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2. Abstract  37 

Introduction: Sickle cell disease (SCD) children have a high susceptibility to pneumococcal 38 

infection. For this reason, they are routinely immunized with pneumococcal vaccines and use 39 

antibiotic prophylaxis (AP).  40 

Hypothesis/Gap Statement: Yet, little is known about SCD children’s gut microbiota. If 41 

antibiotic-resistant Enterobacterales may colonize people on AP, we hypothesized that SCD 42 

children on AP are colonized by resistant enterobacteria species. 43 

Objective: To evaluate the effect of continuous AP on Enterobacterales gut colonization 44 

from children with SCD. 45 

Methodology: We analysed 30 faecal swabs from SCD children on AP and 21 swabs from 46 

children without the same condition. Enterobacterales was isolated on MacConkey agar 47 

plates and identified by matrix-assisted laser desorption/ionization time-of-flight mass 48 

spectrometry (MALDI-TOF MS) (bioMérieux, Marcy l'Etoile, France). We performed the 49 

antibiogram by Vitek 2 system (bioMérieux, Marcy l'Etoile, France), and the resistance genes 50 

were identified by multiplex PCR.  51 



  

 

 

Results: We found four different species with resistance to one or more different antibiotic 52 

types in the AP-SCD children’s group: Escherichia coli, Klebsiella pneumoniae, Citrobacter 53 

freundii, and Citrobacter farmeri. Colonization by resistant E. coli was associated with AP 54 

(prevalence ratio 2.69, 95% confidence interval [CI], 1.98–3.67, P<0.001). Strains producing 55 

extended-spectrum β-lactamases (ESBL) were identified only in SCD children, E. coli, 4/30 56 

(13%), and K. pneumoniae, 2/30 (7%). The ESBL-producing Enterobacterales were 57 

associated with penicillin G benzathine use (95 % CI, 22.91–86.71, P<0.001). CTX-M-1 was 58 

the most prevalent among ESBL-producers (3/6, 50%), followed by CTX-M-9 (2/6, 33%), 59 

and CTX-M-2 (1/6, 17%). 60 

Conclusion: Resistant enterobacteria colonize SCD children on AP, and this therapy raises 61 

the chance of ESBL-producing Enterobacterales colonization. Future studies should focus on 62 

prophylactic vaccines as exclusive therapy against pneumococcal infections. 63 

 64 

3. Introduction 65 

Children with sickle cell disease (SCD) are at high risk of Streptococcus pneumoniae 66 

infection [1], but death by invasive pneumococcal is now rare [2, 3] due to prophylactic 67 

measures by vaccination and penicillin use [4–6]. However, Acinetobacter spp. and 68 

Enterobacterales such as Salmonella spp., Escherichia coli, and Klebsiella pneumoniae have 69 

already been identified as important bacterial agents associated with SCD children invasive 70 

infections [2, 7, 8]. 71 

 72 

In the last decade, researchers have focused attention on the human gut microbiota. However, 73 

in SCD children, the microbiota profile has not been yet elucidated, especially related to 74 

enterobacteria. Enterobacterales species, bacteria of the intestinal microbiota, are often 75 



  

 

 

associated with extraintestinal infections, especially in immunosuppressed individuals. The 76 

most common observed infections are abscesses, pneumonia, meningitis, bloodstream 77 

(sepsis), surgical site, and urinary tract infections (UTI) [9]. Antibiotic resistance has become 78 

a global threat to public health due to its overuse or inappropriate prescription [10, 11]. The 79 

emergence and dissemination of multidrug-resistance Enterobacterales are one of the causes 80 

of this threat [11]. At present, β-lactam resistance is a major concern worldwide [12]. 81 

 82 

Antibiotic prophylaxis (AP) may lead to gut colonization by antibiotic-resistant bacteria [13, 83 

14], and for this reason, we hypothesize that SCD children on AP are colonized by resistant 84 

enterobacteria. In this study, we evaluate the effect of continuous AP on Enterobacterales 85 

species gut microbiota colonization from SCD children. Also, we investigate the 86 

antimicrobial susceptibility profile and the resistance genes associated with β-lactamase 87 

production. 88 

 89 

4. Methods 90 

Study design 91 

We conducted a sample convenience cross-sectional observational study. Fifty-one children 92 

participated in the study. In the SCD group, 30 participants (ages 2–12 years) had the 93 

followed hemoglobin (Hb) genotypes: HbSS (sickle cell anemia; 16/30), HbSC (hemoglobin 94 

SC disease; 13/30), and HbSβ-thalassemia (sickle/β-thalassemia; 1/30), all on AP. The next 95 

group was composed of 21 children (ages 2–17 years) who were SCD group relatives, 96 

genotyped as HbAA (normal hemoglobin; 8/21), HbAS (sickle cell trait; 8/21), and, 97 

unfortunately, five children (5/21) did not have their genotype information on their medical 98 

records. This group lives in the same SCD children’s group household in close contact, all 99 



  

 

 

without AP. The calculated sample size corresponded to approximately 10% of the annual 100 

incidence of SCD in Bahia, Brazil. 101 

 102 

Inclusion and non-inclusion criteria 103 

In the AP-SCD children’s group, children under 2 years of age who discontinued AP in the 104 

last year, showing risk factors associated with gut microbiota alteration, such as inflammatory 105 

bowel disease, colon cancer, irritable bowel syndrome, gastric ulcers, non-alcoholic fatty 106 

liver disease, obesity, metabolic syndromes, asthma, atopy, and hypertension; and who did 107 

not sign the adult consent, or a child's assent form to participate in the research, were not 108 

included.   109 

 110 

Similarly, in the group without AP use, children under 2 years of age, who used antibiotics in 111 

the last 3 months, and do not reside in the same home as the AP-SCD children, with the 112 

presence of the above-mentioned risk factors associated with gut microbiota alteration, and 113 

who did not agree with the research, were not included. 114 

 115 

Sample collection 116 

Stool samples were obtained at home by participants in a sterile stool sample container that 117 

we previously provided. Swabs were directly immersed in the fresh faecal samples and were 118 

transported in Stuart medium, at room temperature, to the Clinical and Research 119 

Microbiology Laboratory at the Federal University of Bahia’s Faculty of Pharmacy. The 120 

average time between faecal swab collection and processing was around 24 h. 121 

 122 

Enterobacterales isolation, identification, and antimicrobial susceptibility determination 123 



  

 

 

All swabs were streaked onto MacConkey agar plates, which were incubated for 24 h at 36±1 124 

°C. For each plate, two to five different colony morphologies were transferred to a Triple 125 

Sugar Iron agar slant to screen Enterobacterales. The isolates were kept at −80 °C in a Brain 126 

Heart Infusion broth medium supplemented with 10% (v/v) glycerol for further analysis. 127 

 128 

The isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass 129 

spectrometry (MALDI-TOF MS) (bioMérieux, Marcy l'Etoile, France). The antibiotic 130 

susceptibility profile was determined by Vitek 2 system (bioMérieux, Marcy l'Etoile, France), 131 

testing the following antibiotics: amikacin, ampicillin/sulbactam, cefepime, ceftazidime, 132 

ceftriaxone, cefuroxime, ciprofloxacin, ertapenem, gentamicin, imipenem, meropenem, and 133 

piperacillin/tazobactam. Antibiotic susceptibility was interpreted using the Clinical and 134 

Laboratory Standards Institute (document M100, 2019) [15] and the Brazilian Health 135 

Regulatory Agency (ANVISA) (technical note 01/2013) [16] guidelines. Multidrug resistance 136 

was defined as resistance to three or more antimicrobial categories [17]. When the 137 

participants were colonized with more than one bacteria of the same species, we 138 

distinguished the different strains by evaluating the antibiotic susceptibility profile. 139 

 140 

DNA extraction and antibiotic resistance gene identification 141 

The DNA extraction and multiplex PCR were performed according to the protocol developed 142 

by Dallenne et al. [18], using primer sequences for the blaTEM, blaSHV, blaOXA-1-like, blaCTX-M-1, 143 

blaCTX-M-2, and blaCTX-M-9 genes. 144 

 145 

Statistical analysis 146 



  

 

 

We performed descriptive data analysis, by using medians and proportions (i.e. frequencies). 147 

We did Pearson’s chi-square test association analysis by inserting data in the contingency 148 

tables to obtain prevalence ratios. Also, we used a chi-squared proportions test comparison. 149 

The significant association was reached when P<0.05 to a confidence interval (CI) of 95%. 150 

The study data was analysed on GraphPad Prism version 6.01 for Windows (GraphPad 151 

Software, La Jolla, CA, USA) and at the online tool medcalc.net. Graphical representations 152 

were also performed on GraphPad Prism v. 6.01 software. 153 

 154 

5. Results 155 

Characteristics of the study population 156 

From the 51 participants investigated in this study, over half of SCD children (16/30, 53%) 157 

had HbSS, 13/30 (43%) had HbSC, and 1/30 (3%) HbSβ-thalassemia. The genotypes of the 158 

group without AP were 8/21 (38%) HbAA, 8/21 (38%) HbAS, and a minority of 5/21 (24%) 159 

was not determined. Eighty percent (24/30) of SCD children were using oral penicillin V, and 160 

a minority (6/30, 20%), intramuscular penicillin G benzathine (Table 1). 161 

  162 



  

 

 

Table 1. Distribution and characteristics of children with sickle cell disease on antibiotic 163 

prophylaxis, and children without antibiotic prophylaxis according to age, sex, genotype, and 164 
antibiotic used 165 

Characteristics On AP (n=30) Without AP (n=21) 

Age*   

   4 (2-12)  8 (2-17) 

Sex   

Female 17 (57%)           12 (57%) 

Male 13 (43%)  9 (43%) 

Genotype   

HbSS 16 (53%) - 

HbSC 13 (43%) - 

HbSβ-thalassemia 1 (3%) - 

HbAA -  8 (38%) 

HbAS -  8 (38%) 

Unknown -  5 (24%) 

Antibiotic prophylaxis   

Oral penicillin V† 24 (80%) - 

Intramuscular penicillin G benzathine‡   6 (20%) - 

*Age expressed in years and median (minimum to maximum). 166 
†<3 years, 125 mg twice daily; >3 years, 250 mg twice daily. 167 
‡600,000 Units once montly. 168 

AP, Antibiotic prophylaxis; HbAA, normal hemoglobin; HbAS, sickle cell trait; HbSC, 169 
hemoglobin SC disease; HbSS, sickle cell anemia; HbSβ-thalassemia, sickle/β-thalassemia. 170 

 171 

Enterobacterales species diversity 172 

We found seven Enterobacterales species in the AP-SCD children’s group and nine in the 173 

group without the evaluated condition. Five common species were found in both groups. The 174 

E. coli and K. pneumoniae species were the most frequent in the groups (51/86 [59%] and 175 

25/51 [49%] for E. coli, and 22/86 [26%] and 12/51 [24%] for K. pneumoniae, on AP-SCD 176 

and non-AP groups, respectively), followed by Enterobacter cloacae (7/86 [8%] and 6/51 177 

[12%], on AP-SCD and non-AP groups, respectively) (Table 2). It is worth mentioning that 178 

some participants were colonized with more than one E. coli, K. pneumoniae, E. cloacae, and 179 

Klebsiella aerogenes strains. There were no significant differences between bacterial isolates 180 

and bacterial diversity when evaluating the AP-SCD and non-AP children’s groups (95% CI, 181 



  

 

 

−1.22–23.30, P=0.08), although the group without AP showed higher Enterobacterales 182 

diversity in a smaller number of isolates. 183 

 184 

Table 2. Frequencies and diversity of Enterobacterales isolated from the gut microbiota of 185 
children with sickle cell disease on antibiotic prophylaxis, and the group without antibiotic 186 
prophylaxis 187 

Isolated Enterobacterales 
On AP (n=30) Without AP (n=21) 

P 
Frequency (%) Frequency (%) 

Escherichia coli 51 (59%) 25 (49%)  

Klebsiella pneumoniae 22 (26%) 12 (24%)  

Enterobacter cloacae 7 (8%)   6 (12%)  

Citrobacter freundii 3 (3%) 1 (2%)  

Klebsiella aerogenes 1 (1%) 3 (6%)  

Citrobacter farmeri 1 (1%) -  

Citrobacter werkmanii 1 (1%) -  

Citrobacter koseri - 1 (2%)  

Escherichia fergusonii  - 1 (2%)  

Klebsiella oxytoca - 1 (2%)  

Kluyvera ascorbata - 1 (2%)  

Total   86 (100%)   51 (100%) 
0.08* 

Different species 7 (8%)            9 (18%) 

*No statistical significance at P<0.05. 188 
AP, Antibiotic prophylaxis. 189 

 190 

Antimicrobial susceptibility profiles of Enterobacterales isolates 191 

Five species of resistant Enterobacterales were identified: E. coli, K. pneumoniae, 192 

Citrobacter freundii, Citrobacter farmeri, and Citrobacter koseri. Among them were 193 

observed a high rate of antibiotic resistance in E. coli isolates (27/51, 53%) in the AP-SCD 194 

children’s group (Fig. 1). All bacterial isolates were susceptible to amikacin and 195 

carbapenems. 196 

 197 

  198 



  

 

 

Fig. 1. Antimicrobial susceptibility profile. E. coli, K. pneumoniae, C. freundii, C. farmeri, 199 

and C. koseri isolates on (a) sickle cell disease children on antibiotic prophylaxis and (b) 200 
children without antibiotic prophylaxis. * Indicates a multidrug-resistant profile. ESBL+ 201 
denotes ESBL-producing isolates. AP, antibiotic prophylaxis; CIP, ciprofloxacin; CXM, 202 
cefuroxime; CRO, ceftriaxone; CAZ, ceftazidime; CPM, cefepime; ESBL, extended-203 
spectrum β-lactamase; GEN, gentamicin; PTZ, piperacillin/tazobactam; SAM, 204 

ampicillin/sulbactam. 205 

 206 

 207 

Carriage prevalence of antibiotic-resistant Enterobacterales 208 

Sixty-seven percent of SCD children on AP (20/30) were colonized by resistant E. coli, 7/30 209 

(23%) by E. coli multidrug-resistant, and 4/30 (13%) by ESBL-producing E. coli. On the 210 

other hand, 4/21 (19%) of children without AP were colonized by resistant E. coli. By the 211 

way, two of these children were living in close contact with the AP-SCD patients colonized 212 

by E. coli with the same resistant pattern. No multidrug-resistant or ESBL-producing 213 

Enterobacterales were found in the children without AP (Table 3). 214 

 215 

  216 



  

 

 

Table 3. Frequency of children with or without isolates of antibiotic-resistant Enterobacterales 217 

and extended-spectrum β-lactamase producers 218 

Presence of antibiotic resistance On AP (n=30) Without AP (n=21) 

Escherichia coli   

Presence 20 (67%)  4 (19%) 

Multidrug-resistant   7 (23%) - 

ESBL +   4 (13%) - 

   

Klebsiella pneumoniae   

Presence 2 (7%) - 

Multidrug-resistant 1 (3%) - 

ESBL + 2 (7%) - 

   

Citrobacter freundii   

Presence 1 (3%) - 

Multidrug-resistant - - 

ESBL + - - 

   

Citrobacter farmeri  - 

Presence 1 (3%) - 

Multidrug-resistant - - 

ESBL + - - 

   

Citrobacter koseri -  

Presence - 1 (5%) 

Multidrug-resistant - - 

ESBL + - - 

   

+ Positive. 219 
AP, Antibiotic prophylaxis; ESBL, extended-spectrum β-lactamase. 220 

 221 

When antibiotic-resistant and non-resistant E. coli were compared, concerning antibiotic use 222 

or not in both groups, we found a significant association between AP and E. coli resistance 223 

(95% CI, 1.98–3.67, P<0.001). The prevalence ratio of resistant E. coli was 2.69 times higher 224 

in the AP-SCD children’s group compared to the group without the evaluated condition. 225 

 226 

Two SCD children (2/30, 7%) on AP were colonized by resistant K. pneumoniae. Although 227 

this colonization was by ESBL-producing strains, only one K. pneumoniae showed multidrug 228 

resistance. On the other hand, the children’s group without AP was not colonized by resistant 229 



  

 

 

K. pneumoniae. Two SCD children on AP were colonized by resistant Citrobacter (1/30 C. 230 

freundii and 1/30 C. farmeri). One child (1/21) without AP was colonized by resistant C. 231 

koseri (Table 3); however, we do not find resistant enterobacteria in the AP-SCD child who 232 

was living in close contact with this non-AP child.  233 

 234 

The prevalence of ESBL-producing Enterobacterales was higher among SCD children who 235 

used penicillin G benzathine, 4/6 (67%) children were colonized. On the other hand, the 236 

prevalence of ESBL-producing Enterobacterales among children who used penicillin V was 237 

1/24 (4%). To evaluate the association between penicillin G benzathine use and ESBL-238 

producing Enterobacterales colonization, a proportion’s comparison test was used. The 239 

evaluated association was significant (95% CI, 22.91-86.71, P<0.001). 240 

 241 

Molecular profiles of β-lactamases 242 

The molecular analysis of β-lactamase producing isolates demonstrated that AP-SCD 243 

children were colonized by enterobacteria with the blaTEM (13/30, 43%), blaCTX-M-9 (2/30, 244 

7%), blaCTX-M-1 (1/30, 3%), blaCTX-M-1 and blaTEM (1/30, 3%), blaCTX-M-2 and blaTEM (1/30, 245 

3%), and blaCTX-M-1, blaSHV, and blaTEM (1/30, 3%) genes. Five SCD children (5/30, 17%) 246 

were colonized by enterobacteria resistant to β-lactam; however, genes related to this 247 

resistance were not between the investigated genes. On the other hand, just the blaTEM gene 248 

(4/21, 19%) was found in the children’s group without AP, and one child (1/21, 5%) was 249 

colonized by β-lactamase-producing Enterobacterales whose gene was not identified. No 250 

resistant bacteria showed the blaOXA-1-like resistance gene in the investigated groups (Table 4). 251 

 252 



  

 

 

Table 4. β-lactamases associated with resistance in E. coli, K. pneumoniae, C. freundii, C. 253 

farmeri, and C. koseri 254 

Microorganism/β-Lactamases found On AP (n=30) Without AP (n=21) 

Escherichia coli   

TEM 13 (43%)   4 (19%) 

CTX-M-9 2 (7%) - 

CTX-M-1, TEM 1 (3%) - 

CTX-M-2, TEM 1 (3%) - 

Other unidentified   3 (10%) - 

   

Klebsiella pneumoniae  - 

CTX-M-1 1 (3%) - 

CTX-M-1, SHV, TEM 1 (3%) - 

   

Citrobacter freundii  - 

Other unidentified 1 (3%) - 

   

Citrobacter farmeri  - 

Other unidentified 1 (3%) - 

   

Citrobacter koseri -  

Other unidentified - 1 (5%) 

   

SHV, SHV variants including SHV-1; TEM, TEM variants including TEM-1 and TEM-2; 255 

CTX-M-1, Variants of CTX-M group 1 including CTX-M-1, CTX-M-3, and CTX-M-15; 256 
CTX-M-2, Variants of CTX-M group 2 including CTX-M-2; CTX-M-9, Variants of CTX-M 257 

group 9 including CTX-M-9 and CTX-M-14. 258 
AP, Antibiotic prophylaxis. 259 

 260 

6. Discussion 261 

Children with SCD have a high susceptibility to pneumococcal infection, especially in those 262 

aged <5 years [1, 19]. For this reason, adherence to penicillin AP and vaccine regimens is 263 

recommended [4–6], which is a safe treatment against S. pneumoniae, especially since 264 

penicillin-resistant S. pneumoniae serotypes are not selected [20]. 265 

 266 

Despite the discrepancy in children's ages between the groups in this study, the gut 267 

microbiota stabilizes and resembles the adult gut microbiota around the age of 2 years old 268 



  

 

 

[21], which justified the comparative study between the groups. Also, the elevated prevalence 269 

of oral penicillin V use between AP-SCD children (80%) is in line with the literature [22]. 270 

 271 

In contradiction with the literature, we found no significant difference between species 272 

diversity. Several studies demonstrated the association of antibiotic use with reduced gut 273 

microbiota diversity [23, 24]. We believe that the sample size could be the reason for non-274 

significance, given that our findings demonstrate a tendency. 275 

 276 

In the current study, 67% (20/30) of SCD children on AP were colonized by antibiotic-277 

resistant E. coli, and 13% (4/30) of those children were colonized by this ESBL-producing 278 

bacteria. Therefore, these children are at high risk of severe infection by resistant E. coli, 279 

especially UTI. E. coli is the pathogen most associated with this infection, including in 280 

children [25]. Besides, it is believed that infective strains of E. coli from the gut microbiota 281 

contaminate and cause UTI [26]. 282 

 283 

The prevalence of resistant E. coli was 2.69 times higher among SCD children on AP 284 

compared to the group without the evaluated condition. Some studies have already shown 285 

that antibiotic use may lead to the emergence of new mutants or growth of existing 286 

antimicrobial-resistant gut microbiota populations, promoting the proliferation of Gram-287 

negatives with these characteristics due to selective pressure [13, 14, 27, 28]. 288 

 289 

It was found that two SCD children on AP (2/30, 7%) were colonized by ESBL-producing K. 290 

pneumoniae. Although K. pneumoniae presents a high resistance rate, even higher than E. 291 

coli [29], this pattern is observed in hospitals, but K. pneumoniae is also a pathogen causing 292 



  

 

 

community-acquired infections [30, 31]. However, based on this prevalence, this is a target 293 

for surveillance. The association between gastrointestinal colonizing K. pneumoniae with 294 

subsequent infections, particularly for pneumonia and UTI, has been demonstrated [32]. 295 

Besides, this bacteria is the second most common Enterobacterales in UTI in children [25, 296 

33]. 297 

 298 

According to the multidrug-resistant classification criteria described by Magiorakos et al. 299 

[17], microorganisms resistant to at least three antibiotic categories, 8/30 SCD children on 300 

AP were colonized by multidrug-resistant Enterobacterales. This finding is worrying due to 301 

the relationship of these microorganisms with community-acquired infections [34–36], which 302 

can cause severe infections in these children due to difficult-to-treat resistances. 303 

 304 

We found an association between ESBL-producing Enterobacterales and penicillin G 305 

benzathine use. We considered ESBL producer’s prevalence high, 4/6 (67%) cases in the 306 

penicillin G group. Given that this finding is based on a limited number of children that used 307 

this antibiotic (n=6), this result should be treated with caution. However, we suggest the 308 

attention on AP with this antibiotic in SCD children, and further research is warranted to 309 

confirm this association. 310 

 311 

In the molecular analysis of β-lactam resistant isolates, we found a high prevalence of 312 

children colonized by TEM-enzyme producers Enterobacterales, especially E. coli. This is 313 

consistent with the literature since this enzyme is the most commonly encountered β-314 

lactamase in Gram-negative bacteria. Besides, TEM-1 is responsible for approximately 90% 315 

of ampicillin resistance in E. coli [37]. Although β-lactamase inhibitors typically inhibit the 316 



  

 

 

TEM-enzyme, several studies demonstrated variants of this enzyme as responsible for 317 

resistance to β-lactam/β-lactamase inhibitor combinations, including ampicillin/sulbactam 318 

and piperacillin/tazobactam, which justifies our results [38, 39]. 319 

 320 

Regarding the CTX-M-group enzymes on ESBL-producers, CTX-M-1 was the most 321 

prevalent in isolates and found in three SCD children (3/30, 10%), followed by CTX-M-9 322 

(2/30, 7%) and CTX-M-2 (1/30, 3%). In a study that determined CTX-M-producer’s 323 

prevalence of faecal isolates in asymptomatic people in Thailand, the CTX-M-9 group (61%) 324 

was the most prevalent, followed by CTX-M-1 (39%) [40]. In another study in Brazil with 325 

bloodstream infection isolates, CTX-M-1 was the most predominant [41]. In South American 326 

countries, CTX-M-2 is the most detected [42], with CTX-M-2 most prevalent in Brazil 327 

followed by CTX-M-1, particularly in K. pneumoniae and E. coli [43]. SCD children 328 

colonized by CTX-M-type ESBL-producing Enterobacterales raise the chance of severe 329 

infection by these bacteria, given the ability of this enzyme to hydrolyse broad-spectrum 330 

cephalosporins [44]. 331 

 332 

Although SCD children in the present study colonized by resistant Enterobacterales were in a 333 

stable state, the chance of translocating resistant E. coli strains to different extraintestinal 334 

sites is raised, mainly due to it being the most frequent microorganism in translocations, 335 

especially in postoperative processes. This event also occurs in spontaneous conditions [45, 336 

46]. Also, faecal contamination in wounds, surfaces, medical devices, and hands contributes 337 

to the subsequent spread of these microorganisms [47], and these pathogens are released into 338 

the environment through faecal contamination in soils and water, mainly in regions of poor or 339 



  

 

 

non-existent basic sanitation. Therefore, these SCD children are a source of community 340 

transmission of resistant enterobacteria. 341 

 342 

The limitations of this study were its cross-sectional design, which made it impossible to 343 

gauge causality among the studied phenomena, and the sample size, which limited the 344 

analysis’s statistical power. We had difficulty finding children without SCD and AP living in 345 

the same house as AP-SCD children. Also, in the group without AP, five children did not 346 

have their genotype information in their medical records. As the association of penicillin G 347 

benzathine use with the presence of ESBL-producing Enterobacterales was based on a 348 

limited number of SCD children cases who used this antibiotic, this association needs to be 349 

well evaluated for a better understanding. 350 

 351 

In summary, we observed that SCD children on AP from our casuistic have a 2.69 times 352 

higher chance to have resistant E. coli gut colonization. We also found that penicillin G 353 

benzathine use appeared to be associated with ESBL-producing Enterobacterales, and the 354 

CTX-M-1 group enzyme was the most prevalent among the ESBL-producing (3/6, 50%), 355 

followed by CTX-M-9 (2/6, 33%), and CTX-M-2 (1/6, 17%) groups. Further studies on AP 356 

in SCD children are urgently needed to prevent the spread and risk of resistant-357 

Enterobacterales infections. Based on these results, we suggest that alternative therapies 358 

regarding prophylactic antibiotic use in SCD children should be evaluated. Future studies 359 

should consider the use of prophylactic vaccines in SCD children as an exclusive therapy 360 

against pneumococcal infections. 361 

 362 
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