION-BASED ACCURATE SOFT
SHADOW MAPPING

The problem of the techniques discussed in the previous chapter is that they are computed
on the basis of a single point light source, typically located at the center of an area light
source. Such an approximation decreases the quality of the shadow rendering, but makes
the shadowing process real time. In this chapter, we present a new technique that uses
the concepts of shadow revectorization and adaptive sampling to speed up the accurate
rendering of soft shadows. The content of this chapter is based on an authored publication
(MACEDO; APOLINÁRIO JR., 2017b).

6.1 REVECTORIZATION-BASED ACCURATE SOFT SHADOW RENDERING

An overview of the proposed algorithm is presented in Figure 6.1 and a high-level pseu-
docode is listed in Algorithm 6. Similarly to the solution proposed by related work
(SCHWARZLER et al., 2012), we adaptively sample quads of four point light sources
from the area light source (Figure 6.1-(a), Line 3 of Algorithm 6) and use them to evalu-
ate whether banding artifacts are generated by the algorithm (Figures 6.1-(b, c, d, e, f),
Lines 4-9 and 11 of Algorithm 6). In this case, we take advantage of the improved accu-
racy provided by the Revectorization-based Shadow Mapping (RBSM) visibility function
to select less light source samples than related work (SCHWARZLER et al., 2012), while
keeping its same visual quality. We further present a novel strategy to speedup the ac-
curate soft shadow rendering on the basis of a visibility map (Figure 6.1-(g), Line 10 of
Algorithm 6).

6.1.1 Adaptive Light Source Sampling

Let us define the area light source L as an adaptive structure where each node consists
of a quad Q formed by four neighbour point light sources. The main goal of the adap-

93

94 REVECTORIZATION-BASED ACCURATE SOFT SHADOW MAPPING

(a) Light Source

(b) Shadow Maps +
Texture Array

(c) Discontinuity Maps +
Texture Array

(d) Shadow
Evaluation

(e) Discontinuity
Evaluation

(f) Banding
Artifacts

(g) Visibility Map (h) Final Rendering

Refine light source adaptively
R

efi
n

e?
N

o
Y

es

Figure 6.1 An overview of the revectorization-based accurate soft shadow mapping. Given
an area light source (a), we first generate four shadow (b) and discontinuity maps (c) for the
neighbours point light sources located at the light source corners and store those maps into
separate texture arrays. Then, the set of shadow and discontinuity maps (b, c) are evaluated
(d, e) to detect the presence of banding artifacts (f) and build a visibility map (g) in the
camera view. According to a refinement criteria, we determine whether the area light source
must be adaptively refined and the algorithm reiterated for each four new neighbour samples.
Otherwise, the accurate soft shadow is computed (h) on the penumbra fragments detected with
the visibility map. The light source in (a) is refined to the third level of the adaptive structure,
where each sample color represents a different level in the adaptive structure. As can be seen in
(b, c), shadow and discontinuity maps are stored in the texture arrays according to the position
of the sample (indicated by the colors) in the light source.

tive sampling is to generate only the light source samples l ∈ L that will contribute
significantly to the final soft shadow appearance, generating visually accurate soft shad-
ows. Hence, the light source refinement criteria must be view-dependent, considering
whether the neighbour samples produce artifact-free soft shadows in the final rendering
(SCHWARZLER et al., 2012).

We start the light source sampling by building the first level of the adaptive structure,
where a single leaf node represents the quad formed by the light source samples located
at the corners of the area light source (red circles in Figure 6.1-(a)).

To use RBSM in our refinement criteria, we need to compute the shadow test (3.2)
and detect the discontinuity directions by the absolute difference of neighbour shadow
tests d (3.3) for each new point light source sample l ∈ Q. To do so, we render the
scene from the viewpoint of l and store the depth buffer as a shadow map (WILLIAMS,
1978) (Figure 6.1-(b)). Also, we render the scene from the camera viewpoint, compute
the discontinuity and store it in a discontinuity map D of viewport width w and height h
that stores, for each pixel D(i, j) ∈ N4, the vector d (Figure 6.1-(c)). As shown in Figure

6.1 REVECTORIZATION-BASED ACCURATE SOFT SHADOW RENDERING 95

Algorithm 6 Revectorization-based accurate soft shadowing

1: for each frame do
2: G ← renderGBuffer;
3: for each new quad Q of light source L with index q do
4: for each new light source sample li of Q do
5: Si ← renderShadowMap(li);
6: Di ← renderDiscontinuityMap(Si, G);
7: end for
8: ss← computeShadowSum(S, G);
9: sd← isSoftDiscontinuity(D, G);

10: VMq ← updateVisibilityMap(ss, sd, VMq−1, G);
11: if hasBandingArtifact(ss, sd, G) then
12: refineAdaptiveStructure(L);
13: end if
14: end for
15: renderAccurateSoftShadow(S, D, VM, L, G);
16: end for

6.1, both maps are stored in separate texture arrays, whose sizes are equivalent to the
maximum number of samples that can be selected from L (Lines 3-7 of Algorithm 6).
To optimize the discontinuity map rendering, we use a G-buffer (SAITO; TAKAHASHI,
1990) to guarantee that (3.3) is computed for visible fragments only (Lines 2 and 6 of
Algorithm 6).

After the shadow and discontinuity map rendering, we need to determine whether the
samples located in the same quad are sufficient for accurate soft shadow rendering. To
do so, we project both shadow and discontinuity maps of the four neighbour samples into
the same camera view and compare them (Figure 6.1-(d, e)) to detect whether banding
artifacts are produced by the use of those samples (Figure 6.1-(f)). This comparison is
done in a two-pass strategy with the scene rendered from the camera viewpoint.

In the first pass, for each fragment p projected in a pixel with coordinates (i, j) in
the camera view, we estimate the shadow sum ss(VSM,Q, i, j) ∈ [0, 4], or simply ss, that
is the sum of the four shadow test values of p̃ computed from the neighbour four shadow
maps in the light quad Q (Figure 6.1-(d) and Line 8 of Algorithm 6)

ss(VSM,Q, i, j) =
4∑

k=1, Sk∈Q

VSM(p̃z, Sk(i, j)). (6.1)

Additionally, we label a fragment as soft discontinuity if the fragment is in the shadow
silhouette (i.e., d 6= 0) for at least sd point light source samples (Figure 6.1-(e) and Line
9 of Algorithm 6). Considering sd ∈ [0, 4], sd = 1 generates a really small number of
samples for rendering, making the approach susceptible to banding artifacts. On the
other hand, sd = 4 generates several samples, as a few fragments are classified as lying
in the shadow silhouette for all the four neighbour light source samples. sd = 2 or 3
generates a moderate number of samples. We have used sd = 2 for all the scenarios

96 REVECTORIZATION-BASED ACCURATE SOFT SHADOW MAPPING

shown in this chapter because this value generates less samples than sd = 3, while being
much less susceptible to banding artifacts than sd = 1.

In the next pass, both shadow sum and fragment classification (Figure 6.1-(d, e)) are
used to locate the fragments that potentially produce banding artifacts in the camera
view (Figure 6.1-(f), Line 11 of Algorithm 6). Based on the previously computed shadow
sum (6.1), fully lit (i.e., ss = 4) and fully shadowed fragments (i.e., ss = 0) are discarded
from rendering because they are not located in the penumbra and cannot cause banding
artifacts. Fragments classified as soft discontinuity are discarded from rendering as well,
because RBSM will guarantee high-quality anti-aliasing for them. The remaining frag-
ments (whose shadow sum lies between 1 and 3) are compared against their 8-connected
neighbour fragments in the camera view. If the fragment has at least one neighbour
fragment that has a different shadow sum or that is a soft discontinuity, the fragment is
discarded. The only fragments rendered in the scene are the ones whose shadow sums
state that the fragments are in the penumbra and the shadow sums are the same for
all the 8-connected neighbours. That is the case of the fragments located in penumbra
regions that are not sufficiently smooth, due to the high distance between light source
samples (and their shadow maps). As shown in Figure 6.1-(f), those fragments produce
banding artifacts in the final rendering, rather than a single, smooth penumbra region
(SCHWARZLER et al., 2012).

Hardware occlusion query (BARTZ; MEIBNER; HUTTNER, 1998) is used to check
if a single pixel was rendered on the screen. If this condition is true, the area light source
is further refined according to the adaptive structure (Line 12 of Algorithm 6). Then,
the algorithm is iterated for the new light quads (Figure 6.1).

To optimize the performance of our solution, while we perform the light source sam-
pling, we build and update a visibility map VM. This map is a texture that stores the
final illumination condition of each fragment (i.e., whether the fragment is lit, penumbra
or umbra) (Figure 6.1-(g)). With such a map, we are able to restrict the costly accurate
soft shadow rendering for penumbra fragments only.

The algorithm to compute the visibility map is fairly simple, yet effective. First, we
clear VM, indicating that no classification has been assigned to any visible fragment.
Then, we use the estimated shadow sum to update the stored visibility condition of the
fragment. Let us redefine the shadow sum as ssq and the visibility map as VMq, where
q refers to a index of Q. For the first quad of the adaptive structure, the visibility
classification VM0(i, j) of the fragment p located at the pixel (i, j) is computed on the
basis of the shadow sum estimated at that pixel ss0(i, j)

VM0(i, j) =


umbra if ss0(i, j) = 0,

penumbra else if 1 ≤ ss0(i, j) ≤ 3,

lit otherwise.

(6.2)

Additionally, we define VM0 as penumbra for the fragments classified as soft discontinuity.

For the next quad, assuming that the adaptive structure has more than one level, we
update the visibility map by classifying the fragment as penumbra if there is a difference
between the illumination condition previously estimated in the visibility map and the one

6.1 REVECTORIZATION-BASED ACCURATE SOFT SHADOW RENDERING 97

given by the current shadow sum. In other words

VMq(i, j) =

{
penumbra if VMq−1(i, j) = lit and ssq(i, j) = 0,

or VMq−1(i, j) = umbra and ssq(i, j) = 4.
(6.3)

Finally, in the final rendering step (Figure 6.1-(h)), after the refinement criteria has
been satisfied, we access the visibility map to determine the visibility condition of the
fragment in the camera view. Lit and umbra fragments are illuminated accordingly, and
for penumbra fragments only, we proceed with the computation of the final soft shadow
intensity.

6.1.2 Final Rendering

Given the n light source samples l distributed over the surface of the area light source L,
the final soft shadow intensity of a point p (Figure 6.1-(h), Line 15 of Algorithm 6) can
be computed according to the visibility function V ∈ [0, 1]

V =

∑n
i=1 ωiV

∗∗
RBSM(li)∑n

i=1 ωi
. (6.4)

where V∗∗RBSM(li) denotes the visibility function of the filtered version of the RBSM tech-
nique (4.2) with respect to the point light source li, and V estimates how much of the
area light source is visible to the point p. Therefore, V = 0 indicates that the entire area
light source is not visible to a given surface point p, and V = 1 indicates the full visibility
of the area light source to p. ωi is the weight assigned to the point light source li that
compensates for the irregular distribution of samples, computed as (SCHWARZLER et
al., 2012)

ω =
1

(2α + 1)2
, (6.5)

where α is the level of the adaptive structure.

RBSM is the basis of three distinct techniques that produce different shadow outputs:
conservative, non-conservative and filtered RBSM. In (6.4), we use the filtered version of
RBSM because the use of filtering for shadow revectorization is efficient to solve banding
artifacts.

We could compute (6.4) in n shader passes, evaluating V per sample in each pass, and
using the accumulation buffer (HAEBERLI; AKELEY, 1990) to store the accumulated
soft shadow intensity. Since we store the n shadow and discontinuity maps into two
texture arrays (Figure 6.1-(b, c)), we are able to compute (6.4) and evaluate the filtered
RBSM visibility function for all the light source samples in a single pass on the shader,
further saving many read/write operations that would be needed by the accumulation
buffer.

98 REVECTORIZATION-BASED ACCURATE SOFT SHADOW MAPPING

(a) 1D revectorization-based filtering (b) RPCF

(a) 1D revectorization-based filtering (b) RPCF(a) 1D revectorization-based filtering (b) RPCF

Figure 6.2 (a) For a relatively large penumbra size, the use of the revectorization-based filtering
visibility function generates banding artifacts for a few light source samples. (b) The control
over the filter size provided by RPCF allows the generation of artifact-free soft shadows, at the
cost of increased processing time.

6.1.3 Temporally Coherent Soft Shadow Computation

One alternative to further reduce processing time and the number of selected light source
samples relies on the reduction of the viewport size used for occlusion query during the
adaptive refinement. Unfortunately, the algorithm becomes prone to banding artifacts
due to the insufficient number of samples. Rather than using the 1D filtering technique as
a visibility function in (6.4), RPCF can be used to solve this problem, but the performance
drops considerably when using this technique. Another problem with the viewport size
reduction is that a fixed reduction factor produces incoherent soft shadows as the camera
moves in the scene. In this way, we can use an adaptive approach to estimate this
reduction factor to produce temporally coherent soft shadows. Also, we need to determine
whether RPCF is useful to solve the banding artifacts generated from the viewport size
reduction.

In general, the 1D revectorization-based filtering is well suited for scenarios with
small penumbra sizes because it adds filtering for a limited extension of the anti-aliased
shadow. However, for large penumbra sizes, several light source samples are still required
to generate artifact-free soft shadows, because the small filter size of the filtering technique
does not solve the banding artifacts in the penumbra (Figure 6.2-(a)). A more appropriate
alternative for large penumbra sizes is RPCF, that requires a few light source samples to
provide high-quality soft shadows (Figure 6.2-(b)). In this sense, according to the area

6.2 RESULTS AND DISCUSSION 99

light source and the penumbra size, each one of the revectorization-based techniques is
more adequate for accurate soft shadow rendering.

To compute the appropriate window size for occlusion query automatically, we es-
timate such value according to the RBSM technique used and the current level of the
adaptive structure. We draw this approach from the observation that the window size
reduction may change from adaptive structure level because, as long as the structure
is refined, we can relax the criteria to guarantee that a small number of samples will
be used for rendering. Let us assume ws the original window size, wsRBSM(ws, α) and
wsRPCF(ws, α) the window sizes used for the 1D revectorization-based filtering and RPCF
techniques, respectively. In this work, we have used the following window sizes

wsRBSM(ws, α) =


ws if 0 ≤ α ≤ 1,
ws
2

else if 2 ≤ α ≤ 3,
ws
4

otherwise.

(6.6)

wsRPCF(ws, α) =


ws
4

if 0 ≤ α ≤ 1,
ws
6

else if 2 ≤ α ≤ 3,
ws
8

otherwise.

(6.7)

As we aim to generate a few light source samples, the idea of keeping the adaptive
structure built from the previous frame and refining or condensing it in the next frame
did not improve the performance of the algorithm.

6.2 RESULTS AND DISCUSSION

In this section, we evaluate the soft shadow techniques in terms of visual quality and
performance. We compare our revectorization-based (RB) adaptive sampling with other
sampling strategies, namely the uniform sampling of the area light source (using 289
samples, as suggested in (SCHWARZLER et al., 2012)) and the adaptive sampling solu-
tion proposed in (SCHWARZLER et al., 2012). Also, we compare our approach with a
traditional technique from the field of real-time soft shadow mapping: Percentage Closer
Soft Shadows (PCSS) (FERNANDO, 2005).

6.2.1 Experimental Setup

To provide a fair comparison between the adaptive sampling of (SCHWARZLER et
al., 2012) and ours, we have used their solution with a reduction over the window size
for occlusion query by a factor of 4 and Percentage-Closer Filtering (PCF) (REEVES;
SALESIN; COOK, 1987) to compensate the banding artifacts. Their solution is always
slower than ours when using the same window size for both occlusion query (during adap-
tive sampling) and output resolution (during final rendering). All images were generated
by a rectangular area light source. Both PCF and RPCF techniques use the same kernel
size of 2× 2.

100 REVECTORIZATION-BASED ACCURATE SOFT SHADOW MAPPING

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

Figure 6.3 Accurate soft shadows produced by different techniques. In this scenario, 289
light source samples were used for uniform sampling (a), 47 light source samples were used
for adaptive sampling (b), and only 25 light source samples were used for our RB adaptive
sampling (c). PCSS (d) uses a single point light source sample. False color visualizations show
the difference between the normalized shadow intensities generated by uniform sampling, which
uses the largest number of samples, and the other techniques. Images were generated for the
Armadillo model using a 10242 shadow map resolution.

6.2.2 Visual Quality Evaluation

As shown in Figures 6.3, 6.4, 6.5, our revectorization-based adaptive sampling provides
high-quality, accurate soft shadows (Figures 6.3-(c), 6.4-(c), 6.5-(c)), needing a few light
source samples to achieve such a visual quality. We require about 4-11 times less samples
than the uniform sampling approach (Figures 6.3-(a), 6.4-(a), 6.5-(a)) and 2-4 times less
samples than the adaptive sampling approach proposed in (SCHWARZLER et al., 2012)
(Figures 6.3-(b), 6.4-(b), 6.5-(b)) to achieve high visual quality. Although the real-time
soft shadow technique (Figures 6.3-(d), 6.4-(d), 6.5-(d))) generates visually plausible soft
shadows, the penumbra size is estimated incorrectly and some details of the shadow are
lost due to the approximation of the area light source by a single point light source.

An analysis of the influence of the penumbra size over the proposed adaptive sampling
algorithm can be seen in Figure 6.6. For small penumbra sizes (Figure 6.6-(a)), our
approach is faster than the uniform sampling approach, while generating accurate soft
shadows from a few light source samples. Real-time soft shadow algorithms, in this case,
tend to produce visually plausible soft shadows (Figure 6.6-(a)). As the penumbra size
increases (Figures 6.6-(b, c)), more light source samples are needed to effectively suppress
banding artifacts. In this scenario, while being able to generate accurate soft shadows,

6.2 RESULTS AND DISCUSSION 101

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

Figure 6.4 Accurate soft shadows produced by different techniques. In this scenario, 289
light source samples were used for uniform sampling (a), 134 light source samples were used
for adaptive sampling (b), and only 62 light source samples were used for our RB adaptive
sampling (c). PCSS (d) uses a single point light source sample. False color visualizations show
the difference between the normalized shadow intensities generated by uniform sampling, which
uses the largest number of samples, and the other techniques. Images were generated for the
YeahRight model using a 10242 shadow map resolution.

our approach may be slower than the uniform sampling approach mainly because of three
factors: 1. RBSM is slower than the traditional shadow mapping, although it provides
improved visual quality, 2. the adaptive refinement provides an additional cost to the
final rendering time, while the uniform approach does not have such a step, 3. in the
case where the penumbra fills much of the screen-space available, the use of the visibility
map does not discard a high number of fragments from the final rendering evaluation.
As shown in Figure 6.6-(b, c), for large penumbra sizes, real-time soft shadow algorithms
are able to generate soft shadows with low processing time, but cannot generate accurate
soft shadows (as pointed by the red arrows in Figure 6.6-(b, c)). Indeed, such a difference
is mainly visible for situations such as the one shown in Figure 5.10, where the umbra
region disappears entirely in penumbra. In these cases, the approximation of the area
light source by a single point light source does not provide enough information for the
sampling and rendering of those fine details of the penumbra.

The improved temporal coherency obtained with our solution can be seen in Figure
6.7. The adaptive sampling approach of (SCHWARZLER et al., 2012) greatly varies the
number of selected light source samples according to the distance of the camera to the
penumbra region. While a high number of samples is selected when a large amount of the
screen space is occupied by the penumbra, a really small number of samples are selected
when the camera is far away. In this case, one can see the shadows as a composition

102 REVECTORIZATION-BASED ACCURATE SOFT SHADOW MAPPING

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

(a) Uniform
Sampling

(b) Adaptive
Sampling

(c) RB Adaptive
Sampling

(d) PCSS

0 1
8

1
4

3
8

1
2

Figure 6.5 Accurate soft shadows produced by different techniques. In this scenario, 289
light source samples were used for uniform sampling (a), 246 light source samples were used
for adaptive sampling (b), and only 63 light source samples were used for our RB adaptive
sampling (c). PCSS (d) uses a single point light source sample. False color visualizations show
the difference between the normalized shadow intensities generated by uniform sampling, which
uses the largest number of samples, and the other techniques. Images were generated for the
QuadBot model using a 10242 shadow map resolution.

of several hard shadows rather than a single soft shadow (SCHWARZLER et al., 2012).
Our approach keeps the number of samples selected from the area light source consistent,
generating high-quality soft shadows regardless of the distance from the viewer to the
penumbra region.

6.2.3 Rendering Time Evaluation

A performance comparison between the techniques evaluated in this section can be seen
in Tables 6.1 and 6.2. The uniform sampling of the area light source provides stable
frame rates under different parameters, but provides the worst performance, due to the
large number of samples used for every frame. The adaptive sampling strategy proposed
in (SCHWARZLER et al., 2012) becomes faster as long as the shadow map resolution
increases, because less samples are required to generate high-quality accurate soft shadows
when high resolution shadow maps are used. On the other hand, such a sampling strategy
is sensitive to high output resolutions due to the use of a screen-space criteria. For a 1080p
output resolution, the adaptive sampling strategy provides performance similar to uniform
sampling. Our revectorization-based sampling strategy provides the best performance
among the evaluated accurate soft shadow techniques, regardless of the shadow map and
output resolutions used. Obviously, PCSS obtains better performance since the technique
uses only one sample of the light source to compute the soft shadows. However, as shown

6.2 RESULTS AND DISCUSSION 103

U
n
if

or
m

S
am

p
li
n
g

R
B

S
am

p
li
n
g

P
C

S
S

50 ms 50 ms 50 ms

45 ms (30 samples) 100 ms (50 samples) 300 ms (215 samples)

3.03 ms 3.12 ms 3.33 ms

(a) (b) (c)

Figure 6.6 A performance/visual quality comparison between different soft shadow techniques
under distinct penumbra sizes. For small penumbra sizes (a), our approach is generally faster
than the uniform sampling approach. The opposite occurs for large penumbra sizes (b, c), which
demands an increased number of samples to minimize the banding artifacts. A real-time soft
shadow approach is able to render visually plausible soft shadows for small penumbra sizes (a),
but deviates from the accurate soft shadow under large penumbra sizes (see the region pointed
by the red arrows in b, c). Images were generated for the Teapot model using a 10242 shadow
map resolution.

in Figures 6.3, 6.4 and 6.5, PCSS also provides the worst soft shadows in terms of visual
quality.

An in-depth evaluation of the rendering times obtained for each step of our algorithm
is shown in Tables 6.3 and 6.4. It is visible that the bottlenecks of our approach are
the shadow map rendering and the accurate soft shadow rendering. The shadow map
rendering is costly because, different from the discontinuity map rendering and other
steps, this one cannot take advantage of a G-buffer rendering to optimize the performance
of the scene rendering. So, the entire scene must be rendered several times, according
to the number of samples selected from the area light source. On the other hand, the
accurate soft shadow rendering is costly because of the shadow revectorization visibility
function that must be computed for every light source sample. The other steps of our

104 REVECTORIZATION-BASED ACCURATE SOFT SHADOW MAPPING

25 samples 14 samples 4 samples

25 samples 25 samples 25 samples

A
d
ap

ti
ve

S
am

p
li
n
g

R
B

S
am

p
li
n
g

25 samples 14 samples 4 samples

25 samples 25 samples 25 samples

A
d
ap

ti
ve

S
am

p
li
n
g

R
B

S
am

p
li
n
g

25 samples 14 samples 4 samples

25 samples 25 samples 25 samples

A
d
ap

ti
ve

S
am

p
li
n
g

R
B

S
am

p
li
n
g

25 samples 14 samples 4 samples

25 samples 25 samples 25 samples

A
d

ap
ti

ve
S

am
p

li
n

g
R

B
S

am
p

li
n

g

25 samples 14 samples 4 samples

25 samples 25 samples 25 samples

A
d
ap

ti
ve

S
am

p
li
n
g

R
B

S
am

p
li
n
g

25 samples 14 samples 4 samples

25 samples 25 samples 25 samples

A
d
ap

ti
ve

S
am

p
li
n
g

R
B

S
am

p
li
n
g

25 samples 14 samples 4 samples

25 samples 25 samples 25 samples

A
d

ap
ti

ve
S

am
p

li
n

g
R

B
S

am
p

li
n

g

Figure 6.7 The temporal coherency provided by both adaptive sampling and revectorization-
based (RB) adaptive sampling approaches. Our approach works well independently of the
camera position, while keeping consistent the number of samples selected from the area light
source. Images were generated for the Raptor model using a 10242 shadow map resolution.

Shadow Map Resolution
Model Method 5122 10242 20482

Armadillo
(Figure 6.3)

Uniform Sampling 350 ms 360 ms 380 ms
Adaptive Sampling 175 ms 100 ms 95 ms

RB Adaptive Sampling 95 ms 80 ms 80 ms
PCSS 5.3 ms 5.4 ms 5.5 ms

YeahRight
(Figure 6.4)

Uniform Sampling 1.4s 1.4 s 1.4 s
Adaptive Sampling 1.5 s 770 ms 950 ms

RB Adaptive Sampling 340 ms 495 ms 620 ms
PCSS 11.2 ms 11.3 ms 11.7 ms

QuadBot
(Figure 6.5)

Uniform Sampling 800 ms 820 ms 830 ms
Adaptive Sampling 950 ms 840 ms 610 ms

RB Adaptive Sampling 380 ms 385 ms 400 ms
PCSS 7.4 ms 7.5 ms 7.6 ms

Table 6.1 Rendering times for different sampling strategies measured for different scenes ren-
dered at an output 720p resolution. Measurements include varying shadow map resolution.

6.2 RESULTS AND DISCUSSION 105

Output Resolution
Model Method 480p 720p 1080p

Armadillo
(Figure 6.3)

Uniform Sampling 360 ms 360 ms 360 ms
Adaptive Sampling 50 ms 100 ms 270 ms

RB Adaptive Sampling 70 ms 80 ms 250 ms
PCSS 3.7 ms 5.4 ms 8.1 ms

YeahRight
(Figure 6.4)

Uniform Sampling 1.4 s 1.4 s 1.4 s
Adaptive Sampling 280 ms 770 ms 1.6 s

RB Adaptive Sampling 180 ms 495 ms 850 ms
PCSS 10 ms 11.3 ms 14.4 ms

QuadBot
(Figure 6.5)

Uniform Sampling 800 ms 820 ms 830 ms
Adaptive Sampling 220 ms 840 ms 1 s

RB Adaptive Sampling 130 ms 385 ms 680 ms
PCSS 6 ms 7.5 ms 10.2 ms

Table 6.2 Rendering times for different sampling strategies measured for different scenes ren-
dered at an 10242 shadow map resolution. Measurements include varying output resolution.

approach (e.g., discontinuity map rendering, light source refinement) are more sensitive
to output resolution changes, since the calculations are done for even more fragments in
the camera view.

6.2.4 Limitations

Since we compute accurate soft shadows on the basis of shadow maps, we may suffer from
subsampling artifacts if a low-resolution shadow map is used to generate the soft shadows.
An example of those artifacts can be seen in Figure 6.8-(a), in the region pointed by the
red arrows. As shown in Figure 6.8-(b), these artifacts can be minimized by increasing
the shadow map resolution.

Subsampling artifacts may be caused not only because of the shadow map resolution,
but also because of the light source sampling itself. If a few samples have inadequately
been selected from the light source, fine details of the shadow silhouette may be lost
because of the shadow overestimation caused by the blurring of the shadow silhouette.
This kind of blurring happens when RPCF (Figure 6.2-(b)) is used as a visibility function
to compute the soft shadows. As we discuss in Section 6.1.1, we reduce this problem by
defining a refinement criteria that generate the appropriate number of samples according
to the presence of banding artifacts in the final rendering.

The proposed adaptive approach can be extended for colored textured area light
sources as well. Rather than using the samples located at the corners of the area light
source, one must rearrange the samples to the center of the sub-quads, and use those
samples to access the colored texture. Also, since an adaptive, sparse representation of
the area light source may be sampled by the algorithm, one must take this fact into
consideration when sampling the colored information of the light source. Indeed, instead
of retrieving the actual color of the texture for the sample position, the level of the

106 REVECTORIZATION-BASED ACCURATE SOFT SHADOW MAPPING

Shadow Map Resolution
Model Step 5122 10242 20482

Armadillo
(Figure 6.3)

G-Buffer Rendering 2.9 ms 2.9 ms 2.9 ms
Shadow Map Rendering 49.6 ms 42.2 ms 42.5 ms

Discontinuity Map Rendering 8.3 ms 6.1 ms 6.1 ms
Light Source Refinement (First Pass) 7.7 ms 7.0 ms 7.0 ms

Light Source Refinement (Second Pass) 2.5 ms 1.9 ms 1.6 ms
Final Rendering 24.0 ms 19.9 ms 19.9 ms

Total 95 ms 80 ms 80 ms

YeahRight
(Figure 6.4)

G-Buffer Rendering 5.9 ms 5.9 ms 5.9 ms
Shadow Map Rendering 243 ms 351 ms 443 ms

Discontinuity Map Rendering 12.3 ms 17.9 ms 21.0 ms
Light Source Refinement (First Pass) 12.3 ms 18.9 ms 21.0 ms

Light Source Refinement (Second Pass) 3.4 ms 5.7 ms 6.5 ms
Final Rendering 63.1 ms 95.6 ms 122.6 ms

Total 340 ms 495 ms 620 ms

QuadBot
(Figure 6.5)

G-Buffer Rendering 4.5 ms 4.5 ms 4.5 ms
Shadow Map Rendering 234 ms 243 ms 256 ms

Discontinuity Map Rendering 17.8 ms 18.8 ms 18.2 ms
Light Source Refinement (First Pass) 18.4 ms 18.8 ms 19.9 ms

Light Source Refinement (Second Pass) 5.0 ms 6.0 ms 5.1 ms
Final Rendering 100.3 ms 93.9 ms 96.3 ms

Total 380 ms 385 ms 400 ms

Table 6.3 Rendering times for each step of the proposed approach, namely G-buffer, shadow
map and discontinuity map rendering, first and second passes of the light source refinement, and
the final accurate soft shadow rendering. Times were measured for some scenes shown in the
chapter rendered at a 720p output resolution. Times include varying shadow map resolution.

sample in the adaptive structure can be used as an index to access the appropriate level
of a mip-mapped version of the texture. Unfortunately, since the light source refinement
criteria do not take into account the color information of the light source to generate new
samples, one can lose the details of the texture if a few samples are selected from the
light source.

In this work, we have proposed an adaptive sampling approach assuming that the area
light source consists of a rectangular, planar shape. Therefore, the use of an adaptive
structure where the light source is subdivided into quads is well suited for our purposes.
To use our approach for more complex, non-rectangular, planar area light source shapes,
one would need to fit a bounding box over the area of the light source, and then proceed
with the light source refinement, testing whether the select samples are in the area light
source surface.

As already stated in Section 6.2.2, our approach is slower than the uniform sampling
strategy when using the same number of light source samples for accurate shadow ren-
dering. Since our approach is view dependent, this scenario may occur if a large part of

6.2 RESULTS AND DISCUSSION 107

Output Resolution
Model Step 480p 720p 1080p

Armadillo
(Figure 6.3)

G-Buffer Rendering 2.1 ms 2.9 ms 3 ms
Shadow Map Rendering 41.4 ms 42.2 ms 141.1 ms

Discontinuity Map Rendering 4.7 ms 6.1 ms 34.5 ms
Light Source Refinement (First Pass) 4.2 ms 7.0 ms 36.6 ms

Light Source Refinement (Second Pass) 1.5 ms 1.9 ms 9.6 ms
Final Rendering 16.1 ms 19.9 ms 25.2 ms

Total 70 ms 80 ms 250 ms

YeahRight
(Figure 6.4)

G-Buffer Rendering 5.9 ms 5.9 ms 5.9 ms
Shadow Map Rendering 136.5 ms 351 ms 460 ms

Discontinuity Map Rendering 5.6 ms 17.9 ms 35.6 ms
Light Source Refinement (First Pass) 4.6 ms 18.9 ms 46.2 ms

Light Source Refinement (Second Pass) 1.8 ms 5.7 ms 9.1 ms
Final Rendering 25.6 ms 95.6 ms 293.2 ms

Total 180 ms 495 ms 850 ms

QuadBot
(Figure 6.5)

G-Buffer Rendering 4.1 ms 4.5 ms 5.1 ms
Shadow Map Rendering 86.6 ms 243 ms 311.5 ms

Discontinuity Map Rendering 5.3 ms 18.8 ms 36.8 ms
Light Source Refinement (First Pass) 4.5 ms 18.8 ms 44.2 ms

Light Source Refinement (Second Pass) 1.6 ms 6.0 ms 9.4 ms
Final Rendering 27.9 ms 93.9 ms 273 ms

Total 130 ms 385 ms 680 ms

Table 6.4 Rendering times for each step of the proposed approach, namely G-buffer, shadow
map and discontinuity map rendering, first and second passes of the light source refinement, and
the final accurate soft shadow rendering. Times were measured for some scenes shown in the
chapter rendered at an 10242 shadow map resolution. Times include varying output resolution.

the penumbra fills the camera view. On the other hand, as we show in Section 6.2.3, our
approach is able to generate shadows visually similar to the ones obtained by uniform
sampling, using much less samples if the camera is relatively distant to the penumbra
region.

In terms of performance, although we have proposed a temporally coherent solution
for adaptive sampling, we still cannot guarantee constant, stable frame rate because the
number of samples may vary between frames, according to camera and light source move-
ments. Such a limitation is common for adaptive sampling strategies (SCHWARZLER et
al., 2012). Even in this case, as shown in Figure 6.7, we provide results more stable than
related work. Also, we could not achieve real-time frame rates with our adaptive sampling
approach, obtaining at least interactive frame rates for most of the scene configurations
evaluated.

108 REVECTORIZATION-BASED ACCURATE SOFT SHADOW MAPPING

(a) 5122 (b) 10242

Figure 6.8 For a low-resolution shadow map (a), fine details (pointed by red arrows) of the
shadow silhouette (b) may not be captured by our algorithm. Images were generated for the
YeahRight model using 5122 (a) and 10242 (b) shadow map resolutions.

6.3 SUMMARY

In this chapter, we have presented a new soft shadow technique that uses the theory
behind RBSM to guide the adaptive sampling of an area light source. By computing
shadow and discontinuity maps for every point light source sampled from the area light
source, we could define a view-dependent refinement criteria that detect whether the
selected samples are sufficient for the generation of visually accurate soft shadows, free
from banding artifacts. Also, we could define an optimization strategy by means of a
visibility map to restrict the costly shadow computation for penumbra fragments only.

By using dozens or hundreds of point light sources for shadow rendering, we pro-
duced accurate soft shadows at interactive frame rates, being generally faster than other
sampling strategies.

Nevertheless, to simplify the validation of the proposed technique, we have restricted
our experimental setup to handle rectangular, single-colored area light sources. We believe
that the theory shown in this chapter can be extended for non-rectangular, multi-colored
area light sources as well.

Chapter

7
In this chapter, we present our final considerations about the developed work.

CONCLUDING REMARKS

7.1 CONCLUSION

In this thesis, we have extensively shown the practical uses of the concept of shadow
revectorization to provide anti-aliasing for four types of shadows, namely hard shadows,
filtered hard shadows, visually plausible soft shadows, and accurate soft shadows.

The main advantage that makes the shadow revectorization highly attractive for games
and other interactive applications is that it adds a really small overhead (of less than one
millisecond for the hardware setup used) to the shadow mapping technique, while provid-
ing a superior visual quality by the reduction of the aliasing artifacts. Another practical
advantage that may increase the interest of developers in this technique relies on its
easiness of implementation. We could see that in practice, when implementing it on
the Unity 3D, a game engine that provides a limited source code access for developers.
Without relying on the use of additional textures or modified shadow map representa-
tions, Revectorization-based Shadow Mapping (RBSM) requires the very same inputs as
shadow mapping, being easier to be integrated into existing game engines and industrial
applications than related work.

Another practical outcome of this thesis is the proposition of shadow rendering tech-
niques that simulate the penumbra effect on the basis of an Euclidean Distance Trans-
form (EDT). Although real-world, accurate soft shadows cannot be easy modelled in
terms of EDT, we have shown that the integration of this kind of distance transform into
the shadow revectorization pipeline allows the simulation of the smooth intensity transi-
tion present in fixed- and variable-size penumbra, while providing scalability in terms of
shadow filtering and achieving processing time compatible with previous work.

Not only hard and filtered hard shadows, but also visually plausible soft shadows
are prone to aliasing artifacts, mainly at contact borders and low-sized penumbra. In
this case, by integrating the shadow revectorization into the popular framework of the
Percentage Closer Soft Shadows (PCSS) technique, we could minimize this problem effi-
ciently. Moreover, to further improve the performance of the proposed solution, we have

109

110 CONCLUDING REMARKS

shown that this technique can take advantage of the screen space to achieve scalability
in terms of shadow filtering, while keeping almost the same visual quality of the original
approach. In this sense, we have proposed novel techniques that can replace the widely
used PCSS, generating shadows with improved performance, reduced aliasing and light
leaking artifacts.

Finally, we showed that even the field of accurate soft shadow rendering can benefit
from the use of the shadow revectorization to guide the adaptive sampling of the area
light source. We could see that, since the shadow revectorization technique provides
improved accuracy than shadow mapping, one could select about two times less point
light source samples of the area light source to produce a soft shadow that resembles the
one obtained with shadow mapping. The use of a visibility map allowed us to further
improve the performance of our proposal by restricting the hard shadow revectorization to
the fragments located in penumbra, hence generating accurate soft shadows at interactive
speed.

We have shown that the shadow revectorization provides high-quality anti-aliasing
in real time, reducing light leaking artifacts and producing shadows that outperform
state-of-the-art methods in terms of visual quality and/or processing time mainly for
low-resolution shadow maps. By providing consistent, real-time frame rates, we believe
that shadow revectorization is useful for every application in which perspective aliasing
is still visible due to the use of insufficient shadow map resolution or inadequate kernel
sizes for filtering.

7.2 FUTURE WORK

In terms of hard shadow rendering, hybrid approaches that incorporate the use of addi-
tional geometric information (such as (LECOCQ et al., 2014)) into the shadow revector-
ization visibility function may be useful to improve the robustness of both techniques, at
the cost of more memory consumption for the final solution. Also, we have not tested our
approach with partitioning strategies, such as cascaded shadow mapping (ENGEL, 2006).
We believe that the integration and evaluation of the shadow revectorization pipeline into
a partitioning technique is useful to further leverage the benefits and drawbacks of the
anti-aliasing provided by shadow revectorization for large-scale scenarios.

With respect to filtered hard shadow rendering, Euclidean Distance Transform Shadow
Mapping (EDTSM) is faster than Revectorization-based Percentage-Closer Filtering (RPCF),
but is slightly slower than previous work because the EDT computation is the costly step
of EDTSM, even though we make use of the fastest solution proposed so far for EDT
computation. Hence, a suggestion for future work is the proposition of a faster, less ac-
curate EDT computation to speed up EDTSM. Another option for future work is the
extension of EDTSM to compute accurate soft shadows.

In the field of visually plausible soft shadow rendering, inspired by the solution
proposed in (SCHWARZLER et al., 2013), temporal coherence could be exploited to
reuse some soft shadow calculations per frame, further improving the performance of the
revectorization-based soft shadow techniques. Another possibility for future work is the
proposition of a hybrid approach that uses Revectorization-based Soft Shadow Mapping

7.2 FUTURE WORK 111

(RBSSM) whenever visual quality is the priority for the scene rendering, and Euclidean
Distance Transform Soft Shadow Mapping (EDTSSM) or Screen-Space Revectorization-
based Soft Shadow Mapping (SSRBSSM) whenever performance is a priority or RBSSM
would be too costly to perform soft shadow rendering. Finally, the integration of the pro-
posed soft shadow techniques in the context of a game engine would allow the evaluation
of all revectorization-based approaches in industrial applications, such as games.

For accurate soft shadow rendering, one could investigate more efficient ways to solve
the problem of accurate soft shadow computation for textured and non-planar area light
sources. Also, inspired by the solution proposed in (MARRS; WATSON; HEALEY,
2017), one could propose a hybrid approach that uses optimized multi-view rendering
to reduce the computational cost of the shadow map rendering and adaptive area light
source sampling to reduce the cost of the soft shadow rendering.

We have not tested the accuracy of the proposed techniques for a scenario with mul-
tiple light sources. In this topic, one could investigate, for instance, whether the use of
Euclidean distance transform produces visually plausible results when simulating penum-
bra regions generated by multiple light sources.

BIBLIOGRAPHY

AGRAWALA, M. et al. Efficient Image-based Methods for Rendering Soft Shadows. In:
Proceedings of the ACM SIGGRAPH. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 2000. p. 375–384. ISBN 1-58113-208-5.

AILA, T.; LAINE, S. Alias-Free Shadow Maps. In: Proceedings of the EGSR. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2004. p. 161–166. ISBN
3-905673-12-6.

AKENINE-MOLLER, T.; ASSARSSON, U. Approximate Soft Shadows on Arbitrary
Surfaces Using Penumbra Wedges. In: Proceedings of the EGRW. Aire-la-Ville, Switzer-
land, Switzerland: Eurographics Association, 2002. p. 297–306. ISBN 1-58113-534-3.

ANNEN, T. et al. Real-time, All-frequency Shadows in Dynamic Scenes. ACM Trans.
Graph., ACM, New York, NY, USA, v. 27, n. 3, p. 1–8, ago. 2008. ISSN 0730-0301.

ANNEN, T. et al. Convolution Shadow Maps. In: KAUTZ, J.; PATTANAIK, S. (Ed.).
Proceedings of the EGSR. Aire-la-Ville, Switzerland: The Eurographics Association, 2007.
p. 51–60. ISBN 978-3-905673-52-4. ISSN 1727-3463.

ANNEN, T. et al. Exponential Shadow Maps. In: Proceedings of GI. Toronto, Ont.,
Canada: Canadian Information Processing Society, 2008. p. 155–161. ISBN 978-1-56881-
423-0.

ARVO, J. Tiled Shadow Maps. In: Proceedings of the CGI. Washington, DC, USA: IEEE
Computer Society, 2004. p. 240–247. ISBN 0-7695-2171-1.

ASSARSSON, U.; AKENINE-MOLLER, T. A Geometry-based Soft Shadow Volume
Algorithm Using Graphics Hardware. ACM Trans. Graph., ACM, New York, NY, USA,
v. 22, n. 3, p. 511–520, jul. 2003. ISSN 0730-0301.

ASSARSSON, U. et al. An Optimized Soft Shadow Volume Algorithm with Real-time
Performance. In: Proceedings of the ACM HWWS. Aire-la-Ville, Switzerland, Switzer-
land: Eurographics Association, 2003. p. 33–40. ISBN 1-58113-739-7.

ASZODI, B.; SZIRMAY-KALOS, L. Real-time Soft Shadows with Shadow Accumula-
tion. In: FELLNER, D.; HANSEN, C. (Ed.). Eurographics Short Papers. Aire-la-Ville,
Switzerland: The Eurographics Association, 2006. p. 53–56.

ATTY, L. et al. Soft Shadow Maps: Efficient Sampling of Light Source Visibility. Com-
puter Graphics Forum, v. 25, n. 4, p. 725–741, dec 2006.

113

114 BIBLIOGRAPHY

BARTZ, D.; MEIBNER, M.; HUTTNER, T. Extending Graphics Hardware For Occlu-
sion Queries In OpenGL. In: SPENCER, S. N. (Ed.). Proceedings of the EGGH. Aire-
la-Ville, Switzerland: The Eurographics Association, 1998. ISBN 0-89791-097-X. ISSN
1727-3471.

BAVOIL, L.; CALLAHAN, S. P.; SILVA, C. T. Robust Soft Shadow Mapping with
Backprojection and Depth Peeling. J. Graphics Tools, v. 13, n. 1, p. 19–30, 2008.

BILLEN, N.; DUTRÉ, P. Line Sampling for Direct Illumination. Computer Graphics
Forum, Wiley-Blackwell, v. 35, n. 4, July 2016.

BONDAREV, V. Shadow Map Silhouette Revectorization. In: Proceedings of the ACM
I3D. New York, NY, USA: ACM, 2014. p. 162–162.

BRABEC, S.; ANNEN, T.; SEIDEL, H.-P. Practical Shadow Mapping. Journal of Graph-
ics Tools, v. 7, n. 4, p. 9–18, 2002.

BROTMAN, L. S.; BADLER, N. I. Generating Soft Shadows with a Depth Buffer Algo-
rithm. IEEE Computer Graphics and Applications, v. 4, n. 10, p. 5–14, Oct 1984. ISSN
0272-1716.

BUADES, J. M.; GUMBAU, J.; CHOVER, M. Separable Soft Shadow Mapping. The
Visual Computer, v. 32, n. 2, p. 167–178, 2015. ISSN 1432-2315.

CAO, T.-T. et al. Parallel Banding Algorithm to Compute Exact Distance Transform
with the GPU. In: Proceedings of the ACM I3D. New York, NY, USA: ACM, 2010. p.
83–90. ISBN 978-1-60558-939-8.

CERQUEIRA, R. et al. A Novel GPU-based Sonar Simulator for Real-time Applications.
Computers & Graphics, v. 68, n. Supplement C, p. 66 – 76, 2017. ISSN 0097-8493.

CHAN, E.; DURAND, F. An Efficient Hybrid Shadow Rendering Algorithm. In: Pro-
ceedings of the EGSR. Aire-la-Ville, Switzerland: Eurographics Association, 2004. p.
185–195.

CHEN, X. et al. Ballistic Shadow Art. In: Proceedings of the GI. Waterloo, Ontario,
Canada: Canadian Human-Computer Communications Society, 2017. p. 190–198. ISBN
978-0-9947868-2-1.

CHI, J.; SUN, T. Development drivers: Third-party engines and mobile gaming. McKin-
sey & Company, February 2015.

CHONG, H. Y.; GORTLER, S. J. A Lixel for Every Pixel. In: Proceedings of the EGSR.
Aire-la-Ville, Switzerland: Eurographics Association, 2004. p. 167–172. ISBN 3-905673-
12-6.

CHONG, H. Y.; GORTLER, S. J. Scene Optimized Shadow Mapping. Harvard Computer
Science Technical Report: TR-07-07. Cambridge, MA, USA, 2007. 1-8 p.

BIBLIOGRAPHY 115

CHRISTENSEN, P. H. et al. Ray Tracing for the Movie ‘Cars’. In: Proceedings of the
IEEE Symposium on Interactive Ray Tracing. [S.l.: s.n.], 2006. p. 1–6.

COOK, R. L. Stochastic Sampling in Computer Graphics. ACM Trans. Graph., ACM,
New York, NY, USA, v. 5, n. 1, p. 51–72, jan. 1986. ISSN 0730-0301.

COOK, R. L.; PORTER, T.; CARPENTER, L. Distributed Ray Tracing. In: Proceedings
of the ACM SIGGRAPH. New York, NY, USA: ACM, 1984. p. 137–145. ISBN 0-89791-
138-5.

CROW, F. C. Shadow Algorithms for Computer Graphics. In: Proceedings of the ACM
SIGGRAPH. New York, NY, USA: ACM, 1977. p. 242–248.

CROW, F. C. Summed-area Tables for Texture Mapping. In: Proceedings of the ACM
SIGGRAPH. New York, NY, USA: ACM, 1984. p. 207–212. ISBN 0-89791-138-5.

DONG, Z.; YANG, B. Variance Soft Shadow Mapping. In: Proceedings of the ACM I3D.
New York, NY, USA: ACM, 2010. p. 1–1. ISBN 978-1-60558-939-8.

DONNELLY, W.; LAURITZEN, A. Variance Shadow Maps. In: Proceedings of the ACM
I3D. New York, NY, USA: ACM, 2006. p. 161–165. ISBN 1-59593-295-X.

DOU, H. et al. Adaptive Depth Bias for Shadow Maps. In: Proceedings of the ACM I3D.
New York, NY, USA: ACM, 2014. p. 97–102. ISBN 978-1-4503-2717-6.

DUTRE, P. et al. Advanced Global Illumination. Natick, MA, USA: AK Peters Ltd, 2006.
ISBN 1568813074.

EISEMANN, E. et al. Real-Time Shadows. Natick, MA, USA: A.K. Peters, 2011. 398 p.
ISBN 978-1568814384.

ENGEL, W. Cascaded Shadow Maps. In: ShaderX 5.0 Advanced Rendering Techniques.
Hingham (Mass.): Charles River Media, 2006. p. 197–206.

FERNANDO, R. Percentage-closer Soft Shadows. In: ACM SIGGRAPH 2005 Sketches.
New York, NY, USA: ACM, 2005.

FERNANDO, R. et al. Adaptive Shadow Maps. In: Proceedings of the ACM SIGGRAPH.
New York, NY, USA: ACM, 2001. p. 387–390. ISBN 1-58113-374-X.

FERNANDO, R.; KILGARD, M. J. The Cg Tutorial: The Definitive Guide to Pro-
grammable Real-Time Graphics. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003. ISBN 0321194969.

FOREST, V.; BARTHE, L.; PAULIN, M. Realistic Soft Shadows by Penumbra-wedges
Blending. In: Proceedings of the ACM Symposium on Graphics Hardware. New York, NY,
USA: ACM, 2006. p. 39–46. ISBN 3-905673-37-1.

116 BIBLIOGRAPHY

FRANKE, T. A. Delta Voxel Cone Tracing. In: Proceedings of the IEEE ISMAR. [S.l.:
s.n.], 2014. p. 39–44.

FRENCH, M. et al. The tech list. Develop 100, 2014.

FUETTERLING, V. et al. Efficient Ray Tracing Kernels for Modern CPU Architectures.
Journal of Computer Graphics Techniques (JCGT), v. 4, n. 5, p. 90–111, December 2015.
ISSN 2331-7418.

GERHARDS, J. et al. Partitioned Shadow Volumes. Computer Graphics Forum, Black-
well Publishing Ltd, v. 34, n. 2, p. 549–559, 2015. ISSN 1467-8659.

GIEGL, M.; WIMMER, M. Fitted Virtual Shadow Maps. In: Proceedings of the GI. New
York, NY, USA: ACM, 2007. p. 159–168. ISBN 978-1-56881-337-0.

GIEGL, M.; WIMMER, M. Queried Virtual Shadow Maps. In: Proceedings of the ACM
I3D. New York, NY, USA: ACM, 2007. p. 65–72. ISBN 978-1-59593-628-8.

GUENNEBAUD, G.; BARTHE, L.; PAULIN, M. Real-time Soft Shadow Mapping by
Backprojection. In: Proceedings of the EGSR. Aire-la-Ville, Switzerland: Eurographics
Association, 2006. p. 227–234. ISBN 3-905673-35-5.

GUENNEBAUD, G.; BARTHE, L.; PAULIN, M. High-Quality Adaptive Soft Shadow
Mapping. Computer Graphics Forum, Blackwell Publishing Ltd, v. 26, n. 3, p. 525–533,
2007. ISSN 1467-8659.

GUMBAU, J. et al. Shadow Map Filtering with Gaussian Shadow Maps. In: Proceedings
of the ACM VRCAI. New York, NY, USA: ACM, 2011. p. 75–82. ISBN 978-1-4503-1060-4.

GUMBAU, J. et al. Smooth Shadow Boundaries with Exponentially Warped Gaussian
Filtering. Computers & Graphics, v. 37, n. 3, p. 214 – 224, 2013. ISSN 0097-8493.

HACHISUKA, T. et al. Multidimensional Adaptive Sampling and Reconstruction for Ray
Tracing. ACM Trans. Graph., ACM, New York, NY, USA, v. 27, n. 3, p. 33:1–33:10, ago.
2008. ISSN 0730-0301.

HAEBERLI, P.; AKELEY, K. The Accumulation Buffer: Hardware Support for High-
quality Rendering. In: Proceedings of the ACM SIGGRAPH. New York, NY, USA: ACM,
1990. p. 309–318. ISBN 0-89791-344-2.

HECKBERT, P. S.; HERF, M. Simulating Soft Shadows with Graphics Hardware. Pitts-
burgh, PA, USA, 1997.

HEIDMANN, T. Real shadows, real time. Iris Universe, v. 18, p. 28–31, 1991.

HEIDRICH, W.; BRABEC, S.; SEIDEL, H.-P. Soft Shadow Maps for Linear Lights.
In: PÉROCHE, B.; RUSHMEIER, H. (Ed.). Proceedings of the Workshop on Rendering
Techniques. Vienna: Springer Vienna, 2000. p. 269–280. ISBN 978-3-7091-6303-0.

BIBLIOGRAPHY 117

HERF, M. Efficient Generation of Soft Shadow Textures. Pittsburgh, PA, USA, 1997.

HERF, M.; HECKBERT, P. S. Fast Soft Shadows. In: Proceedings of the ACM SIG-
GRAPH. New York, NY, USA: ACM, 1996. p. 145.

HERTEL, S.; HORMANN, K.; WESTERMANN, R. A Hybrid GPU Rendering Pipeline
for Alias-Free Hard Shadows. In: Proceedings of Eurographics. München, Germany: Eu-
rographics Association, 2009. p. 59–66.

HESSELINK, W. H.; ROERDINK, J. B. T. M. Euclidean Skeletons of Digital Image and
Volume Data in Linear Time by the Integer Medial Axis Transform. IEEE Transactions
on Pattern Analysis and Machine Intelligence, v. 30, n. 12, p. 2204–2217, 2008.

IMMEL, D. S.; COHEN, M. F.; GREENBERG, D. P. A Radiosity Method for Non-
diffuse Environments. In: Proceedings of the ACM SIGGRAPH. New York, NY, USA:
ACM, 1986. p. 133–142. ISBN 0-89791-196-2.

JIMENEZ, J. et al. Practical morphological anti-aliasing. In: ENGEL, W. (Ed.). GPU
Pro 2. Natick, MA, USA: AK Peters Ltd., 2011. p. 95–113.

JOHNSON, G. S. et al. The Irregular Z-buffer: Hardware Acceleration for IIrregular Data
Structures. ACM Trans. Graph., v. 24, n. 4, p. 1462–1482, 2005.

KAJIYA, J. T. The Rendering Equation. In: Proceedings of the ACM SIGGRAPH. New
York, NY, USA: ACM, 1986. p. 143–150. ISBN 0-89791-196-2.

KAMPE, V. et al. Fast, Memory-Efficient Construction of Voxelized Shadows. IEEE
Transactions on Visualization and Computer Graphics, v. 22, n. 10, p. 2239–2248, 2016.

KIRK, D. B.; HWU, W.-m. W. Programming Massively Parallel Processors: A Hands-
on Approach. 2. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2013.
ISBN 9780123914187.

KLEIN, A.; NISCHWITZ, A.; OBERMEIER, P. Contact Hardening Soft Shadows using
Erosion. In: Proceedings of the WSCG. Pilsen: [s.n.], 2012.

LAINE, S. et al. Soft Shadow Volumes for Ray Tracing. ACM Transactions on Graphics,
ACM, New York, NY, USA, v. 24, n. 3, 2005.

LAURITZEN, A. Summed-Area Variance Shadow Maps. In: NGUYEN, H. (Ed.). GPU
Gems 3. [S.l.]: Addison-Wesley, 2008. p. 157–182.

LAURITZEN, A.; MCCOOL, M. Layered Variance Shadow Maps. In: Proceedings of the
GI. Toronto, Ont., Canada: Canadian Information Processing Society, 2008. p. 139–146.
ISBN 978-1-56881-423-0.

LAURITZEN, A.; SALVI, M.; LEFOHN, A. Sample Distribution Shadow Maps. In:
Proceedings of the ACM I3D. New York, NY, USA: ACM, 2011. p. 97–102. ISBN 978-1-
4503-0565-5.

118 BIBLIOGRAPHY

LAWSON, G.; SALANITRI, D.; WATERFIELD, B. Future directions for the develop-
ment of virtual reality within an automotive manufacturer. Applied Ergonomics, v. 53,
Part B, p. 323 – 330, 2016. ISSN 0003-6870.

LECOCQ, P. et al. Sub-pixel Shadow Mapping. In: Proceedings of the ACM I3D. New
York, NY, USA: ACM, 2014. p. 103–110. ISBN 978-1-4503-2717-6.

LEFOHN, A. E.; SENGUPTA, S.; OWENS, J. D. Resolution-matched Shadow Maps.
ACM Trans. Graph., ACM, New York, NY, USA, v. 26, n. 4, out. 2007. ISSN 0730-0301.

LEHTINEN, J.; LAINE, S.; AILA, T. An Improved Physically-Based Soft Shadow Vol-
ume Algorithm. Computer Graphics Forum, Blackwell Publishing, Inc, v. 25, n. 3, p.
303–312, 2006.

LIKTOR, G. et al. Stochastic Soft Shadow Mapping. In: Proceedings of the EGSR. Aire-
la-Ville, Switzerland: Eurographics Association, 2015. p. 1–11.

LLOYD, D. B. et al. Logarithmic Perspective Shadow Maps. ACM Trans. Graph., ACM,
New York, NY, USA, v. 27, n. 4, p. 106:1–106:32, nov. 2008. ISSN 0730-0301.

MACEDO, M.; APOLINÁRIO, A. Revectorization-Based Shadow Mapping. In: Proceed-
ings of the GI. School of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada: Canadian Human-Computer Communications Society, 2016. p. 75–83. ISBN
978-0-9947868-1-4.

MACEDO, M.; APOLINÁRIO, A. Improved anti-aliasing for euclidean distance trans-
form shadow mapping. Computers & Graphics, v. 71, p. 166 – 179, 2018. ISSN 0097-8493.

MACEDO, M. C. F.; APOLINÁRIO, A. L. Euclidean Distance Transform Soft Shadow
Mapping. In: Proceedings of the SIBGRAPI. [S.l.: s.n.], 2017. p. 238–245.

MACEDO, M. C. F.; APOLINÁRIO, A. L.; AGÜERO, K. A. Optimized Visibility Func-
tions for Revectorization-Based Shadow Mapping. ArXiv e-prints, nov. 2017.

MACEDO, M. C. F.; APOLINÁRIO JR., A. L. Euclidean Distance Transform Shadow
Mapping. In: Proceedings of the GI. School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada: Canadian Human-Computer Communications Society, 2017.
p. 171–180. ISBN 978-0-9947868-2-1.

MACEDO, M. C. F.; APOLINÁRIO JR., A. L. Revectorization-Based Accurate Soft
Shadow Using Adaptive Area Light Source Sampling. In: Proceedings of the GI. School
of Computer Science, University of Waterloo, Waterloo, Ontario, Canada: Canadian
Human-Computer Communications Society, 2017. p. 181–189. ISBN 978-0-9947868-2-1.

MACEDO, M. C. F. et al. Hard Shadow Anti-Aliasing for Spot Lights in a Game Engine.
In: Proceedings of the SBGAMES. [S.l.: s.n.], 2017.

BIBLIOGRAPHY 119

MARRS, A.; WATSON, B.; HEALEY, C. G. Real-Time View Independent Rasteriza-
tion for Multi-View Rendering. In: Proceedings of the EUROGRAPHICS. Lyon, France:
Eurographics Association, 2017. v. 36, n. 2, p. 17–20.

MARTIN, T.; TAN, T.-S. Anti-aliasing and Continuity with Trapezoidal Shadow Maps.
In: Proceedings of the EGSR. Aire-la-Ville, Switzerland: Eurographics Association, 2004.
p. 153–160. ISBN 3-905673-12-6.

MCCOOL, M. D. Shadow Volume Reconstruction from Depth Maps. ACM Trans. Graph.,
ACM, New York, NY, USA, v. 19, n. 1, p. 1–26, jan. 2000. ISSN 0730-0301.

MCGUIRE, M. Efficient Shadow Volume Rendering. In: FERNANDO, R. (Ed.). GPU
Gems. [S.l.]: Addison-Wesley, 2004. p. 137–166.

MEHTA, S. U.; WANG, B.; RAMAMOORTHI, R. Axis-aligned Filtering for Interactive
Sampled Soft Shadows. ACM Trans. Graph., ACM, New York, NY, USA, v. 31, n. 6, p.
163:1–163:10, nov. 2012. ISSN 0730-0301.

MITCHELL, D. P. Consequences of Stratified Sampling in Graphics. In: Proceedings of
the ACM SIGGRAPH. New York, NY, USA: ACM, 1996. p. 277–280. ISBN 0-89791-746-
4.

MITRA, N. J.; PAULY, M. Shadow Art. ACM Trans. Graph., ACM, New York, NY,
USA, v. 28, n. 5, p. 156:1–156:7, dez. 2009. ISSN 0730-0301.

MOHAMMADBAGHER, M. et al. Screen-space Percentage-Closer Soft Shadows. In:
ACM SIGGRAPH 2010 Posters. New York, NY, USA: ACM, 2010. p. 133–133. ISBN
978-1-4503-0393-4.

MORA, F. et al. Lazy Visibility Evaluation for Exact Soft Shadows. Computer Graphics
Forum, Blackwell Publishing Ltd, v. 31, n. 1, p. 132–145, 2012. ISSN 1467-8659.

MORA, F. et al. Deep Partitioned Shadow Volumes using Stackless and Hybrid Traver-
sals. In: Proceedings of the EGSR. Goslar Germany, Germany: The Eurographics Asso-
ciation, 2016. p. 73–83. ISBN 978-3-03868-019-2.

MORGAN, G.; PRANCKEVICIUS, A. Practical Techniques for Ray Tracing in Games.
In: GDC Vault. [S.l.: s.n.], 2014.

NOWROUZEZAHRAI, D. et al. Light Factorization for Mixed-frequency Shadows in
Augmented Reality. In: Proceedings of the IEEE ISMAR. [S.l.: s.n.], 2011. p. 173–179.

OUELLETTE, M. J.; FIUME, E. On Numerical Solutions to One-dimensional Integration
Problems with Applications to Linear Light Sources. ACM Trans. Graph., ACM, New
York, NY, USA, v. 20, n. 4, p. 232–279, out. 2001. ISSN 0730-0301.

PAN, M. et al. Fast, Sub-pixel Antialiased Shadow Maps. Computer Graphics Forum,
Blackwell Publishing Ltd, v. 28, n. 7, p. 1927–1934, 2009. ISSN 1467-8659.

120 BIBLIOGRAPHY

PARKER, S. G. et al. OptiX: A General Purpose Ray Tracing Engine. ACM Trans.
Graph., ACM, New York, NY, USA, v. 29, n. 4, p. 66:1–66:13, jul. 2010. ISSN 0730-0301.

PERARD-GAYOT, A.; KALOJANOV, J.; SLUSALLEK, P. GPU Ray Tracing using
Irregular Grids. Computer Graphics Forum, The Eurographics Association and John
Wiley & Sons Ltd., v. 36, n. 2, 2017. ISSN 1467-8659.

PETERS, C. Non-linearly Quantized Moment Shadow Maps. In: Proceedings of the HPG.
New York, NY, USA: ACM, 2017. p. 15:1–15:11. ISBN 978-1-4503-5101-0.

PETERS, C.; KLEIN, R. Moment Shadow Mapping. In: Proceedings of the ACM I3D.
New York, NY, USA: ACM, 2015. p. 7–14. ISBN 978-1-4503-3392-4.

PETERS, C. et al. Beyond Hard Shadows: Moment Shadow Maps for Single Scattering,
Soft Shadows and Translucent Occluders. In: Proceedings of the ACM I3D. New York,
NY, USA: ACM, 2016. p. 159–170. ISBN 978-1-4503-4043-4/16/03.

PETERS, C. et al. Improved Moment Shadow Maps for Translucent Occluders, Soft
Shadows and Single Scattering. Journal of Computer Graphics Techniques (JCGT), v. 6,
n. 1, p. 17–67, March 2017.

PHAM, T.; VLIET, L. van. Separable Bilateral Filtering for Fast Video Preprocessing.
In: Proceedings of the IEEE ICME. [S.l.: s.n.], 2005.

PILLEBOUE, A. et al. Variance Analysis for Monte Carlo Integration. ACM Trans.
Graph., ACM, New York, NY, USA, v. 34, n. 4, p. 124:1–124:14, 2015.

RAMAMOORTHI, R. et al. A Theory of Monte Carlo Visibility Sampling. ACM Trans.
Graph., ACM, New York, NY, USA, v. 31, n. 5, p. 121:1–121:16, set. 2012. ISSN 0730-
0301.

REEVES, W. T.; SALESIN, D. H.; COOK, R. L. Rendering Antialiased Shadows with
Depth Maps. In: Proceedings of the ACM SIGGRAPH. New York, NY, USA: ACM, 1987.
p. 283–291. ISBN 0-89791-227-6.

RONG, G.; TAN, T.-S. Jump Flooding in GPU with Applications to Voronoi Diagram
and Distance Transform. In: Proceedings of the ACM I3D. New York, NY, USA: ACM,
2006. p. 109–116. ISBN 1-59593-295-X.

ROST, R. J. et al. OpenGL Shading Language. 3rd. ed. [S.l.]: Addison-Wesley Profes-
sional, 2009. ISBN 0321637631, 9780321637635.

SAITO, T.; TAKAHASHI, T. Comprehensible Rendering of 3-D Shapes. In: Proceedings
of the ACM SIGGRAPH. New York, NY, USA: ACM, 1990. p. 197–206. ISBN 0-89791-
344-2.

SALVI, M. Rendering Filtered Shadows With Exponential Shadow Maps. In: ShaderX
6.0 Advanced Rendering Techniques. Hingham (Mass.): Charles River Media, 2008. p.
257–274.

BIBLIOGRAPHY 121

SCANDOLO, L.; BAUSZAT, P.; EISEMANN, E. Compressed Multiresolution Hierar-
chies for High-quality Precomputed Shadows. In: Proceedings of the EUROGRAPHICS.
Goslar Germany, Germany: Eurographics Association, 2016. p. 331–340.

SCANDOLO, L.; BAUSZAT, P.; EISEMANN, E. Merged Multiresolution Hierarchies for
Shadow Map Compression. Computer Graphics Forum, v. 35, n. 7, p. 383–390, 2016.

SCHERZER, D.; SCHWARZLER, M.; MATTAUSCH, O. Fast Soft Shadows with Tem-
poral Coherence. In: ENGEL, W. (Ed.). GPU Pro 2. [S.l.]: A.K. Peters, 2011. ISBN
978-1568817187.

SCHERZER, D. et al. Real-Time Soft Shadows Using Temporal Coherence. In: Proceed-
ings of the ISVC. [S.l.: s.n.], 2009. (Lecture Notes in Computer Science), p. 13–24.

SCHMIDT, T.-W. et al. State of the Art in Artistic Editing of Appearance, Lighting and
Material. Computer Graphics Forum, v. 35, n. 1, p. 216–233, 2016. ISSN 1467-8659.

SCHNEIDER, J.; KRAUS, M.; WESTERMANN, R. GPU-based real-time discrete eu-
clidean distance transforms with precise error bounds. In: Proceedings of the VISAPP.
[S.l.: s.n.], 2009. p. 435–442.

SCHWARZ, M.; STAMMINGER, M. Bitmask Soft Shadows. Computer Graphics Forum,
Blackwell Publishing Ltd, v. 26, n. 3, p. 515–524, 2007. ISSN 1467-8659.

SCHWARZLER, M. et al. Fast Percentage Closer Soft Shadows Using Temporal Coher-
ence. In: Proceedings of the ACM I3D. New York, NY, USA: ACM, 2013. p. 79–86. ISBN
978-1-4503-1956-0.

SCHWARZLER, M. et al. Fast Accurate Soft Shadows with Adaptive Light Source Sam-
pling. In: Proceedings of the VMV. Aire-la-Ville, Switzerland: Eurographics Association,
2012. p. 39–46. ISBN 978-3-905673-95-1.

SELGRAD, K. et al. Filtering Multi-Layer Shadow Maps for Accurate Soft Shadows.
Computer Graphics Forum, v. 34, n. 1, p. 205–215, 2015. ISSN 1467-8659.

SEN, P.; CAMMARANO, M.; HANRAHAN, P. Shadow Silhouette Maps. ACM Trans.
Graph., v. 22, n. 3, p. 521–526, jul. 2003.

SHEN, L.; FENG, J.; YANG, B. Exponential Soft Shadow Mapping. Computer Graphics
Forum, Blackwell Publishing Ltd, v. 32, n. 4, p. 107–116, 2013. ISSN 1467-8659.

SHEN, L. et al. Predicted Virtual Soft Shadow Maps with High Quality Filtering. Com-
puter Graphics Forum, Blackwell Publishing Ltd, v. 30, n. 2, p. 493–502, 2011. ISSN
1467-8659.

SHREINER, D. et al. OpenGL Programming Guide: The Official Guide to Learn-
ing OpenGL, Version 4.3. 8th. ed. [S.l.]: Addison-Wesley Professional, 2013. ISBN
0321773039, 9780321773036.

122 BIBLIOGRAPHY

SINTORN, E.; EISEMANN, E.; ASSARSSON, U. Sample Based Visibility for Soft Shad-
ows Using Alias-free Shadow Maps. In: Proceedings of the EGSR. Aire-la-Ville, Switzer-
land, Switzerland: Eurographics Association, 2008. p. 1285–1292.

SINTORN, E. et al. Compact Precomputed Voxelized Shadows. ACM Trans. Graph.,
v. 33, n. 4, p. 150:1–150:8, 2014.

SOLER, C.; SILLION, F. X. Fast Calculation of Soft Shadow Textures Using Convolution.
In: Proceedings of the ACM SIGGRAPH. New York, NY, USA: ACM, 1998. p. 321–332.
ISBN 0-89791-999-8.

ST-AMOUR, J.-F.; PAQUETTE, E.; POULIN, P. Soft Shadows from Extended Light
Sources with Penumbra Deep Shadow Maps. In: Proceedings of the GI. Toronto, Ont.,
Canada: Canadian Information Processing Society, 2005. p. 105–112.

STAMMINGER, M.; DRETTAKIS, G. Perspective Shadow Maps. ACM Trans. Graph.,
ACM, New York, NY, USA, v. 21, n. 3, p. 557–562, jul. 2002. ISSN 0730-0301.

STORY, J.; WYMAN, C. HFTS: Hybrid Frustum-traced Shadows in ”the Division”.
In: Proceedings of the ACM SIGGRAPH Talks. New York, NY, USA: ACM, 2016. p.
13:1–13:2. ISBN 978-1-4503-4282-7.

WALD, I. et al. Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Trans. Graph., ACM, New York, NY, USA, v. 33, n. 4, p. 143:1–143:8, jul. 2014. ISSN
0730-0301.

WANG, J.; TAN, Y. Efficient euclidean distance transform algorithm of binary images
in arbitrary dimensions. Pattern Recognition, v. 46, n. 1, p. 230 – 242, 2013.

WANG, L. et al. GEARS: A General and Efficient Algorithm for Rendering Shadows.
Computer Graphics Forum, v. 33, n. 6, p. 264–275, 2014. ISSN 1467-8659.

WEI, L.-Y. Parallel Poisson Disk Sampling. ACM Trans. Graph., ACM, New York, NY,
USA, v. 27, n. 3, p. 1–9, ago. 2008. ISSN 0730-0301.

WHITTED, T. An Improved Illumination Model for Shaded Display. Commun. ACM,
ACM, New York, NY, USA, v. 23, n. 6, p. 343–349, jun. 1980. ISSN 0001-0782.

WILLIAMS, L. Casting Curved Shadows on Curved Surfaces. In: Proceedings of the ACM
SIGGRAPH. New York, NY, USA: ACM, 1978. p. 270–274.

WIMMER, M.; SCHERZER, D.; PURGATHOFER, W. Light Space Perspective Shadow
Maps. In: KELLER, A.; JENSEN, H. W. (Ed.). Proceedings of the EGSR. Aire-la-Ville,
Switzerland: Eurographics Association, 2004. p. 143–151. ISBN 3-905673-12-6.

WON, J.; LEE, J. Shadow Theatre: Discovering Human Motion from a Sequence of
Silhouettes. ACM Trans. Graph., ACM, New York, NY, USA, 2016.

BIBLIOGRAPHY 123

WOO, A.; POULIN, P. Shadow Algorithms Data Miner. Natick, MA, USA: CRC Press,
2012. 268 p. ISBN 978-1439880234.

WRIGHT, M. W.; CIPOLLA, R.; GIBLIN, P. J. Skeletonization using an extended
Euclidean distance transform. Image and Vision Computing, v. 13, n. 5, p. 367 – 375,
1995.

WYMAN, C.; HOETZLEIN, R.; LEFOHN, A. Frustum-traced Raster Shadows: Revis-
iting Irregular Z-buffers. In: Proceedings of the ACM I3D. New York, NY, USA: ACM,
2015. p. 15–23. ISBN 978-1-4503-3392-4.

XIE, F.; TABELLION, E.; PEARCE, A. Soft Shadows by Ray Tracing Multilayer Trans-
parent Shadow Maps. In: Proceedings of the EGSR. Aire-la-Ville, Switzerland: Euro-
graphics Association, 2007. p. 265–276. ISBN 978-3-905673-52-4.

YANG, B. et al. Variance Soft Shadow Mapping. Computer Graphics Forum, Blackwell
Publishing Ltd, v. 29, n. 7, p. 2127–2134, 2010.

YANG, B. et al. Packet-based Hierarchal Soft Shadow Mapping. In: Proceedings of the
EGSR. Aire-la-Ville, Switzerland: Eurographics Association, 2009. p. 1121–1130.

ZHANG, F.; SUN, H.; NYMAN, O. Parallel-Split Shadow Maps on Programmable GPUs.
In: NGUYEN, H. (Ed.). GPU Gems 3. [S.l.]: Addison-Wesley, 2008. p. 203–237.

ZHANG, F. et al. Parallel-split Shadow Maps for Large-scale Virtual Environments. In:
Proceedings of the ACM VRCIA. New York, NY, USA: ACM, 2006. p. 311–318. ISBN
1-59593-324-7.

ZHENG, Z.; SAITO, S. Screen Space Anisotropic Blurred Soft Shadows. In: ACM SIG-
GRAPH 2011 Posters. New York, NY, USA: ACM, 2011. p. 75–75. ISBN 978-1-4503-
0971-4.

Appendix

A
In this appendix, an implementation of the conservative RBSM for OpenGL Shading Language (GLSL)

is shown.

REVECTORIZATION-BASED SHADOW MAPPING
SOURCE CODE FOR GLSL

A.1 OVERVIEW

Conservative Revectorization-based Shadow Mapping (RBSM) aims to locate shadow
silhouette patterns in the scene and to use the available screen-space resolution provided
by the camera view to perform shadow anti-aliasing through the revectorization effect.

The first step of RBSM consists in an evaluation of the shadow test (3.2) (Lines 9-12
of Listing A.1) for each fragment p̃ projected in the light space. Then, the technique
evaluates the difference of shadow test results between neighbour shadow map texels (3.3)
(Lines 16-17 of Listing A.1). The goal of this step is to detect where the shadow aliasing
is located. This step is performed only for lit fragments (Lines 13-14 of Listing A.1)
because the conservative RBSM aims to minimize shadow aliasing by working over the
lit-side of the shadow silhouette. Hence, since shadowed fragments will remain in shadow
after the revectorization, they are discarded from the additional computation required by
RBSM. After the evaluation of the spatial coherency between neighbour shadow tests,
the algorithm is able to detect the directions of where the shadow aliasing is located.

For each fragment inside a shadow silhouette (Lines 18-19 of Listing A.1), the algo-
rithm performs a traversal over the shadow silhouette in order to compute the size of the
shadow silhouette, as well as the relative distance and position of each fragment with
respect to the end of the shadow silhouette (Lines 23-24 of Listing A.1). To do so, the
sub-coordinates of each fragment in the corresponding shadow map texels (3.1) must be
computed beforehand (Lines 21-22 of Listing A.1). Next, the algorithm normalizes the
relative distance of each fragment to the shadow silhouette (3.5) (Lines 25-26 of Listing
A.1) and determines whether a fragment must be shadowed by RBSM (3.6) (Lines 27-28
of Listing A.1).

125

126 REVECTORIZATION-BASED SHADOW MAPPING SOURCE CODE FOR GLSL

1 uniform sampler2D shadowMap; //Shadow map texture

2 uniform int shadowMapWidth; //Shadow map width

3 uniform int shadowMapHeight; //Shadow map height

4 uniform int shadowIntensity; //Shadow intensity

5
6 float RBSM(vec4 p)

7 {

8
9 //Retrieve the depth of the blocker of p

10 float z = texture2D(shadowMap , p.xy).z;

11 //Compute the shadow test

12 float shadow = (p.z <= z) ? 1.0 : 0.0;

13 //Discard p if it is in shadow

14 if(shadow == 0.0) return shadowIntensity;

15
16 //Compute the discontinuity

17 vec4 d = computeDiscontinuity(p);

18 //Discard p if it is lit and out of the shadow silhouette

19 if((d.r + d.g + d.b + d.a) == 0.0) return 1.0;

20
21 //Estimate p’s sub-coordinates in light space

22 vec2 c = fract(vec2(p.x * shadowMapWidth , p.y * shadowMapHeight));

23 //Compute the relative distance of p to the shadow silhouette

24 vec4 dist = computeRelativeDistance(p, c);

25 //Normalize the relative distance to the unit interval

26 vec2 r = normalizeRelativeDistance(dist);

27 //Revectorize the shadow silhouette

28 return revectorizeShadow(r);

29
30 }

Listing A.1 GLSL code for conservative RBSM implementation.

A.2 SHADOW SILHOUETTE LOCALIZATION

Shadow silhouettes are detected according to the difference between the illumination
condition of neighbour shadow map texels (Listing A.2).

Given the shadow test defined in (3.2), the first step to detect shadow silhouettes
consists on the computation of (3.2) to determine the illumination condition of each
fragment visible in the scene (Lines 9-10 of Listing A.1). Then, the difference between
shadow tests of the current fragment and its 4-connected neighbours in the shadow map is
estimated as defined in (3.3) (Lines 3-28 of Listing A.2). With the computation of (3.3),
we are able to detect where the shadow silhouettes are located and discard non-silhouette
fragments from further shadow computations (Lines 18-19 of Listing A.1).

A.3 SHADOW SILHOUETTE TRAVERSAL

For every fragment inside a shadow silhouette, we need to search the ends of the shadow
silhouette in order to estimate the size of the aliased shadow silhouette, as well as the

A.3 SHADOW SILHOUETTE TRAVERSAL 127

1 uniform vec2 shadowMapStep; //Shadow map step size

2
3 vec4 computeDiscontinuity(vec4 p)

4 {

5
6 vec4 dir = vec4 (0.0, 0.0, 0.0, 0.0);

7 //x = left; y = right; z = bottom; w = top

8
9 //Perform the shadow test for the 4-connected neighbourhood

10 p.x -= shadowMapStep.x;

11 float z = texture2D(shadowMap , p.xy).z;

12 dir.x = (p.z <= z) ? 1.0 : 0.0;

13
14 p.x += 2.0 * shadowMapStep.x;

15 z = texture2D(shadowMap , p.xy).z;

16 dir.y = (p.z <= z) ? 1.0 : 0.0;

17
18 p.x -= shadowMapStep.x;

19 p.y += shadowMapStep.y;

20 z = texture2D(shadowMap , p.xy).z;

21 dir.z = (p.z <= z) ? 1.0 : 0.0;

22
23 p.y -= 2.0 * shadowMapStep.y;

24 z = texture2D(shadowMap , p.xy).z;

25 dir.w = (p.z <= z) ? 1.0 : 0.0;

26
27 //Return the absolute difference of neighbour shadow tests

28 return abs(dir - 1.0);

29
30 }

Listing A.2 GLSL code for discontinuity computation.

relative distance of the fragment to the end of the shadow silhouette. This search is done
in all the four directions of the 2D space (i.e., left, right, top and bottom directions), such
that we can estimate the 2D relative position of the fragment in the shadow silhouette
(Lines 3-12 of Listing A.3). The shadow silhouette traversal algorithm for each direction
of the 2D space is implemented in Lines 14-54 of Listing A.3.

For each shadow map neighbour of a given fragment (Lines 17, 26-27 of Listing A.3),
RBSM computes the shadow test for the neighbour (Lines 28-32 of Listing A.3) and
detects whether the shadow test result of the neighbour is different from the one estimated
for the given fragment (Lines 33-34 of Listing A.3). In this case, since conservative RBSM
operates over lit fragments, a shadowed fragment has been detected. Therefore, we have
detected the end of the shadow silhouette and we end the traversal in the particular
direction (Lines 35-37 of Listing A.3). On the other hand, if the shadow test is the same
between neighbour shadow map texels (Lines 38-39 of Listing A.3), we need to check if
the neighbour shadow map texel is still located in the shadow silhouette (Lines 40-41 of
Listing A.3). If that is not the case, the traversal must be ended (Lines 42-44 of Listing

128 REVECTORIZATION-BASED SHADOW MAPPING SOURCE CODE FOR GLSL

A.3).
To limit the extent of the shadow silhouette traversal, we define a variable maxSize

that defines the maximum size of the shadow silhouette (Line 1 of Listing A.3). This vari-
able is only used to improve the temporal consistency of the algorithm. Using maxSize
= 16 was sufficient for our tests.

As a result of the shadow silhouette traversal, the algorithm returns the distance of
the fragment to the end of the shadow silhouette (Lines 50-54 of Listing A.3).

A.4 SHADOW SILHOUETTE NORMALIZATION

After the computation of the distance of each fragment to the shadow silhouette, we need
to normalize such value to the unit interval, as already described in Chapter 3.

As can be seen in Listing A.4, we compute both (3.4) and (3.5) in the function
computeRelativeDistance (Lines 1-10 of Listing A.4).

A.5 CONSERVATIVE RBSM VISIBILITY FUNCTION

As we show in Listing A.5, a few lines of GLSL are required to implement the visibility
function proposed for conservative RBSM.

In practice, the function takes as input the normalized relative position previously
estimated and performs two linear comparisons to determine whether a fragment must
be put in the shadowed region of the new revectorized shadow.

A.6 SUMMARY

In this appendix, we have shown a practical implementation of conservative RBSM using
the popular GLSL. By providing the implementation details of conservative RBSM, we
believe that one can easily implement the other techniques shown in this thesis, such as
non-conservative RBSM, Revectorization-based Percentage-Closer Filtering (RPCF) and
the others. The reference full implementation of RBSM for GLSL is available in a public
repository1

1https://github.com/MarcioCerqueira/GlobalIllumination/tree/master/ShadowMapping

A.6 SUMMARY 129

1 uniform int maxSize; //Maximum shadow silhouette size

2
3 vec4 computeRelativeDistance(vec4 p, vec2 c)

4 {

5
6 float dl = computeRelativeDistance(p, vec2(-1, 0), (1.0 - c.x));

7 float dr = computeRelativeDistance(p, vec2(1, 0), c.x);

8 float db = computeRelativeDistance(p, vec2(0, -1), (1.0 - c.y));

9 float dt = computeRelativeDistance(p, vec2(0, 1), c.y);

10 return vec4(dl , dr , db , dt);

11
12 }

13
14 float computeRelativeDistance(vec4 p, vec2 dir , float c)

15 {

16
17 vec4 np = p;

18 float foundSilhouetteEnd = 0.0;

19 float distance = 0.0;

20 //Compute the step of traversal for current direction

21 vec2 step = dir * shadowMapStep;

22
23 //Iteratively traverse the shadow silhouette

24 for(int it = 0; it < maxSize; it++) {

25
26 //Access the neighbour of p

27 np.xy += step;

28 //Retrieve the depth of the blocker of np

29 float z = texture2D(shadowMap , np.xy).z;

30 //Determine the visibility of np

31 float center = (np.z <= z) ? 1.0 : 0.0;

32 bool isCenterUmbra = !bool(center);

33 //When the visibility of p and np is different

34 if(isCenterUmbra) {

35 //End the traversal

36 foundSilhouetteEnd = 1.0;

37 break;

38 //When the visibility of p and np is equal

39 } else {

40 //Check if np has any discontinuity direction

41 vec4 d = computeDiscontinuity(np);

42 //Else, end the traversal

43 if((d.r + d.g + d.b + d.a) == 0.0) break;

44 }

45 //Increase the distance

46 distance ++;

47
48 }

49
50 //Take into account p’s sub-coordinates for distance estimation

51 distance = distance + (1.0 - c);

52 return mix(-distance , distance , foundSilhouetteEnd);

53
54 }

Listing A.3 GLSL code for shadow silhouette traversal.

130 REVECTORIZATION-BASED SHADOW MAPPING SOURCE CODE FOR GLSL

1 float normalizeRelativeDistance(vec2 dist) {

2
3 float T = 1;

4 if(dist.x < 0.0 && dist.y < 0.0) T = 0;

5 if(dist.x > 0.0 && dist.y > 0.0) T = -2;

6
7 float length = min(abs(dist.x) + abs(dist.y), float(maxSize));

8 return abs(max(T * dist.x, T * dist.y))/ length;

9
10 }

11
12 vec2 normalizeRelativeDistance(vec4 dist)

13 {

14
15 vec2 r;

16 r.x = normalizeRelativeDistance(vec2(dist.x, dist.y));

17 r.y = normalizeRelativeDistance(vec2(dist.z, dist.w));

18 return r;

19
20 }

Listing A.4 GLSL code for relative position normalization.

1 float revectorizeShadow(vec2 r)

2 {

3
4 if((r.x * r.y > 0) && (1.0 - r.x > r.y)) return shadowIntensity;

5 else return 1.0;

6
7 }

Listing A.5 GLSL code for conservative revectorization.

Appendix

B
In this appendix, we discuss how popular game engines give support to shadow rendering and present a

practical implementation of conservative RBSM into one of them.

REVECTORIZATION-BASED SHADOW MAPPING
SOURCE CODE FOR UNITY

Real-time shadow rendering is desirable in several computer graphics applications, such
as games. The most popular game engines typically provide support to this feature
through the traditional shadow mapping algorithm. Unfortunately, shadow mapping is
well known to generate aliasing artifacts along the shadow silhouette, decreasing the
realism of the rendered virtual scenes. In this appendix, we present an implementation
of the most basic conservative Revectorization-based Shadow Mapping (RBSM) for hard
shadow anti-aliasing in a game engine. Even with the limited source code access provided
by some game engines, we demonstrate how to implement an improvement of the shadow
mapping technique for shadow anti-aliasing. We have chosen to implement our approach
for spot lights in a commercial and popular game engine, the Unity 3D.

B.1 SHADOWS IN GAME ENGINES

Unity 3D Engine1 uses shadow mapping to generate shadows for spot and point light
sources. For directional light sources, cascaded shadow maps (ENGEL, 2006) take ad-
vantage of the partitioning strategy (Section 2.3.2) to reduce aliasing artifacts. Area light
sources are supported for the Unity Pro version and require precomputed lighting condi-
tions of the scene. Although not natively supported, shadow volumes are available as a
free plugin for older versions of Unity in the Unity Asset Store2. While these techniques
may work well for some scenarios, the main problem with Unity is that both free and
professional versions of the engine give limited source code access for developers (the en-
tire source code is available through an additional payment for Unity Pro users). Hence,
it is difficult for one to implement its own improvements in the shadow algorithms using
the available source code.

1https://unity3d.com
2https://www.assetstore.unity3d.com/en/content/1861

131

132 REVECTORIZATION-BASED SHADOW MAPPING SOURCE CODE FOR UNITY

Name Type Description
ShadowMapTexture internal Shadow map

ShadowMapTexture TexelSize float4
Shadow map texel size /
Shadow map resolution

shadowCoord float4
Coordinates to access the

shadow map for a given fragment

LightShadowData float4
Shadow intensity

(or shadow strength, in Unity)

Table B.1 List of variables available in Unity for shadow mapping with spot lights.

Similarly to Unity, CryEngine3 and Unreal Engine4 support shadow mapping for
point and spot light sources, cascaded shadow maps for directional lights and ray tracing
for static scenes. Additionally, Unreal Engine supports an original technique called ray
traced distance field soft shadows, which improves the visual quality of the cascaded
shadow maps, further reducing the aliasing artifacts, but increasing processing time.

Although it is not formally defined as a game engine, NVIDIA GameWorks5 is a
sample development kit that provides support for several real-time shadow techniques
into the NVIDIA ShadowWorks6 and advanced ray tracing solutions via NVIDIA OptiX
(PARKER et al., 2010). NVIDIA GameWorks is open-source, has already been integrated
into the Unreal Engine7 and is extensible to work with Unity Pro8.

Unity is the most used game engine for mobile gaming (CHI; SUN, 2015), is the
second game engine most recommended by industry experts (FRENCH et al., 2014) and
is also one the most popular game engines for general game production, having more than
770 millions of users over the world9. However, even with this huge popularity, Unity
still produces shadows with aliasing artifacts that are mostly visible in shadows rendered
from point or spot light sources. Therefore, we present an implementation of conservative
RBSM that uses the available source code access in the popular Unity game engine to
improve the visual quality of the hard shadows generated from spot lights.

B.2 SHADOWS IN UNITY

Unity uses the shadow mapping as a basis to compute shadows generated from directional,
point and spot light sources.

Directional light sources try to mimic the behaviour of distant light sources (e.g., the
sun) by emitting parallel light rays in a single, dominant direction to illuminate large
outdoor scenes. Since these light sources are defined by their directions, rather than their
positions, a shadow map is rendered using orthographic projection to keep the light rays

3https://www.cryengine.com/
4https://www.unrealengine.com/
5https://developer.nvidia.com/gameworks
6https://developer.nvidia.com/shadowworks
7https://developer.nvidia.com/nvidia-gameworks-and-ue4
8https://developer.nvidia.com/content/gameworks-unity
9https://unity3d.com/pt/public-relations

B.2 SHADOWS IN UNITY 133

Name Input Output Description
UNITY DECLARE

SHADOWMAP
internal

ShadowMapTexture
void

Declares the shadow map
as ShadowMapTexture

SAMPLE DEPTH
TEXTURE PROJ

internal
ShadowMapTexture

and float2
shadowCoord

float
Returns the depth stored

in the shadow map
for a given texel

UNITY SAMPLE
SHADOW PROJ

internal
ShadowMapTexture

and float4
shadowCoord

float
Returns the shadow test

for a given fragment

Table B.2 List of functions available in Unity for shadow mapping with spot lights.

parallel to each other. For large-scale scenes, a single shadow map is mostly insufficient
to compute accurate shadows. To solve this problem, Unity uses a variant of the shadow
mapping, the cascaded shadow mapping (ENGEL, 2006), to partition the 3D space into
several parts, and associate a shadow map for each one of them10. Cascaded shadow
mapping enables high-quality shadow rendering for large scenarios, at the cost of more
processing time. However, even when using this technique, aliasing artifacts still can be
seen in the final rendering, due to the limited resolution of the multiple shadow maps
rendered.

Differently from a directional light source, a point light source has a position and
works like an infinitesimal sphere that emits light rays in all directions. From a lookup
on the source code, we could see that Unity builds a cube map of shadow maps to compute
the shadows generated by the occlusion of the light rays. To do so, the engine renders
six shadow maps, one per face of the cube, and stores the shadow maps into the cube
map. While being able to compute shadows for large scenes, shadow rendering with this
type of light source is relatively expensive, since six shadow maps need to be generated
by the algorithm.

Spot light sources have a position, a dominant direction and are able to simulate
shadows for a limited extension of the scene. Hence, a single shadow map rendered using
perspective projection is able to cover the part of the scene that is illuminated by the
light source. While spot light sources are not well suited for outdoor illumination and
produces aliasing artifacts along the shadow silhouette, they are able to simulate shadows
efficiently, since only one shadow map must be rendered per light source.

In Unity, the source code that contains where the shadow maps are generated is
private. Therefore, the techniques (e.g., (SEN; CAMMARANO; HANRAHAN, 2003;
DONNELLY; LAURITZEN, 2006; ANNEN et al., 2008; PAN et al., 2009; LECOCQ et
al., 2014; PETERS; KLEIN, 2015)) that require a modification of the structure of the
shadow map to provide shadow anti-aliasing cannot be implemented in the game engine
without source code access. Also, directional and point light sources use an additional

10https://docs.unity3d.com/Manual/DirLightShadows.html

134 REVECTORIZATION-BASED SHADOW MAPPING SOURCE CODE FOR UNITY

1 fixed UnitySampleShadowmap (float4 shadowCoord)

2 {

3
4 half shadow = UNITY_SAMPLE_SHADOW_PROJ(_ShadowMapTexture ,

5 shadowCoord);

6
7 if(shadow > 0.0) return 1.0;

8 else return _LightShadowData.r;

9
10 }

Listing B.1 Shadow mapping for spot lights in Unity.

structure (a list of shadow maps for directional light sources, and a cube map for point
light sources) to store the multiple shadow maps rendered. However, Unity does not give
access to the individual shadow maps generated with those light sources. Instead, the
engine encapsulates these structures into a variable named ShadowMapTexture, that
simply returns whether a given fragment in the camera viewpoint is located in shadow,
or the depth of the blocker of a given fragment. This imposes another restriction on
the implementation of a shadow anti-aliasing technique, since most of the techniques
proposed in the literature require the access per shadow map to provide shadow anti-
aliasing. Fortunately, spot lights produce a single shadow map, that corresponds exactly
to the ShadowMapTexture variable. That is why we have chosen to focus on the
implementation of a shadow anti-aliasing technique for spot lights.

A list of the variables and functions provided by Unity for shadow mapping with
spot lights is shown in Tables B.1 and B.2. An example of their usage to compute the
aliased hard shadows is presented in Listing B.1. The source code for shadow rendering
using spot lights is available in the UnitySampleShadowmap method in the shader
file UnityShadowLibrary.cginc of Unity. Basically, the UnitySampleShadowmap
method receives as input the coordinates of the fragment rendered from the camera
viewpoint, but projected on the shadow map (Line 1), uses that coordinates to access
the shadow map texture ShadowMapTexture and compute the shadow test using
the UNITY SAMPLE SHADOW PROJ method (Lines 4-5). Then, depending on
whether the fragment is in shadow, the method returns 1.0, indicating full visibility of
the fragment (Line 7) or LightShadowData.r, an intensity value accounting that the
fragment is shadowed (Line 8).

B.3 REVECTORIZATION-BASED SHADOW MAPPING IN UNITY

In Listing B.2, we show the main pipeline of the conservative RBSM implementation.
First, we evaluate the shadow test for a given fragment to detect whether the fragment
is shadowed or lit (Line 4-5). Conservative RBSM operates only on the lit fragments
located in the aliased shadow silhouette (Line 6). Hence, for each lit fragment, we com-
pute the offset value to access the next shadow map sample, that is equivalent to a
product between shadowCoord.w and the value stored in the first two coordinates of

B.3 REVECTORIZATION-BASED SHADOW MAPPING IN UNITY 135

1 fixed UnitySampleShadowmap (float4 shadowCoord)

2 {

3
4 half shadow = UNITY_SAMPLE_SHADOW_PROJ(_ShadowMapTexture ,

5 shadowCoord);

6 if(shadow == 0) return _LightShadowData.r;

7
8 float2 shadowMapStep = float2(_ShadowMapTexture_TexelSize.x,

9 _ShadowMapTexture_TexelSize.y) * shadowCoord.w;

10 float4 d = computeDiscontinuity(shadowCoord , shadowMapStep);

11 if((d.r + d.g + d.b + d.a) == 0.0) return 1.0;

12
13 float maxSize = 16;

14 float2 c = computeSubCoordinates(shadowCoord);

15 float4 dist = computeRelativeDistance(shadowCoord , c,

16 shadowMapStep , maxSize);

17 float2 r = normalizeRelativeDistance(dist , maxSize);

18 return revectorizeShadow(r);

19
20 }

Listing B.2 RBSM for spot lights in Unity.

ShadowMapTexture TexelSize, variable that returns the shadow map texel size in
terms of width and height (Lines 8-9). Then, we evaluate the neighbour shadow map
texels to compute the discontinuity directions where the aliased silhouette is located (Line
10). If an aliased silhouette has been detected (Line 11), we compute the sub-coordinates
of the camera-view fragment into the shadow map (Line 14) and traverse the shadow
silhouette to compute the size of the aliasing, as well as the relative distance of the frag-
ment to the origin of the local aliasing (Lines 15-16). Next, we normalize such relative
distance (Line 17) and define a visibility function to determine whether a fragment must
be revectorized (Line 18). It is noteworthy that we use the variable maxSize to define
the maximum aliasing size that we will consider for revectorization (Line 13). We define
maxSize equals to 16 to keep the frame rate more constant.

In Listing B.3, we show how we detect whether a fragment is located in the aliased
shadow silhouette. We compute the shadow test of the neighbours of each shadow map
texel (3.2) by means of the UNITY SAMPLE SHADOW PROJ function (Lines 4-
22). Then, in Line 24, we finally estimate the absolute difference of neighbour shadow
tests (3.3). From Listing B.2 and (3.3), we know that a fragment is in the aliased shadow
silhouette if at least one of the coordinates of the 4D vector d is greater than 0 (Line 11
in Listing B.2).

For each fragment located in the aliased shadow silhouette, we need to perform the
shadow silhouette traversal to be able to revectorize the shadow silhouette. Before start-
ing the shadow silhouette traversal, we need to compute the sub-coordinates of the frag-
ment in the shadow map texel, as shown in Listing B.4. In this case, since the window size
orientation of Unity is different from the one used by OpenGL Shading Language (GLSL),
we had to change the way we computed (3.1) to keep both Unity and GLSL implemen-

136 REVECTORIZATION-BASED SHADOW MAPPING SOURCE CODE FOR UNITY

1 float4 computeDiscontinuity(float4 shadowCoord , float2 shadowMapStep)

2 {

3
4 float4 dir = float4 (0.0, 0.0, 0.0, 0.0);

5 //x = left; y = right; z = bottom; w = top

6
7 shadowCoord.x += shadowMapStep.x;

8 dir.x = UNITY_SAMPLE_SHADOW_PROJ(_ShadowMapTexture , shadowCoord);

9 dir.x = (dir.x > 0.0) ? 1.0 : 0.0;

10
11 shadowCoord.x -= 2.0 * shadowMapStep.x;

12 dir.y = UNITY_SAMPLE_SHADOW_PROJ(_ShadowMapTexture , shadowCoord);

13 dir.y = (dir.y > 0.0) ? 1.0 : 0.0;

14
15 shadowCoord.x += shadowMapStep.x;

16 shadowCoord.y -= shadowMapStep.y;

17 dir.z = UNITY_SAMPLE_SHADOW_PROJ(_ShadowMapTexture , shadowCoord);

18 dir.z = (dir.z > 0.0) ? 1.0 : 0.0;

19
20 shadowCoord.y += 2.0 * shadowMapStep.y;

21 dir.w = UNITY_SAMPLE_SHADOW_PROJ(_ShadowMapTexture , shadowCoord);

22 dir.w = (dir.w > 0.0) ? 1.0 : 0.0;

23
24 return abs(dir - 1.0);

25
26 }

Listing B.3 Discontinuity direction estimation in Unity.

B.4 SUMMARY 137

1 float2 computeSubCoordinates(float4 shadowCoord)

2 {

3
4 float2 c = float2(frac ((1.0 - shadowCoord.x/shadowCoord.w) *

5 _ShadowMapTexture_TexelSize.z),

6 frac ((1.0 - shadowCoord.y/shadowCoord.w) *

7 _ShadowMapTexture_TexelSize.w));

8 c.x = 1.0 - lerp (0.5 - c.x, (0.5 - c.x) + 1.0, step (0.5, c.x));

9 c.y = 1.0 - lerp (0.5 - c.y, (0.5 - c.y) + 1.0, step (0.5, c.y));

10 return c;

11
12 }

Listing B.4 An algorithm to compute the sub-coordinates of a camera-view fragment in the
light space in Unity.

tations using the same value.

The algorithm to compute the relative distances of the fragment to the ends of the
shadow silhouette is shown in Listing B.5. RBSM computes the relative distance of the
fragment with respect to the shadow silhouette to the four directions of the 2D space. For
each direction (Lines 5-12), we perform the traversal over the shadow silhouette (Line 28).
Then, for each shadow map texel being accessed, we check whether we step out of the lit
side of the aliased silhouette. This condition is fulfilled whenever we step into an umbra
texel (Lines 33-35) or step into a lit texel that does not have any discontinuity directions
(i.e., the texel is not neighbour of an umbra texel) (Lines 36-40). Otherwise, we increment
the variable distance (Line 42) that represents the size of the aliasing. In Line 47, we add
the sub-coordinates of the fragment into the distance previously computed to improve
the accuracy of the distance computation. In Line 48, we use a linear interpolation to
make the distance value signed, as already presented in Chapter 3.

To estimate the relative position r in Listing B.6, we basically implement the equations
(3.4) and (3.5). The same statement is held for the implementation of the conservative
RBSM visibility function, that is implemented as shown in Listing B.7, following (3.6).

B.4 SUMMARY

In this appendix, we have presented an implementation of conservative RBSM, for the
Unity game engine. Since Unity uses the shadow mapping for shadow rendering, aliasing
artifacts are generated along the shadow silhouette. As shown in Section 3.3, by the
use of the proposed implementation of RBSM, we are able to minimize these aliasing
artifacts, generating high-quality shadows at minimal additional cost.

Due to the limited source code access provided by Unity, we were not able to imple-
ment RBSM for other types of light source, such as point and directional light sources.
Moreover, we could not implement RBSM for soft shadows that simulate the penumbra
effect. The implementation of RBSM using the entire Unity source code, or the imple-
mentation in other game engines, may enable one to adapt the technique to support hard
and soft shadow rendering for any light source. Finally, since NVIDIA GameWorks may

138 REVECTORIZATION-BASED SHADOW MAPPING SOURCE CODE FOR UNITY

1 float4 computeRelativeDistance(float4 shadowCoord , float2 c,

2 float2 shadowMapStep , int maxSize)

3 {

4
5 float dl = computeRelativeDistance(shadowCoord , float2(1, 0),

6 (1.0 - c.x), shadowMapStep , maxSize);

7 float dr = computeRelativeDistance(shadowCoord , float2(-1, 0),

8 c.x, shadowMapStep , maxSize);

9 float db = computeRelativeDistance(shadowCoord , float2(0, 1),

10 (1.0 - c.y), shadowMapStep , maxSize);

11 float dt = computeRelativeDistance(shadowCoord , float2(0, -1),

12 c.y, shadowMapStep , maxSize);

13 if(db > 0 && dt > 0) dt = -dt;

14 return float4(dl , dr , db , dt);

15
16 }

17
18 float computeRelativeDistance(float4 shadowCoord , float2 dir , float c,

19 float2 shadowMapStep , int maxSize)

20 {

21
22 float4 tempShadowCoord = shadowCoord;

23 float foundSilhouetteEnd = 0.0;

24 float distance = 0.0;

25 float2 shadowMapDiscontinuityStep = dir * shadowMapStep;

26 tempShadowCoord.xy += shadowMapDiscontinuityStep;

27
28 for(int it = 0; it < maxSize; it++) {

29
30 float shadow = UNITY_SAMPLE_SHADOW_PROJ(_ShadowMapTexture ,

31 tempShadowCoord);

32
33 if(shadow == 0.0) {

34 foundSilhouetteEnd = 1.0;

35 break;

36 } else {

37 float4 d = computeDiscontinuity(tempShadowCoord ,

38 shadowMapStep);

39 if((d.r + d.g + d.b + d.a) == 0.0) break;

40 }

41
42 distance ++;

43 tempShadowCoord.xy += shadowMapDiscontinuityStep;

44
45 }

46
47 distance = distance + (1.0 - c);

48 return lerp(-distance , distance , foundSilhouetteEnd);

49
50 }

Listing B.5 Computation of the relative position of a fragment inside a shadow silhouette in
Unity.

B.4 SUMMARY 139

1 float2 normalizeRelativeDistance(float4 dist , int maxSize)

2 {

3
4 float2 r = float2 (0.0, 0.0);

5 r.x = normalizeRelativeDistance(float2(dist.x, dist.y), maxSize);

6 r.y = normalizeRelativeDistance(float2(dist.z, dist.w), maxSize);

7 return r;

8
9 }

10
11 float normalizeRelativeDistance(float2 dist , int maxSize) {

12
13 float T = 1;

14 if(dist.x < 0.0 && dist.y < 0.0) T = 0;

15 if(dist.x > 0.0 && dist.y > 0.0) T = -2;

16
17 float length = min(abs(dist.x) + abs(dist.y), float(maxSize));

18 return abs(max(T * dist.x, T * dist.y))/ length;

19
20 }

Listing B.6 Normalization of the relative position of a fragment inside a shadow silhouette in
Unity.

1 float revectorizeShadow(float2 r)

2 {

3
4 if((r.x * r.y > 0) && (1.0 - r.x > r.y)) return _LightShadowData.r;

5 else return 1.0;

6
7 }

Listing B.7 Conservative RBSM visibility function in Unity.

be used with Unity Pro, the field of shadows in game engines still needs a gentle intro-
duction on how to integrate NVIDIA ShadowWorks with Unity Pro and an evaluation
of the shadow techniques of NVIDIA ShadowWorks in the context of the Unity game
engine.

The reference full implementation of RBSM for Unity is available in a public reposi-
tory11

11https://github.com/MarcioCerqueira/GlobalIllumination/tree/master/RBSMinUnity

	Chapter 1—Introduction
	Motivation
	Hypothesis
	Contributions
	Organization

	Chapter 2—Background and State-of-the-Art Review
	Rendering Equation
	Shadow Rendering
	Hard Shadows
	Warping
	Partitioning
	Silhouette Recovery

	Filtered Hard Shadows
	Visually Plausible Soft Shadows
	Percentage-Closer Soft Shadows
	Back-Projection
	Pre-Filtering
	Screen-Space Filtering

	Accurate Soft Shadows
	Discussion
	Summary

	Chapter 3—Revectorization-Based Shadow Mapping
	Revectorization-Based Conservative Shadow Silhouette Recovery
	Overview
	Shadow Silhouette Locatization
	Shadow Silhouette Traversal
	Shadow Silhouette Normalization
	Hard Shadow Anti-Aliasing Visibility Function

	Revectorization-Based Non-Conservative Shadow Silhouette Recovery
	Overview
	Shadow Silhouette Locatization
	Shadow Silhouette Traversal
	Shadow Silhouette Normalization
	Hard Shadow Anti-Aliasing Visibility Function

	Results and Discussion
	Experimental Setup
	Visual Quality Evaluation
	Rendering Time Evaluation
	Limitations

	Summary

	Chapter 4—Revectorization-Based Filtered Shadow Mapping
	Revectorization-based Percentage-Closer Filtering
	Filtered Hard Shadow Anti-Aliasing Visibility Function
	Revectorization-Based Filtering

	Euclidean Distance Transform Shadow Mapping
	Overview
	Euclidean Distance Transform Shadowing
	Euclidean Distance Transform Filtering

	Results and Discussion
	Experimental Setup
	Visual Quality Evaluation
	Rendering Time Evaluation
	Limitations

	Summary

	Chapter 5—Revectorization-Based Soft Shadow Mapping
	Variable-Size Penumbra Estimation
	Euclidean Distance Transform Soft Shadow Mapping
	Revectorization-Based Soft Shadow Mapping
	Screen-Space Revectorization-Based Soft Shadow Mapping
	Results and Discussion
	Experimental Setup
	Visual Quality Evaluation
	Rendering Time Evaluation
	Discussion
	Limitations

	Summary

	Chapter 6—Revectorization-Based Accurate Soft Shadow Mapping
	Revectorization-Based Accurate Soft Shadow Rendering
	Adaptive Light Source Sampling
	Final Rendering
	Temporally Coherent Soft Shadow Computation

	Results and Discussion
	Experimental Setup
	Visual Quality Evaluation
	Rendering Time Evaluation
	Limitations

	Summary

	Chapter 7—Concluding Remarks
	Conclusion
	Future Work

	Appendix A—Revectorization-Based Shadow Mapping Source Code for GLSL
	Overview
	Shadow Silhouette Localization
	Shadow Silhouette Traversal
	Shadow Silhouette Normalization
	Conservative RBSM Visibility Function
	Summary

	Appendix B—Revectorization-Based Shadow Mapping Source Code for Unity
	Shadows in Game Engines
	Shadows in Unity
	Revectorization-Based Shadow Mapping in Unity
	Summary

