
Design-Sensitive Metric Thresholds 
based on Design Roles

Marcos Barbosa Dósea

State-of-the-art techniques and Automated Static Analysis Tools (ASATs) for 

identifying code smells rely on metric-based assessment. However, most of these 

techniques have low accuracy. One possible reason is that source code elements, 

such as methods implemented according to different design decisions, are assessed 

through the same generic threshold for each metric. Other possible reason is that 

these metric thresholds are usually derived from classes driven by different design 

decisions. Using generic metric thresholds that do not consider the design context of 

each evaluated class can generate many false positives and false negatives for 

software developers. Our goal is to propose design-sensitive techniques to derive 

contextual metric thresholds. Our primary hypothesis is that using the design role 

played by each system class to define this context may point out more relevant code 

smells to software developers. We conducted some empirical studies to define the 

proposed techniques. Firstly, we performed a large-scale survey that showed that 

practitioners recognize difficulties in fitting ASATs into the software development 

process. They also claim that there is no routine for application. One possible reason 

practitioners recognize that most of these tools use a single metric threshold, which 

might not be adequate to evaluate all system classes. Secondly, we conducted an 

empirical study to investigate whether fine-grained design decisions also influence 

the distribution of software metrics and, therefore, should be considered to derive 

metric thresholds. Our findings show that the distribution of metrics is sensitive to 

the following design decisions: (i) design role of the class (ii) used libraries, (iii) coding 

style, (iv) exception handling, and (v) logging and debugging code mechanisms. We 

used these findings to propose two new techniques to derive design-sensitive metric 

thresholds using the class design role as context. Then, we carried out two large-

scale empirical studies to evaluate them. The first study showed that our proposed 

techniques improved precision according to developers' perceptions. Since it is 

impossible and tiring to perform a complete source code quality assessment with 

developers, we conducted a second study mining the evolution of software projects 

from popular architectural domains. We found that our techniques improved recall 

to point out methods effectively refactored during software evolution.
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RESUMO

O estado da arte das técnicas para identificação de anomalias de código são baseadas
na análise de métricas do código. Entretanto, muitas dessas técnicas possuem baixa
acurácia. Uma posśıvel razão é porque os elementos do código-fonte, tais como métodos,
implementados com diferentes decisões de design, são avaliados usando os mesmos valores
limiares para cada métrica. Outra posśıvel razão é que estes valores limiares são geral-
mente derivados de classes que foram desenvolvidas usando decisões de design distintas.
Usar valores limiares genéricos e que não consideram o contexto de design de cada classe
avaliada pode gerar muitos falsos positivos e falsos negativos para os desenvolvedores de
software. Nosso objetivo é considerar o papel de design desempenhado por cada classe
do sistema como contexto para derivar valores limiares e detectar anomalias de código.
Nossa principal hipótese é que valores limiares que consideram o papel de design da
classe como contexto, podem apontar anomalias de código mais relevantes para os desen-
volvedores de software. Nós conduzimos alguns estudos experimentais para definição de
duas técnicas que consideram o papel de design como contexto. Primeiro, nós executa-
mos uma survey de larga escala que mostrou que profissionais possuem dificuldades para
ajustar ferramentas de análise estática de código nos seus processos de desenvolvimento
de software. Uma posśıvel razão reconhecida pelos profissionais é que muitas dessas fer-
ramentas usam um valor limiar genérico para cada métrica que pode não ser adequado
para avaliar todas as classes do sistema. Segundo, nós definimos uma heuŕıstica para
identificar o principal papel de design de cada classe e conduzimos um estudo emṕırico
para investigar a influência de algumas decisões de design na distribuição dos valores das
métricas de software. Nossas descobertas mostram que as decisões de design que mais
influenciaram na distribuição dos valores das métricas foram: (i) papel de design de classe
(ii) bibliotecas utilizadas, (iii) estilo de codificação, (iv) estratégia de codificação usada
para tratamento de exceção, e (v) estratégia para realizar log e depuração do código.
Portanto, essa decisões de design poderiam ser consideradas como contexto para derivar
valores limiares. Nós usamos essas descobertas para propor duas novas técnicas para
derivar valores limiares senśıveis ao design do sistema usando os papéis de design da
classe como contexto. Em seguida, realizamos dois estudos experimentais para avaliar as
técnicas propostas. O primeiro estudo mostrou que as técnicas melhoraram a precisão de
acordo com as percepções dos desenvolvedores. Como é imposśıvel e cansativo fazer uma
avaliação completa da qualidade do código-fonte com os desenvolvedores, conduzimos um
segundo estudo explorando a evolução dos projetos de software de domı́nios arquiteturais
populares. Descobrimos que nossas técnicas melhoraram o recall para apontar métodos
efetivamente refatorados durante a evolução do software.

Palavras-chave: Software Design, Limiares de Métricas, Decisões de Design, Papel de
Design, Papel de Design da Classe, Análise de Código, Ferramentas de Análise Estática,
Qualidade de Software, Estudos Emṕıricos
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ABSTRACT

State-of-the-art techniques and Automated Static Analysis Tools (ASATs) for identifying
code smells rely on metric-based assessment. However, most of these techniques have low
accuracy. One possible reason is that source code elements, such as methods implemented
according to different design decisions, are assessed through the same generic threshold for
each metric. Other possible reason is that these metric thresholds are usually derived from
classes driven by different design decisions. Using generic metric thresholds that do not
consider the design context of each evaluated class can generate many false positives and
false negatives for software developers. Our goal is to propose design-sensitive techniques
to derive contextual metric thresholds. Our primary hypothesis is that using the design
role played by each system class to define this context may point out more relevant code
smells to software developers. We conducted some empirical studies to define the proposed
techniques. Firstly, we performed a large-scale survey that showed that practitioners
recognize difficulties in fitting ASATs into the software development process. They also
claim that there is no routine for application. One possible reason practitioners recognize
that most of these tools use a single metric threshold, which might not be adequate to
evaluate all system classes. Secondly, we conducted an empirical study to investigate
whether fine-grained design decisions also influence the distribution of software metrics
and, therefore, should be considered to derive metric thresholds. Our findings show that
the distribution of metrics is sensitive to the following design decisions: (i) design role
of the class (ii) used libraries, (iii) coding style, (iv) exception handling, and (v) logging
and debugging code mechanisms. We used these findings to propose two new techniques
to derive design-sensitive metric thresholds using the class design role as context. Then,
we carried out two large-scale empirical studies to evaluate them. The first study showed
that our proposed techniques improved precision according to developers’ perceptions.
Since it is impossible and tiring to perform a complete source code quality assessment
with developers, we conducted a second study mining the evolution of software projects
from popular architectural domains. We found that our techniques improved recall to
point out methods effectively refactored during software evolution.

Keywords: Software Design, Metric Thresholds, Design Decisions, Design Role, Class
design role, Code Analysis, Static Analysis Tools, Software Quality, Empirical Studies
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Chapter

1
INTRODUCTION

Automated static code analysis have become an important pillar of modern code re-
view (MCR) practices next to testing and manual code review (BELLER et al., 2016).
The main objectives are finding code anomalies (code smells), and performing code im-
provements in terms of readability, commenting, consistency, and dead code removal
(BACCHELLI; BIRD, 2013). Many open-source software projects and companies such
as Microsoft, Google, Facebook use automated static code analysis prior to merging new
code into the main project codebase (RIGBY; BIRD, 2013; BALACHANDRAN, 2013).

Automated static analysis tools (ASATs) (e.g. PMD1, Checkstyle2, SonarQube3 and
NDepend4) are among the most popular static code analysis tools in industry to scan pre-
defined problems and perform source code improvements in software systems (BESSEY
et al., 2010; AYEWAH; PUGH, 2010; ZHENG et al., 2006). State-of-the-art techniques
implemented by current ASATs rely on metric-based detection strategies (MARINESCU,
2004; ARCOVERDE et al., 2012; BALACHANDRAN, 2013; OIZUMI et al., 2016). A de-
tection strategy uses logical operators to combine metrics and theirs respective thresholds
to identify source code elements (usually classes or methods) with structural character-
istics that correspond to a certain code smell (MARINESCU, 2004).

However, the accuracy of a detection strategy is heavily influenced by the calibration of
the used metric thresholds (SHARMA; SPINELLIS, 2018). Using a single metric thresh-
old may be too restrictive to cope with a wide range of specific contexts (SOBRINHO;
LUCIA; MAIA, 2018). The overload of alarms caused by inaccurate metric thresholds
and the way in which they are presented to software developers have been pointed out
as the main barriers to the consistent and widespread use of ASATs (AYEWAH; PUGH,
2010; JOHNSON et al., 2013). In addition, some studies have reported that many of these
alarms are false-positives since manual inspection reveals they have no effect on software

1http://pmd.sourceforge.net
2http://checkstyle.sourceforge.net/
3https://www.sonarqube.org/
4http://www.ndepend.com/
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quality or maintenance effort (OLBRICH; CRUZES; SJØBERG, 2010; KHOMH et al.,
2011; SJOBERG et al., 2013; YAMASHITA, 2013; PALOMBA et al., 2014; HOZANO
et al., 2018).

1.1 PROBLEM STATEMENT

Most of the metric-based detection strategies used by current ASATs to detect code
smells adopt generic metric thresholds that disregard the design context of the evaluated
class. We have a generic threshold for a given metric when we use the same single value
for classifying into categories (such as low or high) every class (or every method) of one
or more systems regardless of the design decisions considered by the development team.
For instance, Lanza e Marinescu (2006) classify as long any method that has more than
20 lines of code (LOC) in Java systems. In this case, they used 20 as a generic thresh-
old for LOC. Different approaches for calculating generic thresholds have been proposed
(LANZA; MARINESCU, 2006; ALVES; YPMA; VISSER, 2010; FERREIRA et al., 2012;
OLIVEIRA; VALENTE; LIMA, 2014; FONTANA et al., 2015; VALE; FIGUEIREDO,
2015). These approaches calculate thresholds based on the distribution of metrics ob-
tained from measurement data over sets of software systems as benchmarks.

However, some studies suggest the primary reason for the occurrence of false-positive
and false-negatives alarms on smell detection methods is the lack of context for metric
thresholds (ZHANG et al., 2013; ANICHE et al., 2016; SHARMA; SPINELLIS, 2018;
SOBRINHO; LUCIA; MAIA, 2018). Using generic thresholds to source code evaluation
may not make sense for the entire set of classes in a system (LAVAZZA; MORASCA,
2016). In fact, Zhang et al. (2013), for instance, show that application domain and
programming language are some design decisions to be considered as context and that
have a strong influence on the derived metric thresholds. Aniche et al. (2016) show that
the architectural role played by classes is another design decision to take into account
to derive metric thresholds. For instance, in an MVC-based system, a generic threshold
value might be too low for classes playing the View architectural role or too high for
classes playing the Controller architectural role. This might, for instance, lead to false
code smell alarms or hide potential code smells. Both situations may hinder maintenance
activities and developers’ perception of the quality of the source code (SJOBERG et al.,
2013; YAMASHITA, 2013; HOZANO et al., 2015; PALOMBA et al., 2014; HOZANO et
al., 2018).

We hypothesize, however, that the design decisions used so far as context to derive
metric thresholds are too coarse-grained to explain the differences in the metrics dis-
tributions. For instance, several classes are not bound to any predefined architectural
framework (e.g. Spring MVC, Android). Many systems are developed using proprietary
reference architectures, not bounded to available architectural frameworks or architec-
tural patterns. For instance, in MVC-based systems, there are many classes that do
not assume the roles defined by this architectural pattern (e.g. Controller or View).
Therefore, guiding the source code analysis based only on architectural roles to derive
contextual metric thresholds might not cover a reasonable number of classes. Moreover,
classes implemented with the same programming language (e.g. Java) and playing the
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same architectural role (e.g. Repository) in different systems may use distinct persistence
libraries (e.g. JDBC or JPA for the Java platform). Thus, the source code of classes play-
ing the same architectural role and using the same programming language in different
systems may require distinct metric thresholds to source code evaluation.

To illustrate that the design decisions studied so far (e.g. architectural roles and
programming language) may not be enough to define the class context used to derive
contextual metric thresholds, we selected two real-world MVC-based web applications:
LibrePlan5 and WebBudget6. LibrePlan is a project management, monitoring, and con-
trolling tool, whereas WebBudget is a personal financial management tool. We down-
loaded the source code of both system from Github: WebBudget on October 20th 2016
and LibrePlan on November 9th 2016.

Firstly, we identified that only considering architectural roles bound to reference ar-
chitectures, as Aniche et al. (ANICHE et al., 2016) do, may hinder to associate a context
to many system classes. For instance, we identified that 83.3% of LibrePlan classes and
79,8% of WebBudget classes do not play any of the MVC architectural roles (e.g. Model,
View, or Controller). They are classes designed to solve specific problems of each sys-
tem specific context. These classes can play important design roles in the system. For
instance, Libreplan has a set of 40 classes with the design role of providing additional
features to HTML components. All these classes extend the HtmlMacroComponent ab-
stract class. This group of classes may have specific design characteristics and, as a
consequence, their metrics distributions may be different from the metrics distributions
of other classes of the system. Therefore, it may be important to consider this group of
classes as context to group classes to analyze metrics distributions and derive contextual
metric thresholds.

Afterwards, we computed the Lines of Code per Method (LOC/Method) metric for
methods of classes playing the Repository architectural role in both systems. We manually
identified those classes. Both systems use the Repository design pattern (ALUR; CRUPI;
MALKS, 2003) and the Hibernate framework (BAUER; KING; GREGORY, 2015) for
implementing persistence. We assigned the Repository architectural role to all system
classes that: (i) have the @Repository annotation or (ii) extend classes or implement
interfaces with the “Repository”, “DAO” or “Store” tokens in their names. This approach
extends the technique proposed by Aniche et al. (2016) because we identified distinct ways
to assign the same architectural role in these systems, not covered by Aniche’s approach.

Then we applied the Mann-Whitney U statistical test with 5% confident level and Bon-
ferroni correction (MANN; WHITNEY, 1947) to compare the distribution of LOC/Method
metric from WebBudget and LibrePlan samples. The test result showed differences be-
tween the two samples. We then conducted a manual analysis on both samples and
noticed that methods from WebBudget use at least 50% more lines of code than similar
methods in LibrePlan system.

5https://github.com/LibrePlan/libreplan
6https://github.com/arthurgregorio/web-budget
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Listing 1.1: Query Example in Libreplan system.
1 public List <MaterialAssignment > getByMaterial(Material material) {

2 return (List <MaterialAssignment >) getSession ().

createCriteria(MaterialAssignment.class). add(Restrictions.

eq("materialInfo.material", material)).list();

3 }

Listing 1.2: Query Example in WebBudget system.
1 public List <Movement > listByCardInvoice(CardInvoice cardInvoice) {

2 final Criteria criteria = this.getSession ().

createCriteria(this.getPersistentClass ());

3 criteria.createAlias("cardInvoice", "ci");

4 criteria.add(Restrictions.eq("ci.id", cardInvoice.getId ()));

5 criteria.addOrder(Order.desc("inclusion"));

6 return criteria.list();

7 }

Why does this happen if they are assigned to the same architectural role (Repository)
and framework (Hibernate)? We manually analyzed their source code and found another
design decision responsible for that difference: coding style. To illustrate that, on the
one hand, we show on Listing 1.1 a method extracted from LibrePlan with a single-line
statement to query a database and return a list of objects. On the other hand, Listing
1.2, extracted from WebBudget, shows a similar query, but using five lines of code. One
may argue about the quality of both source code fragments, but both coding styles are
quite common in applications that use the Hibernate framework and thus represent a
design decision usually obeyed by other classes on the same system (YANG, 2010). In
summary, this is an example that different choices related to a single design decision
(coding style) may contribute to different metrics distributions of the same architectural
role across different systems. In this way, the coding style can be another design decision
to be taken into account to define the class context used to derive contextual metric
thresholds.

1.2 MAIN GOAL AND RESEARCH QUESTIONS

This research proposes design-sensitive metric thresholds using the class design role as
context to derive metric thresholds. The design role is a set of related responsibilities
assumed by an object to fit into a community, such as a framework or an enterprise
architecture. Modern object-oriented systems assigned a design role to one or more classes
through inheritance, interface implementation, or class annotations. For instance, in the
Libreplan system, we discussed that 40 classes were assigned with the same design role
because they extend HtmlMacroComponent class. Our main hypothesis is that metric
thresholds, defined by taking class design role as context, may detect more relevant code
smells. Therefore, our overarching research question is:

Do design-sensitive metric thresholds based on class design roles improve
code smell detection strategies’ accuracy?

Our general research method uses a three-step approach proposed by Wohlin et al.
(WOHLIN et al., 2012) to improve a process or practice: (1) understand the current
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process to identify improvement opportunities; (2) evaluate the current process and new
ideas; (3) improve the process by incorporating suggestions. We defined a set of more spe-
cific research questions that guided the proposed empirical studies to apply this method.
In this section, we define our three general research questions and the reasoning and
assumptions that motivate them.

RQ1: How do practitioners perceive automated static analysis for code smell identi-
fication?

We designed a large-scale survey to understand software developers’ current process to
apply automated static analysis tools (ASTs). Our initial hypothesis is that, in general,
practitioners have difficulties using AST in their software development processes due to
the high number of false alarms. Some studies capture the perception of developers who
already use ASTs regularly. However, to capture other issues, challenges, and opportu-
nities of improvements, our goal was to conduct a large-scale study without limiting the
target audience to developers who regularly use ASTs. Also, we aim to understand the
practitioners’ perception about using metric thresholds in ASTs that take into account
the design role played by the evaluated class. Using design-sensitive metric thresholds is
a possible way to avoid the high number of false alarms generated by current tools.

RQ2: Are there statistically significant differences between measures obtained from
classes developed with different design decisions?

To evaluate the current process and new ideas, we conducted an empirical study to
investigate how some fine-grained design decisions, not considered in previous studies,
impact software metrics distributions. Source code analysis techniques usually rely on
metric-based assessment. However, most of these techniques have low accuracy. We hy-
pothesize that this occurs because metric thresholds are derived from classes driven by
different design decisions. Previous studies have already shown that classes implemented
according to some coarse-grained design decisions, such as programming languages, im-
pact the distribution of metric values. Therefore, these design decisions must be taken
into account when using benchmarks for metric-based source code analysis. However,
in this research question, our goal is to investigate whether other design decisions, in
particular, fine-grained design decisions such as the class’ design role, also impact the
distribution of software metrics and, therefore, should take into account as context to
derive metric thresholds used to evaluate system classes.

RQ3 Are design-sensitive metric thresholds more accurate to detect code smells prone
to be refactored?

Finally, to improve the current process by incorporating suggestions, we propose two
novel techniques to derive design-sensitive metric thresholds. We hypothesize that design-
sensitive metric thresholds are more accurate than state-of-the-art metric thresholds used
by most existing detection strategies to detect code smells. Additionally, we propose an
automated and flexible heuristic to identify the class design role, not binding to spe-
cific reference architectures. Our techniques use this heuristic to derive design-sensitive
metric thresholds from benchmarks of systems developed with high similarity on design
decisions. To answer this research question, we performed empirical studies comparing
the thresholds derived from our techniques and from state-of-art techniques based on: (1)
practitioners’ perception about if they would refactor the code anomalies detected; and
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(2) the accuracy to point out methods that suffered refactoring along software evolution.
Each general research question derives more specific research questions detailed in the

following chapters.

1.3 CONTRIBUTIONS

The contributions of this thesis are:

• A survey on code analysis practices with Brazilian practitioners engaged in the
software industry with not-so-well established practices.

• A heuristic to automatically identify the design role played by each system class.
We use this heuristic in our techniques for deriving metric thresholds based on
design roles. However, any other technique can take advantage of it to use design
roles as context information.

• A novel approach to measure the level of similarity of design decisions between two
systems. The approach helps to identify systems with similar design decisions to
compose benchmarks to be used to derive design-sensitive metric thresholds.

• An empirical study to assess whether fine-grained design decisions affect the distri-
bution of four method-level metrics. The study involves fifteen real-world systems
from three distinct architectural domains.

• Two novel techniques to derive design-sensitive metric thresholds that takes into
account class design roles. Both techniques use design roles to compose the bench-
mark from systems with high similarity to each other. In addition, one of the
techniques derives distinct metric thresholds for each class design role identified in
the system to be evaluated.

• An empirical study evaluating practitioners’ perception about code smells pointed
out by metric thresholds derived from five distinct benchmark-based techniques.
We use Web-based real-world software projects. The practitioners also are familiar
with design decisions impacting the evaluated source code.

• An empirical study evaluating the accuracy of our techniques to identify refac-
tored methods during the software evolution. We compare these results with those
obtained using metric thresholds derived from other state-of-art benchmark-based
techniques.

• All material from the empirical studies was made publicly available on the web7 so
that the studies can be replicated or extended in further investigations.

• An open-source tool, namely DesignRoleMiner8, that extends MetricMiner tool
(SOKOL et al., 2013), adding method-level metrics and the proposed design role
identification heuristic.

7https://github.com/marcosdosea/thesis
8https://github.com/marcosdosea/DesignRoleMiner
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• An open-source tool, namely SystemSimilarity9, that allows calculating the level
of similarity between two systems based on design decisions extracted from these
systems.

• An open-source tool, namely ThresholdTool10, that implements our two proposed
techniques and others three state-of-the-art techniques to derive metric thresholds.

• An open-source Eclipse plugin, namely ContextSmell11 that extends ContextLong-
Method tool (SANTOS; DÓSEA; SANT’ANNA, 2016). The tool identifies the de-
sign role played by each system class and detects code smells using metric thresholds
derived from distinct techniques. For each smelly method, the tool shows the tech-
niques that derived the metric threshold assigned to smelly detection. This data is
useful to carry out a comparison of techniques like the one performed in this thesis.
In addition, the Eclipse plugin generates just-in-time recommendations of identified
smelly methods during the source-code development.

• An open-source tool, namely SmellRefactored12, that uses the RefactoringMiner
tool (TSANTALIS et al., 2018) to detect smelly methods refactored during the
software evolution.

1.4 PUBLICATIONS

We published the papers listed below in chronological order.

1. DOSEA, M.; SANT’ANNA, C.; SANTOS, C.. Towards an Approach to Prevent
Long Methods Based on Architecture-Sensitive Recommendations. In: IV Work-
shop on Software Visualization, Maintenance, and Evolution (VEM 2016), 2016,
Maringá. Anais do Congresso Brasileiro de Software: Teoria e Prática, 2016. p.
73-80.

2. SANTOS, C.; DOSEA, M.; SANT’ANNA, C.. ContextLongMethod: Uma Ferra-
menta Senśıvel à Arquitetura para Detecção de Métodos Longos. In: Sessão de
Ferramentas do Congresso Brasileiro de Software: Teoria e Prática (CBSoft), 2016,
Maringá. Anais do Congresso Brasileiro de Software: Teoria e Prática, 2016. p.
25-32.

3. DOSEA, M.; SANT’ANNA, C. Uma Abordagem para Prevenir a Erosão do Design
baseada em Recomendações Senśıveis à Arquitetura. In: VI Workshop de Teses
and Dissertações do CBSoft (WTDSoft 2016), 2016, Maringá. Anais do Congresso
Brasileiro de Software: Teoria e Prática, 2016. p. 19-27.

4. DOSEA, M.; SANT’ANNA, C.; DA SILVA, B. C. How do design decisions affect
the distribution of software metrics?. In: the 26th Conference, 2018, Gothenburg.

9https://github.com/marcosdosea/SystemSimilarity
10https://github.com/marcosdosea/ThresholdTool
11https://github.com/marcosdosea/ContextSmellEclipse
12https://github.com/marcosdosea/SmellRafactored
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Proceedings of the 26th Conference on Program Comprehension - ICPC ’18. New
York: ACM Press, 2018. p. 74-85.

5. DOSEA, M.; SANT’ANNA, C. Um Método para Detectar Similaridade entre Sis-
temas baseado em Decisões de Design: um Estudo Preliminar. In: VI Workshop
on Software Visualization, Evolution and Maintenance, 2018, São Carlos. Anais do
Congresso Brasileiro de Software: Teoria e Prática, 2018.

6. LIMA, R.; DOSEA, M.; SANT’ANNA, C. Comparando Técnicas de Extração de
Valores Limiares para Métricas: Um Estudo Preliminar com Desenvolvedores Web.
In: VI Workshop on Software Visualization, Evolution and Maintenance, 2018, São
Carlos. Anais do Congresso Brasileiro de Software: Teoria e Prática, 2018.

1.5 DOCUMENT OUTLINE

We divided this document as follows:

• Chapter 2 provides an overview of the background of this research. In particular,
we present the notion of code smells, design decisions, and techniques to derive
metric thresholds and factors that can impact metric thresholds.

• Chapter 3 aims to answer RQ1 showing the results of a survey conducted with
Brazilian software practitioners that investigated issues and challenges they face to
apply automated code analysis practices.

• Chapter 4 propose an automatic heuristic to identify the design role played by each
class in a system. We use the class design role as context to derive design-sensitive
metric thresholds. Additionally, we propose an approach using the heuristic to
identify system similar to each other in terms of design decisions.

• Chapter 5 aims to answer RQ2 showing the results of an empirical study to in-
vestigate whether fine-grained design decisions also influence the distribution of
software metrics and, therefore, should be taken into account to describe the con-
text of system classes. We evaluate the distributions of four metrics applied over
fifteen real-world systems based on three different domains.

• Chapter 6 aims to propose two novel design-sensitive techniques based on class
design role as context to derive metric thresholds.

• Chapter 7 discussed an industrial multi-project study analyzing developers’ per-
ception of code smells detected in source code they maintain. We aim to answer
RQ3 by identifying which technique derived the most precise metric thresholds to
detect smelly methods according to developers’ perceptions.

• Chapter 8 aims to complement the RQ3 answer from another perspective. We
carry out a large-scale retrospective study over the commit history of 20 Web-based
and 26 Android-based software projects observing the impact of four method-level
code smells in effective refactorings performed during the software evolution.
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• Chapter 9 summarizes our work by describing what we have done in the context of
this research. In addition, we point out perspectives on future research directions.





Chapter

2
BACKGROUND

Code smells are symptoms in the source code that may indicate the possibility of refac-
toring due to deeper maintainability problems (FOWLER; BECK, 1999). They are par-
ticularly harmful when contributing to architectural degradation (BASS; CLEMENTS;
KAZMAN, 2012). Code smells are considered a poor solution that violates best practices
to source code development (KHOMH et al., 2011) and impact the quality of the system
making it more difficult to evolve and maintain (YAMASHITA, 2013; KHOMH et al.,
2012; SOH et al., 2016).

Software developers have reported that finding code smells is one of the main motiva-
tions to source code review (BACCHELLI; BIRD, 2013; BOSU et al., 2017). Therefore,
many research efforts have been made to automate the code smell detection process
aiming to reduce the number of errors and the required time to perform code reviews.
However, software developers have pointed out many obstacles to use tools to automat-
ically detect code smells due mainly to the high number of false alarms (JOHNSON et
al., 2013; CHRISTAKIS; BIRD, 2016).

In this chapter, we deepen this discussion used throughout this research. Thereby, we
discuss in Section 2.1 types of code smells and detailed the four code smells selected to
carry out our empirical studies. Section 2.2 shows strategies to detect code smells. The
techniques to identify metric thresholds are discussed in Section 2.3, and we also detailed
the ones used to conduct our empirical studies. Finally, Section 2.4 discusses some design
decisions that could impact metric thresholds derived from the metric analysis.

2.1 TYPES OF CODE SMELLS

Smells are discussed in different domains. For example, Hermans et al. (HERMANS;
PINZGER; DEURSEN, 2015) investigate the applicability of code smells to spreadsheet
formulas as a means to assess and improve spreadsheet quality. In other study, Hermans
et al. (HERMANS; AIVALOGLOU, 2016) examine code smells in the context of block-
based Scratch programs. They evaluated Scratch smells in a controlled experiment with
61 high-school kids. In software system domain, we identified code smells focusing in

11
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architecture, design, implementation, test, energy, and performance. Sobrinho et al.
(SOBRINHO; LUCIA; MAIA, 2018) indicate fragmentation of code smell definitions due
to the lack of systematic or/and formal taxonomies for code smells. Sharma and Spinellis
(SHARMA; SPINELLIS, 2018) have compiled an extensive catalog including many types
of smells. This catalog can be also accessed online1.

In this research, we focused in four code smells related to method-level implementa-
tion: long methods, complex method, long parameter list, high efferent coupling method.
We selected these method-level smells because we can manually find them without tool
support. This criterion is essential for conducting the manual analysis planned for our
proposed empirical studies. Also, these smells are available in many tools (PAIVA et al.,
2017) and have been successfully used for fault-proneness prediction (FONTANA et al.,
2013; GIL; LALOUCHE, 2017; BOUCHER; BADRI, 2018), for instance. They are used
by quality models for measuring and rating the technical quality of a software system in
terms of the quality characteristics of ISO/IEC 9126 (HEITLAGER; KUIPERS; VISSER,
2007). Finally, smells related to complex or long source code are generally perceived as
an important threat by developers (PALOMBA et al., 2014). We detailed these smells
as follow:

• Long Methods (FOWLER; BECK, 1999) occurs when a method is too long to
understand. Fontana et al. (FONTANA et al., 2013) show long methods are among
the most common code smells in different application domains. According Fowler et
al. (FOWLER; BECK, 1999), the longer a procedure (method) is, the more difficult
it is to understand. We use the Lines of Code (LOC) (LANZA; MARINESCU, 2006)
metric to identify this smell. It counts the number of executable statements of each
method, excluding comments and blank lines.

• Complex Method (SHARMA; FRAGKOULIS; SPINELLIS, 2017) occurs when
a method has high cyclomatic complexity. Methods of high cyclomatic complexity
may be more difficult to maintain and understand. We use the McCabe’s Cyclo-
matic Complexity (CC) (MCCABE, 1976) to identify this smell. It counts number
of branching points of each method. This metric is widely recognized and used as in-
dicator of the source code maintainability (LANZA; MARINESCU, 2006; ZHANG
et al., 2013; RADJENOVIć et al., 2013).

• High Efferent Coupling Method occurs when a method has high efferent cou-
pling. We use the efferent coupling (EC) metric (MARTIN, 1995) to indicate this
code smell. This metric counts the number of classes from which each method calls
methods or accesses attributes. A large number of calls to external libraries can
also hinder the understanding and maintenance.

• Long Parameter List (FOWLER; BECK, 1999) occurs when a method accepts a
long list of parameters. Long parameter lists are hard to understand, because they
become inconsistent and difficult to use, and because we are forever changing them
as you need more data (FOWLER; BECK, 1999). To identify this smell, we use

1http://www.tusharma.in/smells/index.html
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the metric Number of Method Parameters (NMP) (FOWLER; BECK, 1999) which
counts the number of parameters of each method.

Other more complex strategies could be used to identify these code smells. However,
we selected strategies based on a single metric because our goal is to individually assess
the impact of the metric threshold proposed by different techniques. Strategies involving
other variables, such as other metrics or other source code information, could hamper the
individual analysis of metric threshold proposed by the techniques.

2.2 STRATEGIES TO DETECT CODE SMELLS

Many strategies to automatically detect code smells have been proposed. Sharma and
Spinellis (SHARMA; SPINELLIS, 2018) classify these strategies in five categories: history-
based, metric-based, rules/heuristic-based, optimization-based and, machine learning-
based detection strategies.

History-based strategies detect smells using source code evolution information.
Palomba et al. (PALOMBA et al., 2013), for example, propose an approach to detect
five different code smells by exploiting change history information mined from versioning
systems. However, history-based strategies are limited to a few code smells associated
with evolutionary changes.

Metric-based strategies are the most common strategy adopted by state-of-the-art
tools to detect code smells. They allow to identify design problems in an object-oriented
software system using metrics based on filtering and composition mechanisms (MARI-
NESCU, 2004). The filtering mechanism intend to select design fragments captured by
a metric. A common way to define filters is specifying explicit thresholds. The compo-
sition mechanism is based on a set of AND and OR operators that compose different
metrics together to form a composite rule. Figure 2.1, for example, shows a God Class
detection strategy composed by three filtering mechanisms and one composition operator
(AND). God Class is defined as a class that knows or does too much in a software system
(FOWLER; BECK, 1999). Each filtering mechanism compare a metric to a threshold
value. The established thresholds for each metric are applied to all system classes. Thus,
the accuracy of metric-based strategies are thresholds dependent.

Rules/heuristic-based strategies detect smells when the defined rules or heuristics
are satisfied. They are used to find smells that cannot be detected by metrics alone. Usu-
ally, these strategies take source code model and sometimes additional software metrics
as inputs. For example, Moha et al.(MOHA et al., 2010) propose a strategy for software
engineers to specify smells at a high level of abstraction using a consistent vocabulary and
domain-specific language for automatically generating detection algorithms. Rules and
heuristics are usually combined with metric-based strategies to reveal a high proportion
of known smells. The accuracy of these strategies also depends on metric thresholds.

Optimization-based strategies apply optimization algorithms, such as genetic al-
gorithms, to detect code smells. Ghannem et al. (GHANNEM; BOUSSAIDI; KESSEN-
TINI, 2016), for example, discuss it is difficult to find the best threshold values because
the rules do not take into consideration the programming context. As an alternative, they
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Figure 2.1: Detection Strategy of God Class
(LANZA; MARINESCU, 2006)

propose to identify design defects using a genetic algorithm based on the similarity/dis-
tance between the system under study and a set of defect examples without the need to
define a heuristic-based strategy. However, many these strategies also depends heavily
on metric data and corresponding metric thresholds (SHARMA; SPINELLIS, 2018).

Machine learning-based strategies detect smells using mathematical probabilistic
models that represent the smell detection problem. Source code examples are used to
train a proposed probabilistic model to detect code smells. For example, Khomh et al.
(KHOMH et al., 2009) propose an approach to convert existing state-of-the-art detection
rules into a probabilistic model. They use this approach to generate a model to detect
occurrences of the Blob code smells. Mansoor et al. (MANSOOR et al., 2017) use
multi-objective genetic programming (MOGP) to find the best combination of metrics
that maximizes the detection of code-smell examples and minimizes the detection of well-
designed code examples. However, these strategies depends heavily on training data and
the lack of such training datasets can be a challenge to apply them (KHOMH et al.,
2009). In addition, it is unknown whether machine learning-based strategies can scale to
the large number of known smells (SHARMA; SPINELLIS, 2018). Studies conducted by
Pecorelli et al. (PECORELLI et al., 2019, 2020) compare heuristic-based and machine-
learning-based techniques for code smell detection. They emphasize the need of further
research to improve the effectiveness of both machine learning and heuristic approaches.
However, heuristic-based approach generally achieves better performance and precision.

The selection of proper thresholds is one of the hardest issues faced by various detec-
tion strategies relied on metrics (MARINESCU, 2004). The metric threshold dependence
can be a challenge in rules/heuristic-based, optimization-based and metric-based detec-
tion strategies. On one hand, a low metric threshold could lead to many false code smell
alarms, on the other hand, a high metric threshold could hide potential code smells.
Both situations may hinder maintenance activities and developers’ perception about the
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quality of the source code (SJOBERG et al., 2013; YAMASHITA, 2013; HOZANO et al.,
2015; PALOMBA et al., 2014; HOZANO et al., 2018). In addition, detection strategies to
identify code smells that relies on metric thresholds are used by most of the state-of-the-
art tools and, therefore, they are easier to implement in real-world software development
process. In Section 2.3, we discuss some techniques to identify metric thresholds and we
detailed the ones used to conduct our empirical studies to compare with the proposed
design-sensitive technique to identify contextual metric thresholds.

2.3 TECHNIQUES TO DERIVE METRICS THRESHOLDS

Initial works propose to derive metric thresholds from programming experience (MC-
CABE, 1976; NEJMEH, 1988; COLEMAN; LOWTHER; OMAN, 1995). For instance,
McCabe (MCCABE, 1976) suggested the value 10 as a threshold for the McCabe Cyclo-
matic Complexity metric derived from his experience. This metric counts the number of
linearly independent paths through a program’s source code. Coleman et al. (COLE-
MAN; LOWTHER; OMAN, 1995) propose metric thresholds for the maintainability in-
dex metric. All components above the 85 maintainability index are highly maintainable,
components between 85 and 65 are moderately maintainable, and components below 65
are difficult to maintain. These values indicate the quality cutoff established by Hewlett-
Packard developers experience. Metric thresholds derived from experience are difficult to
reproduce or generalize to other systems or contexts due to lack of scientific support.

Some studies propose to derive metric thresholds using error models (SHATNAWI
et al., 2009; BENLARBI et al., 2000). For example, Shatnawi et al. (SHATNAWI et
al., 2009) identify metric thresholds using receiver operating characteristic (ROC) curves.
The study used three releases of the Eclipse project and found threshold values for some
OO metrics that separate no-error classes from classes that had high-impact errors. The
technique propose different metric thresholds for each Eclipse release. Benlarbi et al.
(BENLARBI et al., 2000) test threshold effects in a subset of the Chidamber and Kemerer
(CK) suite of measures (CHIDAMBER; KEMERER, 1994). The results indicated that
there are no threshold effects for any of the measures studied. This means that there
is no value for the studied CK measures where the fault-proneness changes from being
steady to rapidly increasing. Thresholds derived using error models are only valid for
the specific error prediction model and for the evaluated metrics. Other models can give
different results. Although these thresholds cannot predict whether a class will definitely
have errors in the future, they can provide a more scientific method to assess class error
proneness.

Yoon et al. (YOON; KWON; BAE, 2007) propose to derive metric thresholds using
cluster techniques. They suggest an approach to outlier detection of software measure-
ment data using the k-means clustering method. However, the process to identify outliers
is manual and influenced by input parameters that can affect both performance and ac-
curacy of the results.

Finally, most studies propose to derive metric thresholds from metric analysis. Initial
works propose techniques relied on the use of the mean and standard deviation (ERNI;
LEWERENTZ, 1996; LANZA; MARINESCU, 2006). For example, Erni and Lewerentz
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(ERNI; LEWERENTZ, 1996) propose a multi-metrics approach for the design and im-
provement of a framework for industry. They propose to use mean (µ) and standard
deviation (σ) to produce Tmin = µ − σ and Tmax = µ + σ, the lower and the higher
thresholds, respectively. Lanza and Marinescu (LANZA; MARINESCU, 2006) proposed
some statistics-based thresholds extracted from a sample of 37 C++ system and 45 Java
systems. They proposed lower and higher thresholds calculated in a similar way as Erni
and Lewerentz technique (ERNI; LEWERENTZ, 1996). In addition, they propose a very
high threshold 50% higher than the threshold for a high value. However, several studies
show that most software metrics do not follow normal distributions (ALVES; YPMA;
VISSER, 2010; FERREIRA et al., 2012; OLIVEIRA; VALENTE; LIMA, 2014), limiting
the use of any statistical technique that relies on mean and standard derivation to de-
rive metric thresholds. These techniques can derive invalid or non-representative metric
thresholds.

To avoid the discussed problems in previous techniques, Alves et al. (ALVES; YPMA;
VISSER, 2010) propose three core principles to be followed by metric thresholds tech-
niques: (1) The technique should not be driven by expert opinion but by measurement
data from a representative set of systems (benchmark); (2) The technique should respect
the statistical properties of the metric, such as metric scale and distribution and should
be resilient against outliers in metric values and system size (robust); (3) The technique
should be repeatable, transparent and straightforward to carry out (pragmatic).

We have identified five techniques to derive thresholds that meet these principles
(ALVES; YPMA; VISSER, 2010; FERREIRA et al., 2012; OLIVEIRA; VALENTE;
LIMA, 2014; VALE; FIGUEIREDO, 2015; ANICHE et al., 2016). However, we disregard
the Ferreira et al. (FERREIRA et al., 2012) technique and Oliveira et al. (OLIVEIRA;
VALENTE; LIMA, 2014) to carry out our empirical studies.

Ferreira et al. (FERREIRA et al., 2012) propose three ranges of reference values for
the metrics based on the most common values found in practice: good, which refers to
the most common values of the metric; regular, which is an intermediate range of values
with low frequency, but not irrelevant; and bad, that refers to values with quite rare
occurrences. We disregard this technique because the authors do not explicitly describe
how these ranges are determined. These ranges are not automatically defined and based
on manual metric distribution analysis. This non-determinism to define the ranges which
may lead to misinterpretations. Also, the manual analysis of the distribution of values
may hinder to apply this technique to derive threshold values in real-world development
environments.

Oliveira et al. (OLIVEIRA; VALENTE; LIMA, 2014) instead of using the threshold
as a hard filter, they proposed a minimal percentage of classes that should be above this
limit. The relative thresholds are based on a statistical analysis of a benchmark of systems
and attempting to balance two forces. First, the derived relative thresholds should reflect
real design rules, widely followed by the systems in the considered corpus, based on
widely accepted quality principles (LANZA; MARINESCU, 2006). Second, the derived
relative thresholds should not be based on rather lenient upper limits. We disregard this
technique because to reduce this problem, others techniques are more flexible, proposing
many metric thresholds for each metric aiming to minimize the number of false positives
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Figure 2.2: Alves et al. technique steps
(ALVES; YPMA; VISSER, 2010)

and streamline the code review process when there is not much time for further review.
In addition, many metric-based detection strategies not only use the upper limit, but also
need medium and lower limits. The technique does not make it clear how these other
limits could be found. Thus, we detail in the next subsections the other three techniques
used in our empirical studies.

2.3.1 Alves et al. Technique

Alves et al. (ALVES; YPMA; VISSER, 2010) proposed a technique to derive metric
thresholds based on weighted functions. Using lines of code as weight, they select the
code metric values relative to the 70%, 80%, and 90% percentiles of the accumulated
weight, and uses these as thresholds. The values are extracted from the measurement
data of a benchmark of software systems. Figure 2.2 summarizes the six steps of the their
technique:
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• metrics extraction: metrics are extracted from a benchmark of software systems.
For each system System, and for each entity Entity belonging to System (e.g.
method), they record a metric value, Metric, and weight metric, Weight for that
system’s entity. As weight they consider the source lines of code (LOC) of the
entity.

• weight ratio calculation: for each entity, the technique compute the weight percent-
age within its system, i.e., it divide the entity weight by the sum of all weights of
the same system.

• entity aggregation: the technique aggregate the weights of all entities per metric
value, which is equivalent to computing a weighted histogram (the sum of all bins
must be 100%).

• system aggregation: the technique normalize the weights for the number of systems
and then aggregate the weight for all systems. Normalization ensures that the sum
of all bins remains 100%, and then the aggregation is just a sum of the weight ratio
per metric value.

• weight ratio aggregation: they order the metric values in ascending way and take
the maximal metric value that represents 1%, 2%, ..., 100% of the weight. This
is equivalent to computing a density function, in which the x-axis represents the
weight ratio (0-100%), and the y-axis the metric scale.

• thresholds derivation: thresholds are derived by choosing the percentage of the
overall code we want to represent.

The technique uses LOC as a measure of size and use it to have a better representation
of the part of the system to be characterized. Instead of assuming every unit (e.g. method)
of the same size, they take its size in the system measured in LOC. They emphasize
the variation of the metric allowing a more clear distinction between software systems.
Hence, the correlation between LOC and other metrics poses no problem. In fact, Gil
and Lalouche (GIL; LALOUCHE, 2017) discuss that many metrics are good predictors
of external features, such as correlation to bugs, due its correlation to the size of the code
artifact. Hence, the more a metric is correlated with size, the more able it is to predict
external features values, and vice-versa.

2.3.2 Vale and Figueiredo’ Technique

Vale and Figueiredo (VALE; FIGUEIREDO, 2015) propose a technique to derive thresh-
olds in the software product line (SPL) domain and discuss the use of distinct benchmark
datasets to extract thresholds. The technique was applied for God Class and Lazy Class
detection strategies. They used three benchmarks of SPLs composed by subsets of 33
SPLs splitted up according to their size in terms of Lines of Code (LOC). They observed
the thresholds are sensitive to benchmarks. The threshold values are higher in bench-
marks composed by larger systems. The authors advocate that deriving thresholds from
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Figure 2.3: Vale and Figueiredo Technique Steps
(VALE; FIGUEIREDO, 2015)

a benchmark is more accurate than deriving thresholds from a single system. However,
they did not address the issues of having applications of different domains within the
analyzed benchmark dataset.

In contrast to Alves’ technique the authors propose different labels to lower bound
thresholds. Also, they do not use LOC to calculate, for each entity, the weight ratio.
Figure 2.3 summarizes the five steps of the technique.

• Metrics extraction: metrics are extracted from a benchmark of software systems.
For each system, and for each entity belonging to the system (e.g., class or method),
they record a metric value.

• Weight ratio calculation: for each entity, they compute the weight percentage within
the total number of entities, i.e., they divide the entity weight by the total number
of entities, and then it is multiplied by one hundred. All entities have the same
weight and the sum of all entities must be 100%.

• Sort in ascending order : the technique order the metric values in ascending order
and take the maximal metric value that represents 1%, 2%, . . . , 100%, of the weight.
This is equivalent to computing a density function, in which the x-axis represents
the weight ratio (0-100%), and the y-axis the metric scale.

• Entity aggregation: the technique aggregates all entities per metric value, which is
equivalent to computing a weighted histogram (the sum of all bins must be 100%).
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• Thresholds derivation: thresholds are derived by choosing the percentage of the
overall metric values to be represented. They propose different thresholds derived
by choosing 3%, 15%, 90% and 95% of the overall metric value. These percentiles
characterize metrics value according to five categories: very low values (between
0-3%), low values (3-15%), moderate values (15- 90%), high values (90-95%), very
high values (95-100%).

Both Alves et al. technique, discussed in Section 2.3.1, as Vale and Figueiredo tech-
nique propose generic metric thresholds to be used to evaluate all system classes. The
techniques disregard the context of the evaluated classes. In the next section, we discuss
the Aniche et al. technique that proposes to consider architectural roles played by classes
as context to derive metric thresholds.

2.3.3 Aniche et al. Technique

The discussion of considering some context information to use metrics is not a new
idea (MARINESCU, 2006; ZHANG et al., 2013; GIL; LALOUCHE, 2016). Marinescu
(MARINESCU, 2006) increases the accuracy of the detection of code smells (Data Class
and Feature Envy) by making them take into account the identified design roles as factor.
They identify automatically roles which design entities (classes and methods) might have
within a particular enterprise application. Zhang et al. (ZHANG et al., 2013) show that
metric values can be affected by factors, such as programming language, age and lifespan.
Souza and Maia (SOUZA; MAIA, 2013) investigate the impact of software categories
on the coupling level of software systems. They suggest that different categories may
have different levels of coupling. Thereby, software systems should use distinct metric
thresholds according to this category. Gil and Lalouche (GIL; LALOUCHE, 2016) discuss
that metric values vary among projects, and they mean nothing when examined out of
their context. In this perspective, Aniche et al. (ANICHE et al., 2016) propose SATT
(Software Architecture Tailored Thresholds) that provides specific threshold for each
architectural role whether it is considerably different from others in the system in terms
of code metric values. They defined architectural role as a particular role that classes can
play in a system architecture. For instance, CONTROLLERS in Spring MVC applications
coordinate the flow between the user interface and the domain layer. In the following,
we detail the eight steps of the proposed method:

• Dataset creation: select systems that follow the analyzed architecture, e.g., Spring
MVC applications. The technique performs this step only once and use the same
benchmark to calculate the thresholds for all other architectural roles.

• Architectural roles extraction: The technique identify each class’ architectural role
in the benchmark. To determine the architectural role for classes in Spring MVC
applications, they analysed their annotations. If a class contains one of the follow-
ing annotations, they consider that class as playing that role. The name of the
annotation matches with the name of the architectural role: @CONTROLLER,
@SERVICE, @ENTITY, @REPOSITORY, and @COMPONENT. Android appli-
cations make use of inheritance to determine the roles. Thus, if the class inherits



2.4 FACTORS IMPACTING ON METRIC THRESHOLDS 21

from one of following classes (or its sub-classes), they consider that class to play a
specific role: ASYNCTASK, ACTIVITY, and FRAGMENT.

• Metrics calculation: The technique calculates code metrics for all classes in the
benchmark, regardless of their architectural role.

• Statistical measurement : They perform a statistical test to measure the difference
between the code metric values in that architectural role (group 1) and the other
classes (group 2). They suggested the use of non-paired Wilcoxon test and Cliff’s
Delta between the two groups. Bonferroni correction should be applied, as the
approach is performed for all combinations of architectural roles and code metrics.

• Analysis of the statistical tests : If the difference is significant and the effect size
ranges from medium to large, they continue the approach. Otherwise, they stop.

• Weight ratio calculation. They use lines of code (LOC) as a weight of all classes.
Thus, the technique calculate LOC for all classes and normalize it for all classes
that belong to that architectural role in the benchmark. Normalization ensures
that the sum of all weights will be 100%.

• Weight ratio aggregation: the technique orders classes according to their metric
values in an ascending way. For each class, it aggregate the weights by summing
up all the weights from classes that have smaller metric values, i.e., classes that are
above the current class.

• Thresholds derivation: the technique extracts the code metric value from the class
that has its weight aggregation closest to 70% (moderate), 80% (high), and 90%
(very high).

Although the proposed technique takes a step towards to improve the identification
of the context played by each system class, assigning the architectural role as context to
derive metric thresholds, the proposed heuristic to identify architectural roles were able
to identify and associate architectural roles to only 17.5% of the classes in MVC-based
systems and 10.5% of the classes in Android applications. Consequently, metric-based
assessments disregard many roles played by the rest of the classes. In the next section,
we deepen this discussion by showing that other design decisions also impact on metrics.

2.4 FACTORS IMPACTING ON METRIC THRESHOLDS

The source code quality is usually compared to industry standards. A common way
to define these standards is extracting them from systems benchmark. For example,
Section 2.3 shows some benchmark-based techniques to extract metric thresholds used to
source code assessment. However, studies report that the resulting metric thresholds are
benchmark dependent (VALE; FIGUEIREDO, 2015). Some factors must be taken into
account in selecting the systems to compose the benchmark due to their influence on the
resulting metrics thresholds.
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The application domain and system size are factors pointed out by some studies
(FERREIRA et al., 2012; SOUZA; MAIA, 2013; ZHANG et al., 2013; MORI et al., 2018).
For example, Ferreira et al. (2012) propose to consider the application domain and system
size as factor to build benchmarks used to derive metric thresholds. However, they do
not examine whether these factors affects the distribution of metric values. Souza e Maia
(2013) claim that distribution of coupling metrics values vary according to application
domain, called by them as category. Thus, different software categories should use distinct
threshold for coupling metrics. For instance, Games category has a high level of class
coupling in comparison to Development category. Mori et al. (MORI et al., 2018)
investigate whether and how thresholds vary across domains by presenting a large-scale
study on 3,107 software systems from 15 domains. The results indicate that metric
thresholds are sensitive to software domain. For example, some metrics may vary across
domains from 1.5x to 4.8x. Moreover, they observed that not only the domains, but also
the size of the systems that compose the benchmark is a factor that affect the metric
thresholds. Finally, they also discussed that domain-specific metric thresholds are more
appropriated than generic ones for code smell detection.

However, we believe that the application domain and system size alone do not explain
the differences in the derived metric thresholds. We hypothesize that the design decisions
made over each system class are the main factors that influence the obtained values. For
example, the threshold value used to assess the quality of a health system (health domain)
developed for a mobile platform can be quite different from other developed for a Web
platform. Therefore, the development platform could be an important design decision
influencing the derived metric thresholds.

Zhang et al. (ZHANG et al., 2013) show that programming language is one the most
influential design decisions to be considered as context and that have a strong influence
on the derived metric thresholds. Aniche et al. (ANICHE et al., 2016) show that the
architectural role played by classes is another design decision to take into account to derive
metric thresholds. However, we hypothesize that the design decisions studied so far to
derive contextual metric thresholds are too coarse-grained to explain the differences in the
distribution of the metrics. In this thesis, we carry out an in-depth analysis evaluating
the class design role as a fine-grained design decision used as a new context factor that
could influence the derived metric thresholds.

To obtain the practitioners’ perception using the class design role to improve code
analysis practices, Chapter 3 shows the results of a large-scale survey with Brazilian
practitioners. In Chapter 5, we show the results of an empirical study conducted to
evaluate the impact of class design role and other design decisions discussed in software
metrics.



Chapter

3
A SURVEY OF SOFTWARE CODE ANALYSIS

PRACTICES IN BRAZIL

This chapter investigates the difficulties developers face in applying automated static
analysis practices without limiting the target audience to developers who already use
these practices regularly. We carry out a more comprehensive study at the beginning
of this research, encompassing research questions related to software code review and
containing a deeply statistical analysis (DÓSEA et al., 2020). However, this chapter
reports only the research questions and the main results that motivated the studies in
this thesis. We conducted a survey that aims to answer our second general research
question:

RQ1: How do practitioners perceive automated static analysis for code smell
identification?

To answer this research question, we conducted a large-scale web-based survey with
350 Brazilian practitioners that most often do not have well-established practices to use
automated static analysis. The main goal is to assess whether ongoing researches are
addressing the same issues and challenges practitioners face to apply static code analysis
in their development process. Some studies suggest that only very few software projects
adopt these tools because programmers seem to not fully benefit from them (KUMAR;
NORI, 2013; JOHNSON et al., 2013; BELLER et al., 2016).

An initial hypothesis for the low use of Automated static analysis tools (ASATs)
could be the lack of importance development teams and their companies assign to static
code analysis practices. Benefits of code analysis for software quality are already long
recognized (FAGAN, 1976). Surveys conducted with developers who regularly perform
code analysis indicate that developers spend 10-15 percent of their time in code analysis.
Finding defects, performing code maintainability improvements, and knowledge transfer
are the main reasons to perform static code analysis (BACCHELLI; BIRD, 2013; BOSU;
CARVER, 2013; BOSU et al., 2017). Additionally, other studies recognize that code
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anomalies impact the effort of different activities, such as editing, navigating, and reading
of source code (SOH et al., 2016). Although empirical evidence on the benefits of static
code analysis practices encourages their use, many software companies do not apply
them regularly (JOHNSON et al., 2013). Previous surveys addressing difficulties to apply
static code analysis limited their target audience to software developers that regularly use
these practices(KONONENKO; BAYSAL; GODFREY, 2016; MACLEOD et al., 2018;
CHRISTAKIS; BIRD, 2016). Therefore, the issues and challenges faced by developers
who do not apply these practices regularly are unclear.

Another possible concern faced by developers is to fit static code analysis practices
in their particular development process. Many studies about practices and tools focus
on their correctness, completeness or performance in companies that already use these
practices (CHRISTAKIS; BIRD, 2016; BOSU et al., 2017). But when an organization
needs to integrate these practices in their development process other considerations need
to be taken into account. For example, Ayewah et al. (AYEWAH et al., 2008) conducted
some interviews to get qualitative feedback about systematic policies used by FindBugs
users. They report that 76% from users do not have systematic policies for using FindBugs
and 81% do not have a policy on how soon each FindBugs issue must be human-reviewed.
Therefore, when code analysis practices are unclear into the development process they
could be easily disregarded (LAVALLÉE; ROBILLARD, 2015). The issues and challenges
faced by development teams to integrate software code analysis practices into the software
development process are unclear. A deeper understanding of these problems could guide
researchers’ future work to offer alternatives and improve guidelines.

Finally, some studies have reported that current ASATs are prone to false-positive
alarms. These false-positives correspond to warnings that manual inspection reveals no ef-
fect on the software quality and on maintenance effort (OLBRICH; CRUZES; SJØBERG,
2010; KHOMH et al., 2011; SJOBERG et al., 2013; YAMASHITA, 2013; PALOMBA et
al., 2014; HOZANO et al., 2018). Despite developers being able to eliminate many defects
using the warnings produced by these tools, the overload of warnings and the way in which
they are presented are pointed out as the main barriers to the consistent and widespread
use of ASATs (AYEWAH; PUGH, 2010; JOHNSON et al., 2013). Some studies indicate
that only 6% to 22% of warnings are removed in the context of code analysis (KIM;
ERNST, 2007; PANICHELLA et al., 2015). Analyzing warnings is a time-consuming
activity. For instance, a study conducted at Google indicated that, on average, eight
minutes are required to manually triage each static analysis warning (RUTHRUFF et al.,
2008). A line of research to reduce these false alarms is improving the accuracy of metric
thresholds used by popular metric-based ASATs (MARINESCU, 2004; ARCOVERDE
et al., 2012; BALACHANDRAN, 2013; OIZUMI et al., 2016). These tools usually use
generic metric thresholds for classifying source code elements (such as classes and meth-
ods) of one or more systems into categories (e.g. low or high) (LANZA; MARINESCU,
2006; ALVES; YPMA; VISSER, 2010; FERREIRA et al., 2012; OLIVEIRA; VALENTE;
LIMA, 2014; FONTANA et al., 2015; VALE; FIGUEIREDO, 2015). For instance, Lanza
and Marinescu (LANZA; MARINESCU, 2006) classify as long any method that has more
than 20 lines of code (LOC) in Java systems. In this case, 20 is used as a generic threshold
for LOC.
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However, some studies suggest the major reason for the occurrence of false positive
and false negatives warnings is the lack of context for metric thresholds (ZHANG et
al., 2013; ANICHE et al., 2016; SHARMA; SPINELLIS, 2018; DÓSEA; SANT’ANNA;
SILVA, 2018; SOBRINHO; LUCIA; MAIA, 2018). For example, for systems that follow
the layered architectural style, there might be differences between the average source code
complexity of classes belonging to the View layer and the Business layer. The business
logic implementation is often more complex than View logic implementation. A generic
threshold value might be low for classes in a layer or high for classes in another layer.
Too low or too high thresholds may lead to false code smell alarms (false positives) or
may hide potential code smells (false negatives). Therefore, applying a single generic
threshold to evaluate classes in these distinct layers may not make sense. An obvious
solution would be to propose multiple threshold values for each metric. In our example,
we could offer a distinct metric threshold for each architectural layer of the system. In this
case, architectural layers would be used as context to define multiple metric thresholds.
However, the practitioners’ perception about multiple metric thresholds for source code
evaluation is also unclear.

Our results show that, although 84.85% of respondents claimed to use at least one
code analysis practice and 54.85% declared to use tools that support code analysis, they
do not apply these practices and tools regularly. The results also show that we can not
justify this lack of regularity to the level of importance developers and companies give to
code analysis practices. The respondents also pointed out that fitting these practices to
the software development process and configuring the tools are key challenges they face.
Another finding is that developers agreed that using multiples metric thresholds for each
metric, configured according to the class design context, could decrease the number of
false alarms.

The remainder of this chapter is structured as follows. Section 3.1 presents details
of the methodology used to perform the survey, including purpose, instrument, and data
collection. Section 3.2 discusses results of the survey, including background information of
the respondents and issues and problems reported by practitioners to apply code analysis
practices. Section 3.3 discusses threats to validity. Section 3.4 brings the related works.
Finally, section 3.5 brings the summary, remarks, and future work.

3.1 STUDY SETTINGS

In this section we present the goal and research questions of our survey (Section 3.1.1).
We then discuss the statistics on the sample and the design of the survey questionnaire in
Section 3.1.2. Section 3.1.3 discusses the survey execution and data collection procedures.
In Section 3.1.4 we discuss the analysis methodology used to answer the proposed research
questions.

3.1.1 Goal and Research Questions

The goal of this survey is to characterize code analysis practices that software developers
in Brazil use to ensure source code quality. Our purpose is identifying trends, difficulties
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and challenges to use these practices which could be addressed by researchers both in
Brazil and worldwide. Based on this goal, we raise the following research questions (RQ).

• RQ1: What are the code analysis practices adopted by developers in Brazil to evalu-
ate source code quality? With this research question we aim to gain a broader view
of the most used code analysis practices. We also intend to assess how often these
practices are used.

• RQ2: How important do developers in Brazil perceive code analysis practices? With
this research question, we aim to understand which level of importance developers
in Brazil assign to code analysis practices, since this perception could affect the
adoption of such practices.

• RQ3: What difficulties do developers in Brazil face to use automated static analysis
tools? Several studies discussed the completeness of ASATs to point out relevant
alarms, but only few discuss issues and challenge to fit them in the software de-
velopment process (VASSALLO et al., 2018). In this research question, our goal
is identifying problems that may make developers in Brazil avoid using automated
static analysis tools.

• RQ4: What is the developers’ perception about evaluating source code using multi-
ple threshold values for each metric? Most ASATs rely on metrics and thresholds
to point out pieces of low-quality source code. For a metric, ASATs usually use a
single generic metric threshold to evaluate all system classes. However, calibrating
metric thresholds without taking context into account can increase the number of
false-positive warnings (SHARMA; SPINELLIS, 2018). In fact, recent studies claim
that considering context factors to define multiple thresholds could improve accu-
racy and reduce false-positive alarms (ZHANG et al., 2013; ANICHE et al., 2016;
DÓSEA; SANT’ANNA; SILVA, 2018). In this research question, we aim to evaluate
developers’ perception about single and multiple metric thresholds. To make the
notion of context more concrete to the respondents, in our questionnaire we sug-
gested two context factors that could be used to define multiple metric thresholds:
(i) the architectural layer of a class, and (ii) the main business entity handled by a
class. The hypothesis about business entities is that some of them may be simpler
to be handled than others. For example, considering a library management system,
the business entity author of books is usually simpler to be handled by the system
than books and borrowing of books entities that usually involve more data and more
complex business operations. We suggested these two factors based on factors con-
sidered in previous studies (ANICHE et al., 2016; DÓSEA; SANT’ANNA; SILVA,
2018), but they may not be the only factors that affect metric thresholds.

We used each RQ to derive one or more “survey questions” detailed in the following
section. The exploratory nature of the survey questions aimed to clarify the current issues
faced by practitioners to perform source code analysis. Additionally, they enabled us to
seek new insights and generating hypotheses for future studies.
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3.1.2 Survey Design

We used guidelines reported by (KITCHENHAM; PFLEEGER, 2002; KASUNIC, 2005;
LINAKER et al., 2015) to design the survey. Surveys have been used in empirical software
engineering investigations to learn about the state of the practice, identify improvement
potentials, or investigate the acceptance of a technology insight (PUNTER et al., 2003).
We describe below the sampling method, survey questions, execution process, and analysis
methodology.

3.1.2.1 Population and Sampling Method In our study, the target population is
formed by Brazilian software practitioners engaged on the software development industry.
We did not find official data in Brazil about our target population. For this reason, we use
a non-probabilistic sampling, used by researchers when systematic probabilistic sampling
is not possible. However, a non-official estimate published by SOFTEX (Association
to Promote the Excellence of Brazilian Software)1 and widely used by Brazilian press
estimates 570 thousand Information Technology (IT) Brazilian professionals in 2018,
working in a wide range of areas, including telecommunications, networks and software
development. A total of 411 respondents started the questionnaire, whereof 350 (85,15%)
completed all mandatory questions. We then used the R tool to determine the level of
confidence and the margin of error of the sample considering this total estimate of IT
professionals. We obtained a confidence level of 95% and a margin of error of 5.24%.
This means that, if we undertake 100 surveys for the same purpose and with the same
methodology, in 95 of them the results would be within the margin of error. The size of
our sample is considerable when compared with previous surveys in software engineering,
especially Brazilian surveys (AGNER et al., 2013), which reach much smaller numbers of
respondents and, therefore, much larger margin of error.

We decided to use a self-recruited survey, in which the respondents get to know some-
how about the survey and decide to participate. The main advantage of a self-recruited
survey is that respondents are attracted already by the topic of the survey (PUNTER et
al., 2003). We used an online questionnaire created by means of the SurveyMonkey tool2

to collect the data. The motivation for using an online questionnaire was to maximize
coverage and participation. It also allows an easier data entry from the respondent per-
spective, a simpler data collection from the researcher perspective and is less error-prone
(PUNTER et al., 2003).

3.1.2.2 Survey Questions We designed our survey questionnaire aiming to answer
the research questions (Section 3.1.1) and to characterize the respondents. We were
also concerned to avoid a large questionnaire, which would take a long time from the
respondents. Studies showed that short questionnaires have a higher response rate in
comparison to long ones (PUNTER et al., 2003; SMITH et al., 2013). Thus, we considered
five minutes as target time for the participants to answer all questions.

1https://www.softex.br/
2http://www.surveymonkey.com
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To achieve this goal, we elaborated clear and objective questions. Additionally, we
conducted two pilot studies before coming up with the final version of the questionnaire.
The first one involved five undergraduate students attending the last period of an in-
formation systems course. The second one involved 15 experienced professionals (5 to
20 years working in software development industry) who attended a course given by the
author of this thesis. The pilot studies involved these two group of developers because
we also aimed to assess whether the proposed questionnaire was suitable for both new
developers and expert developers. During the pilot studies, we monitored time, questions
the participants made, and registered misunderstandings due to question formulation.
Everyone was able to answer the questionnaire within 4 to 5 minutes. Then we discussed
with them their understanding about each question. As a result of the pilot studies, we
made some adjustments in the vocabulary used in the questions. Some participants raised
doubts about practices or tools mentioned in some questions. Thus, we added examples
to illustrate them and make the questions clearer.

The questionnaire is organized into four sections. Each section was showed to the
respondent in a distinct Web page. All the pages had the same title that reflected our
main research goal: “Which practices do you use to evaluate the quality of source code?”.
The first section informs to the respondents that the survey would required around five
minutes from them. It also informs that the survey has eleven questions. In addition,
the first section gives a brief explanation about source code analysis practices and tools.

Table 3.1 lists the survey questions. For each question, it informs the questionnaire
section where the question appears, the related research question, the question itself
(translated from Portuguese into English), the type of allowed answer and the number of
respondents. Overall, the questionnaire consists of seven questions, plus four background
questions. Some questions allow the respondent to select a single answer (S) and other
questions allow the respondent to select multiple answers (M). Additionally, some ques-
tions allow an open answer (O) where the respondent can write a free text response to
add an answer not included in the list of answer options. For instance, the first question
is related to research question RQ1 and appears in the second section of the survey. It
allows multiples answers and an open answer. And 411 respondents answered it.

The second section of the survey has four questions related to the first two research
questions. To answer RQ1 it includes two questions about the code analysis practices
the respondent uses and with which frequency he or she uses them. To answer RQ2 the
questionnaire contains two questions about the importance given by the respondent and
the company to the use of code analysis practices. All 411 respondents who started the
survey advanced through the first and second sections, answering all the questions. We
elaborated the simplest questions in the second section aiming to encourage the progress
to the other survey questions.

The third section contains two questions aiming to identify issues and challenges
faced by practitioners to use code analysis techniques. Each question is associated to one
research question (RQ3 and RQ4). The third section contains more reflective questions
and obtained high dropout rate 56 out of 411 (13.62%) of the respondents.

Finally, the four section is concerned with the background of the participants, includ-
ing questions about experience with software development as well as about the number of
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Table 3.1: Questionnaire - Questions (S/M/O Stands for Single, Multiple, or Open an-
swer).

Section
Research Question
or Background

Question S/M/O #Respondents

2 RQ1
What code analysis practices do developers in your company
use to analyze the quality of source code?

M, O 411

2 RQ1 How often do you apply code analysis practices? S 411

2 RQ2 What importance do you give to code analysis practices? S 411

2 RQ2 What importance does your company give to code analysis practices? S 411

3 RQ3 What difficulties do you have to use automated static analysis tools? M, O 355

3 RQ4
Automated Static Analysis tools usually use a single metric threshold to evaluate all system
classes. Considering a three-tier system (GUI, Business and Persistence), what is your opinion
about the threshold values that should be used to evaluate classes in each of these three tiers?

S 355

4 Background What is your highest academic degree? S, O 350

4 Background What is your current role in the company? S,O 350

4 Background How much experience do you have in software development? S 350

4 Background How many systems have you developed or performed maintenance tasks? S 350

developed systems that they already worked with. We structured the background section
at the end aiming the respondent to focus from the early stages on the main objectives of
the survey (SEAMAN, 1999). We believe that this approach also influenced the high rate
of responses we obtained. In the last section, there were only four dropouts. In summary,
the median number of responses per question was 411 for RQ1 and RQ2 questions, 355
for RQ3 and RQ4 and 350 for background questions.

3.1.3 Execution

We made the survey available through an online questionnaire created by means of the
SurveyMonkey3 tool. The sampling considered was 350 respondents. Given the lack
of any reliable data about the population of Brazilian software developers, we selected
developers to participate in the survey as follows:

• We sent invitations through Google, Linkedin and Facebook software developers
online forums and private groups, such as, C# Brazil 4, Java Brazil5, Web Devel-
opment Brazil6 and Android Brazil7. We were also invited to publish the survey on
the main page of an important Brazilian software quality website8. The publication
on the site was available for approximately one month.

• We sent invitation emails to the main researchers associated with this field of study

3http://www.surveymonkey.com
4https://www.facebook.com/groups/csharpbrasil
5https://www.facebook.com/groups/JavaBr/
6https://www.facebook.com/groups/desenvolvimentoweb/
7https://www.facebook.com/groups/androidbrasiloficial/
8http://qualidadedesoftware.com.br/
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in Brazil. We requested that they submit the survey to students and professionals
engaged in the area of software development.

The survey was conducted from January 2015 until September 2018. Most of the
questionnaires (363 out of 411) were responded by accessing the online survey in January
2015, which was the most intense period of dissemination of the survey. Aiming to
improve the sample reliability, we performed a new disclosure in August 2018, totaling
411 forms. We noticed that the new responses did not significantly alter the results
obtained with the first responses, demonstrating that the sample would already be large
enough to obtain reliable results.

3.1.4 Analysis methodology

We address the research questions discussed in Section 3.1.1 through descriptive statistics
and using statistical hypothesis testing to conduct a cross-factor analysis of source code
analysis practices and practitioners’ background. We aim to understand the challenges
of using code analysis practices associated with each class of practitioners. However,
this section reports only the results of descriptive statistics. The results from statistical
hypothesis testings are available in (DÓSEA et al., 2020).

3.2 RESULTS AND DISCUSSION

From 411 professionals who accessed the Web questionnaire, 350 filled the entire ques-
tionnaire, yielding a 85.15% response rate. This rate is higher than other on-line surveys
in software engineering (PUNTER et al., 2003). We considered that the following reasons
were determinant for this high rate: (i) the short time required to answer the survey (5
minutes), emphasized in the first screen, (ii) the use of simple and objective language
to invite the respondents, and (iii) the use of examples to explain some terms the re-
spondents might not be familiar with. Due to the type of sampling, we are not able
to determine the number of respondents who received the questionnaires, therefore, the
response rate takes into account the respondents who really opened the questionnaire.

This section initially shows the background of the respondents, and it presents and
discusses results regarding the four research questions.

3.2.1 Respondent background

Regarding the predominant role, Table 3.2 shows that 96 (27.43%) respondents are pro-
grammers and 97 (27.71%) are software engineers. Thirty-three (9.43%) respondents
are software architects. Fifty-four (15.43%) declared themselves as quality analysts, role
which usually has source code quality analysis as one of its tasks. Programmers, soft-
ware engineers, software architects and quality analysts are roles concerned somehow
with source code maintenance. Finally, 70 (20.00%) respondents indicated other roles,
for example, technical leader of programmers. We observed that 28 out of 70 respondents
that indicated other roles also performed tasks related to source code maintenance. In
summary, 308 (88%) respondents play a role associated with source code maintenance
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and thus, should concern with source code quality. Other roles cited by respondents are
related to software testing, project management and company direction.

Table 3.2: Predominant role of the respondents.

Role Respondents (%)

Programmer 96 27.43%
Software engineer 97 27.71%
Software architect 33 9.43%
Quality analyst 54 15.43%
Other (please specify) 70 20.00%

In order to understand the respondents’ educational background, we asked them to
inform their highest academic degree. Table 3.3 shows that 175 out of 350 (50%) respon-
dents are bachelor and 105 (30%) has postgraduate diploma. We also observed 34 (9.71%)
respondents have master degree and seven have doctoral degree (2%). Only 29 (8.29%)
respondents claim to have associate degree. In Brazil, associate degree varies between 2
to 3 years of full-time studies. This degree provides highly specialized knowledge (e.g.
Web developer). In Brazil, postgraduate diploma requires a previous bachelor degree for
admission and performs a specialization course in one area of study, mostly addressed to
professional practice. The results indicate a high educational level of the respondents of
which 91.71% have at least bachelor degree.

Regarding work experience, Table 3.4 shows that 112 (32%) respondents has 2 to 5
years of work experience. Others 87 (24.86%) respondents claim to have 5 to 10 and
92 (26.29%) more than ten years of work experience. Finally, 59 (16.86%) respondents
have less than two years of experience. That means the majority of respondents are
practitioners who have a reasonable level of experience in software development tasks.

To be sure about the level of experience level with development tasks, we also asked
about the number of systems the respondents work on. Table 3.5 shows that 134 (38.51%)
respondents claimed to have contributed with more than ten software projects and 75
(21.55%) between 6 to 10 software projects. Also, 75 (21.55%) respondents claimed to
have contributed with 3 to 5 software projects, and only 64 (18.39%) respondents claimed
to participate in less than three software projects. These results illustrate that most of

Table 3.3: Respondents’ highest academic degrees.

Academic Degree Respondents (%)

Associate 29 8.29%
Bachelor 175 50.00%
Postgraduate diploma 105 30.00%
Master 34 9.71%
Doctoral 7 2.00%
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Table 3.4: Work experience.

Years Respondents (%)

0 - 2 59 16.86%
2 - 5 112 32.00%
5 - 10 87 24.86%
> 10 92 26.29%

Table 3.5: Number of Developed Systems.

Systems Respondents (%)

0 - 3 64 18.39%
3 - 5 75 21.55%
6 - 10 75 21.55%
> 10 134 38.51%

the respondents have a reasonable experience of which 81.61% contribute with at least
three software projects.

We used the data obtained from the background questions to evaluate whether re-
spondent’s profile influenced the result about the research questions presented in the next
subsections.

3.2.2 RQ1: What are the code analysis practices adopted by developers in Brazil
to evaluate source code quality?

To answer this research question, we analyze data from the first two survey questions
(Table 3.1). First, we asked the respondents about the practices they use to analysis
source code quality in their companies. Respondents could select one or more answer
options. Figure 3.1 shows that 226 (64.57%) respondents claim to use manual code
reviews, and of those, we observed that 96 (27.42% of 350) use manual code review
exclusively. We observed that 139 (39.71%) respondents declared to use automated static
analysis tools (e.g. PMD, CheckStyle, ReSharper, FxCop), 87 (24.86%) use code metric
tools and 36 (10.29%) use tools developed by their company itself. Finally, 56 (16.00%)
respondents declared that do not perform source code analysis and 17 (4.86%) respondents
claimed to use others practices. Some respondents indicated to use some specific code
analysis tools (e.g. SonarQube and CodeClimate). Others also indicated the use of
unit and integration test tools, which are usually not considered as source code analysis
tools. We also identified 67 (19.14%) respondents that claimed to use more than one
tool to source code analysis (e.g. code metrics tool and tool developed by the company).
Therefore, although manual code reviews are still the practice most often cited (64.57%
from respondents), we identified 192 (54.85%) respondents that use at least one tool to
perform code analysis. Finally, the results indicated that 297 (84.85%) respondents use
at least manual or automated practice to source code analysis, showing that respondents
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Figure 3.1: Code analysis practices adopted by the Brazilian companies to assess the
quality of source code.

have reasonable level of knowledge about code analysis practices.

Secondly, we asked respondents how often they use code analysis practices. Our
goal is to complement the results of the previous question by verifying how often these
practices are actually applied in the development process. Figure 3.2 illustrates that
185 out of 350 (52.86%) respondents declared that there is not a well-defined time to
analysis source code, but occasionally revise it. We observed 36 (10.29%) respondents that
declared reviewing source code at least once a month and 46 (13.14%) that claimed never
reviewing the source code. Only 83 (23.71%) respondents declared reviewing source code
at least once a week. These results are not aligned the idea that software teams should
meticulously review each change to source code to ensure quality standards (TANAKA
et al., 1995). A survey conducted with Microsoft and OSS developers that adopt code
analysis practices regularly found that they spend approximately six hours per week in
code review (BOSU; CARVER, 2013). Comparing these results with our survey results,
we can say that 76.29% of Brazilian practitioners do not perform code analysis regularly.

In summary, based on the responses to the first two questions of our survey, we can
answer RQ1 as follows:

Software code analysis practices are well disseminated among Brazilian prac-
titioners. However, they are not applied regularly in the software development
process. Thus, the positive impact of these practices on source code quality may
not be perceived by development teams and companies.
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Figure 3.2: Frequency of use of each code analysis practice.

3.2.3 RQ2: How important do developers in Brazil perceive code analysis prac-
tices?

For code analysis practices to be applied regularly, recognizing its importance is crucial.
In this sense, our second research question aims to figure out what level of importance
Brazilian practitioners and their companies give to code analysis practices.

Figure 3.3 illustrates the level of importance both practitioners and companies give to
code analysis practices. It puts together the answers for the third and forth questions of
our survey, which are: What importance do you give to code analysis practices? and What
importance does your company give to code analysis practices? We can notice that, for
239 (68.29%) respondents, code analysis practices are very important and, for 98 (28%),
they are important. Only 11 (3.14%) and 2 (0.57%) respondents declared to consider
code analysis as slightly important or as not important, respectively. Regarding the
level of importance attributed by companies, 97 (27.71%) and 137 (39.14%) respondents
declared to believe that their companies consider code analysis practices as very important
or as important, respectively declared their companies give. On the other hand, 95
(27.14%) respondents declared their companies give slightly importance. Finally, 21
(6.00%) claimed to believe that their companies do not give any importance to code
analysis practices.

This data allows us to raise the hypothesis that developers believe that companies
give less importance to code analysis practices than they do. Thereby, the analysis of
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Figure 3.3: Importance of code analysis practices.

these results allows us to answer RQ2 as follows:

Practitioners recognize code analysis practices as important to the software devel-
opment process. However, their perception is that companies give less importance
to code analysis practices than they do. This perception may discourage the reg-
ular use of these practices.

3.2.4 RQ3: What difficulties do developers in Brazil face to use automated static
analysis tools to support code analysis?

A lot of research effort has been put into improving automated static analysis tools
(ASATs) aiming to make code analysis more objective and standardized. However, a
study conducted with 168,241 OSS projects showed that, despite 60% of the projects make
use of ASATs, they typically only use one ASAT in an ad-hoc fashion and not integrated
with the flow of development. In addition, the configurations of the ASATs used in those
projects barely deviate from the default or introduce custom checks (BELLER et al.,
2016). Our third research question aimed to evaluate the issues and challenges Brazilian
practitioners face to use automated static analysis tools.

To answer this research question, we only use the fifth question of our survey, which is
What difficulties do you have to use code analysis tools? It is a multiple choice question,
so that respondents could select more than one difficulty that they consider to hinder their
regular use of ASATs. Figure 3.4 illustrates the obtained results. We discussed in RQ1
that 54.85% of the respondents claim to use at least one tool to perform code analysis. We
found in RQ3 that 149 out of 350 (42.57%) respondents declared lack of knowledge about
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Figure 3.4: Difficulties to use automated code analysis tools.

these tools. These results mean that almost everyone who knows ASATs tools uses them
in some way. Interestingly, respondents who are unaware of ASATs are scattered across
all levels of experience. For instance, regarding the respondents who claimed to have less
than two years of experience, 28 out of 112 (25%) are unaware of ASATs. Other levels
of experience have similar rates. For example, among the 216 respondents with two to
five years of experience, 50 (23.14%) are unaware of ASATs. These numbers demonstrate
that ASATs need to be better disseminated among practitioners.

Still regarding difficulties to use ASATs, also a high number of respondents, 172
(49.14%), claimed to have difficulties to fit the tool into the development flow. Difficul-
ties to fit ASATs into the development flow are also reported by Microsoft developers
that use ASATs more regularly (CHRISTAKIS; BIRD, 2016). Developers point out in-
sufficient training and problems to manage large reviews as challenges to fit these tools in
development flow (MACLEOD et al., 2018). These results show that improving ASATs
may not be enough. To reach the benefits promised by the use of ASATs, companies
and researchers also need to invest in education and guidelines to fit ASATs into their
software development flow. In RQ5 we deep the discussion about the best time of the
development flow to apply ASATs.

In addition, a considerable number of respondents, 112 (32%), claimed to have dif-
ficulties to define enterprise architectural rules of the system under review (e.g. rules
of communication between architectural layers). Defining the key architectural rules
is an essential task for setting parameters, rules and metric thresholds used by many
ASATs to perform code analysis process. This is a challenge also cited by other studies
conducted with Microsoft and Mozilla core developers (KONONENKO; BAYSAL; GOD-
FREY, 2016; MACLEOD et al., 2018). These discussion highlight the need for studies
and tools to help developers quickly understand the key architectural decisions of the
system under review, such as, architectural layers and their rules of communication.

A similar number of respondents, 118 (33.71%), declared difficulties to define metric
thresholds (e.g. maximum number of lines of code per method). A number of ASATs
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allow users to adjust metric thresholds used to identify code anomalies. The accuracy
of metric-based assessment is heavily influenced by the calibration of metric thresholds
(SHARMA; SPINELLIS, 2018; SOBRINHO; LUCIA; MAIA, 2018). Threshold selection
is a challenge because of the proneness to false positives (KESSENTINI et al., 2014). A
threshold that points out code smells that hold good in the context of an application
module may not necessarily make sense for other applications or other modules of the
same application (FONTANA et al., 2015). Previous works suggest that deriving metric
thresholds according to the application design context might reduce false code smell
alarms (ZHANG et al., 2013; ANICHE et al., 2016; DÓSEA; SANT’ANNA; SILVA,
2018). In RQ4 we discussed the developers’ perception about considering the context to
derive metric thresholds.

Finally, 81 (23.14%) respondents declared problems to interpret the results pointed
out by the tools. This rate seems to be low but we need take into account a high rate
of respondents that declared lack of knowledge about ASATs. In fact, the way ASATs
present results is considered as one of the main barriers to the consistent and widespread
use of ASATs by many studies (JOHNSON et al., 2013; BACCHELLI; BIRD, 2013;
KONONENKO et al., 2015; CHRISTAKIS; BIRD, 2016). The high number of false
alarms, which is also considered as one of the main barriers to ASATs use (JOHNSON et
al., 2013; BACCHELLI; BIRD, 2013; KONONENKO et al., 2015; CHRISTAKIS; BIRD,
2016), may hinder ASATs results interpretation too. Eighteen respondents (5.14%) cited
other difficulties to use ASATs, including: (i) lack of culture and knowledge of developers
and (ii) difficulty use ASATs in legacy code, because it usually comprises design rules
different from newer applications. These results also show that training is needed and
that ASATs should be adapted to particular contexts.

Therefore, the analysis of these results allows us to answer RQ3 as follows:

Many Brazilian practitioners are still unaware of ASATs or have difficulty to
adapt them to their development flow or have difficulty to interpret their results.
Thus, research involving ASATs should not only be limited to improving accuracy
but must also be concerned with providing guidelines for developers to use them
and to adjust them to their particular software development processes.

3.2.5 RQ4: What is the developers’ perception about evaluating source code using
multiple threshold values for each metric?

A major reason for the occurrence of false positive and negatives on metric-based code
smells detection is the lack of context for metric thresholds (SHARMA; SPINELLIS,
2018). Nevertheless, popular ASATs use generic metric thresholds for the metrics used
for detecting code smells. We have a generic threshold for a given metric when we use the
same single value for classifying into categories (such as low or high) every class (or every
method) of one or more systems. For instance, Lanza and Marinescu (LANZA; MARI-
NESCU, 2006) classify as long any method that has more than 20 lines of code (LOC)
in Java systems. In this case, 20 is used as a generic threshold for LOC. Using a generic
metric threshold for each metric to evaluate all system classes ends up disregarding con-
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Figure 3.5: Practitioners’ perception of the influence of class context in the selected
metric thresholds.

textual information of each evaluated class. Some studies have shown that generic metric
thresholds might not make sense for the entire set of classes in a system (LAVAZZA;
MORASCA, 2016) and taking into account context factors to define multiple context-
sensitive thresholds could improve accuracy and reducing false-positive alarms (ZHANG
et al., 2013; ANICHE et al., 2016; DÓSEA; SANT’ANNA; SILVA, 2018). RQ4 aims to
evaluate the practitioners’ perception about context-sensitive metric thresholds to source
code evaluation.

To answer RQ4, we rely on the the sixth question of our survey, which is: Automated
Static Analysis tools usually use a single metric threshold to evaluate all system classes.
Considering a three-tier system (GUI, Business and Persistence), what is your opinion
about the threshold values that should be used to evaluate classes in each of these three
tiers? It is a single question, so that the respondent is only allowed to choose one answer.
The question asks the respondent to consider, as example, a system developed according
a three-tier architecture (GUI, Business and Persistence). Then, it asks the opinion of
the respondents about whether a single metric thresholds should be used to evaluate
the entire source code or different thresholds should be used for different architectural
layers or business entities. By business entities we mean the main entities handled by the
system. For instance, in a library management system, some examples of business entities
are book, book author, publisher, book borrowing, and book return. We hypothesize that
some business entities may be more complex (e.g. book borrowing) to be handled by the
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system and therefore should be evaluated with threshold values different from the ones
used for simpler business entities (e.g. book author).

Figure 3.5 shows that only 32 (9.14%) respondents declared given a metric, the same
single threshold should be used to analyze source code in all three layers. This re-
sult shows that practitioners’ perception is different from the strategy adopted by most
ASATs, which allow only a single threshold for each supported metric. On the other
hand, 91 (26.0%) respondents claimed that metric thresholds should be different and
defined according each architectural layer, since the source code in methods of one layer
may have distinct characteristics from methods in the other layers. Also, 30 (8.57%)
respondents declared that metric thresholds must be different and defined according to
each business entity, since methods that handle different business entities may have dif-
ferent characteristics. Moreover, 125 (35.71%) respondents believe that different metric
thresholds should be defined according both architectural layer and business entities. In
summary, 246 out of 350 (70.28%) respondents do not agree with the use of single generic
thresholds. Finally, 72 (20.57%) respondents did not have a formed opinion regarding this
subject. These results motivate future research for investigating whether using multiple
metric thresholds reduces the number of false alarms current ASATs return.

In summary, we observed only few respondents that agree with single generic metric
thresholds usually adopted by the most popular ASATs. This allow us to answer RQ4 as
follows:

Instead of a single generic metric threshold, practitioners believe that ASATs
should use multiple thresholds, calibrated according contextual design information,
such as architectural layers. Thus, future research should further investigate the
use of multiple thresholds.

3.3 THREATS TO VALIDITY

In general on-line surveys are considered to have lower internal validity and stronger
external validity in comparison with other means of empirical investigation, such as case-
studies or experiments (PUNTER et al., 2003). We discuss the threats to the validity of
our study according to four categories (WOHLIN et al., 2012):

Construct validity. In a survey, such threats may mainly occur because respondents
could possibly interpret a question in a different way than it has been conceived, possibly
producing misleading results. To minimize this threat, as explained in Section 3.1, we
tested the questionnaire, by means of two pilot studies, to check possible problems related
to ambiguity, missing response options, and lack of clarity in our questions. Also, to make
important concepts and terms (e.g., static analysis tools) clear, we included examples of
them in the questions or answer options.

Internal validity. Threats to internal validity are related to issues that may affect
the causal relationship between treatment and outcome. In general, it is hard to control
these factors since survey is an unsupervised study and the level of control is very low.
To avoid apprehension, we guaranteed the respondents their complete anonymity. Also,
there is always a risk that different respondent backgrounds (e.g., experience) influence
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the experiment results. However, due to the large sample, as well as the range of compe-
tence and experience levels, this risk was limited. Similarly, the large sample mitigated
any threat potentially caused by respondents with different personalities (FELDT et al.,
2010).

External validity. Despite the size of our sample being large enough to enable statisti-
cally significant results, we are also aware that the sample size could not be large enough
for generalization purposes given the lack of accurate data about the target population.
However, our sample is similar to other surveys conducted on different software engineer-
ing subjects (CHRISTAKIS; BIRD, 2016; BOSU et al., 2017). In addition, we do not
claim that our conclusions can be generalized outside the scope of our study.

Conclusion validity. Threats to conclusion validity are concerned whether correct
conclusions are reached through rigorous and repeatable treatment (WOHLIN et al.,
2012). To minimize possible errors related the target audience sampling, we used, for
each research question, non-parametric statistical tests and measured the effect size to
discuss our findings. Therefore, all the conclusions that we drew in this survey are strictly
traceable to data. Moreover, to increase transparency, the survey data is available online9

so that other researchers can validate it or replicate the study.

3.4 RELATED WORKS

Some studies capture the perception of practitioners who already use code analysis prac-
tices regularly. Differently, we conducted a large scale survey without limiting the target
audience to code analysis experts. With this, we expected to capture others issues and
challenges about code analysis practices adoption. In addition, we also attempted to
capture the practitioners’ perception about multiple metric thresholds that take the con-
text of source code elements into account. Using design-sensitive metric thresholds is a
possible way to avoid what many software developers consider as a key problem on the
use of ASATs: the high number of false alarms. Previous studies do not address this
point.

An initial small-scale study conducted by Johnson et al. (JOHNSON et al., 2013)
investigated 20 developers using semi-structured interviews to know why static analysis
tools are not widely used and how these tools could be improved to increase usage based
on developer feedback. The study focused on static analysis tools that have well-defined
programming rules to find defects (e.g. FindBugs, Lint, IntelliJ, and PMD). Most of
the developers (19 of 20) claimed that static analysis tools do not present their results
with enough information that allows them to clearly understand the problem and know
what they should be doing differently. The same number of developers expressed the
importance of offering different ways to fit a tool into the software development pro-
cess. Some developers prefer finding a “stopping point” in their code to run the tool
(LAYMAN; WILLIAMS; AMANT, 2007). Other developers prefer the tool running in
the background. Our study also investigated how developers prefer to use source code
analysis tools, but based on the opinion of a considerably higher number of developers.
In addition, we also investigated other issues that may discourage developers to adopt

9https://github.com/marcosdosea/thesis/tree/main/survey
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static analysis tools.

Bacchelli and Bird (BACCHELLI; BIRD, 2013) conducted an exploratory study fol-
lowing a mixed approach and collecting data from different sources for triangulation.
They (i) observed 17 industrial developers performing code analysis; (ii) interviewed
these developers using a semi-structured interview; (iii) manually inspected and classi-
fied the content of 570 comments in discussions about code reviews; and (iv) surveyed
165 managers and 873 programmers. The results showed that finding defects and code
improvement are the primary motivations to code review, although participants believe
that code review brings other benefits, for example, knowledge transfer and proposition
of alternative solutions. They also identified when the business context of the software
is clear and understanding is very high, as in the case when the reviewer is the owner of
changed files, code review comments have better quality. Bosu et al. (BOSU et al., 2017)
conducted a survey with 416 Microsoft developers aiming to provide additional insight
into similarities or differences between OSS and Microsoft developers. They aim to verify
if Microsoft developers who work on distributed projects would have similar views about
code as OSS developers (whose projects are also distributed). The results show a large
amount of similarity between the Microsoft and OSS respondents and a little difference
between distributed and co-located Microsoft teams. They also verify that developers
spend approximately 10-15 percent of their time in code reviews, with the amount of ef-
fort increasing with experience. Our survey complements these two studies as it identifies
additional issues and challenges developers face for adopting code review practices, such
as problems to fit code review tools in their software development process, difficulties to
define metric thresholds and difficulties to interpret ASAT results.

Beller at al. (BELLER et al., 2016) conducted a study to understand the prevalence
of ASATs, their configuration in real software projects, and how those configurations
evolve over time. Firstly they analyzed the use of nine popular ASATs in 122 Open-
Source Software (OSS) projects. Then, they analyzed how ASATs were configured and
how their configuration settings evolved in 168,241 OSS projects. The results show that
60% of the most popular and (therefore arguably) most advanced projects make use of
ASATs, although they typically use only one ASAT in an ad-hoc fashion, not integrated
with the flow of development. Regarding to ASAT configurations, the study showed that,
after an one-week period of changes, the ASAT configurations usually remain unchanged
along the rest of the project. Additionally, ASAT configurations barely deviate from
the default settings and rarely comprise custom checks. Our study evaluated developers’
perception about new ideas related to ASAT configurations, such as, the use of multiple
metric thresholds.

MacLeod et al. (MACLEOD et al., 2018) conducted semi-structured interviews with
18 developers from four teams at Microsoft. The initial findings about tool use, developer
motivations, and the challenges developers face were validated through a survey with 911
Microsoft developers. The study revealed that Microsoft developers recognize manual
code reviews’ value and importance. They appreciate reviewer feedback and they de-
velop more thorough artifacts when they know that someone will revise them. The study
showed that 87% of the respondents acted as a code reviewer during the previous week
of the research. Improve the code, find defects, transfer knowledge and explore alterna-
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tive solutions are ranked as the main motivations for code reviews. Reviewers point out
the main challenge to conducted code reviews are the difficulty to manage large reviews,
finding time to do reviews, understanding a changing and its motivation, finding rele-
vant documentation and understanding the history of changes and decisions. They also
complained about insufficient training for reviews. Christakis and Bird (CHRISTAKIS;
BIRD, 2016) interviewed and surveyed developers across Microsoft to understand their
needs and how ASATs can or do fit into their process. They also examined many corrected
defects to understand what types of issues occur most and least often. They received 375
responses to the survey, yielding a 19% response rate. Developers point out the main pain
points, obstacles, and challenges to use ASATs are (i) wrong checks are on by default,
(ii) bad warning messages, (iii) too many false positives, (iv) too slow, (v) no suggested
fixes, (iv) difficult to fit into the workflow. Developers also prefer that ASATs show alerts
in the code editor followed by the build output. In addition, developers suggested that
ASATs should have a false positive rate no higher that 15% to 20%. These results are
in line with the findings of previous works (JOHNSON et al., 2013; AYEWAH et al.,
2008). Our target audience also recognizes code analysis practices as important, but only
very few respondents claimed to perform code analysis regularly. Also, as recent studies
showed that context-sensitive metric thresholds could decrease the number of false pos-
itives (ZHANG et al., 2013; ANICHE et al., 2016), our study goes further on this point
by investigating developers’ perception about multiple metric thresholds.

In summary, as our survey target audience was not limited to source code analysis
experts, we were able to identify some challenges different from those related work identi-
fied. These additional challenges give new insights for studies conducted in this doctoral
thesis.

3.5 SUMMARY

We conducted a web-based survey with 350 Brazilian practitioners engaged in the soft-
ware industry whose code analysis practices are not so well established. This chapter
discussed the survey featured questions about (i) the practices used to code analysis, (ii)
the importance given to such practices, (iii) the issues about the automation of these
practices (iv) practitioners’ perception about multiples metric thresholds. We summarize
the results and their implications for research and practice as follows.

Code analysis practices are known but applied irregularly. Our results showed that
Brazilian practitioners know code analysis practices (RQ1) and recognize their importance
(RQ2). However, development teams do not apply these practices regularly (RQ1). We
use these results as motivation to conduct studies to clarify the impact and benefits of
applying code analysis practices.

Practitioners are unaware or have many issues with using automated static analysis
tools. Our results showed that 54.85% of respondents use at least one automated code
analysis practice (RQ1). However, many respondents (42.85%) stated unaware of these
tools (RQ3). Additionally, practitioners reported many issues and challenges to adopt
these tools regularly (RQ3). We use these results to propose solutions for integrating
such tools in software development processes more efficiently.
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Practitioners’ perception is that multiple metric thresholds could help in source code
quality analysis. Current static analysis tools use a single metric threshold value for
each metric. State-of-art tools use detection strategies to identify code anomalies based
on metric thresholds. However, our results showed that only 9.14% of the respondents
agreed with a single metric threshold to evaluate all system classes (RQ4). On the
other hand, 70.28% of them believe that contextual factors, such as architectural layers
or business entities, influence metric values so that multiple thresholds for each metric
could help improve accuracy (RQ4). We use this result to propose techniques for defining
multiple design-sensitive metric thresholds and investigate whether they improve static
analysis tool accuracy.

Finally, as lessons learned, our study illustrates that surveys with a well-defined focus,
a language close to the respondents, and questions designed to be answered quickly have a
high response rate. Also, using examples to clarify terms and concepts that are not always
clear to the respondents proved to be an essential tool for the developers’ comprehension
of survey questions.





Chapter

4
HEURISTIC FOR IDENTIFYING DESIGN ROLES

This chapter describes the design role concept and the proposed heuristic to identify and
assign design roles to classes. We also present the DesignRoleMiner tool that implements
the heuristic we propose to identify each class’s design role automatically in a system.
We discuss two empirical studies conducted to evaluate the proposed heuristic. We also
propose an application of the proposed heuristic to find out systems implemented with
similar design roles.

4.1 DESIGN ROLE CONCEPT

Many different design role concepts have been proposed and discussed from different
viewpoints (RIEHLE; GROSS, 1998; EADDY; AHO; MURPHY, 2007; ZHU; ZHOU,
2008; WANG et al., 2011). We consider the concept Wirfs-Brock et al. defined for
software component design (WIRFS-BROCK; MCKEAN, 2003). According to them, a
design role is a set of related responsibilities assumed by an object to fit into a community,
such as a framework or an enterprise architecture. We decided to use this concept because
many modern object-oriented systems are developed based on reference architectures
(BASS; CLEMENTS; KAZMAN, 2012). Design roles are assigned to one or more classes
through inheritance, interface implementation, or class annotations in such systems.

In this context, we defined a heuristic to automatically identify the main design role
played by each system class. The proposed heuristic uses a customizable token-based
method that considers the syntactic structures of the class. Some classes may accom-
modate more than one design role, but the proposed heuristic assigns only the most
prominent design role. Although this overlapping of responsibilities is not considered ad-
equate in object-oriented systems (BOOCH, 1986), future studies could assess the impact
of having classes with multiple design roles. The automatic identification of the design
role a class plays is not a trivial task for the following reasons:

a) the same design role, even in the same system, can be assigned to a class by differ-
ent mechanisms. For instance, in Spring MVC-based systems, a class playing the
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Figure 4.1: Design Role Heuristic

Controller design role can get the @Controller annotation or extend the Abstract-
Controller class.

b) the same design role can be assigned to a class using different levels of inheritance
in the same hierarchy of classes. For instance, in Android applications, a class that
extends the Activity superclass plays the Activity design role. Consider that the
name of this class is PreferenceActivity. In addition, classes that extend the class
PreferenceActivity also play the Activity design role.

c) the same design role may follow different naming patterns, usually related to used
design patterns or frameworks. For instance, Repository and DAO (Data Access
Object) are two common design patterns used to implement the Persistence design
role. Superclasses or interfaces defining this design role usually have the keywords
“DAO” or “Repository” in their names.

4.2 PROPOSED HEURISTIC

Based on previous assumptions, we propose a keyword-based heuristic to assign design
roles to classes. Figure 4.1 illustrates a high-level overview of the proposed heuristic six
steps.

Step 1: Preparing the table of keywords and corresponding predefined
design roles. The heuristic receives as input a table that associates keywords with
corresponding design roles. We call the design roles in this table as predefined design
roles. Predefined design roles are design roles that, based on our previous knowledge of
the domain, we know are present in a system, and also we know keywords related to them.
Step 1 of Figure 4.1 shows examples of keywords and their corresponding design roles.
For instance, classes implementing interfaces that contain keywords such as “Repository”,
“DAO”, or “Storage” in their names usually play the Persistence design role. Based on
the analysis of the three studied domains and our previous experience as developers of
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systems based on them, we built Table 4.1 that shows all keywords and predefined design
roles. This table can be reused as it is or refined before starting the next steps, which
are, in fact, the automatic ones. It is essential to note that the predefined design roles
are not the only ones assigned to classes in the following steps. The heuristic discovers
other non-predefined design roles during the process.

Step 2: Assigning design roles by means of annotations. Some architectures
use class annotations to define the design role a class plays. For example, in MVC-based
systems, developers use the @Service annotation to define that a class implements the
Service design role. However, class annotations can be placed with other goals. For
instance, the @deprecated annotation is used to indicate a deprecated class. For this
reason, our heuristic considers class annotation to assign a design role to a class only if
the annotation is included in the set of keywords defined in Step 1.

Step 3: Assigning design roles by means of inheritance: This step only applies
for classes without a design role assigned to them in the previous step. It assigns to a class
the design role associated with the superclass’s name at the top of the inheritance tree
where that class is. This step considers two possibilities. The first possibility holds if the
superclass’s name contains a keyword that matches with a keyword in the table defined
in Step 1. In this case, the heuristic selects the corresponding predefined design role
to assign to all subclasses. For instance, suppose a superclass called AbstractController
with different levels of subclasses. Moreover, suppose that “Controller” is a keyword
corresponding to the Controller predefined design role (Step 1). All direct or indirect
subclasses of AbstractController would have the Controller design role assign to them.
When there is no keyword matching with the superclass’s name, the second possibility
holds: our heuristic creates a new design role (non-predefined) named after the superclass
and associates it to its subclasses. According to the example, this step would create an
AbstractController design role. This step does not consider Java platform classes as
superclasses.

Step 4: Assigning design roles by means of implemented interfaces: Again
this step applies only for classes without a design role assigned to them in the previ-
ous steps. It considers that classes implementing the same set of interfaces should be
grouped in the same design role, as each possible set of interfaces can assign different
responsibilities to a class. Again, there are two possibilities. First, if at least one of the
interfaces contains a keyword that corresponds to a predefined design role (Step 1), then
the predefined design role is assigned to all classes implementing the set of interfaces.
On the other hand, if there is no keyword matching with any interface’s name, this step
creates a new design role and names it by using the names of the implemented interfaces
separated by a comma and bounded by square brackets. For instance, this step assigns
the design role named [IRepository, Comparable] to classes that implement IRepository
and Comparable.

Step 5: Assigning the Entity design role: When the previous steps fail to
identify a class’ design role, this step applies. It assigns the Entity design role to classes
with non-static attributes and with at least 90% of its methods starting with “get” or
“set”. These classes are responsible for encapsulating business models, including rules,
data, relationships, and sometimes persistence behavior. We can adjust this percentage
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Figure 4.2: High-level Architecture of the Design RoleMiner Tool

according to the evaluated system.

Step 6: Assigning the Undefined design role: When all previous steps fail to
define a class’ design role, the heuristic assigns to it a general design role called Undefined.
This step is performed when the class does not contain any structural elements that allow
the heuristic to associate other design roles. For instance, the Undefined design role is
usually assigned to utility classes because they generally do not use structural elements
like inheritance or annotations. Classes with the Undefined design role are classes our
heuristic could not cover. In Section 5.4 we discuss how our heuristic increases the number
of covered classes compared to previous works. We also make some suggestions for future
works that might reduce the number of Undefined classes.

To support the proposed heuristic, we developed a tool called DesignRoleMiner1.
Figure 4.2 illustrates the high level architecture of the tool that extends the MetricMiner
tool (SOKOL et al., 2013). The proposed tool identifies all the design roles played by
classes in a software project. In (1), the tool receives the project files of the evaluated
software. In (2), the tool uses the keywords table to define predefined design roles.
Finally, in (3), the tool generates a file containing the list of classes and the design role
assigned by the heuristic to each class. Also, the tool calculates the method-level metrics
used in our empirical studies.

4.3 EVALUATION

We try to carry out an initial evaluation of the proposed heuristic with the 15 open-source
systems selected for our study on metric distributions discussed in Chapter 5. We sent
the heuristic results to four active developers of each system (60 requests). We sent two
e-mails for each selected developer containing a short message explaining the purpose of
the research, a form listing the design roles assigned to each class and asking them to say

1https://github.com/marcosdosea/DesignRoleMiner
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it they agreed or not with the design role of each class. However, after 90 days, only two
developers replied saying they would answer the survey, but we never did that. For this
reason and convenience, we perform evaluations of the proposed heuristic in two software
development organizations with easy access to conduct proposed evaluations.

4.3.1 Evaluation with Single Developers

We carried out a first evaluation of the heuristic and tool with single developers. The
first evaluation involved five developers and five governmental Web systems of a Secretary
of State Treasury. Due to confidentiality reasons, we did not make the data from these
systems available. We selected this organization for convenience because the author of
this thesis had already worked there.

Study Settings We invited 40 developers to take part in the evaluation. They are
the most experienced of their development teams. Five developers of the organization
accepted the invitation. Each developer evaluated the results of the heuristic for only
one system, the one he led. Each developer received a worksheet with the design role
identification results generated by DesignRoleMiner. Each row of the worksheet included:
class name, the design role the heuristic assigned to the class, and a field for the developer
to answer if he agreed or not with the assignment. Each developer did that for all the
system classes, except for classes the heuristic classified as Undefined.

We used the default table of keywords available at DesignRoleMiner to determine the
predefined design roles. Table 4.1 shows all keywords and predefined design roles. The
keywords available in this table are based on the authors’ experience and are usually
found on systems architecture based on Web, Android, and Eclipse plugins. If necessary,
we can configure it to fit the systems’ architecture evaluated.

Results and Discussion The five developers of the organization that accepted the
invitation have at least 12 years of experience as software developers and ten years working
with Java. Besides, each of them is the most experienced and leading developer of one
of the five systems. They have been leading maintenance and evolution tasks concerning
the systems’ design for at least five years. Here we call the systems as S1, S2, S3, S4, and
S5. They have 47, 70, 99, 181, and 808 classes, respectively.

Each developer evaluated the design role assignment of one system. They took be-
tween 30 to 120 minutes to finish it. The number of classes of each system influenced
the time each developer spent conducting the analysis. For instance, the analysis of S5,
which is the largest system, required the longest time. During the evaluation, the devel-
opers had access to the source code of the system. They checked the source code of some
classes, but they did not find it necessary for every class.

The developers agreed with the design role the heuristic assign to 1039 classes, which
represents 86.2% of the total number of classes (1205 classes). On the other hand, accord-
ing to them, the heuristic failed only for 15 classes (1.2%). The other 12.5% of the classes
(151 classes) received the Undefined design role. Figure 4.3 shows the results per system.
All the 15 misclassified classes belong to the system S5. Some misclassification occurred
due to programmer mistakes in the use of the enterprise architecture. For instance, some
classes were misclassified because they extended a class responsible for defining the ap-
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Table 4.1: Keywords and Proposed Predefined Design Roles

Keywords Predefined Design Role
comparable, parcelable, clonable ENTITY

content, asynctaskloader PERSISTENCE
controller CONTROLLER

model MODEL
service SERVICE

component COMPONENT
adapter ADAPTER

dialogfragment FRAGMENT
dialog, presentation DIALOG

activity ACTIVITY
fragment FRAGMENT

view, listener, layout, wizard, page VIEW
widget WIDGET

notification NOTIFICATION
action ACTION

thread, throwable, runnable, asynctask ASYNCTASK
exception EXCEPTION

test TEST

plication constants. Programmers use this approach, which is not recommended, as a
shortcut to access constants. Other errors could be avoided with adjustments in the
table of keywords.

The design roles assigned to the highest number of classes were: Transaction (67.14%),
Persistence (4.23%), Entity (5.98%), BackgroundProcess (3.40%) and Abas (2,07%).
Transaction is an implementation of the Command design pattern (GAMMA et al., 1993),
in which each action provided by the system is implemented in a class. This explains
the high number of Transaction classes. Most of the classes with the Undefined design
role are concerned with the application business logic. In fact, these classes did not use
annotations, inheritance or implement interfaces.

4.3.2 Evaluation with Pairs of Developers

We carried out a second evaluation that involved eight developers and four governmental
Web systems of the Federal University of Bahia. In addition to the previous evaluation,
we aimed to verify whether different system developers would confirm the same design
role proposed by the heuristic. For the same reasons of confidentiality, we did not make
the data obtained from these systems available. We also selected this organization for
convenience because a member of our research group work there.

Study Settings: We invited the two most experienced developers in each system to
take part in the study. Each developer evaluated the results of the heuristic for only
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Figure 4.3: Evaluation of the Proposed Design Roles by System

Table 4.2: New Keywords and Proposed Predefined Design Roles

Keywords Predefined Design Role
ManagedBean MBEAN
ActionForm FORM

DefaultValidatorTO, DefaultTO TO

one system, the one he had maintained. Similarly, each developer received a worksheet
with the design role identification results generated by DesignRoleMiner. Each row of
the worksheet included: class name, the design role the heuristic assigned to the class,
and a field for the developer to answer if he agreed or not with the assignment. Each
developer did that for all the system classes, except for classes the heuristic classified as
Undefined.

We conducted a preliminary adjustment of the keywords proposed in Table 4.1 with an
experienced developer of the team. This developer did not participate in the evaluation.
This adjustment is optional, but we recommend doing it at least once to adapt to the
evaluated systems. Table 4.2 shows the keywords added to the predefined design role
proposed in Table 4.1.

The keyword ManagedBean aims to identify Java Bean classes from the Java Server
Faces framework. These classes usually use the @ManagedBean annotation. The key-
word ActionForm ais to identify Java Bean classes from the Struts framework. These
classes usually extends the class org.apache.struts.action.ActionForm. Finally, Default-
ValidatorTO, DefaultTO are specific keywords to the enterprise architecture evaluated.
The inclusion of these tokens is not mandatory for the heuristic operation. However, its
inclusion aims to improve the accuracy to identify the class design role played by system
classes.

Results and Discussion Five developers had more than ten years of experience as soft-
ware developers, and three had at least five years of experience. Regarding the working
time in the evaluated project, six developers had more than five years working on the



52 HEURISTIC FOR IDENTIFYING DESIGN ROLES

project, and only two had less than a year. Each developer assessed the results of the
heuristic for only one system, the one he worked with. The two most experienced devel-
opers evaluated each system. Here we call the systems as S6, S7, S8, and S9. They have
158, 348, 457, and 949 classes, respectively.

Developers took between 30 to 60 minutes to finish it. The number of classes of
each system also influenced the time each developer spent conducting the analysis. As
classes follow a pattern of names, and developers work with these classes regularly, they
practically did not need to look out for the source code to confirm the association proposed
by the tool.

The developers agreed with the heuristic design role to 1724 classes, which represents
90.16% of the total number of classes (1912 classes). There was an agreement between
pairs of developers on 100% of the design role correctly assigned to classes. On the other
hand, according to them, the heuristic failed only for six classes (0.31%). We consider
that the proposed heuristic failed whenever at least one developer did not agree with the
design role assigned to the class. Interestingly, there was also agreement among developers
in four of the six identified failures. In five of the misclassified classes, developers did
not agree with the assigned design role’s name. For example, the MatriculaUtil class was
associated with Observable design role because it implements an interface with this same
name. However, developers disagreed with the name of the design role proposed by the
heuristic. They claim that the name of the design role should be Util. We could correct
these naming errors including a new keyword Observable to a predefined design role Util
they suggest.

One misclassification occurred due to programmer mistakes in the use of the enterprise
architecture. The developer make a business class implements an interface, but business
classes should not implement any interface of the systems. The proposed heuristic usually
assigned the business class to the Undefined design role because these classes did not
use annotations, inheritance, or implement interfaces. Finally, the other 9.51% of the
classes (182 classes) received the Undefined design role. Most of the classes assigned
to Undefined design role are business, utility, or constant classes. Figure 4.4 shows the
results per system.

The heuristic identified 11 distinct design roles in S6 and S8 systems, 13 in S9 system,
and 20 in S7 system. The design roles assigned to the highest number of classes were:
Transfer Object (31.7%), Action (19.1%), Persistence (12.8%), Entity (11.5%), Exception
(2.5%) and Test (2,1%). Transfer Object is a typical pattern in web applications, used
to pass data with multiple attributes in one shot from client to server. Actions are a core
design role in Struts-based Web applications. Each URL mapped a specific action, which
provides the processing logic to the requested service. This explains the high number of
these design roles in evaluated applications.

Although we need to perform a broader study to generalize these results, we know
that systems widely use the structural mechanisms used by the proposed heuristic.



4.4 IDENTIFYING SIMILAR SYSTEMS WITH DESIGN ROLES 53

Figure 4.4: Evaluation of the Proposed Design Roles by System

4.4 IDENTIFYING SIMILAR SYSTEMS WITH DESIGN ROLES

This section proposes an approach that uses the heuristic to identify the design role played
by each system class, detailed in Section 4.2, to select systems developed with similar
design decisions. We hypothesize that deriving metric thresholds from a benchmark of
systems developed with similar design decisions can improve metric thresholds accuracy.

Stable systems with recognized quality are used as design models to develop, maintain,
and ensure other systems’ quality developed with similar design decisions. For example,
considering a system developed in a layer architectural style and using the Hibernate
framework 2, it is common software developers to look for design solutions in other systems
developed with similar design decisions (e.g., architectural style, frameworks, and similar
libraries) (SINGER et al., 2010; MARINESCU, 2006). Identifying systems developed
with similar design decisions can also help to build benchmarks to derive metric thresholds
that consider the design context of classes (DÓSEA; SANT’ANNA; SILVA, 2018).

The similarity between code snippets to search for code examples and clone detection
is extensively explored in the literature (HOLMES; MURPHY, 2005; ROY; CORDY;
KOSCHKE, 2009; WU; MAR; JIAU, 2010). However, identifying design similarity be-
tween complete software systems is a topic still little explored. The search for systems
developed with similar design decisions can be even more challenging when we need to
perform this searching in large public systems repositories, such as, GitHub3, or even
enterprise repositories with many available systems.

In this context, this section proposes an approach to calculate the level of similarity
between systems. The approach uses an abstract representation of each system based on
the design roles assigned to its classes by the heuristic discussed in Section 4.2. The pro-
posed approach relies on the hypothesis that systems implemented with the same design
decision must have high similarity. To support the proposed heuristic, we developed a

2http://hibernate.org/orm/
3https://github.com/
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tool called SystemSimilarity4.
Also, we conducted an exploratory study applying the proposed approach to calculate

the similarity among 15 systems from three distinct architectural domains. We consider
that two systems belong to the same architectural domain when they run on the same
platform. The results show that the approach was able to identify the design similarity
between most systems of the same architectural domain.

Section 4.4.1 describes the proposed approach for calculating the similarity between
systems. Section 4.4.2 details the configuration of the exploratory study carried out to
evaluate the proposed approach. Section 4.4.3 presents the results and Section 4.4.4
discusses threats to validity. Section 4.4.5 presents the related works. Finally, Section
4.5 presents conclusions and future works.

4.4.1 Proposed Approach

The primary objective of the proposed approach is to find out systems developed with
similar design decisions. The method calculates the similarity between systems using
an abstract representation created for each system, based on the identified design roles
and the percentage of lines of code (LOC) associated with each design role. We aim
to evaluate if the LOC metric is enough to represent other design decisions. We have
this hypothesis because design decisions (e.g., architectural style, frameworks, and used
libraries) may impact the number of lines of code. The approach has four steps:

Step 1) Identify the design role of each system class: To perform this step we
use the DesignRoleMiner (DÓSEA; SANT’ANNA; SILVA, 2018) tool that implements the
heuristic to identify the design roles detailed in Section 4.2. The heuristic uses structural
information about inheritance, annotations, and implementation of interfaces to associate
a design role with each system class.

Step 2) Disregard design roles that do not describe the system design: When
the heuristic cannot identify the class design role, it associates a generic design role called
Undefined. Many systems, regardless of their architectural domain, have classes assigned
to the Undefined design role. We disregarded this design role because it would artificially
increase the similarity value between most systems. We also ignored the design role Test,
assigned to test classes, because this role does not compose the design of a system.

Step 3) Create the abstract representation of the system: The proposed
abstract representation describes each system as a vector that considers (i) the identified
design roles in each system and (ii) the percentage of source code associated with each
design role. For example, if half of the lines of code of the considered design roles is
assigned to Service design role, then we consider 50% weight for this design role in
the vector. We perform similar calculation for the other design roles. This abstract
representation allows comparing systems with different sizes. Additionally, it is intended
to evaluate if the percentage of lines of code is enough to represent other design decisions.
For example, the use of different libraries and coding style to implement the Persistence
design role in distinct systems can influence the percentage of code assigned to this role
in each system.

4https://github.com/marcosdosea/SystemSimilarity
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Figure 4.5: Level of Similarity computed by the Proposed Approach between Systems
Bitcoin Wallet and Talon for Twitter.

Step 4) Calculate the similarity between systems using their abstract rep-
resentations: We use the cosine measure to compare the similarity between the two
vectors that represent each system. The resulting value ranges from 0 to 1. The closer
to 1, the more similar systems are. We use the cosine measure because it is an effective
similarity measure used in applications for natural language processing and information
retrieval (WILKINSON; HINGSTON, 1991). It calculates the relevance of the tokens by
calculating the cosine between two vectors. In the proposed approach, we consider that
the tokens are the design roles and the percentage of lines of code associated with each
design role is the weight.

Figure 4.5 illustrates the approach using Android Bitcoin Wallet and Talon for Twitter
systems, presented in Section 5.1. Each system uses the proposed abstract representation,
which uses the identified design roles (step 1) and the percentage of lines of code assigned
with each design role (step 3). The representation removes the design roles Test and
Undefined (step 2). Finally, the proposed approach calculates the similarity using the
cosine function (step 4). The result (0.88) is very close to the value one, indicating that
the evaluated systems have high similarity in design decisions.

4.4.2 Study Settings

We conducted an exploratory study to evaluate whether the proposed approach for cal-
culating the similarity between systems, detailed in Section 4.4.1, is effective to identify
systems developed with similar design decisions. We have formulated the following re-
search question:

RQ: Is the proposed abstract representation able to detect the similarity between sys-
tems of the same architectural domain developed with similar design decisions?

The research question aims to evaluate quantitatively if systems of the same archi-
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Table 4.3: Target Systems Summary

BigBlueButton OpenMRS Heritrix Qalingo LibrePlan Bitcoin K-9 Mail Exoplayer SMS Backup Talon Activiti AngularJS Arduino DroolsJBPM Sonarlint

Web Applications

BigBlueButton 1.00 0.17 0.23 0.28 0.19 0.08 0.41 0.33 0.28 0.11 0.31 0.56 0.48 0.51 0.56
OpenMRS 0.17 1.00 0.10 0.37 0.34 0.10 0.24 0.29 0.31 0.08 0.06 0.07 0.07 0.13 0.08
Heritrix 0.23 0.10 1.00 0.48 0.28 0.03 0.15 0.10 0.10 0.01 0.06 0.05 0.05 0.07 0.05
Qalingo 0.28 0.37 0.48 1.00 0.64 0.11 0.18 0.15 0.18 0.06 0.14 0.01 0.03 0.08 0.03
LibrePlan 0.19 0.34 0.28 0.64 1.00 0.11 0.16 0.15 0.21 0.06 0.06 0.02 0.03 0.08 0.03

Android
Applicartions

Bitcoin 0.08 0.10 0.03 0.11 0.11 1.00 0.41 0.08 0.16 0.88 0.04 0.07 0.06 0.08 0.08
K9 Mail 0.41 0.24 0.15 0.18 0.16 0.41 1.00 0.04 0.65 0.53 0.15 0.33 0.25 0.32 0.33
Exoplayer 0.33 0.29 0.1 0.15 0.15 0.08 0.04 1.00 0.28 0.10 0.15 0.34 0.24 0.36 0.35
SMS Backup 0.28 0.31 0.10 0.18 0.21 0.16 0.65 0.28 1.00 0.03 0.03 0.03 0.03 0.09 0.04
Talon 0.11 0.08 0.01 0.06 0.06 0.88 0.53 0.10 0.30 1.00 0.03 0.08 0.07 0.08 0.10

Eclipse
Plugins

Acitiviti 0.31 0.06 0.06 0.14 0.06 0.04 0.15 0.15 0.03 0.03 1.00 0.42 0.38 0.47 0.40
AngularJS 0.56 0.07 0.05 0.01 0.02 0.07 0.33 0.34 0.03 0.08 0.42 1.00 0.77 0.74 0.89
Arduino 0.48 0.07 0.05 0.03 0.03 0.06 0.25 0.24 0.03 0.07 0.38 0.77 1.00 0.62 0.76
DroolsJBPM 0.51 0.13 0.07 0.07 0.08 0.08 0.32 0.36 0.09 0.08 0.47 0.74 0.62 1.00 0.74
Sonarlint 0.56 0.08 0.05 0.01 0.03 0.08 0.33 0.35 0.04 0.10 0.4 0.89 0.76 0.74 1.00

tectural domain always have high similarity using the proposed approach. We intend
to verify if the proposed abstract representation was enough to detect systems from the
same architectural domain. We evaluate the impact of class design roles and other design
decisions on the proposed similarity value.

Target Systems: Firstly, we searched on GitHub and selected fifteen real-world sys-
tems developed in Java from three distinct architectural domains: (i) Web Applications;
(ii) Mobile Applications for Android platform; and (iii) Eclipse plugins. We chose three
distinct domains implemented in the same language (Java) because application domain
and programming language are recognized factors that impacts the distribution of metrics
(ZHANG et al., 2013). The author of this thesis experience and knowledge on the selected
domains was also a requirement to allow the manual analysis of the code planned for our
empirical study. Moreover, the selected domains are popular in the software development
industry5 (mainly the first two) and follow well-defined reference architectures (MED-
VIDOVIC; TAYLOR, 2010), which is an essential requirement to apply the heuristic
proposed in Section 4.2.

To select the systems from GitHub we used the following search strings: “Eclipse
plugin language:java”, “android language:java” and “Web language:java”. We ordered
the resulting lists according to the number of repository forks. The goal was to select
systems with as many contributions as possible. Additionally, we excluded frameworks,
libraries, and systems not updated since January 2016. Frameworks and libraries are
out of scope of our study because they usually follow very particular design decisions
seldom shared with other systems. We also excluded systems with no release available
because we consider software versioning a premise to develop high-quality software. In
order to select widely used Android applications, we also only considered systems with
at least 1,000 reviewers and 1,000 downloads. This information is only available for
Android applications at Google Play store. Then, we selected the first five systems from
the resulting list of each domain. The sample corresponded to approximately 5% of the
resulting list of each domain. Finally, the criteria of selection excluded frameworks and
libraries because they rarely share design decisions with other systems.

Table 4.3 summarizes the main characteristics of the fifteen selected systems. The
#classes and #methods columns show the number of classes and methods in each system.
The selected systems have between 12 and 282 thousand lines of code (#LOC column)

5https://octoverse.github.com/
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Table 4.4: Similarity between Systems using the Proposed Approach

BigBlueButton OpenMRS Heritrix Qalingo LibrePlan Bitcoin K-9 Mail Exoplayer SMS Backup Talon Activiti AngularJS Arduino DroolsJBPM Sonarlint
BigBlueButton 1.00 0.17 0.23 0.28 0.19 0.08 0.41 0.33 0.28 0.11 0.31 0.56 0.48 0.51 0.56
OpenMRS 0.17 1.00 0.10 0.37 0.34 0.10 0.24 0.29 0.31 0.08 0.06 0.07 0.07 0.13 0.08
Heritrix 0.23 0.10 1.00 0.48 0.28 0.03 0.15 0.10 0.10 0.01 0.06 0.05 0.05 0.07 0.05
Qalingo 0.28 0.37 0.48 1.00 0.64 0.11 0.18 0.15 0.18 0.06 0.14 0.01 0.03 0.08 0.03
LibrePlan 0.19 0.34 0.28 0.64 1.00 0.11 0.16 0.15 0.21 0.06 0.06 0.02 0.03 0.08 0.03
Bitcoin 0.08 0.10 0.03 0.11 0.11 1.00 0.41 0.08 0.16 0.88 0.04 0.07 0.06 0.08 0.08
K9 Mail 0.41 0.24 0.15 0.18 0.16 0.41 1.00 0.04 0.65 0.53 0.15 0.33 0.25 0.32 0.33
Exoplayer 0.33 0.29 0.1 0.15 0.15 0.08 0.04 1.00 0.28 0.10 0.15 0.34 0.24 0.36 0.35
SMS Backup 0.28 0.31 0.10 0.18 0.21 0.16 0.65 0.28 1.00 0.03 0.03 0.03 0.03 0.09 0.04
Talon 0.11 0.08 0.01 0.06 0.06 0.88 0.53 0.10 0.30 1.00 0.03 0.08 0.07 0.08 0.10
Acitiviti 0.31 0.06 0.06 0.14 0.06 0.04 0.15 0.15 0.03 0.03 1.00 0.42 0.38 0.47 0.40
AngularJS 0.56 0.07 0.05 0.01 0.02 0.07 0.33 0.34 0.03 0.08 0.42 1.00 0.77 0.74 0.89
Arduino 0.48 0.07 0.05 0.03 0.03 0.06 0.25 0.24 0.03 0.07 0.38 0.77 1.00 0.62 0.76
DroolsJBPM 0.51 0.13 0.07 0.07 0.08 0.08 0.32 0.36 0.09 0.08 0.47 0.74 0.62 1.00 0.74
Sonarlint 0.56 0.08 0.05 0.01 0.03 0.08 0.33 0.35 0.04 0.10 0.4 0.89 0.76 0.74 1.00

and 08 and 224 contributors contributors (#contributors column). The #releases column
shows the number of stable releases available in each system. The last column shows
the commit date corresponding to the source code we used in our study. Finally, the
#design roles column shows the number of design roles identified by our heuristic (Section
4.2). For instance, SMS Backup+ system has six predefined design roles (eg. Activity
and Persistence), three non-predefined design roles (eg. BroadCastReceiver) and the
Undefined design role, totaling 10 design roles.

Study Procedures: To answer the research question (RQ), we calculate the similar-
ity between the 15 considered systems, totaling 105 similarity values. Then, we identified
the four most similar systems for each system, that is, with the highest values in the
proposed measure of similarity. Our goal was that the approach was able to indicate only
the four previously selected target systems that belong to the same architectural domain.
Also, the source code of the four most similar systems was manually analyzed to justify
the similarity value found. We aim to identify if the proposed abstract representation
was enough to represent other design decisions not considered by it, for example, used
libraries and coding style.

4.4.3 Results and Discussion

Table 4.4 shows the similarity values obtained using our proposed approach detailed in
Section 4.4.1. Each value in Table 4.4 is the resulted of the similarity calculation between
the systems that are in the row and the column, respectively. For example, the calculated
value of similarity between the K-9 Mail and Bitcoin Wallet systems is equal to 0.41. The
bold values highlight the four systems most similar to the system on the line. For example,
the four most similar systems to the LibrePlan system are OpenMRS, Heritrix, Qalingo,
and SMS Backup.

Our initial hypothesis was that systems associated with the same domain would have
high similarity value to each other. This similarity would occur because of the high
probability of systems assigned to the same domain use similar design decisions (e.g.,
design roles and libraries). The results obtained with the calculation of similarity and
manual evaluation of the source code showed that this does not always occur. Some
systems had low similarity values due to the use of design roles very different from those
generally used by systems of the same domain. Also, systems that do not associate class
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design roles through inheritance, interface, or annotations mechanisms can also generate
an unrepresentative abstract representation for the similarity calculation.

In the Web systems architectural domain, the Qalingo system obtained the highest
similarity values with the other four systems of the same domain. The Libreplan and
Heritrix systems obtained the highest similarity values with three systems of the domain.
The OpenMRS system with only two systems of the Web architectural domain. Service,
Entity, Component and Controller are design roles usually found and representative in
the Web domain. However, some systems obtained some of the highest similarity values
with systems of the Android domain due to some common design roles into both domains.
For example, the Android SMS Backup system was the fourth most similar system to
the LibrePlan Web system. Persistence and Service are design roles common to both
systems and that impacted the similarity calculation. However, in the LibrePlan system,
Persistence is implemented using the Hibernate framework, whereas, the Android SMS
Backup system uses Android persistence libraries. That is, we found the same design
role (Persistence) implemented with distinct design decisions on both systems. Finally,
the BigBlueButton system ended up not having high similarity neither with the systems
of the Web domain nor with systems of the Android domain. We investigate the source
code of this system and we noted that 45% of its classes did not have an associated design
role, creating an unrepresentative abstract representation of this system within the Web
domain.

In the Android domain, the systems Bitcoin, K-9 Mail, Talon for Twitter have three
systems of the same domain with the highest similarity value. The SMS Backup sys-
tem obtained high similarity with two systems of the same domain. Only the Exoplayer
system did not achieve high similarity with any Android system. The Exoplayer system
also had 56% of the classes assigned to Undefined and Test design roles. These design
roles are not considered to build the proposed abstract representation used in the calcu-
lation of similarity. In addition, Activity, Fragment, and Service design roles, which are
very common in Android systems, are unrepresentative in the Exoplayer system. Thus,
the similarity calculation was able to reflect the distinct design decisions of Exoplayer
compared to other evaluated Android systems.

Finally, in the plug-ins for Eclipse domain, we obtained the highest values of similar-
ity. We explain these values by the little variation of the design roles that can be used
to implement systems of this architetural domain. Design roles such as Action, Dialog,
Plugin and View are well representative in this domain. However, BigblueButton Web
system ended up having the highest similarity values with some Eclipse plug-ins due to
some design roles which are more common in Eclipse plug-ins (e.g., View, Action and Di-
alog). These design roles are implemented using distinct design decisions (e.g., libraries).
However, since the abstract representation does not consider this design decision, the
proposed approach found high similarity between these systems.

The proposed abstract representation identified the similarity of design decisions
among most systems in the same architectural domain. However, in some cases, the
approach calculated a high similarity between systems assigned to distinct architectural
domains. For example, the OpenMRS Web system achieved high similarity with two sys-
tems belonging to the Android domain (Exoplayer and SMS Backup) due to the common



4.4 IDENTIFYING SIMILAR SYSTEMS WITH DESIGN ROLES 59

use of some design roles. For example, Persistence, Service, Entity and View design roles
are common to both domains, but are usually implemented with distinct design decisions
in each domain. That is, in these cases, the approach found high similarity between sys-
tems that are implemented with distinct design decisions, although they have a similar
set of design roles.

In summary, the proposed approach to compute the similarity between systems re-
flected the design similarity usually found in systems of the same architectural domain.
It was also able to identify when the design decisions of a system were quite different from
other systems of the same architectural domain, for example, because it used different
design roles. Future work can evaluate whether considering other design decisions, for
example, the libraries used by each design role, would improve the representativeness of
proposed similarity values.

4.4.4 Threats to Validity

In this section we discuss the threats to the validity of the study and the actions that we
take to minimize them.

Construct validity: There is a possible threat related to the systems used to conduct
the study. The systems can be selected prioritizing the propose approach. To narrow
this bias, we applied well defined criteria to select systems from the GitHub repository.
Another threat was the choice of the measure of cosine similarity. Despite being one of
the most used measures of similarity, this study was exploratory and future works can
evaluate other measures of similarity..

Internal Validity: The main threat is related to the heuristic to identify the design
roles used to create the abstract representation of the system. However, the heuristic
has been used in other studies to identify design role with good precision (DÓSEA;
SANT’ANNA; SILVA, 2018). Despite the Undefined design role is not considered by the
proposed abstract representation, future improvements in the heuristic can also improve
the similarity calculation results.

External Validity: The results obtained are valid for the fifteen evaluated systems
and three domains. It is not suggested to generalize these results to other systems or
domains.

4.4.5 Related Works

Few studies consider the design similarity between systems. Tibermacine et al. (TIBER-
MACINE; TIBERMACINE; CHERIF, 2014) propose an approach to measure the sim-
ilarity of web services through their WSDL interfaces. The goal is to find the best
replacement for a Web Service when it fails. Al-msie’deen et al. (R.AL-MSIE’DEEN et
al., 2013) propose an approach to mining features by calculating lexical and structural
similarity. Our proposed approach is also based on the structural similarity of the identi-
fied design roles. However, our approach uses a higher level of abstraction (design roles)
that allows comparing the similarity between complete systems.

Nagappan et al. (NAGAPPAN; ZIMMERMANN; BIRD, 2013) propose an approach
to evaluate if the coverage a sample of systems is representative to conduct an experi-



60 HEURISTIC FOR IDENTIFYING DESIGN ROLES

ment. They suggest a systems similarity function based on numerical dimensions (e.g.,
the number of developers and lines of code) and categorical dimensions (e.g., main pro-
gramming language and domain). Our approach proposes a new numerical dimension of
similarity based on the identified design roles, not limiting to generic information about
the system.

4.5 SUMMARY

This chapter proposed a heuristic to assigned the design role played by each system class.
We also reported two evaluations of the proposed heuristic that we carried out in two
real-world software development environments. The heuristic assigned the design role
correctly to 86,2% of the classes in the first case study and 90.16% of the classes in
the second case study. Developers disagree with the design role assigned to 1.2% and
0.31%, respectively, of assigned design roles. Usually, the disagreements were problems
in the software architecture implementation or divergence in the assigned design role
nomenclature. The heuristic assigned Undefined design role, respectively, to 12.5% and
9.51% of the evaluated classes. In Chapter 5, we use these findings to investigate the
impact of design role on distribution or metric values. Our central hypothesis is that the
class design role is an important design decision to take into account to derive metric
thresholds.

We also propose an approach to calculate the similarity between systems using the
proposed heuristic to assigned design roles to system classes. Similar systems can be
used as a design model to develop and maintain other systems. We also can use them to
compose benchmarks used to extract metric thresholds to evaluate the software quality.
We perform an evaluation using 15 systems from three different domains, and the results
showed that the proposed approach was able to point out most systems developed with
similar design decisions. Although the approach identified some level of similarity between
systems from distinct architectural domains, this would not be its primary use since it
is usually not difficult to separate systems into a repository (e.g., GitHub) from distinct
architectural domains, for example, Android systems and Web systems. We aim to
use the proposed approach to point out systems developed with similar design decisions
assigned to the same architectural domain. We use these results to propose techniques,
in Chapter 6, that help to select systems developed with similar design decisions to
composing benchmarks to derive metric thresholds.

As future work, we intend to evaluate whether the design role assigned by the proposed
heuristic improves the comprehension of software design by software developers. We also
intend to conduct studies to assess whether the proposed similarity measure could detect
the distancing of the planned design during the software development process. Finally,
we intend to carry out studies using the design role assigned to classes to detect violations
of planned design or planned architecture.



Chapter

5
HOW DO DESIGN DECISIONS AFFECT THE

DISTRIBUTION OF SOFTWARE METRICS?

In this chapter, we carried out a study to investigate whether class design roles and other
fine-grained design decisions affect metrics distributions and, therefore, should be taken
into account when building benchmarks for metric-based analysis of source code. This
study aims to answer our second general research question:

RQ2: Are there statistical significant differences between measures obtained
from classes developed with different design decisions?

To answer this research question, we conducted an empirical study analyzing the
source code of fifteen real-world open-source systems from three distinct architectural
domains (Eclipse plugins, Android Applications and Web-based Systems). Over the se-
lected systems, we compute four metrics commonly used to assess method maintainability
and then we evaluate the effect of design decisions on their distributions. We analyze
the distributions over class methods grouped according to what we call as design roles,
discussed in Chapter 4. Design roles include architectural roles, but also include classes
whose responsibility is application-specific and not bound to any particular reference
architecture.

Our investigation has three main perspectives. First, we investigate whether metrics
distributions vary between different design roles of the same system. Second, we compare
the metrics distributions of classes from different systems but having the same design
role. Our goal here is to verify whether other design decisions, besides the design role,
also affect metrics distributions. Finally, we compare metrics distributions of classes from
the same design role but over different stable releases of the same system. Since releases
of the same system tend to comprise the same design decisions, our hypothesis here is
that the distributions would not vary significantly. We summarize our findings as follows:

• We found that different design roles from the same system drive different metrics
distributions. These findings extend the results obtained by Aniche et al., which
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considers only architectural roles. Using the design role concept (our approach)
increases the number of classes that could be covered and assessed, for instance, by
different thresholds.

• We then investigated whether the distribution of metric values of the same design
role were similar across different systems of the same domain. If this occurs, we
should consider building benchmarks with different systems that have similar sets
of design roles. However, we found that the same design role (e.g. Persistence)
can drive different distributions of software measures in different systems. Then,
we conducted a manual and deep source code analysis to identify what design
decisions made such distributions different.

• Finally, we investigated if the distribution of metric values of the same design role
were similar across different releases of a system. If this occurs, we should consider
building benchmarks with previous releases that underwent quality review. The
results we obtained show that in most of the cases the same design role in a system
did not vary significantly throughout different releases.

The remainder of this chapter is organized as follows. Section 5.1 describes the settings
of our empirical study to identify the impact of design decisions on the distribution of
metrics. Section 5.2 presents the results of the study. Section 5.3 discusses threats to
validity and Section 5.4 discusses related work. Finally, Section 5.5 summarizes the results
and discusses implications of our research.

5.1 STUDY SETTINGS

Our main hypothesis is that design role, proposed in Chapter 4, is an important design
decision that may impact on the distribution of metric values. Therefore, this study takes
into account the design role of every class of the analyzed systems. The main goal of
this study is to evaluate the impact of fine-grained design decisions over distribution of
metric values in systems of the following domains: Web, Android and Eclipse Plugins. A
high impact may suggest that we should not overlook fine-grained design decisions when
building metric-based benchmarks for assessing source code quality. For this purpose, we
conceived the following research questions (RQs) to guide our study.

RQ1 Is there a significant difference in the distribution of metric values of different design
roles in the same system

RQ2 Is there a significant difference in the distribution of metric values of the same
design role across different systems of the same domain?

RQ3 Is there a significant difference among metric distributions of the same design role
across different releases of the same system?

Through RQ1, we aim to investigate whether design role is a design decision that
affects metric distributions. With RQ2, our goal is to evaluate whether other design
decisions, besides design roles, also influence the distribution of metrics values. Finally,
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through RQ3, we aimed to verify whether there are decisions along the releases of each
system that change the design in a way that significantly impact metrics values. The goal
with RQ3 is also verifying whether previous stable releases of the same system would be
good candidates to compose benchmarks. In some cases, modules of a previous version,
implemented or reviewed by a senior and experienced developer, for instance, may be the
only source of design decisions developers consider that fit to their context. To answer
these research questions we designed a study composed of three major steps described in
the following subsections.

5.1.1 Selecting Target Systems

We used the same criteria and systems discussed in Section 4.4. The main characteristics
of the fifteen selected systems are detailed in Table 4.3.

Design roles are usually domain-specific. For instance, Activity is a design role typ-
ically found only in Android applications. Some design roles are typically found in all
systems of a domain. For instance, Fragment and Service are common in Android ap-
plications. However, each system is a unique design solution and normally has some
particular design roles. For instance, Exoplayer has the Buffer and SimpleDecoder de-
sign roles for manipulation of audio files. These design roles are hardly found in other
Android systems. This situation illustrates why the number of design roles are distinct
even among applications of the same domain.

Compared to previous works (see Section 5.4), our heuristic improved the number of
covered classes, i.e. classes the heuristic was able to assign a design role different of the
Undefined one. In fact, our heuristic works better for systems whose classes are struc-
turally bound to a reference architecture. The higher is the number of classes structurally
bound to the reference architecture, the smaller is the number of classes associated to the
Undefined design role. This is the reason for the differences on the number of Undefined
classes among the systems. For example, the Qalingo system has only 5.6% of its classes
associated with the Undefined design role. However, the SMSBackup system has 40.5%
of its classes as Undefined. In Section 5.4, we detailed our plan to conduct future studies
to further reduce the number of classes assigned to the Undefined design role.

5.1.2 Design Role Identification and Metric Computation

In this step, we used our heuristic (Section 4.2) for identifying and automatically assigning
a design role to each class of the fifteen systems. We used the DesignRoleMiner to do that
as well as to compute method-level metrics. We use Table 4.1 of keywords to assigned
predefined design role. It is important to highlight that classes are grouped by design
roles. As a consequence, methods are grouped by their classes’ design roles. Therefore,
each design role constitutes a sample of method-level metric values. Our study considered
the following four metrics:

• McCabe’s Cyclomatic Complexity (CC) (MCCABE, 1976): It counts num-
ber of branching points of each method.
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• Number of Method Parameters (NMP) (FOWLER; BECK, 1999): It
counts the number of parameters of each method.

• Lines of Code (LOC) (LANZA; MARINESCU, 2006): It counts the number
of executable statements of each method, excluding comments and blank lines.

• Efferent Coupling (EC) (MARTIN, 1995): It counts the number of classes
from which each method calls methods or accesses attributes.

We selected these method-level metrics because we can manually compute them with-
out tool support. This criterion is essential for conducting the manual analysis planned
for our study and identifying the factors that impact on the distribution of metrics. Also,
these metrics are available in many tools (PAIVA et al., 2017) and have been successfully
used for fault-proneness prediction(FONTANA et al., 2013; GIL; LALOUCHE, 2017;
BOUCHER; BADRI, 2018), for instance.

5.1.3 Comparing Distributions of Metric Values

In this step, we compare the distribution of values of each metric according to the following
configuration: (i) to answer RQ1, we compare different design roles within each system,
(ii) to answer RQ2, we compare the same design role across different systems, and (iii)
to answer RQ3, we compare the same design role across releases of each system.

To do that, we initially apply the Kruskal-Wallis test (SHESKIN, 2007) using the
5% significance level (i.e. p-value < 0.05). Kruskal-Wallis is a non-parametric statistical
test used to evaluate whether three or more samples have similar distribution of values.
When the null hypothesis is rejected, the test indicates that at least one of the samples
has distribution of values different to the others. However, it does not indicate what is
that sample.

Therefore, if Kruskal-Wallis test rejects the null hypothesis, we additionally apply a
multiple comparison procedure to identify pairs of samples with significant differences us-
ing the Mann-Whitney U test with 5% confident level and Bonferroni correction (MANN;
WHITNEY, 1947). The result of this procedure is a table ordered according to the dis-
tance between samples. In this way, the first and the last rows of the table contain the
most distant samples.

Finally we apply Cliff’s δ (CLIFF, 1993) to quantify the importance of the difference
between distribution values of pairs of samples. To avoid excessive comparisons, we only
compare the most distant samples. This is enough to verify whether there are at least
two groups of methods that has distinct distribution of metric values. We use Romano
et al. (ROMANO et al., 2006) approach to interpret the effect size based on Cliff’s δ.
Supposing δ as effect size, ranging from -1 to 1, | δ |<0.147 means negligible effect,
| δ |<0.33 means small effect, | δ |<0.474 means medium effect, and | δ |>=0.474 means
large effect. Cohen (COHEN, 1992) states that a small effect size is noticeably smaller
than medium but not so small as to be trivial, a medium effect size represents an effect
likely to be visible to the naked eye of a careful observer, while large effect is noticeably
larger than medium.
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Therefore, we decided to use small, medium and large effect sizes to consider that two
samples of methods should be manually analyzed. Effect sizes must be judged according
to the context and even small effects might be of practical importance (KAMPENES et
al., 2007).

5.2 RESULTS AND DISCUSSION

In this section, we report and discuss the main findings of our study guided by each
research question.

RQ1: Is there a significant difference in the distribution of metric values of different
design roles in the same system?

Motivation: If design roles affect the distribution of metric values, we should consider
taking them into account when building metric-based benchmarks.

Method: To examine the overall impact of design roles on each metric and system,
we test the following null hypothesis.

H 01: there is no difference in the distributions of metric values among all design roles
in the same system.

For each system, we execute the steps described in Section 5.1.3 four times, one for
each metric. If, using Cliff’s δ, we find a large, medium or small difference between the
most distant design roles, this means that, for the analyzed system and metric, there
are at least two design roles with significantly different metric distributions. So, we can
answer “yes” to RQ1. Our website provides R scripts for replication purposes.

Findings: All 60 executions of the Kruskal-Wallis test (four metrics times fifteen
systems) reject the null hypothesis (H 01). This means that at least one design role has
distribution of values distinct from the others. In addition, when comparing the two most
distant pairs of design roles, we obtained Cliff’s δ corresponding to large effect size for
57 of the 60 combinations of metrics and systems (95%). For the other 3 combinations
(5%), we obtained Cliff’s δ corresponding to medium effect size. These results mean that
for all systems and metrics there are significant differences between the distributions of
metric values of at least two design roles.

Most of the design roles compared with Cliff’s δ comprise more than 15 methods.
Therefore, we consider them as representative. For the Android application domain,
85% of the design roles taken into account have from 15 to 958 methods. For the Web
application domain, 84.6% have between 25 to 4088 methods. Finally, for the Eclipse
Plugin domain, 79.1% have from 15 and 223 methods.

Figure 5.1 illustrates some differences between the distributions of values of design
roles from the K-9 Mail Android application. It shows four graphs with three box plots
each. Each graph is about one of the four metrics. The box plots on the ends of each
graph correspond to design roles with distribution largely different from each other (large
effect size). The box plot on the middle shows the distribution of values of a design role
with medium or small difference to the other two (medium or small effect size.)

Regarding the LOC metric, Figure 5.1 shows BodyPart, Persistence and AsyncTask
design roles. BodyPart involves methods ranging from 3 to 6 lines of code. Entity and
Exception are other design roles (not shown in Figure 2) with similar distributions. In
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Figure 5.1: Distributions of Metrics of K-9 Mail System

fact, methods from these design roles have a low number of lines of code because they
are usually only responsible for encapsulating data. In the Persistence and AsynkTask
design roles, methods have maximum value of 21 and 53 lines of code, respectively.
In fact, classes assigned to AsynkTask are responsible for more complex tasks, such as
automatically updating mail folders.

Figure 5.1 shows the Entity, Fragment and Transport design roles to illustrate differ-
ences regarding the CC metric. These three design roles present, respectively, 3, 6 and
11 as CC maximum value. In fact, implementing domain entities (Entity design role) is
quite simpler than implementing message transport following security protocols (Trans-
port design role). Using the same threshold for assessing methods of both design roles
might lead to false negatives or false positives.

Regarding the efferent coupling metric, the maximum values obtained for the three
design roles shown in Figure 5.1 are 4, 7, 14, respectively. Methods associated to the
Notification design role have higher efferent coupling because they call other parts of
the mobile device to notify changes in the email box state. Finally, regarding number
of parameters, Figure 5.1 shows design roles with 0, 2 and 6 as maximum values. The
methods associated to the Test design role, for instance, have a very low number of
parameters because each method usually is responsible to test only one method. Methods
associated with AsyncTask design role have more parameters because they implement
application business logic, which requires more information as input parameters.

Another interesting point, is that we noticed a large number of outliers in the Un-
defined design role. An outlier is an observation that appears to deviate from other
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observations in a sample. This finding is expected because, in fact, the Undefined design
role ends up accommodating classes for which our heuristic was not able to identify a
design role using syntactic structures. Classes associated with Undefined design role are
more likely to be developed following distinct design decisions.

In summary, the significant differences we observed on metric distributions of distinct
design roles, allow us to answer RQ1 as follows:

Design roles affect the distribution of metric values. Therefore, we should con-
sider taking design roles into account when using benchmarks for metric-based
source code analysis.

RQ2: Is there a significant difference in the distribution of metric values of the same
design role across different systems of the same domain?

Motivation: In RQ1, we found that design roles affect metric distributions. However,
can we group together classes of the same design role but from different systems when
building benchmarks? Or do different systems have other design decisions for the same
design role that make metric distributions distinctive for different systems?

Method: To address RQ2, we test the following null hypothesis.
H 02: there is no difference among distributions of metric values of the same design

role across systems of the same domain.
For that, we only took into account design roles present in at least two systems of the

same domain. We restrict the comparison among systems of the same domain, because
systems of different domains barely have design roles in common developed with similar
design decisions. We compared the distributions of the same design role in different
systems. For each design role, we execute the steps described in Section 5.1.3 four times,
one for each metric. If, using Cliff’s δ, we find a large, medium or small difference between
the most distant systems, this means that, for that design role and metric, there are at
least two systems with significantly different metric distributions. When this occurs, we
manually investigate the source code, identifying if any design decision, in particular, is
responsible for that difference. Initially, we create two sets of classes associated with the
same design role, one for each distinct system evaluated. We then compare the methods
of each set with similar goals. For example, we observe methods that aim to insert
data in the database, assigned to the Service design role in both systems. However, the
exception handle mechanisms were used in only one of the evaluated sets of methods. As
exception handling is a design decision that impacts evaluated metrics, we consider it on
our evaluation.

Findings: For Android applications, we evaluated 10 predefined design roles (eg.
Activity and Service) and one non-predefined (BroadcastReceiver). For the Eclipse plu-
gins domain, we considered nine predefined design roles (eg. Dialog and View) and
nine non-predefined (eg. Plugin and AbstractHandler). Finally, for the Web application
domain, we analyzed 11 predefined design roles (eg. View and Persistence) and five
non-predefined (eg. Validator and DispatcherServlet). Also, we examined the Undefined
design roles for the three domains. In total, we analyzed 46 design roles (the Undefined
design role counts three times, one for each domain). Some design roles are present on all
five systems of the domain. For instance, this is the case of the Activity and Persistence
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Table 5.1: Cliff’s δ Interpretation

Effect LOC CC EC NMP
Large 02 01 09 09
Medium 12 05 11 05
Small 16 14 09 10
Negligible 02 04 03 03

design roles in the Android domain. Other design roles are present in some of the sys-
tems. For example, BroadCastReceiver is present in only three systems of the Android
domain.

For each design role, we executed the statistical tests four times, one for each metric,
totaling 192 tests (48 times 4). The null hypothesis (H 02) was rejected in 115 of the
192 tests. For these cases, we applied the multiple comparison procedure and the Cliff’s
δ to quantify the size of the difference between the two systems with highest difference
among the samples. Table 5.1 summarizes the Cliff’s δ results. It shows, for each metric,
the number of design roles per effect size found. For instance, for the EC metric, we
found large effect size for nine design roles and medium effect size for eleven design roles.
The full table with individual results for each design role and metric is available on our
website. Then, we manually analyzed the source code of all design roles for which we
found small, medium or large effect sizes. The goal was to find out which design decisions
contributed to the difference between the systems. In the following subsection, we discuss
the design decisions we identified. In some cases, more than one of them contribute to
the difference regarding the same design role.

A. Used Libraries: We found the use of distinct libraries as one design decision that
makes metric distributions of the same design role significantly different when comparing
different systems. The Persistence design role is a clear example of this. We identified the
use of distinct persistence mechanisms or libraries across systems of the three domains.
This affected the distributions of the metrics in the three domains. In the Android
application domain, for instance, we found medium effect size for LOC and EC and large
effect size for NMP when comparing the Persistence design role of Bitcoin Wallet and
SMS Backup+. The Bitcoin Wallet application uses both the ContentProvider Android
native library and SQLiteDatabase to share and persist data, respectively. We observed
that 90% of the Persistence methods in Bitcoin Wallet range from 3 to 29 lines of code.
On the other hand, the SMS Backup+ only uses native Android libraries to open, read,
and store SMS and MMS messages. This mechanism is simpler because it does not use
database libraries. Then, we observed that 90% of the Persistence methods in SMS
Backup+ range from 2 to 11 lines of code. Another example of the use of different
libraries occurs with the Test design role. For instance, we found medium effect size for
LOC and EC metrics when comparing the LibrePlan and BigBlueButton systems. The
former uses libraries for implementing integration test while the latter uses libraries for
unit testing. Implementing unit tests is usually simpler than implementing integration
tests.

In Web domain we also calculated MEDIUM effect size to the LOC, EC and NMP
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metrics in the Persistence design role between Qalingo e Heritrix applications. Qalingo
uses Hibernate libraries to perform persistence and Heritrix uses libraries to perform
persistence in Apache Hbase, a distributed database to big data store. In Qalingo appli-
cation 90% of the methods ranging from 3 to 18 lines of code. In Heritrix we have 90% of
the methods ranging from 2 to 12 lines of code. The small difference is explained by the
simple way to manipulate big data in Heritrix application. It could be complex in a large
Web application, making more evident differences in the distribution of metric values.

B. Coding Style: We also identified coding style as a design decision that affected
the distribution of metric values. For instance, we found medium effect size for the EC
and LOC metrics when comparing the Persistence design role of Qalingo and OpenMRS
Web applications. Both systems use the Hibernate framework to implement persistence.
However, developers of Qalingo decided to use the Criteria mechanism, a type-safe way to
express queries in Hibernate. Although some methods in OpenMRS also use the Criteria
mechanism, most methods use Hibernate Query Language (HQL), a non-type-safe way
to express queries. Both mechanisms are common in systems using Hibernate, but source
code using HQL usually needs fewer lines of code and uses fewer external classes. These
results complement the study of Higo et al. (HIGO; KUSUMOTO, 2017) that reports
the effect of coding style on the LOC metric.

C. Exception Handling, Logging and Debugging Code: We also observed
cases in which decisions related to Exception Handling, Logging or Debugging affected
metric distributions. For instance, we found medium effect size for the EC metric when
comparing the Service design role of Bitcoin Wallet and SMS Backup+ Android appli-
cations. Methods in Bitcoin Wallet contain try-catch blocks to handle exceptions, while
most of SMS Backup+ methods throw exceptions rather than handle them. The efferent
coupling is higher in Bitcoin Wallet methods due to references to other classes within
catch blocks.

Regarding Logging and Debugging, we found significant differences of EC and LOC
when comparing the Service design role of K-9 Mail and SMS Backup+. This occurs due
to code snippets used to log actions when the application is executed in debug mode.
This is a common mechanism developers use to debug Android applications. However,
in K-9 Mail developers placed this logging code in Service methods, while SMS Backup+
developers placed it in methods related to the Activity design role, causing differences
on metric distributions. Listing 5.1 illustrates part of a method from K-9 Mail that logs
debugging data.

Listing 5.1: Debug Code in K-9 Mail system.
1 if (K9.DEBUG) {

2 Log.i(K9.LOG_TAG , "Notification dismissed");

3 }

In summary, the significant differences we observed on metric distributions when
comparing design roles common to different systems, allow us to answer RQ2 as follows:
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Design decisions related to a design role may make metric distributions for this
design role different in distinct systems. We found that used libraries, coding
style, exception handling, logging, and debugging code are design decisions that
may impact the distribution of method-level metrics. Therefore, we should be
aware of these design decisions, not only design roles, when building tools and
benchmarks for metric-based source code analysis.

RQ3: Is there a significant difference among metric distributions of the same design
role across different releases of the same system?

Motivation: In RQ2, we found that different systems may have different metric
distributions for the same design role due to different design decisions. This means that
only considering design roles to group classes when building or using benchmarks with
different systems may not be enough to have accurate metric-based source code analysis.

A possible alternative is to use previous system releases as a benchmark. Evidently,
the idea is to use well designed releases or releases that underwent source code quality
review. Following this idea, it is important to investigate if there are design decisions
along system releases that change the design in a way that significantly affect metric
values.

Method: To address RQ3, we test the following null hypothesis.

H 03: there is no difference on the distribution of metric values of the same design
role across different releases of the same system.

For that, we decided to compare the release considered in the investigation of RQ1
and RQ2 with the three most recent preceding releases. We did that for each system.
We did not make an exhaustive analysis of all releases because very old releases are likely
to be very different from recent ones. All releases we used in our study are available
on our website. We also decided to only consider design roles with variation on the
number of lines of code higher than 1% between at least two of the analyzed releases.
Variations smaller than 1% of LOC hardly imply differences on the distribution of metric
values. Finally, for each design role, we executed the steps described in Section 5.1.3 four
times, one for each metric. If, using Cliff’s δ, we find a large, medium or small difference
between the most distant releases, this means that, for that design role and metric, there
are at least two releases with significantly different metric distributions. In this case, we
manually investigate the source code to identify the reasons behind the difference.

Findings: For the Android application domain, we evaluated 36 design roles. Thus,
considering the four studied metrics, we executed 144 Kruskal-Wallis tests (36 times 4).
The null hypothesis (H 03) was only rejected in 11 tests. For these 11 pairs of design role
and metric, we performed the multiple comparison procedure and calculated the effect
size between the most distant releases. The effect size was negligible in 10 tests. Only
EC metric for the Persistence design role presented small effect size. The reason was that
the persistence mechanism underwent some refactoring changes along the releases, such
as the extract class refactoring.

For the Eclipse Plugins, we evaluated 51 design roles. We performed 204 Kruskal-
Wallis tests (51 times 4), one for each metric. The null hypothesis H 03 was only rejected
in 7 tests. Then, we obtained negligible effect size for five of these seven pairs of design role
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and metric. Only two of them presented small effect size. This occurred for the Trackable
design role in Sonarlint and the LOC metric due to some simpler classes created from one
release to the other within this design role. Similar reason affected the NOP metric for
the Undefined design role. Some new simpler methods were also created and associated
to this design role.

Finally, for Web Applications, we evaluated 59 design roles and executed the Kruskal-
Wallis test for each metric, totaling 236 tests (59 times 4). The null hypothesis H03 was
only rejected in 31 tests. We calculated the effect size using Cliff’s δ and found six cases
with small effect size and four cases with medium effect size. Three cases of small effect
size involved the LOC, CC and EC metrics and the Entity design role in the OpenMRS
system. The differences occurred because the developers decided to exchange the library
for generating reports. The other three cases of small effect size involved LOC, CC and
EC and the View design role in the OpenMRS system. In this case, the developers also
decided to use a simpler library for implementing entity searches. Cases of medium effect
size also occurred due to changes of libraries. For instance, developers of BigBlueButton
modified the MessageHandler design role to change the message handling mechanism,
which affects the distribution of EC from one release to the other. Also, developers of
the Libreplan system decided to use a different library to deal with time, which affects
the distribution of NOP of the TimeTrackerState design role.

In summary, we only observed very few cases of significant differences on metric
distributions when comparing design roles across different releases. This allow us to
answer RQ3 as follows:

Differences on the distribution of metrics across different stable releases may not
be frequent. Therefore, we should consider taking previous releases into account
when building benchmarks for metric-based source code analysis.

5.3 THREATS TO VALIDITY

This section discusses the threats to validity of our study following common guidelines
(KITCHENHAM et al., 2006).

Internal validity. There might be a threat associated with the correctness of the
tool we used to calculate metrics and identify design roles. DesignRoleMiner extends
the MetricMiner tool (SOKOL et al., 2013), which was already used in other studies
(ANICHE, 2015; ROZENBERG et al., 2016). Also, we manually checked many metric
values and identified design roles. Moreover, we evaluated our tool and heuristic for design
role identification by means of a study with developers and Web-based governmental
systems, as described in Section 4.2. Other possible threat is that some classes may
accommodate more than one design role, but we assign only the most prominent design
role according to our proposed heuristic. Although this overlapping of responsibilities is
not considered adequate in object-oriented systems (BOOCH, 1986), future studies could
assess the impact of having classes with multiple design roles and their effect on metric
distribution.

Construction validity. There is a possible threat related to metrics we selected for our
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study. The selected method-level metrics cover important aspects of source code quality
and are widely used for software fault prediction (CATAL; DIRI, 2009; GIGER et al.,
2012). Errors in calculating metrics may also occur (ALVES; YPMA; VISSER, 2010).
However, these errors are usually small and to minimize these interferences we use the
Kruskal-Wallis and Cliff’s δ statistical tests.

External validity. Some of the findings might be specific to the selected software
systems and domains assessed. To minimize this bias, we discussed in Section 5.1.1 some
well-defined and replicable criteria for selecting representative systems in each application
domain. Although other domains use similar mechanisms to implement the architecture,
we still intend to extend this investigation other systems and domains. We also do not
claim that the design decisions considered in this study are the only design decisions that
impact metric distributions. However, they were the most evident in the systems involved
in our study. Future studies with other systems may evidence new design decisions
impacting on the distribution of metric values. So, although we are restricted to the
systems and domains analyzed, this is an important step toward improving the accuracy
of metric-based assessment of source code.

5.4 RELATED WORK

Some studies have assessed the effect of coarse-grained design decisions on the distribution
of software metrics. Zhang et al. (ZHANG et al., 2013) discuss that distribution of metric
values depends greatly on the context of the project. They found six context factors that
affect the distribution of at least 20 metrics. Programming language, application domain,
and lifespan are three most important factors impacting over distribution values of 80% of
the metrics. Therefore, our work complements it as we found fine-grained design decisions
that also influence the distribution of metric values.

Aniche et al. (ANICHE et al., 2016) show that architectural roles affect the distribu-
tion of metric values. For example, a class playing the architectural role Controller, in an
MVC-based system, has a different distribution of metric values from other architectural
roles. However, they were able to identify and associate architectural roles to only 17.5%
of the classes in MVC-based systems and 10.5% of the classes in Android applications.
Consequently, metric-based assessments following such approach would disregard the de-
sign roles played by the rest of the classes. We deepen this discussion by showing that
other design decisions also impact on metrics. We propose a heuristic that could correctly
identify the class design role of 86.2% of the 1039 analyzed classes from five governmental
systems. Considering the 15 selected systems used in our study, our heuristic was able to
propose design role to 62.1% from Android classes, 73.5% for Eclipse classes and 77.2%
for Web Classes. Therefore, the Undefined design role was assigned to 37.9% from An-
droid classes, 26.5% for Eclipse classes and 22.8% for Web ones. As future work, we plan
to investigate whether integrating other techniques, such as concern mining (WANG et
al., 2011), to our heuristic improves the coverage and accuracy of design role identifica-
tion. Additionally, we identified that others design decisions also affect the distribution
of metric values.

Budi et al. (BUDI et al., 2011) propose a classification framework using a machine
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learning technique that predicts a stereotype for each class. The heuristic identifies three
class stereotypes (Entity, Control, and Boundary) introduced as an extension to the
standard UML (RUMBAUGH; JACOBSON; BOOCH, 2004). Dragan et al. (DRAGAN;
COLLARD; MALETIC, 2010) extends this set of class stereotypes to C++ systems. The
approach uses patterns of the method stereotype distributions at the class level. Both
approaches propose predefined stereotypes used in the analysis phase. Our approach to
identify the design role played by classes could be used to define stereotypes focused
on the design and implementation phases. We propose to use the class hierarchy and a
customizable token-based method that is not limited to a predefined set of design roles.
In the future, we plan to assess whether the stereotypes benefits, related to program
comprehension, design recovery, and identification of code smells could be obtained with
the design role information.

Oliveira et al. (2017) reports an industrial case study aimed at observing how 13
developers individually and collaboratively performed smell identification in five software
projects from two software development organizations. The project manager of each
system created the reference list of code smells derived of the initial list of code smells
obtained running a smell detection tool. After creating the initial list, two researchers and
system project manager performed a two steps manual validation. They propose using
collaboration among developers to improve effectiveness on smell identification. However,
strategies to support collaborative identification of code smells should provide contextual
information.

5.5 SUMMARY

We conducted an empirical study to assess whether fine-grained design decisions affect
the distribution of four method-level metrics. Our analysis was driven by the concept
of design role. We consider design role itself as a design decision in the sense that
the developer decide to assign a responsibility to a class in the context of a reference
architecture. To support our study, we defined a heuristic to automatically identify the
design role played by the classes of a system. The study involved fifteen real-world
systems, from three different domains. The results and their implications for research
and practice can be summarized as follow.

Design roles impact the distribution of metrics. Initially, our results showed that
design roles affected the distribution of metrics (RQ1). A potential implication of this
is that future researches should propose and evaluate metric-based analysis methods
that take design roles into account. In fact, the major reason for the occurrence of
false positive and negatives on smell detection methods is the lack of context for metric
thresholds(SHARMA; SPINELLIS, 2018). Design roles might be considered to define
this context. For instance, methods that use system benchmarks to calculate metric
thresholds could derive thresholds according to design roles.

Fine-grained design decisions impact the distribution of metrics. Our results also
showed that, due to different design decisions (for instance, coding style or used libraries)
the same design role might have different metric distributions on different systems (RQ2).
A potential implication of this is that we should select systems with similar design de-
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cisions when building benchmarks for metric-based source code analysis. In addition,
our results showed that differences on metric distributions across different releases were
not frequent (RQ3). A practical implication of this is that companies should consider
building their benchmarks from system releases that underwent design quality reviews.

In this context, as future work, we suggest extending this study with more systems,
programming languages, metrics, and domains. We use these findings to propose two
new techniques, detailed in Chapter 6, to derive design-sensitive metric thresholds.



Chapter

6
DESIGN-SENSITIVE TECHNIQUES TO DERIVE

METRIC THRESHOLDS

This chapter describes the two proposed design-sensitive techniques to derive metric
thresholds. Section 2.1 shows state-of-the-art automated static analysis tools (ASATs)
used in real-world environment developments rely on metrics to identify code smells.
However, as discussed in Section 3.2, selecting proper metric thresholds is still a challenge
faced by many development teams. On the one hand, a low metric threshold could lead
to many false code smell alarms; on the other hand, a high metric threshold could hide
potential code smells. We hypothesize that using the class’ design role as context to derive
metric thresholds could improve the accuracy of code smells detection strategies. For
example, does it make sense to evaluate a Web system’s quality using metric thresholds
derived from a benchmark composed only of Android applications? Does it make sense
to evaluate business classes with thresholds derived from classes playing the persistence
design role?

The proposed techniques take a step forward by proposing solutions for (i) selecting
similar systems to compose the benchmark used to derive metric thresholds based on the
similarity of design roles and (ii) deriving multiples metric thresholds, one for each design
role. Both solutions use the concept of design role proposed in Section 4. We conducted
some preliminary studies to evaluate the proposed approaches (DÓSEA; SANT’ANNA;
SANTOS, 2016; DÓSEA; SANT’ANNA, 2016; LIMA; DÓSEA; SANT’ANNA, 2016).
We use the lessons learned obtained in these studies to propose improvements in the
heuristic to assign the design role played by each system class.

The proposed techniques rely on Alves et al. technique (ALVES; YPMA; VISSER,
2010), discussed in Section 2.3. We use it because they propose a repeatable, trans-
parent, and straightforward methodology for deriving software metric thresholds. This
methodology respects metric statistical properties and proposes to derive thresholds based
on data analysis from a representative set of systems (benchmark). Also, Boucher and
Badri (BOUCHER; BADRI, 2018) compare techniques to derive metric thresholds for

75
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fault-proneness prediction and show that Alves’ technique outperformed machine learn-
ing and clustering techniques. Although Alves’ technique under-performed ROC curves
techniques, it is wholly unsupervised and can give pertinent threshold values when fault
data is not available to ROC curves technique (BOUCHER; BADRI, 2018).

Finally, both techniques respect the following requirements proposed and discussed
by Alves et al. (ALVES; YPMA; VISSER, 2010) and Vale and Figueiredo (VALE;
FIGUEIREDO, 2015): (i) it should respect the statistical properties of the metric, such
as scale and distribution; (ii) it should be based on data analysis from a representative
set of systems (benchmark); (iii) it should be repeatable, transparent and straightfor-
ward to execute; (iv) it should calculate upper and lower thresholds; (v) it should derive
thresholds in a step-wise format.

6.1 DERIVING GENERIC METRIC THRESHOLDS FROM BENCHMARK OF
SYSTEMS DEVELOPED WITH SIMILAR DESIGN DECISIONS

The first proposed technique derives generic metric thresholds from a benchmark of sys-
tems developed with similar design decisions. According to Vale et al. (2015), metric
thresholds are sensitive to benchmarks. Therefore, we need to make the benchmark
buiding methodology clear because it influences derived metric thresholds. Both proposed
techniques start building a benchmark of systems developed with similar design decisions.
Our preliminary empirical studies (DÓSEA; SANT’ANNA; SILVA, 2018; LIMA; DÓSEA;
SANT’ANNA, 2016) discussed that developers could quickly point out high-quality sys-
tems developed with similar design decisions. We also propose an automated alternative,
discussed in Section 4.4, when such identification performed manually by expert devel-
opers is not possible. Figure 6.1 illustrates the seven steps of the first design-sensitive
technique:

1) Benchmark creation. We propose to extract metric thresholds from a benchmark of
systems developed with similar design decisions. We considered that two systems
have similar design decisions when they have similar (i) set of design roles, (ii) set of
used libraries, (iii) coding style, (iv) exception handling code and, (v) logging and
debugging code. Expert developers can carry out this step manually, selecting high-
quality systems to compose the benchmark based on previous knowledge of these
design decisions. Another alternative is using our proposed approach to identify
similar systems detailed in Section 4.4. A third alternative is taking a previous
stable release of the system itself to compose the benchmark because some design
decisions can be specific to the evaluated system. Besides, we have not found
significant differences in the distribution of metrics across different stable releases
as discussed in Section 5.2.

2) Metrics extraction. We extract code metrics for all classes in the benchmark. For
each system System, and for each entity Entity belonging to System (e.g. method),
we record a metric value Metric, and a weight metric Weight. As weight we will
consider the source lines of code (LOC) of the entity.
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Figure 6.1: Technique to Derive Metric Thresholds from Systems Developed with Similar
Design Decisions
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3) Weight ratio calculation. Following the approach proposed by Alves et al. (ALVES;
YPMA; VISSER, 2010), for each entity, our technique computes the weight per-
centage within its system, i.e., we divide the entity weight by the sum of all weights
of the same system. For each System, the sum of all Entities must be 100%.

4) Entity aggregation. We aggregate the weights of all entities per metric value, which
is equivalent to computing a weighted histogram (the sum of all bins must be 100%).
Hence, for each system, we have a histogram describing the distribution of weight
per metric value.

5) System aggregation. We normalize the weights for the number of systems and
aggregate the weight for all systems. Normalization ensures that the sum of all
bins remains 100%, and then the aggregation is just a sum of the weight ratio per
metric value.

6) Weight ratio aggregation. We order the metric values in ascending way and take
the maximal metric value that represents 1%, 2%, ..., 100% of the weight. This
is equivalent to computing a density function, in which the x-axis represents the
weight ratio (0-100%), and the y-axis the metric scale.

7) Thresholds derivation. For each metric, we derive a generic threshold by choosing
the percentage of the overall code we want to represent. We use the following
percentiles to characterize metrics value according to four categories: low values
(0-5%); low risk (0-70%); high risk (70-80%); very high risk (>90%) to metrics
correlated with LOC (e.g., McCabe complexity). To metrics not correlated with
LOC (e.g., number of parameters by method), we use the percentiles low values (0-
7%), low risk (0-80%), high risk (90-95%), very high risk (>95%). Vale e Figueiredo
(2015) discussed that not considering LOC correlation may damage the results of
Alves’ technique. Alves et al. (ALVES; YPMA; VISSER, 2010) also suggest higher
percentiles when metric variability is relatively small. Finally, we also define a
percentile to low values because it may identify lower bound outliers to identify
some code smells. For instance, Lazy class (FOWLER; BECK, 1999) is a class that
knows or does too little in the software system. We could consider the lower LOC
of classes to indicate this code smell.

6.2 DERIVING METRIC THRESHOLDS PER DESIGN ROLE

The second technique, additionally to the technique detailed in Section 6.1, proposes
to derive distinct metric thresholds for each class design role. This technique has been
evolved based on our findings, and lesson learned obtained through a set of empirical
studies.

We use the class design role as context in two steps: (i) on creating a benchmark
to derive metric thresholds. This benchmark must be composed of high-quality systems
with similarity on design decisions; and (ii) on the derivation of multiple metric thresholds
for each design role rather than a single generic threshold to evaluate all system classes.
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Figure 6.2 illustrates the eight steps of the second proposed design-sensitive technique.
Steps one, three, four, and five are the same as the technique detailed in Section 6.1.

1) Benchmark creation. We propose to extract metric thresholds from a benchmark of
systems developed with similar design decisions. We considered that two systems
have similar design decisions when they have similar (i) set of design roles, (ii) set of
used libraries, (iii) coding style, (iv) exception handling code and, (v) logging and
debugging code. Expert developers can carry out this step by selecting the high-
quality systems to compose the benchmark based on previous knowledge of these
design decisions. Another alternative is using our proposed approach to identify
similar systems detailed in Section 4.4. A third alternative is taking a previous
stable release of the system itself to compose the benchmark because some design
decisions can be specific to the evaluated system. Besides, we have not found
significant differences in the distribution of metrics across different stable releases
as discussed in Section 5.2.

2) Metrics and design role extraction. We extract code metrics and design roles for all
classes in the benchmark. For each system class, we record the design role proposed
by the heuristic discussed in Section 4.2. Also, for each system System, and for each
entity Entity belonging to System (e.g. method), we record a metric value Metric,
and weight metric Weight. As weight, we will consider the source lines of code
(LOC) of the entity.

3) Weight ratio calculation. Following the approach proposed by Alves et al. (ALVES;
YPMA; VISSER, 2010), for each entity, our technique computes the weight per-
centage within its system, i.e., we divide the entity weight by the sum of all weights
of the same system. For each System, the sum of all Entities must be 100%.

4) Entity aggregation. We aggregate the weights of all entities per metric value, which
is equivalent to computing a weighted histogram (the sum of all bins must be 100%).
Hence, for each system, we have a histogram describing the distribution of weight
per metric value.

5) System aggregation. We normalize the weights for the number of systems and
aggregate the weight for all systems. Normalization ensures that the sum of all
bins remains 100%, and then the aggregation is just a sum of the weight ratio per
metric value.

6) Design role aggregation. We also normalize the weights for the number of design
roles and then aggregate the weight for all design roles. Normalization ensures that
the sum of all bins remains 100%, and then the aggregation is just a sum of the
weight ratio per design role and metric value.

7) Weight ratio aggregation. We order the metric values in ascending way and take
the maximal metric value that represents 1%, 2%, ..., 100% of the weight. This
is equivalent to computing a density function, in which the x-axis represents the
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Figure 6.2: Technique to Derive Multiple Metric Thresholds for each Metric from Systems
Developed with Similar Design Decisions
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Figure 6.3: ThresholdTool Deriving Metric Thresholds

weight ratio (0-100%), and the y-axis the metric scale. We aggregate the weight
ratio per metric and also per design role and metric.

8) Thresholds derivation. For each metric and design role, we derive a threshold by
choosing the percentage of the overall code we want to represent. Each metric
and design role has a distinct threshold value. The metric threshold is the high-
est value obtained between the threshold calculated for the design role and the
threshold calculated for overall systems’ classes. For instance, if the LOC metric
threshold calculated to represent 90% of the overall code is 70 and the threshold
value calculated to represent 90% of the design role Business code is 95, then the
threshold value for the LOC metric for classes playing Business design role is 95.
However, if the threshold calculated to represent 90% of this design role code is less
than 70, then the value 70 is considered. On the one hand, in well-defined architec-
tures, the source code assigned to each design role is usually representative to define
specific metric thresholds. On the other hand, it does not make sense to define met-
ric thresholds lower than metric thresholds that represent the benchmark’s source
code. We use the following percentiles to characterize metrics value according to
four categories: low values (0-5%); low risk (0-70%); high risk (70-80%); very high
risk (>90%) to metrics correlated with LOC (e.g., McCabe complexity). To met-
rics not correlated with LOC (e.g., number of parameters by method), we use the
percentiles low values (0-7%), low risk (0-80%), high risk (90-95%), very high risk
(>95%). We discussed in Section 6.1 our motivations to consider these decisions.

6.3 TOOL SUPPORT TO DERIVE METRIC THRESHOLDS

We provide a tool, called ThresholdTool, to derive metric thresholds using our two pro-
posed techniques. Besides, the tool also derives metric thresholds by means Alves’ tech-
nique (ALVES; YPMA; VISSER, 2010), Aniche’s technique (ANICHE et al., 2016), and
Vale’s technique (VALE; FIGUEIREDO, 2015)

Figure 6.3 illustrates the three steps performed to extract metric thresholds using the
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Figure 6.4: ContextSmell Plug-in for Eclipse.

five techniques. Firstly, we select the benchmark of projects to derive metric thresholds.
In the second step, we can adjust the table of predefined design roles to evaluate systems’
design decisions. In the third step, the tool generates five files, one for each technique,
with metric thresholds.

We also developed the ContextSmell tool, which extends ContextLongMethod (SAN-
TOS; DÓSEA; SANT’ANNA, 2016). The tool can perform with a command-line interface
or as an Eclipse plugin. It uses as input the thresholds’ files generated by Threshold-
Tool and generates a list of code smells identified by the thresholds derived from each
technique. Each line shows the class, method, code smell, and the list of techniques that
derived metric thresholds that pointed out the code smell.

Figure 6.4 shows the three views used by the ContextSmell plugin to recommend
code smells for software developers. View (1) shows in the package explorer the analyzed
systems by the tool. View (2) shows details about the identified code smells in the Eclipse
editor. Finally, view (3) shows a list of all identified smelly methods in the evaluated
system.

Chapters 7 and 8 describe studies we carried out to evaluate the proposed techniques.



Chapter

7
COMPARING TECHNIQUES TO DERIVE METRIC

THRESHOLDS BASED ON DEVELOPERS’
PERCEPTION OF CODE SMELLS

In Chapter 3, we showed a large-scale survey conducted with Brazilian practitioners to
answer our first general research question (RQ1) How do practitioners perceive automated
static analysis for code smell identification? Among other findings, we found that prac-
titioners’ perception is that metric-based strategies to detect code smells should consider
some context information to select the most appropriate metric thresholds. In Chapter 5,
we answer our second general research question (RQ2) Are there statistically significant
differences between measures obtained from classes developed with different design deci-
sions? We discussed class design role as a design decision that impacts the distribution
of metrics, and, therefore, could be considered as context to derive metric thresholds.

This chapter shows our first empirical study to evaluate our two proposed techniques,
described in Chapter 6, that considers class design role as context to derive metric thresh-
olds. We compare our two techniques with other three state-of-the-art techniques to
derive metric thresholds. As comparison criteria, we use developers’ perception about if
they would refactor code smells pointed out by thresholds from the five techniques. De-
velopers evaluated the existence of four code smells in a sample of methods systematically
selected from Web systems they maintain.

Defining accurate metric thresholds to be used by code smells detection strategies
faces some challenges. One of those challenges is the subjectivity involved in developers’
evaluation of code smells (Kamei; Shihab, 2016). Initial studies show that distinct devel-
opers can disagree about code smell in a particular method, and inter-rater agreement was
low for simple code smells and low for refactoring decision (MANTYLA; LASSENIUS,
2006; MANTYLA, 2005). Hozano et al. (2018) perform a broader study to investigate
how similar developers detect code smells. They found that the developers presented
a low agreement on detecting all 15 smell types analyzed. We hypothesize that many
disagreements in previous studies occur because developers have no experience and clar-
ity about design decisions of the systems they evaluated. Refactoring some code smells,
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detectable by tools, may not make sense to a team of developers. Tools disregard many
design decisions agreed upon by the team.

For this reason, we carry out a study with developers who maintained the evaluated
systems. They have experience and clarity about design decisions on evaluated methods.
We aim to answer our third general research question (RQ3):

RQ3: Are design-sensitive metric thresholds more accurate to detect code
smells prone to be refactored?

To answer this research question, we conducted an industrial multi-project study an-
alyzing the developers’ perception of the source code maintained by them. Developers
evaluated Web systems that use the Struts framework, or the Java Server Faces frame-
work. They analyzed four types of code smells pointed out by metric thresholds derived
from five distinct techniques. Evaluating all smelly methods is very difficult due to the
developers’ time required and fatigue in the process. Therefore, we propose a systematic
process to select a representative set of smelly methods to be analyzed. Next, we show
these methods to the developers, asking if they would refactor these methods. We aim
to identify which technique derived the most precise metric threshold to detect smelly
methods prone to be refactored according to developers’ perception.

We summarize our findings as follows:

• We found a high degree of agreement among developers. We suppose that the
familiarity with the evaluated system code and design decisions determined this
high agreement degree.

• We obtain that our proposed design-sensitive techniques derived metric thresholds
that reduce false positives according to the developer’s perception.

• We also investigated qualitatively if the design roles influenced the developer’s per-
ception of smelly methods. The results we obtained show that the class design role
influenced many developers’ perceptions about smelly methods prone to refactoring.

We carried out this study in partnership with a master’s degree student from PG-
COMP/UFBA. We helped him in the planning, execution, and analysis of the results.
The student performed the study within his work environment. The tools used to derive
metric thresholds and point out code smells are also contributions of this thesis. This
chapter includes our analysis of the obtained data. The student conducted other ana-
lyzes, and more in-depth discussions focused on interviews in his master’s work (LIMA,
2021).

The remainder of this chapter is organized as follows. Section 7.1 describes the settings
of our empirical study. Section 7.2 presents the results of the study. Section 7.3 discusses
threats to validity and Section 7.4 discusses related work. Finally, Section 7.5 summarizes
the results and discusses implications of our research.
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7.1 STUDY SETTINGS

This study compares metric thresholds derived from five distinct techniques to point out
smelly methods prone to refactoring. We compare the proposed code smells with devel-
opers’ perceptions responsible for maintaining the evaluated source code. We hypothesize
that the class design role could influence developer’s perception of smelly methods.

7.1.1 Research Questions

We formulated the following research questions:

RQ1: What is the level of agreement between developers’ perception of code smells
identified in software systems maintained by them? This research question evaluates the
developers’ agreement about pointed out code smells in systems maintained by them,
that is, systems that they are familiar with design decisions. In our study, two developers
agree when both of them either do not consider that a method has a code smell or consider
that method has a code smell and say that could refactor it. Previous works show low
agreement between developers who assess code smells in the same code snippet (HOZANO
et al., 2018). However, most of the developers in earlier studies are not familiar with the
design decisions of the evaluated system.

RQ2: Which technique proposes metric thresholds that best reflect the individual de-
velopers’ perception about code smells in software systems maintained by them? The
second research question quantitatively identifies the individual developers’ perception of
code smells pointed out by metric thresholds derived from the five studied techniques. We
aim to point out the one that derived metric thresholds more similar to most individual
perceptions of developers. We consider a method as smelly when the developer claims
that there is a need to refactor that method. In this research question, we consider each
developer’s opinion with the same weight because previous studies show wildly divergent
perceptions about code smells among developers who analyze the same source code snip-
pet (SCHUMACHER et al., 2010; SANTOS et al., 2018; HOZANO et al., 2018). To
address RQ2, we test the following null hypothesis.

H 01: no technique proposes metric thresholds that improve Matthews Correlation Co-
efficient (MCC) to detect code smells compared to individual developers’ perception of
code smells in software systems maintained by them.

H 02: no technique proposes metric thresholds that improve precision to detect code
smells compared to individual developers’ perception of code smells in software systems
maintained by them.

RQ3: Which technique proposes threshold values that best reflect two developers’ joint
perception of code smells in software systems maintained by them? The third research
question aims to analyze the perception of pairs of developers. We consider valid only
the answers where there was an agreement between the two developers who examined
the same familiar source code. We consider that developers agree when both do not
detect any code smell or propose refactoring the same code smell in the same evaluated
method. This research question aims to reinforce the individual developer’s evaluation
results due to the divergences of perception between them pointed out by previous studies.
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Table 7.1: Developers’ Background

Study
Experience in
Evaluated Projects

Developers (n = 10)

Pilot 1-5 years D1, D2

Final
1 year D8, D9
1-5 years D3, D4, D5, D6
5-10 years D7, D10

To address RQ3, we test the following null hypothesis.

H 03: no technique proposes metric thresholds that improve Matthews Correlation Co-
efficient (MCC) to detect code smells compared to two developers’ joint perception of code
smells in software systems maintained by them.

H 04: no technique proposes metric thresholds that improve precision to detect code
smells compared to two developers’ joint perception of code smells in software systems
maintained by them.

RQ4: Do developers familiar with the source code consider the class design role in-
formation to identify refactoring-prone code smells? The fourth research question aims
to assess qualitatively developers’ perception of how the class design role influenced them
to point out refactoring-prone smelly methods.

7.1.2 Context Selection

We carried out the study with ten developers who work in the software development
industry. Initially, we conducted a pilot study with two developers to evaluate the study
settings. Then, we performed some adjustments in the study settings, and we executed
the final study with the other eight developers. They are the most experienced in their
development teams. Each developer evaluated the quality of methods of only one system,
the one he maintains. We aim to determine whether design decisions influenced code smell
developers’ perception in source code whose design decisions are familiar.

We conducted the study at the Information Technology Superintendence of the Fed-
eral University of Bahia. The team has more than 80 developers maintaining about 100
software systems that automate academic and administrative processes. Most systems
are developed in Java and have some architectural differences due to technological evo-
lution. We selected the participants by convenience since it is not easy to have available
practitioners usually concerned with project deadlines in progress. Table 7.1 summa-
rizes the experience of the ten developers (D1 to D10) in the evaluated projects. It is
worth mentioning that all developers have at least five years of experience in software
development. D4, D6, and D7 have more than ten years of experience.

Regarding the participants’ role, six of them are system analysts, and four are system
developers. Both developers and system analysts are roles concerned with source code
maintenance. All respondents are familiar with the evaluated source code. Eight respon-
dents have 1 to 5 years of experience, and only D8 and D9 developers have less than one
year of experience in the evaluated projects.



7.1 STUDY SETTINGS 87

Table 7.2: Target Systems

View
Layer

System #Classes #Methods #LOC
#Design

Roles
#Smelly
Methods

#Evaluated
Methods

JSF
S1 53 525 5277 4 156 53
S3 158 1898 22944 11 460 83
S4 349 3127 41081 13 915 117

Struts
S2 76 844 8545 11 106 85
S5 457 5138 60240 7 664 63
S6 949 12759 231183 9 2287 91

Target Systems: We use six real-world Web systems, developed in Java, by the
Information Technology Superintendence of the Federal University of Bahia. Empirical
studies aimed to evaluate developers’ perception of code smells usually do not use web-
based domain (PALOMBA et al., 2014; VALE; FERNANDES; FIGUEIREDO, 2018).
However, some data indicate this application domain appears to have the largest number
of assigned software developers. For instance, Borges, Hora e Valente (2016) discussed
that Web libraries and frameworks are the top-domain (33%) between the top-2,500 public
repositories with more stars in GitHub. According to the 2020 StackOverflow Developer’s
Survey, the 3-top most popular technologies with professional developers are Javascript
(69.7 %), HTML/CSS (62.4 %), and SQL (56.9 %), which are the basis for Web-based
development. Stack Overflow’s annual Developer Survey is the largest survey of people
who code around the world. It presents detailed and anonymized results and made them
available for download. In 2020, the survey was taken by nearly 65,000 people.

The selection of these systems was made by convenience, prioritizing systems where
the most experienced developers were available for interview. We use two systems for to
pilot study and four systems for the final study.

Table 7.2 summarizes the main characteristics of the six selected Web systems. The
main architectural difference of the systems is on the View layer. The three older systems
use the Struts framework, and the three newer ones use the JSF framework. We aim to
compare systems developed with different design decisions. The View layer column shows
the framework used in each system. The #classes, #methods, and #LOC columns show
the number of classes, methods, and lines of code in each system. The #design roles
column shows the number of design roles identified by our heuristic (Section 4.2). Finally,
the #smelly methods column shows the number of methods pointed out for at least one
code smell, and the #evaluated methods columns show the number of methods evaluated
by each system developer. For instance, S1 is a system to manage Teachers and Student
Assessments. The S1 system has 53 classes, 525 methods, 5277 lines of code, four design
roles, and 53 methods evaluated by a system developer out of 156 methods pointed out
as smelly. S2 is a system to manage Integrated Services and Users developed with the
Struts framework. The S2 system has 76 classes, 844 methods, 8545 lines of code, 11
design roles, and have 85 methods evaluated by a system developer out of 106 pointed
out as smelly.

Code Metrics: Our study considered the four method-level metrics and code smells
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Table 7.3: Method-level Metrics and Code Smells

Metric Description Code Smell

McCabe’s Cyclomatic
Complexity (CC)
(MCCABE, 1976)

It counts the number of
branching points of
each method.

High Complexity

Lines of Code (LOC)
(LANZA; MARINESCU, 2006)

It counts the number
of executable statements
of each method, excluding
comments and blank lines.

Long Method

Efferent Coupling (EC)
(MARTIN, 1995)

It counts the number of
classes from which each
method calls methods or
accesses attributes.

High Efferent
Coupling

Number of Method
Parameters (NMP)
(FOWLER; BECK, 1999)

It counts the number
of parameters of each method.

Long List of
Parameters

discussed in Table 7.3.

We selected these method-level metrics, and associated code smells because we can
manually compute them without tool support. This criterion is essential for conducting
the manual analysis planned for our study. Also, these metrics are available in many
tools (PAIVA et al., 2017) and have been successfully used for fault-proneness prediction
(FONTANA et al., 2013; GIL; LALOUCHE, 2017; BOUCHER; BADRI, 2018), for in-
stance. We used only one metric for each code smell detection strategy because we aim to
evaluate the precision of metric thresholds derived by techniques according to developers’
perception. Besides, many automated static analysis tools also use only a single metric
to detect these code smells.

Techniques to Derive Metric Thresholds: We selected five techniques that do not
consider the normal distribution of metric values since this is very difficult to occur (GIL;
LALOUCHE, 2016, 2017). We also consider techniques that can be fully automated.
Based on these criteria, we have selected Alves et al. (ALVES; YPMA; VISSER, 2010)
and Vale et al. (VALE; FIGUEIREDO, 2015) techniques, detailed in Section 2.3, which
generate a generic threshold value for each metric. We propose a variation of Alves et
al. technique, detailed in Section 6.1, that considers as context the class design roles
in selecting systems to benchmark. This benchmark must be composed of high-quality
systems with similarities in design decisions. We call this proposed technique as [T1].
We also evaluated Aniche et al. technique (ANICHE, 2015), detailed in Section 2.3,
which is also based on Alves et al. technique but defines specific metric thresholds,
each one related to each architectural role. For example, to evaluate a class associated
with the architectural role Controller it generates a specific metric threshold assigned
to this role. Finally, we propose a second technique, discussed in Section 6.2 that also
considers the class’ design role in the benchmark creation process. This technique also
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Figure 7.1: Study Procedures conducted with Software Developers

derives multiple metric thresholds ,one for each design role, rather than a single generic
threshold to evaluate all system classes. The class design role, discussed in Chapter 4.2,
is an extension of the architectural role concept allowing to assign a role to classes not
bound to a predefined reference architecture. We call our second proposed technique of
[T2].

7.1.3 Study Procedure

To answer the research questions, we conducted interviews with software developers.
Figure 7.1 outlines the research method divided into five activities and two phases. Each
phase represents an interview with the developer. Initially, we derived metric thresholds
using the five evaluated techniques (activity 1). Then, we performed a sampling of smelly
methods (activity 2). Then, the software developers evaluated the selected methods
(activity 3), and we performed a final interview (activity 4). Finally, we reviewed detected
inconsistencies with the software developers (activity 5). Below we detail these five
activities.

Activity 1: Building benchmarks, deriving metric thresholds, and selecting
smelly methods. For Alves et al., Vale et al., and Aniche et al. techniques, we derived
metric thresholds from the same benchmark composed of 17 real-world Java Web systems.
We selected systems with at least 50 stars and one update since 01/03/2019 from the
Github repository on 17/07/2019. These criteria returned a list of 268 projects. We
excluded libraries and frameworks, systems used as implementation examples, systems
with no release, and with less than 100 classes. These criteria aimed to select real-world
Web systems and exclude systems too different from the evaluated systems.

We also built two other distinct benchmarks to execute [T1] and [T2] techniques.
We used high-quality reference systems, selected by the two most experienced developers
according to architectural similarity. Therefore, the second benchmark is composed of
eight Web systems developed with Java Server Faces (JSF) framework, and the third
benchmark is composed of six Web systems developed with the Struts framework. Despite
these frameworks on View layer being the main architectural difference, some minor
differences in some design decisions exist. For example, some JSF benchmark’ classes
also use the Java Persistence API to manage objects’ persistence. The Java Persistence
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API (YANG, 2010) simplifies Java EE and Java SE applications’ development, providing
a single, standard persistence API.

We used the ThresholdTool, discussed in Section 6.3, to derive metric thresholds
using the five techniques. Then, we used the line-command interface of ContextSmell
tool, discussed in Section 6.3, to generate a worksheet with a list of methods with code
smells, detailed in Table identified by means of the metrics and corresponding thresholds
derived from the five evaluated techniques.

Activity 2: Sampling of smelly methods. The pilot study showed that evaluating
all smelly methods would be tedious and error-prone. In fact, in previous similar studies
involving the evaluation of code snippets, the participants did not evaluate the entire
source code of systems (YAMASHITA, 2013; PALOMBA et al., 2014; OLIVEIRA et al.,
2017; HOZANO et al., 2018). For example, by using the metric thresholds derived from
the five techniques, we detected 664 smelly methods in the S5 system. Initially, we tried
to use a classic sample calculation formula, which suggested that the participants should
evaluate 244 methods for the study to have a statistically significant result with 95%
confidence. In the pilot study, we realized that the evaluation time could not exceed 2
hours to mitigate participants’ fatigue. This time would be insufficient to evaluate 224
methods. Then, we decided to divide the set of smelly methods into equivalent partitions
(MYERS et al., 2004). We defined design role as criteria to group methods in equivalent
partitions. For each partition, we select a representative subset to be evaluated by the
developers.

In the pilot study, the developers evaluated 10% of the methods in each partition.
For instance, if Business design role contains 120 methods, we select 12 methods for
evaluation. In order to select the 10% of methods of each partition, we proceeded as
follow. We sorted the methods in a partition in ascending order by the metric value.
Then, we selected the first (lowest metric value), and last method (highest metric value)
from this ordered list. Then we selected the method located in the median of the metric
values. When we did not reach 10% of methods, we repeated this procedure to select one
more method in the median of the interval between the methods in previous first and
median positions. If necessary, we selected another method in the median of the interval
between the methods in previous median and last positions. We continued this procedure
recursively until the 10% percentage was reached.

We carried out the pilot study with systems from which the resulting code smell list
was not long. Even though, we observed developer did not evaluate the last methods as
carefully as the first ones. This might have occurred due to fatigue. Also, we identified
that methods of classes assigned to the same design role and with similar metric values
had a similar evaluation by the software developers. For example, if a class playing the
Persistence design role had a method with 50 lines of code evaluated as long, another
method with 53 lines of code and playing the same design role was also considered long.
Similarly, a previous large-scale study (HOZANO et al., 2018) reported that developers
dedicated, on average, 2.5 hours to evaluate 80 code snippets. Participants also said
that such activity became slightly dull, and such issue negatively influenced their last
evaluations. To mitigate this problem, the authors adjusted the main study limiting the
number of code snippets evaluated by each developer to 15. Our pilot study showed better
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participants’ performance since they were familiar with the evaluated code snippets and
design decisions.

Given the experience with the pilot study, we decided to select fewer methods for
the final methods. This would avoid fatigue and avoid participants to evaluate many
methods with the same design role and similar metric values. Therefore, we decided to
have a maximum of five methods per design role and metric to compose our sample. We
used procedure we used in the pilot study to select the methods, but stopping with five
methods, instead of 10%. For instance, the Persistence design role had seven methods
pointed out as high complexity. The values of the McCabe complexity metric in ascending
order were 10, 11, 15, 16, 20, 25, 35. Following the procedure, we selected the method
with the lowest value (10), then the highest (35), then the median (16), then the median
between the lowest and the first median (15), and, then, the median between the first
median and the highest (25), stopping with five selected methods, with the following
cyclomatic complexity values: 10, 35, 16, 15 and 25.

Activity 3: Collecting developers’ perception about smelly methods. Ini-
tially, we conducted a brief training to align the terminology of the four code smells that
the developer should look for in each evaluated method. For each code smell, we showed
the name and description contained in Table 7.3. We focused on evaluating only four
method-level code smells to avoid fatigue and keep developers focused on the systems
evaluation process. The selected code smells are popular and easily recognized by sys-
tem developers. An extensive list of code smells could divert developers’ attention and
increase the time needed for evaluation.

Next, we conducted semi-structured interviews with participants. This research ap-
proach is used in exploratory studies to understand phenomena and seek new insights.
We carried out interviews with developers from each system one at a time. We structured
the interview into three parts.

In the first part, each developer received a worksheet containing the design roles
identified by the heuristic proposed in Section 4.2. Each row of the worksheet included a
class name, the class’ design role assigned by the heuristic, and a field for the developer
to answer if he agreed or not with the proposed design role. Each developer did that for
all system classes, except the classes assigned to the Undefined design role. The heuristic
assigns Undefined when it cannot identify the design role play by the system class. We
started by validating the design roles, aiming that the developers become familiar with
the design roles’ names. The results are discussed in Section 4.3.2.

In the second part, developers evaluated the sample of methods selected on Activity
2. Each developer received a worksheet in which each row contains a class name, the class
design role, a method name, and two questions: “Would you refactor this method before
starting a maintenance activity?” and “What code smells influenced your refactoring’
decision?”. They did not know that the evaluated methods were pointed out as having
code smells. We guided developers to focus on the four code smells we trained them
on. This way, for each method, each developer could: (i) say he did not consider it is
affected by any code smell, or (ii) indicate one or more of the four code smells he think it
affected. Finally, to allow a qualitative analysis, we asked about each method: ”What im-
plementing features of the method influenced you to point out the code smell(s)?”. With
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this question, we intended to identify whether the class design role influenced developers’
perceptions in code smells identification.

Aiming to avoid bias in the developers’ evaluation, we presented the methods alter-
nating metric low and high metric values. For example, considering M1, M2, M3, M4, and
M5 methods with metric values ordered in ascending order, we present them to system
developers in the following order: M4, M1,M5, M2, and M3.

Activity 4: Answering the follow-up questionnaire. After evaluating the source
code of the methods, developers answered a follow-up questionnaire.

We started by asking the following question: “Do you think that methods associated
with the same design role and similar metric values will have the same code smell? Please
justify your answer and cite examples.”. We intend to understand the propensity for a
code smell identified in a design role to occur in other methods associated with the same
design role with similar metric values since evaluating all system methods would be very
difficult and error-prone.

Finally, we asked some background questions intended at characterizing the sample of
the involved developers. We intended that the interview time should not exceed 2 hours.
All interviews were recorded and then transcribed for analysis, preserving the anonymity
of the interviewees.

Activity 5: Reviewing inconsistencies in code smell identification. The
pilot study showed some inconsistencies in developers evaluation. Similar methods of
classes playing the same design role and with similar metric values were not always
associated with the same code smell. We then conducted a second interview with the
same developer to evaluate again methods he did not consider smelly, whenever there was
at least one smelly method with a lower metric value. For example, considering that M1

method playing the design role Business, classified by the developer with high cyclomatic
complexity. The developer evaluated two other methods M2 and M3 with higher metric
values of complexity than the M1 method as not smelly. In this case, we carried out a
new evaluation of M1, M2 and M3 methods asking the developer: “ Why does M1 method
has high complexity and M2 and M3 methods have not high complexity?”. We aimed
to remove inconsistencies, reduce the subjectivity of the evaluation process, and identify
other design decisions that could influence developers to evaluate a method as smelly.

7.1.4 Data Analysis

To answer the RQ1 research question, we computed the inter-rater agreement among
developers’ evaluation using Fleiss’ Kappa measure (FLEISS; COHEN; EVERITT, 1969).
This measure reports a number between 0 and 1. When Kappa measure is closer to zero,
we have a smaller agreement between developers. We have a more significant agreement
between developers if Kappa measure closer to one. We also used the categories proposed
by Landis and Koch (LANDIS; KOCH, 1977) listed in Table 7.4 and used by previous
works related to code smell detection (MANTYLA, 2005; HOZANO et al., 2018).

We compared the agreement of evaluations done by developers that evaluated the
same system methods (eight developers and four systems). Each developer evaluated
the code smells of one system, which he is responsible for maintaining. Each developer
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Table 7.4: Strength of Agreement of Kappa Statistics

Kappa Statistic Strength of Agreement

<0.00 Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect

assessed between 61 and 117 methods. After calculating the Kappa measure, we used
the strength of agreement to answer RQ1. We considered a good agreement when the
strength of agreement is Substantial or Almost perfect.

To answer RQ2 and RQ3 research questions, we performed quantitative data analysis.
In RQ2, we compared the effectiveness of metric thresholds based on the developers’
individual perception about the code smell in the sample of methods. In RQ3, we carried
out a similar analysis considering the inter-agreement of pairs of developers who evaluated
the same set of methods.

To assess metric thresholds’ effectiveness, we computed two well-known metrics: pre-
cision, and Matthews Correlation Coefficient (MCC). Precision represents the fraction of
instances of methods predicted as smelly by metric thresholds that are actually smelly
according to developers’ perception. MCC is a correlation coefficient based on all four
quadrants of the confusion matrix. It has values in the range [-1,+1] where a coefficient of
+1 represents a perfect prediction and -1 indicates total disagreement between prediction
and observation.

Since we considered several systems, we aggregated the results achieved for each metric
to have a more straightforward overview of the quality of the results. Aggregate metrics
are more robust than the mean, which is biased by the fact that datasets are unbalanced
for different smell types in terms of smelly and non smelly instances (in some cases the
datasets do not contain any smelly instance) (PECORELLI et al., 2019, 2020). Therefore,
we aggregated the obtained confusion matrices before computing precision, and MCC
(ANTONIOL et al., 2002; PECORELLI et al., 2019). We used these metrics to compare
metric thresholds effectiveness with developers’ perception in both scenarios (individually
and inter-agreement). The research question RQ2 compared smelly methods pointed out
by metric thresholds with reference lists of code smells proposed by each expert system
developer. RQ3 compared this smelly method list with a single reference list of code
smells, which contains the same classification proposed by both the evaluated system’s
maintainers.

A true positive (TP) occurs when the metric thresholds proposed by a technique point
out a smelly method identified by the system developer. A false positive (FP) happens
when the metric threshold proposed by a technique identifies a code smell that does not
match developer’s perception of the smelly method. A true negative (TN) occurs when
the metric threshold does not point out a code smell, and developers do not perceive the
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method as smelly. Finally, a false negative (FN) happens when the metric thresholds do
not identify a code smell perceived by the system developer. The index i ranges over the
entire dataset of values of each metric. Based on these assumptions, we computed:

Precision =

∑
i TPi∑

i(TPi + FPi)
(.)

MCC =

∑
i(TPi ∗ TNi − FPi ∗ FNi)∑

i

√
(TPi + FPi)(TPi + FNi) + (TNi + FPi) + (TNi + FNi)

(.)

We intend to indicate the technique with high precision that implies a low number
of false positives. Previous studies have reported many false positives as factor that
harming to apply automated static analysis tools (ASATs) based on metrics (OLBRICH;
CRUZES; SJØBERG, 2010; KHOMH et al., 2011; SJOBERG et al., 2013; YAMASHITA,
2013; PALOMBA et al., 2014; HOZANO et al., 2018). We did not measure recall because
of the high number of pointed out code anomalies in the evaluated systems. We proposed
a systematic method to select the methods that developers would evaluate due to the
impossibility of evaluating all the methods pointed out by the thresholds derived from
techniques. Therefore, we focused on the precision. Each developer evaluated between
63 and 117 methods in the final study.

To answer RQ4, we carried out a qualitative data analysis over the records of video
and audio based on the procedures of Grounded Theory (GT) suggested by Corbin and
Strauss(CORBIN; STRAUSS, 1990). We used open coding (1st phase) and axial coding
(2nd phase) from the GT method. In open coding, we compare events, actions, inter-
actions, and so forth against others for similarities and differences. They are also con-
ceptually labeled, and we group similar ones to form categories and their subcategories.
In axial coding, we related categories to their subcategories, and these relationships are
tested against data. Also, further development of categories takes place, and one contin-
ues to look for indications of them. We do not carry out the selective coding (3rd phase)
in which all categories are unified around a central ”core” category, and categories that
need further explication are filled-in with descriptive detail. We would reach this core
category with the circularity between the collection and analysis stages until theoretical
saturation. We postpone this selective coding phase, and therefore, we do not claim that
we applied the GT method, only some specific procedures.

7.1.5 Pilot Study

We conducted a pilot study of our proposed study protocol with two developers that
evaluated code smells in different systems (LIMA; DÓSEA; SANT’ANNA, 2016). The
first system uses the JSF framework, and the other one uses the Struts framework. Each
developer evaluated only one system. The differences between the pilot study and the
final study was the number of assessed methods by each developer and the number of
developers that evaluated each system. In the pilot study, developers evaluated 10% of
the smelly methods in each design role. However, we observed developers’ fatigue in the
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Table 7.5: Metric Thresholds Derived by Techniques to Struts and JSF based Systems

S3/S4 S5/S6
Techniques Design Role LOC CC EC NPM Design Role LOC CC EC NPM

Alves (2010) Undefined 61 11 12 3 Undefined 61 11 12 3
Vale (2015) Undefined 17 3 6 2 Undefined 17 3 6 2

Aniche (2016) Undefined 66 12 12 3 Undefined 66 12 12 3
Controller 27 4 8 0 Controller 27 4 8 0
Persistence 47 12 16 3 Persistence 47 12 16 3

Service 36 7 15 4 Service 36 7 15 4
Entity 8 1 2 0 Entity 8 1 2 0

Dósea (2016) Undefined 55 15 16 5 Undefined 167 27 22 4

Dósea (2018)

Undefined 55 15 16 5 Undefined 167 27 22 4
Authorizer 22 9 8 3 DefaultValidator 53 7 15 4
Persistence 79 15 8 6 Persistence 271 28 15 6
Validator 49 21 7 3 Exception 53 7 15 3

View 19 4 7 3 View 53 10 15 4
Entity 50 16 13 3 Entity 53 7 15 4

HttpServlet 79 14 21 6 HttpServlet 99 7 29 4
DelegateCrud 55 10 15 4 Action 151 29 30 4

Controller 135 25 25 12 AbstractBO 61 19 15 4
Service 32 9 13 7 ValidatorForm 76 11 15 4

JpaCrud 19 4 7 5 Authenticator 53 7 15 4

pilot study that could negatively influence the last evaluations. We limited the assessment
to five methods for each design role in the final study to mitigate this problem. The size
of the systems considered in the final study also influenced this limitation. If we consider
evaluating 10% of the smelly methods in each design role, we will have many methods
for each developers’ evaluation. Due to this small difference in the protocol, we decided
not to consider the pilot study results when analyzing the results of research questions.

7.2 RESULTS AND DISCUSSION

In this section, we report and discuss our main findings guided by each research question.
The interviews lasted from 90 to 120 minutes, and we conducted them between August
2019 and September 2019 through either face-to-face meetings.

Table 7.5 shows the metric threshold values derived from five benchmark-based tech-
niques detailed in Section 7.1. Metric thresholds derived from Alves et al. (ALVES;
YPMA; VISSER, 2010), Vale & Figueiredo (VALE; FIGUEIREDO, 2015), and Aniche
et al. (ANICHE et al., 2016) techniques use the same benchmark since these techniques do
not explicitly recommend considering design decisions to composing the benchmark. We
create two distinct benchmarks, one to each evaluated system, to derive metric thresholds
proposed by [T1] and [T2] techniques discussed in Chapter 6. Additionally, Aniche et al.
and [T2] techniques propose specific metric threshold values according to the architectural
roles and design roles played by each system class, respectively.

In the following, we discussed the main results that support the answers for the
research questions defined in Section 7.1.

RQ1: What is the level of agreement between developers’ perception of code smells
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Table 7.6: Level Agreement between developers of the same System

Systems LOC CC EC NOP

S3 0,49 0,72 0,21 0,28
S4 0,87 0,61 0,39 0,78
S5 1,00 0,83 1,00 0,76
S6 0,89 0,76 0,78 0,28

Figure 7.2: Level Agreement by Code Smell

identified in software systems maintained by them?

We aim to evaluate developers’ degree of agreement about pointed out code smells in
methods of software systems maintained by both developers. To address RQ1, we com-
puted the inter-rater agreement among system developers’ evaluation using Fleiss’ Kappa
measure (FLEISS; COHEN; EVERITT, 1969). We also use the categories proposed by
Landis and Koch (LANDIS; KOCH, 1977) listed in Table 7.4.

Each pair of developers assessed 63, 83, 91, and 117 methods, respectively. Table 7.6
shows the strength of agreement using Kappa statistics about code smells identified by
pair of developers in the same system (eight developers and four systems). Figure 7.2
illustrates the distribution of values of level of agreement between developers for each
metric that point out a single code smell.

Regarding long methods pointed out using LOC metric thresholds, the strength of
agreement using Kappa statistics shows moderate (one system) to substantial (three sys-
tems). Considering high complexity methods, the strength of agreement was substantial
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(three systems) to almost perfect (one system). Regarding high efferent coupling, we
found fair agreement in two systems, substantial in one system and almost perfect in one
system. Finally, we found agreement fair (two systems) and substantial (two systems)
evaluating developers agreement in methods with long parameter list.

These results shows substantial and almost perfect strength of agreement between
developers in many evaluations of (11 out of 16). The proposed interview process showed
that the four evaluated code smells are simple and easily detectable by participants.
However, our results contradict another large-scale evaluation (HOZANO et al., 2018).
They found a low agreement among the developers’ evaluations in all investigated code
smells, including Long Method and Long Parameter List, and suggest that experience
and background factors cannot make developers agree on detecting code smells. They
also indicate that the developers’ heuristic to detect the smells is the most predominant
factor to some improvement on the agreement. We believe that the predominant factor in
obtaining a high level of agreement between developers is familiarity with the evaluated
code snippets and corresponding design decisions. Understanding the design decisions
that influenced the implementation of the code is essential to classify it as smelly.

In summary, the results allow us to answer RQ1 as follows:

Consciousness of the design decisions in the evaluated source code increases
developers’ agreement to recognize smelly methods in software systems maintained
by them. Therefore, we suggest that assessing the accuracy of techniques that
automatically point out code smells needs to be carried out by developers familiar
with design decisions of the evaluated source code.

RQ2: Which technique proposes metric thresholds that best reflect the individual de-
velopers’ perception about code smells in software systems maintained by them?

This research question aims to point out the technique that derived metric thresholds
more similar to the individual perceptions of most developers. We considered the same
weight to each developer’s perception about a smelly method that he will refactor. We
aggregated the results achieved for each metric, as discussed in Section 7.1, because
aggregate metrics are more robust than the mean.

Regarding the LOC metric, Table 7.7 shows the aggregate results of true positives
(TP), false negatives (FN), false positives (FP), true negatives (TN), precision, and MCC
for individual developer’s perception of long methods. We observe that [T1] had higher
precision and MCC metrics, followed by [T2] and Alves techniques. Although other
techniques achieve a more significant number of true positives, they also significantly
increase false negatives reducing precision. For instance, Vale’s technique has higher true
positives; however, low precision occurs because it derives very low metric thresholds that
increase false positives.

Figure 7.7 illustrates differences between the distribution of MCC and precision met-
rics according to individual software developers’ perception. It shows two graphs with
five box plots each. Each graph is about one of the five techniques to derive metric
thresholds. We also observe a small advantage of precision and MCC metrics of the [T1]
technique. MCC to the [T1] technique ranges from 0.24 to 0.73.

To test the hypothesis H 01 about MCC, we use the Shapiro-Wilk test of normal-
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Table 7.7: Aggregate Results for Individual Developer’s Perception of Long Methods

TP FN FP TN Precision MCC

Alves et al. 31 14 25 177 0,55 0,52
Vale and Figueiredo 45 0 198 4 0,19 0,06
Aniche et al. 31 14 41 161 0,43 0,41
[T1] 28 17 16 186 0,64 0,55
[T2] 29 16 20 182 0,59 0,53

Figure 7.3: Distributions of MCC and Precision Metrics according to Individual’ Devel-
opers Perception of Long Methods
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Table 7.8: Aggregate Results for Individual Developer’s Perception of Complex Methods

TP FN FP TN Precision MCC

Alves et al. 45 32 43 148 0,51 0,35
Vale and Figueiredo 78 0 188 2 0,29 0,06
Aniche et al. 50 28 48 142 0,51 0,37
[T1] 30 47 28 162 0,52 0,27
[T2] 33 45 37 153 0,47 0,24

ity, and we can not assume the normality for distribution of the MCC values of Vale’s
technique. So, we perform the Kruskal-Wallis test, and we identify there are significant
differences between the techniques (p − value = 0.0007) rejecting the null hypothesis
(H 01). This means that at least one technique derived metric thresholds that improve
MCC on the detection of code smells compared to the others. Pairwise comparisons us-
ing the Mann-Whitney-Wilcoxon test with 5% confident level and Bonferroni correction
(MANN; WHITNEY, 1947) showed that the MCC of Vale’s technique is significantly
lower than other techniques. We obtained a large effect size applying Cliff’s δ. These
results mean that Vale’s technique derived metric thresholds for LOC metric that do not
improve MCC metric to detect long methods according to individual developers’ percep-
tion of code smells. We do not identify statically significant differences between other
techniques. To evaluate if some technique derived metric thresholds that improve the
precision to detect long methods, we test the hypothesis H 02. We can not assume the
normality of the precision values distribution of [T1] and [T2] techniques. The Kruskal-
Wallis test rejected (p−value = 0.0008) the null hypothesis (H 02). Pairwise comparisons
using the Mann-Whitney-Wilcoxon showed that the precision of Vale’s technique also is
significantly lower than other techniques. We also obtained a large effect size applying
Cliff’s δ. These results mean that Vale’s technique derived metric thresholds for LOC
metric that do not improve the precision to detect long methods. These results also con-
firm our visual analysis of Figure 7.3, which shows the distribution of MCC and precision
values of Vale’s technique much lower than the other techniques.

Regarding the CC metric, Table 7.8 shows the aggregate results for individual devel-
oper’s perception of high complex methods. We observe that [T1] had higher precision,
but Alves and Aniche’s techniques obtained higher MCC metric values than [T1] tech-
nique. Again, Vale’s technique obtained a higher number of true positives and false
positives, implying the worst precision.

Figure 7.4 illustrates differences between the distribution of MCC and precision met-
rics according to individual software developers’ perception of complex methods. It shows
two graphs with five box plots each. Each graph is about one of the five techniques to
derive metric thresholds. We also observe a small advantage of precision and MCC met-
rics to the [T1] technique. MCC of the [T1] technique ranges from 0.15 to 0.53. The
distribution of precision values of Aniche’s technique shows a small visual advantage over
other techniques.

To test the hypothesis H 01 to MCC, we use the Shapiro-Wilk test of normality, and
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Figure 7.4: Distributions of MCC and Precision Metrics according to Individual’ Devel-
opers Perception of Complex Methods

we can not assume the normality for distribution of the MCC values of Vale and [T2]
techniques. So, we perform the Kruskal-Wallis test, and we identify there are significant
differences of MCC between the techniques (p − value = 0.0057) rejecting the null hy-
pothesis (H 01). This means that at least one technique proposes metric thresholds that
improve the MCC to detect code smells compared to individual developers’ perception
of code smells. Pairwise comparisons using the Mann-Whitney-Wilcoxon test with 5%
confident level and Bonferroni correction (MANN; WHITNEY, 1947) showed that the
MCC of Vale’s technique is significantly lower than other techniques. We obtained a
large effect size applying Cliff’s δ. These results mean that the Vale’s technique proposes
metric thresholds for CC metric that do not improve MCC metric to detect high complex
methods. We do not identify statically significant differences between other techniques.

To evaluate if some technique proposes metric thresholds that improve the precision to
detect complex methods, we test the hypothesis H 02. We can not assume the normality
of the precision values distribution of [T1] technique. The Kruskal-Wallis test rejected
(p − value = 0.003) the null hypothesis (H 02). Pairwise comparisons using the Mann-
Whitney-Wilcoxon showed that the precision of Vale’s technique also is significantly lower
than only [T1] and [T2] techniques. We also obtained a large effect size applying Cliff’s
δ. These results mean that Vale’s technique proposes metric thresholds for CC metrics
that do not improve the precision metric to detect complex methods than [T1] and [T2]
techniques. These results also confirm the visual analysis of Figure 7.4, which shows the
distribution of MCC values of Vale’s technique much lower than the other techniques.
However, we only found the distribution of precision values of Vale’s technique statistically
significantly lower than [T1] and [T2] techniques. We do not found differences between
other evaluated techniques.

Regarding the EC metric, Table 7.9 shows the aggregate results of true positives (TP),
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Table 7.9: Aggregate Results for Individual Developer’s Perception of High Efferent Cou-
pling

TP FN FP TN Precision MCC

Alves et al. 22 1 53 154 0,29 0,44
Vale and Figueiredo 23 0 200 7 0,10 0,06
Aniche et al. 22 1 62 145 0,26 0,41
[T1] 19 4 14 193 0,58 0,65
[T2] 16 7 26 181 0,38 0,44

Figure 7.5: Distributions of MCC and Precision Metrics according to Individual’ Devel-
opers Perception of High Efferent Coupling

false negatives (FN), false positives (FP), true negatives (TN), precision, and MCC for
individual developer’s perception of high efferent coupling of methods. We observe that
[T1] and [T2] had higher precision and MCC metrics. Vale’s technique obtained only one
true positive more than the other techniques, however it obtained a considerable increase
in the number of false positives. For this reason Vale’s technique obtained low values of
MCC and precision.

Figure 7.5 illustrates differences between the distribution of MCC and precision met-
rics according to individual software developers’ perception of high efferent coupling. It
shows two graphs with five box plots each. Each graph is about one of the five techniques
to derive metric thresholds. We also observe the advantage of precision and MCC metrics
to [T1] and [T2] techniques. For instance, MCC and precision to the [T1] technique range
from 0.48 to 1.00.

To test the hypothesis H 01 to MCC, we use the Shapiro-Wilk test of normality, and
we can not assume the normality for distribution of the MCC values of Vale’s technique.
So, we perform the Kruskal-Wallis test, and we identify there are significant differences
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of MCC between the techniques (p−value = 0.0002) rejecting the null hypothesis (H 01).
This means that at least one technique proposes metric thresholds that improve the
MCC to detect code smells compared to individual developers’ perception of code smells.
Pairwise comparisons using the Mann-Whitney-Wilcoxon test with 5% confident level
and Bonferroni correction (MANN; WHITNEY, 1947) showed that the MCC of Vale’s
technique is significantly lower than other techniques. We also identified that the [T1]
technique obtained better MCC values in a statistically significant way than Vale, Aniche,
and Alves’ techniques. We did not find any statistically significant differences from [T1]
compared to the [T2] technique. We obtained a large effect size by applying Cliff’s δ
in all these comparisons. These results mean that the [T1] technique proposes metric
thresholds for EC metric that improve MCC metric to detect high efferent coupling in
methods according to individual developers’ perception of code smells.

To evaluate if some technique proposes metric thresholds that improve the precision to
detect complex methods, we test the hypothesis H 02. We can not assume the normality
of the precision values distribution of [T1] and Aniche techniques. The Kruskal-Wallis
test rejected (p − value = 0.0002) the null hypothesis (H 02). Pairwise comparisons us-
ing the Mann-Whitney-Wilcoxon showed that the precision of Vale’s technique also is
significantly lower than other techniques. We also obtained a statistically significant im-
provement in the precision values of the technique [T1] compared to the techniques of
Vale, Aniche, and Alves. Only the [T2] technique did not obtain significant differences
in precision compared to [T1]. We also obtained a large effect size applying Cliff’s δ for
these comparisons. These results mean that Vale’s technique proposes metric thresholds
for EC metrics that did not improve the precision metric to detect methods with high
efferent coupling compared to other techniques. According to individual developers’ per-
ception of code smells, the [T1] technique also proposes metric thresholds for EC that
improve precision metric to detect methods with high efferent coupling. We do not found
differences between precision obtained by [T1] and [T2] techniques. These results also
confirm the visual perception of Figure 7.5, which shows the distribution of MCC and
precision values of the [T1] and [T2] techniques with values higher than other techniques.

Regarding the NOP metric, Table 7.10 shows the aggregate results of true positives
(TP), false negatives (FN), false positives (FP), true negatives (TN), precision, and MCC
for individual developer’s perception of the long parameter list. We observe that [T1] and
[T2] had higher precision and MCC metrics. Despite other techniques obtained a higher
number of true positives, they also obtained a considerable increase in false positives and
lower precision than [T1] and [T2] techniques.

Figure 7.6 illustrates differences between the distribution of MCC and precision met-
rics according to individual software developers’ perception of long list of parameters. It
shows two graphs with five box plots each. Each graph is about one of the five techniques
to derive metric thresholds. We also observe the advantage of precision and MCC metrics
to [T1] and [T2] techniques. For instance, MCC and precision to the [T1] technique range
from 0.35 to 0.88.

To test the hypothesis H 01 to MCC, we use the Shapiro-Wilk test of normality, and
we can not assume the normality for distribution of the MCC values of Vale’s technique.
So, we perform the Kruskal-Wallis test, and we identify there are significant differences
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Table 7.10: Aggregate Results for Individual Developer’s Perception of Long Parameter
List

TP FN FP TN Precision MCC

Alves et al. 31 0 59 103 0,34 0,47
Vale and Figueiredo 31 0 137 24 0,18 0,17
Aniche et al. 31 0 81 81 0,28 0,37
[T1] 25 6 21 141 0,54 0,58
[T2] 20 11 20 142 0,50 0,47

Figure 7.6: Distributions of MCC and Precision Metrics according to Individual’ Devel-
opers Perception of Long Parameter List
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of MCC between the techniques (p−value = 0.0001) rejecting the null hypothesis (H 01).
This means that at least one technique proposes metric thresholds that improve the
MCC to detect long parameter list compared to individual developers’ perception of code
smells. Pairwise comparisons using the Mann-Whitney-Wilcoxon test with 5% confident
level and Bonferroni correction (MANN; WHITNEY, 1947) showed that the MCC of
Vale’s technique is significantly lower than other techniques. We also identified that the
[T1] technique obtained better MCC values than Aniche’s technique. We did not find any
statistically significant differences among [T1], [T2] and Alves techniques. We obtained
a large effect size by applying Cliff’s δ in all these comparisons. These results mean
that Vale’s technique proposes metric thresholds for NOP metric that do not improve
the precision to detect long parameter list than other techniques. Also, [T1] technique
proposes metric thresholds that improve MCC metric compared to Aniche’s technique.

To evaluate if some technique proposes metric thresholds that improve the precision
to detect long parameter list, we test the hypothesis H 02. We can not assume the nor-
mality of the precision values distribution of Vale’s technique. The Kruskal-Wallis test
rejected (p − value = 0.01) the null hypothesis (H 02). Pairwise comparisons using the
Mann-Whitney-Wilcoxon showed that only [T1] and [T2] techniques obtained a statisti-
cally significant improvement in the precision values compared to Vale’s technique. We
obtained a large effect size applying Cliff’s δ for these comparisons. According to indi-
vidual developers’ perception of code smells, the [T1] and [T2] technique proposes metric
thresholds for NOP metric that improve precision to detect methods with long param-
eter list compared to Vale’s technique. We do not found differences between precision
obtained by [T1] and [T2] with other techniques. These results also confirm the visual
perception of Figure 7.6, which shows the distribution of MCC and precision values of
the [T1] and [T2] techniques with values higher than other techniques.

In summary, the differences we observed on distributions of precision and MCC values
from five evaluated techniques, allow us to answer RQ2 as follows:

No technique proposed metric thresholds that demonstrated statistically significant
improvements in precision and MCC values for the four evaluated metrics con-
cerning individual developers’ perception. However, the technique [T1] improved
MCC compared to Vale, Aniche, and Alves’s techniques in at least one evaluated
metric. [T1] also improved precision compared to the Vale, Aniche, and Alves’
techniques in at least one of the evaluated metrics. [T1] did not show statistically
significant differences in MCC and precision compared to [T2] technique.

RQ3: Which technique proposes threshold values that best reflect two developers’ joint
perception of code smells in software systems maintained by them?

We consider two developers have similar perceptions of a code smell when they have
an equal opinion about code smells evaluating the same method.

Regarding the LOC metric, Table 7.11 shows the aggregate results of true positives
(TP), false negatives (FN), false positives (FP), true negatives (TN), precision, and MCC
for individual developer’s perception of long methods. We observe that [T1] had higher
precision and MCC metrics, followed by [T2] and Alves techniques. Although other
techniques achieve a more significant number of true positives, they also significantly
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Table 7.11: Aggregate Results for Two Developer’s Joint Perception of Long Methods

TP FN FP TN Precision MCC

Alves et al. 14 4 11 85 0,56 0,58
Vale and Figueiredo 18 0 94 2 0,16 0,06
Aniche et al. 14 4 19 77 0,42 0,47
[T1] 12 6 6 90 0,67 0,60
[T2] 12 6 7 89 0,63 0,58

Figure 7.7: Distributions of MCC and Precision Metrics according to Joint Developers
Perception of Long Methods

increase false negatives reducing precision. For instance, Vale’s technique has higher true
positives; however, low precision occurs because it derives very low metric thresholds that
increase false positives. Refactoring also occur in methods not point out as smelly, but
methods perceived as smelly seem more prone to refactoring.

Figure 7.7 illustrates differences between the distribution of MCC and precision met-
rics according to joint software developers’ perception. It shows two graphs with five
box plots each. Each graph is about one of the five techniques to derive metric thresh-
olds. We observe a small advantage of precision and MCC metrics to the [T1] and Alves
techniques. MCC to the [T1] technique ranges from 0.36 to 0.88.

To test the hypothesis H 03 to MCC, we use the Shapiro-Wilk test of normality, and
we can not assume the normality for distribution of the MCC values of Vale’s technique.
So, we perform the Kruskal-Wallis test, and we identify there are significant differences
between the techniques (p − value = 0.038) rejecting the null hypothesis (H 03). This
means that at least one technique proposes metric thresholds that improve the MCC
to detect code smells compared to joint developers’ perception of code smells. Pairwise
comparisons using the Mann-Whitney-Wilcoxon test with 5% confident level and Bonfer-
roni correction (MANN; WHITNEY, 1947) showed that the MCC of Vale’s technique is
significantly lower than other techniques. We obtained a large effect size applying Cliff’s
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Table 7.12: Aggregate Results for Two Developer’s Joint Perception of Complex Methods

TP FN FP TN Precision MCC

Alves et al. 19 12 18 69 0,51 0,39
Vale and Figueiredo 31 0 86 1 0,26 0,06
Aniche et al. 20 11 19 68 0,51 0,40
[T1] 13 18 12 75 0,52 0,30
[T2] 13 18 15 72 0,46 0,26

δ. These results mean that Vale’s technique proposes metric thresholds for LOC metric
that do not improve MCC metric to detect long methods according to joint developers’
perception of code smells. We do not identify statically significant differences between
other techniques. To evaluate if some technique proposes metric thresholds that improve
the precision to detect long methods, we test the hypothesis H 04. We can assume the
normality of the distribution of precision values and homogeneity of variance using Lev-
ene’s Test (p− value = 0.255). As the ANOVA was significant, we compute Tukey HSD
for performing multiple pairwise-comparison between the means of groups. The pair-
wise comparisons showed that the precision of Vale’s technique also is significantly lower
than Alves e [T1] techiniques. These results also confirm our visual analysis of Figure
7.7, which shows the distribution of MCC and precision values of Vale’s technique much
lower than the other techniques.

Regarding the CC metric, Table 7.12 shows the aggregate results for the joint devel-
oper’s perception of high complex methods. We observe that [T1] had higher precision,
but Alves and Aniche’s techniques obtained higher MCC metric values than [T1] tech-
nique. Again, Vale’s technique obtained a higher number of true positives and false
positives, implying the worst precision.

Figure 7.8 illustrates differences between the distribution of MCC and precision met-
rics according to joint software developers’ perception of complex methods. It shows two
graphs with five box plots each. Each graph is about one of the five techniques to derive
metric thresholds. We observe a small advantage of precision and MCC metrics to the
Aniche and [T1] techniques. For instance, MCC to the [T1] technique ranges from 0.17
to 0.51. The distribution of precision values of [T1] technique shows a small advantage
over other techniques.

To test the hypothesis H 03 to MCC, we use the Shapiro-Wilk test of normality, and
we can not assume the normality for distribution of the MCC values of Aniche and
Vale’ techniques. So, we perform the Kruskal-Wallis test, and we identify there are
significant differences of MCC between the techniques (p − value = 0.03) rejecting the
null hypothesis (H 03). This means that at least one technique proposes metric thresholds
that improve the MCC to detect code smells compared to joint developers’ perception
of complex methods. Pairwise comparisons using the Mann-Whitney-Wilcoxon test with
5% confident level and Bonferroni correction (MANN; WHITNEY, 1947) do not identify
statically significant differences between distribution of MCC values of five techniques.
To evaluate if some technique proposes metric thresholds that improve the precision to
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Figure 7.8: Distributions of MCC and Precision Metrics according to Joint’ Developers
Perception of Complex Methods

Table 7.13: Aggregate Results for Two Developer’s Joint Perception of High Efferent
Coupling

TP FN FP TN Precision MCC

Alves et al. 6 0 22 76 0,21 0,41
Vale and Figueiredo 6 0 95 3 0,06 0,04
Aniche et al. 6 0 26 72 0,19 0,37
[T1] 6 0 4 94 0,60 0,76
[T2] 5 1 10 88 0,33 0,49

detect complex methods, we test the hypothesis H 04. We can assume the normality of
the distributions of precision values and homogeneity of variance using Levene’s Test (p−
value = 0.077). As the ANOVA was significant, we compute Tukey HSD for performing
multiple pairwise-comparison between the means of groups. The pairwise comparisons
do not identify statically significant differences between distribution of precision values
of five techniques.

Regarding the EC metric, Table 7.13 shows the aggregate results of true positives
(TP), false negatives (FN), false positives (FP), true negatives (TN), precision, and MCC
for the joint developer’s perception of high efferent coupling of methods. We observe that
[T1] and [T2] had higher precision and MCC metrics. Vale’s technique obtained only one
true positive more than the other techniques, however it obtained a considerable increase
in the number of false positives. For this reason Vale’s technique obtained lower values
of MCC and precision.

Figure 7.9 illustrates differences between the distribution of MCC and precision met-
rics according to the joint software developers’ perception of high efferent coupling. It
shows two graphs with five box plots each. Each graph is about one of the five techniques
to derive metric thresholds. We also observe the advantage of precision and MCC metrics
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Figure 7.9: Distributions of MCC and Precision Metrics according to Joint’ Developers
Perception of High Efferent Coupling

to [T1] and [T2] techniques. For instance, MCC and precision to the [T1] technique range
from 0.46 to 1.00.

To test the hypothesis H 03 to MCC, we use the Shapiro-Wilk test of normality, and
we can not assume the normality for distribution of the MCC values of Vale’s technique.
So, we perform the Kruskal-Wallis test, and we identify there are significant differences
of MCC between the techniques (p− value = 0.009) rejecting the null hypothesis (H 03).
This means that at least one technique proposes metric thresholds that improve the
MCC to detect code smells compared to joint developers’ perception of code smells.
Pairwise comparisons using the Mann-Whitney-Wilcoxon test with 5% confident level and
Bonferroni correction (MANN; WHITNEY, 1947) did not find any statistically significant
differences from five technique. To evaluate if some technique proposes metric thresholds
that improve the precision to detect methods with high efferent coupling, we test the
hypothesis H 04. We can assume the normality of the distributions of precision values
and homogeneity of variance using Levene’s Test (p − value = 0.05). As the ANOVA
was significant, we compute Tukey HSD for performing multiple pairwise-comparison
between the means of groups. The pairwise comparisons showed that the precision of
[T1] technique was significantly higher than Alves, Aniche and Vale’ techniques. These
results also confirm our visual analysis of Figure 7.9, which shows the distribution of
MCC and precision values of [T1] technique higher than the other techniques. We do not
identify statically significant differences between distribution of precision values between
[T1] and [T2] techniques.

Regarding the NOP metric, Table 7.14 shows the aggregate results of true positives
(TP), false negatives (FN), false positives (FP), true negatives (TN), precision, and MCC
for joint developer’s perception of the long parameter list. We observe that [T1] and [T2]
had higher precision and MCC metrics. Despite other techniques obtained a higher
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Table 7.14: Aggregate Results for Two Developer’s Joint Perception of Long Parameter
List

TP FN FP TN Precision MCC

Alves et al. 8 0 22 51 0,27 0,43
Vale and Figueiredo 8 0 61 12 0,12 0,14
Aniche et al. 8 0 33 40 0,20 0,33
[T1] 8 0 6 67 0,57 0,72
[T2] 6 2 6 67 0,50 0,56

Figure 7.10: Distributions of MCC and Precision Metrics according to Joint’ Developers
Perception of Long Parameter List

number of true positives, they also obtained a considerable increase in false positives and
lower precision than [T1] and [T2] techniques.

Figure 7.10 illustrates differences between the distribution of MCC and precision
metrics according to the joint software developers’ perception of long parameter list. It
shows two graphs with five box plots each. Each graph is about one of the five techniques
to derive metric thresholds. We also observe the advantage of precision and MCC metrics
to [T1] and [T2] techniques. For instance, MCC and precision to the [T1] technique range
from 0.64 to 0.83.

To test the hypothesis H 03 to MCC, we use the Shapiro-Wilk test of normality, and
we can assume the normality for distribution of the MCC values of Vale’s technique
and homogeneity of variance. As the ANOVA was significant, we compute Tukey HSD
for performing multiple pairwise-comparison between the means of groups. The pairwise
comparisons showed that the MCC of [T1] technique was significantly higher than Aniche
and Vale techniques. We also found that [T2] and Alves techniques were significantly
higher than Vale’s technique. To evaluate if some technique proposes metric thresholds
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that improve the precision to detect long list of parameters, we test the hypothesis H 04.
We can not assume the normality of the precision values distribution [T1] technique. The
Kruskal-Wallis test rejected (p − value = 0.0061) the null hypothesis (H 04). Pairwise
comparisons using the Mann-Whitney-Wilcoxon did not show that statistically significant
improvement in the precision values between five techniques.

In summary, the differences we observed on distributions of precision and MCC values
from five evaluated techniques, allow us to answer RQ3 as follows:

No technique proposed metric thresholds that demonstrated statistically significant
improvements in precision and MCC values for the four evaluated metrics con-
cerning joint developers’ perception. However, the technique [T1] improved MCC
compared to Vale and Aniche’s techniques in at least one evaluated metric. [T1]
also improved precision compared to Vale, Aniche, and Alves’ techniques in at
least one evaluated metric. Similar to individual developers’ perception, [T1] also
did not show statistically significant differences in MCC and precision compared
to the [T2] technique.

RQ4: Do developers familiar with the source code consider the class design role in-
formation to identify refactoring-prone code smells?

This research question aimed to identify if developers use the class design role to
explain their perception of a smelly method prone to refactoring. According to the
procedures detailed in Section 7.1, we carry out a qualitative study. For each evaluated
method, we ask, ”What implementing features of the method influenced you to consider
it as smelly?”. We analyzed 700 responses from developers. Next, we ask developers’
perceptions about the possibility that a code smell occurs in other methods playing
the same design role. Finally, we carry out the second phase of interviews to review
inconsistencies in responses.

We create codes for the developer’s speeches (1st phase). After, these codes were
related to each other through axial coding (2nd phase). For each transcript, the codes
and identified memos showing the relationships in the categories were reviewed by the
author of this thesis and a master student, and if necessary, changed upon agreement
with both researchers. This section presents our main results, including direct quotes
from respondents related to proposed categories.

We found 187 (26, 7%) responses that associated at least one code smell with the
evaluated method and 513 (73, 3%) responses that did not identify any of the code smells
considered. We identified the design role category in developers’ responses to justify their
assessments in 27, 2% (51 out of 187) of positive responses and 21, 4% (110 out of 513)
of negative responses.

According to the developer and evaluated system, we also noticed a variation in the
number of citations of the design role. The S5 system developers were the ones that most
used the design roles in positive answers: 70.0% (14 out of 20) and 52.2% (12 out of 23).
We also noticed a variation between the developers of the same system. For example, in
the S6 system, the first developer mentioned at least one design role in 18.2% (4 out of
22) of his positive answers, already the second developer cited at least one design role
in 36.4% (8 out of 22) of the positive answers. We identified the category design role in
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responses of all developers. Everyone used the design role to justify at least one positive
and negative response. These data suggest that the design role seems to influence the
developers’ perception of code smells regardless of the evaluated system and developer.
We discuss below other findings obtained.

Did class design role influence developers’ perception about long methods?
Developers pointed out 84 out of 700 evaluated methods as long. They usually justified
their motivation to classify methods as long with short answers. The most common
reasons perceived by software developers match with the categories high number of
lines of code (32 out of 84) and the need to split the method into smaller ones
to improve understanding (37 out of 84). Many respondents mentioned “The method
does a lot. We should divide it into more methods.”

Respondents used the category class design role (21 out of 85) to explain their
decision for classifying methods as long. A developer mentioned that “I would split the
method to handle specific rules and extract business rules from Actions”. Some developers
used the class design role as the main reason to justify a method as longer. For instance,
a developer mentioned that “Even though the method is in a Utility class, the method
is very long and complex ”. Similarly, another developer states that “for a method in
an Entity class it is too long and complex”. A developer used design role to explain
his justification in detail “ It is expected long methods in Actions classes because Action
receives input data, call Service classes or Business methods, and then return a result to
the system. ”. These reports illustrate situations where design role (e.g., Action, Services,
and Utility) influenced developers’ perception of long methods.

Did class design role influence developers’ perception about high complex-
ity methods? Developers pointed out 129 out of 700 evaluated methods with high
complexity. The most common reasons perceived by software developers match with the
category many conditional statements or loop (64/129 occurrences) and the need
to split the method into smaller ones to improve understanding (40/129 oc-
currences). Many respondents mentioned “many conditionals and loop statements for a
single method.”

We also identify developers using the category class design role (43 out of 129)
to explain their perception about high complexity methods. A developer explain that
the design role can influence the number of complex methods “Although an Action class,
which makes many accesses to other classes, this method overstates the number of devi-
ations and dependencies.”. Some developers used the design role as the main reason to
classify the method as high complexity. A developer claims that “A TO (i.e., transfer
object design pattern) cannot have many conditionals statements, these statements need
to be placed in another class.”. Another developer mentions that “It is a complex method,
even more, because it is a method responsible for carrying out persistence”. These reports
also suggest that design role decisively influenced developers’ perception to classify high
complexity methods.

Did class design role influence the developers’ perception about high effer-
ent coupling methods? Developers pointed out 46 out of 700 evaluated methods with
high efferent coupling. The most common reasons perceived by software developers match
with the category method assumes many responsibilities (18/46 occurrences) and
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method makes many accesses to other classes (15/46 occurrences). For instance,
some developers mention that “method has many dependencies.” other developers claim
that “method is very coupled to other classes.” Due to a large number of short responses,
we found few developer’s answers (4 out of 46) that matched with the category class de-
sign role to justify their perception of high efferent coupling. A developer justified that
“the method mixes responsibilities of architectural components and validates at the same
time.”. Another developer mentioned that “even though it is an Action, which makes
many accesses to other classes, this method exaggerates both the conditional statements
and dependent classes”.

Did class design role influence the developers’ perception about methods
with a long list of parameters? Developers point out 51 out of 700 evaluated methods
with a long parameter list. Most developers’ answers are short, and the most common
reasons perceived by software developers match with the category many parameters
(42/51 occurrences).

Similar to the efferent coupling metric, due to the high number of short answers, we
found few developer’s answers (5 out of 51) matching with the category class design
role to justify their perception of a high number of parameters. A developer mentioned
that “even though it is a class of service, it would be possible to reduce the number of
parameters”. Another developer mentions design role as a possible solution “could create
a TO to pass the parameters”.

Did class design role influence the developers’ perception to not assign a
smell to a method? Developers did not point out any code smell to 515 out of 700
evaluated methods. Most responses (512/515 occurrences) match with the category No
problems. Many developers mentioned “everything is normal”.

Interestingly, we also found several developers’ responses (110/515 occurrences) using
the class design role to justify their perception. Developers argue that some design roles
require higher metric thresholds. Some developers state that “Everything normal for a
validator” or “Everything normal for a Service” or “Everything normal for a Repository
class”. Other developer says “classes playing the Controller design role are responsible
to handle exceptions”. Developers also explain that some methods in classes playing the
Entity design role require higher metric thresholds. Some developers say that “Equal
methods (from Entity classes) need to have all of these deviations” or “A hashcode (from
Entity classes) method needs to be like this”. Thus, these reports illustrate that developers
also used design roles to justify their perception of non-smelly methods.

Did class design role influence the developers’ perception to assign the
same code smell to classes playing the same design role?

Developers answered a follow-up questionnaire in the third part of the interview. We
ask “Do you think that methods associated with the same design role and similar metric
values will have the same code smell? Please justify your answer and cite examples.”.
We applied this question after the developers evaluated all methods. We proposed this
question because evaluating all system methods would be very difficult and error-prone.
Thus, we wanted to have an idea in which degree the identification of code smells in a
method could be extended to other methods of classes playing the same design role.

All developers confirmed that they would repeat the assessment on classes playing the
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same design role. One developer said that “Yes. Usually, the methods of a particular type
of class (design role) maintain a relatively high degree of similarity within a system. So
if we identified a problem for one of these methods, if it is not something particular, then
this problem will probably also be in other similar methods.”. Another developer states
that “Yes. If a problem occurs for a type of class (design role) because the classes have
more or less the same content, other classes with the same parameters will also have the
same problems. For instance, the method save from AlunoBO and MatriculaBO classes
have the same problems, that is, they are long, coupled, and complex”.

Did class design role influence the developers to reconsider inconsistent
evaluations?

Finally, we asked some questions intended to find out inconsistencies in developers’
answers. We considered an inconsistency when a developer evaluated differently methods
playing the same design role and with similar metric values. We found few inconsistencies
(17 out of 700), and the developers also took design role into account to reconsider their
evaluations.

Developers reconsidered their initial evaluation in 10 out of 17 inconsistencies. Devel-
opers used the characteristics of other classes playing the same design role to reconsider
their opinion. A developer claims that “I evaluated the methods (...) as long. However,
now, looking at another BO methods, I perceive that they are not long.”. Another de-
veloper replies “The method (...) was mistaken evaluated when I considered it as high
complexity since it is a validator method. Especially if we compare it with the validation
methods of another validator classes, which also have more deviations, but they need to
be that way because they aim to validate a Form.”.

In summary, the qualitative analysis allow us to answer RQ4 as follows:

Regarding the four studied code smells, developers’ perception considered class
design role when classifying a method as smelly or non-smelly. Therefore, tech-
niques and tools should consider taking design role into account to improve accu-
racy to detect code smells.

7.3 THREATS TO VALIDITY

This section discuss threats to the validity of the results and the actions we take to
minimize them.

Construct validity: A possible threat is that the benchmarks used to derive metric
threshold values may bias the results. We applied well-defined criteria to select real-world
Web systems from the Github repository to build the benchmark we used to execute Alves,
Aniche and Vale’s techniques to reduce this bias. To reduce the bias to select similar
systems to compose the benchmark for our proposed techniques, we asked a team of
expert developers to suggest systems they consider as reference of good quality. Another
threat that could have influenced the developers’ perception was if we let they know that
the methods they would evaluate were pointed out by metrics as smelly. To avoid that,
we stated in our interview protocol that the developers should be told that the methods
might or might not have some of the four code smells. The order the methods were
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presented to the developers could also have influenced their evaluation. For instance, if
the methods were presented in increasing order, the developers could wait to the last ones
to indicate them as smelly. Thus, we defined a presentation protocol to alternate methods
with high and low metric values to avoid this bias. Another threat was selecting methods
for evaluation since it would be impossible for developers to evaluate all methods. Our
protocol also defines a systematic approach for selecting methods to have methods in all
design roles of the systems.

Internal Validity: A possible threat was the developers’ fatigue during the inter-
views, which could influence the evaluations of the methods, especially the last ones to be
presented. To minimize this threat, we conducted a pilot study to define the average time
for developers to concentrate and left all the methods to be evaluated open in the IDE
to reduce the total interview time. Another threat was the different levels of experience
of the developers. To reduce this problem, we also carry out joint developers’ evaluations
of code smells.

External Validity: The main threat is the number of developers interviewed. How-
ever, it is also not common in other similar studies a large number of respondents. We
select the two most experienced developers from each team or the most experienced in the
project to minimize this threat, and we evaluate distinct software projects. The results
are valid for the four evaluated systems and the four studied metrics. We do not suggest
that they should be generalized.

7.4 RELATED WORKS

We found some studies assessing the perception of developers in code systems such as
IDEs (e.g., Eclipse), text editors (e.g., JEdit), frameworks, and modeling tools (e.g.,
ArgoUML). However, these systems do not represent a Web-based system that is the
application domain of most software developers.

Oliveira et al. (OLIVEIRA; VALENTE; LIMA, 2014) propose a technique to de-
rive metric thresholds from the benchmark of systems. They validate obtained threshold
values with software developers. The results showed that high-quality systems respect
derived metric thresholds. Our study also evaluates code anomalies with expert develop-
ers, but the evaluation was not limited to code anomalies suggested by metric thresholds
obtained from a single technique. We compare the results applying metric thresholds
derived from five distinct benchmark-based techniques.

Vale et al. (VALE; FERNANDES; FIGUEIREDO, 2018) evaluated metric thresholds
obtained from three distinct techniques. They used threshold values to detect God Class
and Lazy Class in a software product line. Expert developers previously suggested these
code anomalies. As a result, the authors’ technique’s metric thresholds have a slight
advantage over the other evaluated techniques. Our study also assessed the same tech-
niques, except the Lanza’s technique (LANZA; MARINESCU, 2006) because it considers
that the metrics have a normal distribution, which rarely occurs. Also, our study in-
cludes new techniques that take into account the class design role played by system class
to derive metric thresholds, and we use real-world web systems and expert developers to
evaluate identified code anomalies. Vale and Figueiredo’s technique usually had the worst
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performance due to the very low metric thresholds it derives. Our techniques have shown
improvements considering the individual and joint perceptions of expert developers.

Hozano et al. (2018) conducted an empirical study with 75 developers who evaluated
instances of 15 different code smell types. They aim to investigate how similar the devel-
opers detect code smells. They analyzed factors related to the developers’ profiles and
the heuristics adopted by developers on detecting code smells that may influence such
(dis)agreement. The results indicated that the developers presented a low agreement
on detecting all 15 smell types analyzed. They suggested that background and expe-
rience factors did not consistently influence the agreement among the developers, and
specific heuristics employed by developers consistently influenced the agreement. Our
results contradict this study showing a high degree of agreement between developers in
most evaluations. We claim that familiarity with design decisions and class design roles
impacted developers’ assessments. Palomba et al. (2014) evaluated the developers’ per-
ception of metric threshold values for 12 bad smells in three open-source projects. A
master student developed the bad smells dataset relying on the definition of the code
smells reported in the literature, and metric-based purposes of the DECOR tool (MOHA
et al., 2010). The resulting list was validated manually by two masters’ students. The
authors claim that the process aimed to find reliable bad smells on the object systems
and did not find instances of all considered smells. Some original developers, industrial
developers, and master’s students evaluated the dataset of bad smells. The results show
the divergent perception of each group of developers and that the developer’s experi-
ence and system knowledge play an essential role in identifying some smells. Also, some
smells are generally not perceived by developers as design problems because they are
simply the result of conscious choices (design decisions) made by developers. They claim
that approaches to (semi)automatically improve source code quality should continuously
consider the developer’s point-of-view. Taibi, Janes e Lenarduzzi (2017) strengthen these
results conducted a study analyzing developers’ perceived harmfulness of code smells.
They compared the developers’ perception based on the description of 23 smells, their
ability to identify and name them, and the smelly source code’s perceived harmfulness.
The results confirm that still a lot of misunderstanding surrounding code smells. They
recommend that researchers regularly investigate developers’ current perceptions since
developers will act based on their perceptions and not based on the real consequences
of injecting or removing code smells. Our study conducted the assessment from the
developers’ point of view. However, we argue that only developers familiar with code
design decisions should participate in the assessments since the design decisions need to
be known and considered on carrying out evaluations.

7.5 SUMMARY

We conducted an empirical study to evaluate the developers’ perception of code smells
pointed by metric thresholds derived from five benchmark-based techniques. All sys-
tem developers maintain the source code of evaluated systems, and they are conscious
of related design decisions. We compare metric thresholds derived from two proposed
techniques, discussed in Chapter 6 with the other three state-of-the-art techniques. We
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compare developers’ perceptions about code smells refactoring pointed out by metric
thresholds from these five techniques. We summarize the results and their implications
for research and practice as follow:

Class Design’ roles influence developer’s perception of code smells. The quantitative
results indicated that metric thresholds derived using the class design role as context
improved precision and MCC metrics according to developers’ perceptions. We reinforce
these conclusions using qualitative analysis of developers’ answers. A potential implica-
tion of this is that techniques and tools also must consider the class design role to improve
accuracy to detect smelly methods prone to refactoring.

Design decision awareness on source code increases developers’ agreement to recognize
smelly methods. The results showed substantial agreement between developers in many
evaluations of four evaluated method-level code smells. Our results contradict another
large-scale evaluation (HOZANO et al., 2018) that found a low agreement among the
developers’ evaluations in all investigated code smells, including Long Method and Long
Parameter List. A potential implication of this for research is that future works assessing
the accuracy of techniques that automatically point out code smells need to consider
developers’ viewpoint familiar with design decisions of evaluated source code.

Finding systems that follow the same design decisions may not be a trivial task when
the available repository of systems is unknown by developers. In the empirical study
conducted at the Federal University of Bahia, only the most experienced developers
were able to indicate other systems to compose the benchmark that followed the same
design decisions. Selecting systems to build a benchmark without these experts could
be challenging. Additionally, if we need to build a benchmark from a public repository
(e.g., GitHub), the challenge to find out systems developed with similar design decisions
could be even higher. In Section 4.4, we propose an automatic approach to select systems
developed with similar design decisions. An implication for research of this result is that
future works may assess the accuracy of techniques using benchmarks built automatically
by the proposed approach since it cannot even be that simple to find systems developed
with similar design decisions.



Chapter

8
COMPARING TECHNIQUES TO DERIVE METRIC

THRESHOLDS BASED ON CODE REFACTORED
ALONG SOFTWARE EVOLUTION

8.1 INTRODUCTION

Refactoring is a well-known technique used by developers to remove code smells and im-
prove software readability and maintainability. Refactoring opportunities are also argued
as the main reason for detecting code smells (FOWLER; BECK, 1999). However, very
few studies evaluate the impact of code smells detected by state-of-the-art strategies on
refactorings effectively performed during the software evolution.

Tufano et al. (2017) discuss that code smells tend to survive for a long time, and 80
percent of smell instances are never removed from the system after their introduction. One
possible reason is that developers do not perceive some code smells as design problems
(PALOMBA et al., 2014). Previous studies show wildly divergent perceptions about
code smells among developers who analyze the same source code snippet (MANTYLA;
LASSENIUS, 2006; MANTYLA, 2005; SCHUMACHER et al., 2010; SANTOS et al.,
2018; HOZANO et al., 2018). Therefore, despite the widely available tools support for
detecting smelly methods (MARINESCU, 2004; KHOMH et al., 2009; MOHA et al.,
2010), developers usually need to confirm each pointed out code smell.

Despite the reduced effectiveness of tools and the low agreement of the developers’
perception to point out smelly methods, many studies are still building oracles to evaluate
the effectiveness of code smell detection techniques based on these tools and developers’
perception. In Chapter 7, we discussed that take into account developers’ perceptions
is essential to assess the precision of techniques that point out smelly methods. More-
over, we argue that developers’ awareness of design decisions on the evaluated source
code impacted smelly methods detection. In fact, we obtained a high degree of agree-
ment between developers familiar with design decisions evaluating the same source code
snippets.

117
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However, developers’ fatigue makes the evaluation process challenging to obtain com-
prehensive coverage, especially in large systems. For this reason, we decided to study
the accuracy of metric thresholds using as oracle methods effectively refactored during
software evolution. We also compared our two proposed techniques, described in Chapter
6, that consider class design role as context to derive metric thresholds, with the other
three state-of-the-art techniques.

We aim to answer our third general research question (RQ3):

RQ3: Are design-sensitive metric thresholds more accurate to detect code
smells prone to be refactored?

To investigate which technique derived metric thresholds that pointed out more refac-
tored methods, we conducted a large-scale retrospective study over the commit history
of 20 Web-based and 26 Android-based software projects. Our findings are based on the
analysis of 23,057 refactorings distributed in 9382 commits of evaluated software projects.
We used as oracle the refactorings detected by means of the RefactoringMiner tool on
the commit history of these systems. We only considered refactorings that are able to
solve each evaluated code smell. For example, we consider extract method refactorings in
oracle because it is able to solve long methods. We analyzed how the metrics thresholds
derived by the distinct techniques were able to point as smelly the methods effectively
refactored during the software evolution. We call smelly method the method whose met-
ric value is above at least one of the metric thresholds derived from the five evaluated
techniques. We summarize our findings as follows:

• We observed that smelly methods are always more prone to be refactored than non-
smelly methods. We found this result using metric thresholds derived from the five
evaluated techniques. This result suggests that metric-based strategies are helpful
to evaluate source code quality.

• Techniques that derived low threshold values had high recall values but lower pre-
cision values. We observed that techniques that consider design roles as context
achieved a better balance between recall and precision.

• Finally, even though most refactorings touch in smelly methods, we found many
refactorings applied in non-smelly methods. For example, regarding long methods,
39% of the refactorings in Web-based systems and 52.3% of the refactorings in
Android-based systems were applied in non-smelly methods.

We organize the remainder of this chapter as follows. Section 8.2 describes our em-
pirical study settings to mine software repositories evolution aiming to identify if the
smelly methods, pointed by thresholds derived from the five evaluated techniques, were
refactored. Section 8.3 presents the results of the study. Section 8.4 discusses threats
to validity and Section 8.5 discusses related work. Finally, Section 8.6 summarizes the
results and discusses our research implications.
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8.2 STUDY SETTINGS

The main goal of our empirical study is to identify the technique that derived the most
accurate metric thresholds to point out methods which were refactored during software
evolution. In this study, we only considered the types of refactorings which are able to
remove the four code smells we have been studying: long methods, complex complexity
methods, high efferent coupling methods and long list of parameters. We used systems
from two distinct architectural domains: Web-based systems and Android-based systems.

8.2.1 Research Questions

We formulated the following research questions:

RQ1: Are smelly methods more prone to be refactored during software evolution?
This research question quantitatively assesses occurrences of refactorings in smelly meth-
ods and non-smelly methods during software evolution. We aim to verify if derived metric
thresholds pointed out smelly methods most likely to be refactored.

RQ2: Which technique proposes metric thresholds that best pointed out refactored
smelly methods during software evolution?

This research question quantitatively evaluates the accuracy of metric thresholds de-
rived from the five techniques to point out methods prone to refactoring. We compared
our techniques, detailed in Chapter 6, with other three state-of-the-art techniques to de-
rive metric thresholds. We used as oracle the methods effectively refactored during the
software evolution. To address RQ1, we test the following null hypothesis.

H 0: no technique proposes metric thresholds that improve Matthews Correlation Co-
efficient (MCC) to detect refactored code smells during software evolution.

8.2.2 Techniques to Derive Metric Thresholds

We compared our two proposed techniques with the other three techniques also involved
in the previous study. Thus, in this study, we involved Alves et al. (ALVES; YPMA;
VISSER, 2010) and Vale and Figueiredo (VALE; FIGUEIREDO, 2015) techniques, de-
tailed in Section 2.3, which generate a generic threshold value for each metric. We also
evaluated Aniche et al. technique (ANICHE, 2015), detailed in Section 2.3, which is
based on Alves et al. technique but defines specific metric thresholds according to the
class architectural role. We evaluated our two proposed techniques, detailed in Section 6,
which considers class design role as context to derive metric thresholds. The class design
role, discussed in Chapter 4.2, is an extension of the architectural role concept allowing
to assign a role to classes not bound to a predefined reference architecture. Our first
technique, called [T1], proposes building a benchmark composed of high-quality systems
with similarities in class design roles. Our second technique, called [T2], also considers
the class design role in the benchmark creation process. In addition, this technique de-
rives multiple metric thresholds for each class design role rather than a single generic
threshold to evaluate all system classes.
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8.2.3 Target Systems

We carried out this study with 46 real-world systems developed in Java from two distinct
architectural domains: (i) Web-based Systems (20 systems) and (ii) Mobile-based Systems
based on the Android platform (26 systems). We chose systems implemented in the
same language (Java) because cation domain and programming language are recognized
factors that impact the distribution of metrics (ZHANG et al., 2013). The selected
architectural domains are popular in the software development industry1 and follow well-
defined reference architectures (MEDVIDOVIC; TAYLOR, 2010), which is an essential
requirement to compare our technique with Aniche et al. (2016) technique.

We selected the web-based systems from GitHub using the search string “web lan-
guage:java stars:>50 pushed:>2020-01-01 size:>200” to select systems developed in Java,
with more than 50 stars, with at least 200 files and that have received some contribu-
tion from 2020-01-01. These criteria returned a list of 321 projects in 2020-06-07. We
excluded libraries, frameworks, web servers, APIs, non-English projects, systems used as
implementation examples, and systems with less than two releases. These criteria aimed
to select real-world web systems and exclude systems developed with design decisions
different from the Web-based architectural domain. We also included systems with at
least two available releases because we used the first and the last stable releases as initial
and final milestones, respectively, to carry out the proposed study. The resulting list
had 22 Web-based systems, which we used as the benchmark to derive metric thresholds.
However, we did not find refactorings in two systems to carry out the proposed study,
and therefore they were not evaluated.

Table 8.1 summarizes the main characteristics of the 22 selected Web systems. The
#classes, #methods, and #LOC columns show the number of classes, methods, and lines
of code in each system. The selected systems have between 3 to 137 thousand lines of code
(#LOC column). The #design roles column shows the number of design roles identified
by our heuristic (Section 4.2). The #releases column shows the number of releases of each
system. The #Evaluated\#Total Refactorings column shows the number of refactorings
evaluated in each system and the number of refactorings reported by RefactoringMiner
(TSANTALIS et al., 2018) tool. We only considered types of refactorings which are
able to reduce the values of the four metrics we are studying: Lines of Code, McCabe’s
Cyclomatic Complexity, Efferent Coupling and Number of Method Parameters. Thus,
we took into account 8581 from 93749 reported refactorings (9.15%). The #Evaluated
Revisions with Related Refactorings column shows the number of revisions evaluated.
We evaluated 2387 revisions. Finally, the Initial and Final releases column shows the
interval of stable releases considered in each system.

To select widely used Android-based systems from GitHub, we used the search string
“android stars:>1000 pushed:>2020-01-01 size:>200 language:Java” to select systems
developed in Java, with 1000 stars, at least 200 files and that received contribution from
2020-01-01. We used a higher number of stars in the search string for Android projects
to reduce the initial list of systems since Android projects seem more starred than Web-
based projects on GitHub. These criteria returned a list of 545 projects in 2020-07-18.

1https://octoverse.github.com/
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Table 8.1: Web-based Systems

System Description #Classes #Methods #LOC #Design Roles #Releases
#Evaluated / #Total

Refactorings
#Evaluated Revisions

with Related Refactorings
Initial and Final

Releases

Bigbluebutton Web conferencing system 975 8880 81116 102 77 4/16 2
2.0 - 2018-07-07
2.2.19 - 2020-06-24

OpenMRS-Core patient-based medical record system 684 7367 68666 52 145 3310 / 30060 688
1.1.0 - 2012-07-25
2.3.1 - 2020-06-04

Heritrix3 Internet Archive’s open-source 583 5495 46810 107 08 135 / 689 57
3.2.0 - 2018-07-04
3.4.0 - 2020-05-18

Kafdrop web UI for viewing Kafka topics 49 329 2178 10 44 21 / 373 15
1.0.0 - 2018-01-06
2.5.1 - 2020-05-19

Karma integrate data from a variety of data sources 788 5403 61606 66 26 350 / 4064 137
1.197 - 2013-12-27
2.3 - 2020-05-29

WebAnno
annotation tool for a wide range of linguistic
annotations

426 3197 34717 73 227 843 / 8642 305
2.0.0 - 2014-07-30
4.0.0 - 2020-05-13

ProjectForge web-based solution for project management 1785 15315 137776 127 44 287 / 2490 130
6.1.1 - 2016-07-27
6.25.0 - 2019-03-08

Kafka WebView reading data out of kafka topics 175 1515 11380 15 20 40 / 217 10
1.0.0 - 2018-01-06
2.5.1 - 2020-05-19

Web Budge manage personal budget 129 713 5480 17 16 176 / 2799 90
1.1.0 - 2015-02-23
3.0.2 - 2019-05-26

Metl web-based integration platform 390 3953 39192 50 73 243 / 2666 117
1.0.0 - 2016-01-22
3.6.1 - 219-12-06

Hawtio web console helps you manage your JVM 183 1380 12711 17 139 74 / 434 33
2.0.0 - 2017-04-28
2.10.0 - 2020-04-13

Bastillion web-based SSH console 63 602 5576 8 82 43 / 647 16
1.08.20 - 2013-06-29
3.10.0 - 2020-05.23

Webofneeds Finding people to cooperate with 829 5401 42839 108 09 807 / 4693 75
0.3 - 2018-09-05
0.9 - 2020-02-17

Vehicle Routing Vehicle Routing Problem using OptaPlanner 114 497 3467 17 15 89 / 616 30
7.25.0 - 2019-09-07
7.38.0 - 2020-05-25

VIVO
pen source semantic web tool for research
discovery

140 1048 11000 15 95 284 / 2288 68
0.9.0 - 2010-01-29
1.11.1 - 2020-03-07

AET
detects changes on web sites and performs
basic page health check

461 2504 17354 36 31 237 / 2163 108
1.3.2 - 2016-06-09
3.3.0 - 2019-08-19

PhenoTips record clinical findings 742 6480 61499 120 86 570 / 4999 166
1.0.0 - 2014-10-07
1.4.9 - 2019-07-30

NGB New Genome Browser 459 4731 34303 38 08 38 / 330 6
2.1.0 - 2017-01-27
2.5.1 - 2017-09-27

Asqatasun web site analyser 3750 14999 136736 141 60 133 / 11257 52
3.0.1 - 2014-04-24
4.1.0 - 2020-04-03

WebProtégé ontology development environment 3150 20878 105655 330 08 897 / 14306 282
2.5.0 - 2014.07.08
4.0.0 - 2019.08.12

Drools Workbench
web system and repository to
govern Drools assets

253 1651 14166 37 94 none none none

bambooBSC
Balanced Scorecard (BSC) Business
Intelligence (BI) Web platform

932 11225 74214 38 02 none none none

We used the same inclusion and exclusion criteria of Web-based systems selection. The
resulting list had 30 Android-based systems, which we also used in the benchmark to
derive metric thresholds. However, we excluded four projects from the final evaluation
because the used tool did not find refactorings.

Table 8.2 summarizes the main characteristics of the 30 selected real-world Android
systems. The #classes, #methods, and #LOC columns show the number of classes,
methods, and lines of code in each system. The selected systems have between 5 to 111
thousand lines of code (#LOC column). The #Design Roles column shows the number
of design roles identified by our heuristic (Section 4.2). The #Releases column shows the
number of releases of each evaluated system. The #Evaluated \ #Total Refactorings
column shows the number of refactorings considered in each system and the number of
refactoring reported by RefactoringMiner (TSANTALIS et al., 2018) tool. We evaluated
14476 from 114614 reported refactorings (12.63%). The #Evaluated Revisions with Re-
lated Refactorings column shows the number of revisions evaluated. We evaluated 6995
revisions. Finally, the Initial and Final Releases column shows the interval of stable
releases evaluated in each system.

8.2.4 Code Metrics, Code Smells and Refactorings

Our study considered the four method-level metrics discussed in Table 8.3. Each metric
point out the following code smells: long methods, complex complexity methods, high
efferent coupling methods and long list of parameters.
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Table 8.2: Android-based Systems

System Description #Classes #Methods #LOC #Design Roles #Releases
#Evaluated / #Total

Refactorings
#Evaluated Revisions

with Related Refactorings
Initial and Final

Releases

AntennaPod open-source podcast manager for Android 401 3692 40730 49 88 400 / 2937 196
1.0.0 - 2015-08-30
1.8.1 - 2020-02-05

Keepass2Android password manager app 655 6213 63238 84 13 14 / 115 8
1.0.0 - 2016-08-20
1.0.7 - 2019-10-21

QKSMS open source replacement to the stock messaging app. 349 3916 45455 53 101 52 / 465 32
2.1.0 - 2015-09-01
3.8.1 - 2020-01-27

Slide free Reddit browser for Android 339 3495 62368 140 163 147 / 841 78
5.3.6 - 2016-05-09
6.5.0 - 2020-07-12

Conversations the very last word in instant messaging 307 4408 51222 37 221 686 / 3122 402
1.0.0 - 2015-06-25
2.8.8 - 2020-06-25

FairEmail works with virtually all email providers 250 2973 51615 39 1205 631 / 5157 356
1.74 - 2018-09-30
1.1252 - 2020-07-11

K-9 Mail open-source email client for Android 256 7000 66294 84 385 114 / 871 59
2.102 - 2009-11-24
5.717 - 2020-06-19

AnExplorer Another Android Explorer ( File Manager ) 283 3809 36669 40 8 102 / 518 46
3.4 - 2017-01-07

4.1.1 - 2019-07-11

RedReader An unofficial open source Reddit client for Android 300 2402 26491 25 71 129 / 1527 48
1.3.5 - 2013-04-06
1.11 -2020-07-01

Nextcloud allows you to access all your files on your Nextcloud 408 4091 49073 43 632 669 / 5170 633
1.0.0 - 2012-06-16
3.12.1 - 2020-07-07

Signal messaging app for simple private communication with friends 1369 13686 109622 107 635 1535 / 15111 556
1.0 - 2013-08-06
4.66.5 - 2020-07-14

PocketHub GitHub Android app 157 707 5984 23 20 101 / 534 39
1.0 - 2012-07-09
1.9 - 2014-02-20

Phonograph A material designed music player for Android 196 2140 16913 27 24 19 / 357 10
1.0 - 2018-05-01
1.3.4 - 2020-06-30

OpenHub GitHub Android client 251 3089 20168 23 29 78 / 369 39
1.0.0 - 2017-09-05
3.1.0 - 2020-03-01

Bitcoin Wallet Standalone Bitcoin node 148 1220 12927 20 377 88 / 117 107
2.46 - 2013-03-19
8.03 - 2020-06-09

AmazeFileManager Material design file manager for Android 321 2498 31046 43 44 363 / 4536 176
1.1 - 2014-12-03
3.4.3 - 2020-02-14

Wikipedia The official Wikipedia Android app 607 6229 42513 54 195 1084 / 10604 485
2.0 - 2015-03-23
2,7.5 - 2020-06-29

FastHub GitHub Android client 493 4717 35389 39 65 314 / 3345 126
1.0.0 - 2017-02-24
4.7.3 - 2019-12-29

PSLab Repository for the PSLab Android 165 1897 28391 16 20 28 / 314 14
2.0.0 - 2018-08-05
2.0.20 - 2019-10-18

SimpleNote All notes, synced on all your devices. 91 923 10345 21 81 85 / 601 57
1.0.0 - 2013-09-06
2.7.1 - 2020-06-30

Telegram Messaging app with a focus on speed and security. 1251 27282 517444 141 27 71 / 309 6
5.13.0 - 2019-12-31
6.2.0 - 2020-06-06

Wordpress Manage blog from Android 585 8360 84899 55 604 3333 / 19041 1949
2.8.1 - 2015-12-01
15,2 - 2020-07-13

Omni-Notes Open source note-taking application for Android 173 1182 11892 28 127 354 / 2140 127
3.0.0 - 2013-11-13
6.0.5 - 2019-11-17

ExoPlayer media player for Android 825 11463 111228 118 170 3314 / 30417 1239
1.0.10 - 2014-07-06
2.11.7 - 2020-06-29

Shuttle open source, local music player for Android 349 2980 24402 54 118 216 / 1864 59
1.6.5 - 2017-04-12
2.0.17 - 2020-07-12

Loop Habit Tracker Helps to create and maintain good health habits. 297 2308 17803 29 32 549 / 4232 148
1.0.0 - 2016-02-19
1.8.8 - 2020-06-21

Haven protect their personal spaces and possessions. 40 386 4155 12 44 none none none
Open Event Mobile App for Organizers and Entry Managers 388 2835 19808 32 10 none none none
OwnCloud Securely access and share data from everywhere and any device 156 1843 20155 22 106 none none none
Hijacker GUI for the penetration testing tools 43 403 7090 61 6 none none none

Table 8.3: Method-level Metrics and Code Smells

Metric Description Code Smell

McCabe’s Cyclomatic
Complexity (CC)
(MCCABE, 1976)

It counts number of
branching points of
each method.

High Complexity

Lines of Code (LOC)
(LANZA; MARINESCU, 2006)

It counts the number
of executable statements
of each method, excluding
comments and blank lines.

Long Method

Efferent Coupling (EC)
(MARTIN, 1995)

It counts the number of
classes from which each
method calls methods or
accesses attributes.

High Efferent
Coupling

Number of Method
Parameters (NMP)
(FOWLER; BECK, 1999)

It counts the number
of parameters of each method.

High Number of
Parameters
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We selected these method-level metrics, and associated code smells because these
metrics are available in many tools (PAIVA et al., 2017) and have been successfully
used for fault-proneness prediction (FONTANA et al., 2013; GIL; LALOUCHE, 2017;
BOUCHER; BADRI, 2018), for instance. We used only one metric for each code smell
detection strategy because we aim to evaluate the accuracy of metric thresholds derived
by five techniques to point out smelly methods prone to refactoring.

8.2.5 Study Procedure

To answer the research questions, we mined data about the evolution of the target systems
according the procedures detailed in this section. Initially, we derived metric thresholds
using the five evaluated techniques (activity 1). Then, we identified refactorings along
the commits between two stable versions of each system (activity 2). Then we identified
all smelly methods in each the commit just before each commit with refactoring (activ-
ity 3). Finally, we created a resulting list with smelly and non-smelly methods which
were refactored during software evolution (activity 4) to answer our proposed research
questions. Below we detail these four activities.

Activity 1: Building benchmarks and deriving metric thresholds. We built
and derived metric thresholds from two distinct benchmarks of two architectural domains:
Web-based and Android-based systems. We used 22 systems for the web-based bench-
mark and 30 systems for the Android benchmark. Alves et al., Vale et al., and Aniche
et al. techniques derived metric thresholds from these two original benchmarks. Then,
we built new benchmarks to derive metric thresholds to [T1] and [T2] techniques. Both
techniques propose to derive metric thresholds from a benchmark of systems developed
with similar design decisions. Therefore, each new benchmark contains systems, from the
original benchmark of each domain, developed with similar design decisions to the evalu-
ated system. To do that, we used the SystemSimilarity tool, discussed in Section 4.4, to
compose the new benchmarks. Table 8.1 contains the original benchmark for Web-based
systems and Table 8.2 contains the original benchmark to evaluate Android-based sys-
tems. The tool calculates the similarity in design decisions between two systems, ranging
from 0 to 1. Two systems have high similarity (closer to 1) when they have similar per-
centages of lines of code associated with each identified class design role. We composed
each new benchmark by systems with similarity to the system to be evaluated above
0.1. This value aimed to ensure that the benchmarks used to derive the threshold values
for each evaluated system were composed of a minimum subset of four different systems
from the original benchmarks. We consider this threshold of four systems to guarantee
some diversity in the benchmarks. For example, following this criterion, to evaluate the
AET system, we end up with a benchmark composed of seven similar systems: Hawtio,
Asqatsun, Metl, PojectForge, Phenotips, BigBlueButton and the AET itself. These seven
systems are the ones from the 22 Web systems (Table 8.1) which our SystemSimilarity
tool found a similarity with the AET system higher than 0.1. We built 20 Web-based
benchmarks, each one to derive thresholds by means of the [T1] and [T2] techniques
for evaluating one of the 20 Web systems that contains refactorings (Table 8.1). The
number of systems in these benchmarks ranged from four to eighteen systems. We built



124COMPARING TECHNIQUES TO DERIVE METRIC THRESHOLDS BASED ON CODE REFACTORED ALONG SOFTWARE EVOLUTION

26 Android-based benchmarks, each one to derive thresholds by means of the [T1] and
[T2] techniques for evaluating each of the 26 Android systems that contains refactorings
(Table 8.2). The number of systems in these benchmarks ranged from 29 to 30 systems.
Android-based systems have stricter design decisions and, therefore, Android-based sys-
tems usually have higher similarity between each other than Web-based systems. Having
the benchmarks, we used the ThresholdTool, discussed in Section 6.3, to derive metric
thresholds to the five evaluated techniques.

Activity 2: Extracting refactorings between two stable versions. Initially,
we selected the oldest and newest stable release available for each evaluated project from
the GitHub repository. Usually, a tag is marked as a release when the source code
is stable enough to be made available to end-users of the software. Next, we extracted
refactoring operations between the first stable release Release1 and the last stable release
Releasen. We used the RefactoringMiner tool (TSANTALIS; KETKAR; DIG, 2020)
which achieved very high precision (98%) with a recall that is competitive to the previous
state-of-the-art (87%) with a minimal computation cost (TSANTALIS et al., 2018). To
carry out the proposed evaluation, we only considered types of refactorings which are
able to reduce values of the four metrics involved in our study and, as consequence,
are able to remove the four code smells also involved in this study. Regarding the long
method, high complexity method, and high efferent coupling code smells, we considered
the EXTRACT OPERATION and EXTRACT AND MOVE OPERATION refactorings detectable by
the RefactoringMiner tool. Related to the high number of parameters smell, we considered
the RENAME METHOD refactoring also detectable by the RefactoringMiner. But, we only
considered this refactoring when it reduced the number of parameters of the refactored
method. Therefore, the resulting list contains only the refactorings able to reduce metrics
and to solve the four studied code smells. Besides the name of the refactoring type, each
line of the list contains the commit identification and the method signatures before and
after the application of the refactoring.

Activity 3: Identifying smelly methods in commits just before commits
with refactoring. During Atitivity 2, we identified commits with at least one method
that suffered refactoring. Here, in this activity, for each of those commits, we took the
commit the occurred just before it and verified if there were code smells in its correspond-
ing source code. To detected the code smells, we used the ContextSmell tool (Section
6.3) which analyzed the source code according to the four metrics and thresholds derived
by means of the five techniques. In another words, given a refactored method mi in a
commit ci, between stable releases Release1 and Releasen, we identify all smelly methods
pointed out by metric thresholds derived from the studied techniques on the commit ci−1.

Activity 4: Creating a final resulting list with smelly and non-smelly meth-
ods refactored along software evolution. Finally, we merged the resulting lists from
Activities 2 and 3 to generate a final list containing refactored smelly methods, refac-
tored non-smelly methods, and non-refactored smelly methods during the evolution of
each evaluated system. We added a method to the refactored smelly methods list when
a developer refactored the smelly method between the initial and final releases. Simi-
larly, we added to refactored non-smelly methods list when a developer refactored the
method between evaluated releases, but it was never smelly. Finally, we added a method
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to the non-refactored smelly methods list when the developer never refactored a smelly
method during software evolution. We automated the last three activity in a tool called
SmellRefactored2.

8.2.6 Data Analysis

To answer the RQ1 research question, we computed the probability of occurrence of
the target refactorings in smelly methods and non-smelly method. Probability is the
likelihood of an event occurring divided by the number of expected outcomes of the
event.

Since we considered several systems, we aggregate the results of all systems per metric
to have a more straightforward overview of the result quality. Aggregate metrics are
more robust than the mean, which is biased by the fact that datasets are unbalanced
for different smell types in terms of smelly and non-smelly instances (in some cases, the
datasets do not contain any smelly instance) (PECORELLI et al., 2019, 2020). Therefore,
we compute the probability of refactoring in methods pointed out as smelly in the datasets
of Web-based systems and Android-based systems. Later we calculate the probability of
refactoring occurs in non-smelly methods for each architectural domain.

To answer RQ2 research question, we performed quantitative data analysis. In RQ2,
we compared the effectiveness of metric thresholds based on with a dataset of smelly
methods effectively refactored during software evolution. Our dataset included code
smells pointed out by metric thresholds derived from the five techniques, and we only
considered type of refactorings that are able to reduce values of the four metrics of the
study.

To assess the effectiveness of metric thresholds, we compute four well-known metrics:
precision, recall, F-measure and Matthews Correlation Coefficient (MCC). Precision rep-
resents the fraction of instances of methods predicted as smelly by a metric threshold
that were effectively refactored during software evolution. Recall represents the fraction
of refactored methods which were predicted as smelly by a metric threshold. F-measure
is the weighted harmonic mean of the precision and recall. Finally, MCC is a correlation
coefficient between the observed and predicted binary classifications. It has values in
the range [-1,+1] where a coefficient of +1 represents a perfect prediction and -1 indi-
cates total disagreement between prediction and observation. MCC is based on all four
quadrants of the confusion matrix.

Similarly to RQ1, we aggregated the results of all evaluated systems for each metric
to have a more straightforward overview of the result quality (ANTONIOL et al., 2002;
PECORELLI et al., 2019).The research question RQ2 compared smelly methods pointed
out by metric thresholds derived from each of the five techniques with the reference list
of refactored methods.

A true positive (TP) occurs when a metric threshold proposed by a technique point
out as smelly a methods that suffered a refactoring which is able to decrease the value
of that metric. A false positive (FP) happens when a metric threshold proposed by a
technique identifies a code smell that does not match with refactored methods. A true

2https://github.com/marcosdosea/SmellRafactored
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negative (TN) occurs when the metric threshold does not point out a method as smelly,
and the method was not refactored during software evolution. Finally, a false negative
(FN) happens when a metric threshold do not identify a method as smelly but it is
refactored during software evolution. The index i ranges over the entire dataset of values
of each metric. Based on these assumptions, we computed:

Precision =

∑
i TPi∑

i(TPi + FPi)
(.)

Recall =

∑
i TPi∑

i(TPiFNi)
(.)

F −measure = 2 ∗ precision ∗ recall
precision+ recall

(.)

MCC =

∑
i(TPi ∗ TNi − FPi ∗ FNi)∑

i

√
(TPi + FPi)(TPi + FNi) + (TNi + FPi) + (TNi + FNi)

(.)

8.3 RESULTS AND DISCUSSION

In this section, we report and discuss the main findings of our study guided by each
research question.

RQ1: Are smelly methods more prone to be refactored during software evolution?
Findings: We analyzed 2118 refactorings applied in Web-based systems and 5434

applied in Android-based systems related to the long method smell. We found that 1292
(61%) refactorings in Web-based systems and 2596 (47.7%) refactorings from Android-
based systems were applied in smelly methods. We consider a method as long when it
has LOC value higher than at least one of the thresholds for LOC derived from the five
evaluated techniques. These results show that many refactorings were also applied in
non-smelly methods.

We also observed the refactoring probability in non-smelly methods and long meth-
ods considering each evaluated technique. Table 8.4 summarizes the results using metric
thresholds derived from five techniques. For instance, considering the metric threshold
derived by Alves technique, we observed in Web-based systems that the refactoring prob-
ability was 20.69% in methods pointed out as smelly versus 0.65% in methods pointed
out as non-smelly. We observe similar numbers evaluating Android-based systems. For
instance, developers refactored 30.3% of the methods pointed out as long and 1.34%
of the non-smelly methods. These results show that the refactoring probability of long
methods was always higher than non-smelly methods. In Web-based systems, this prob-
ability was at least twenty-five times higher than they occur in non-smelly methods.
Whereas in Android-based systems, the refactoring probability of long methods was at
least twenty-two times greater than non-smelly methods.

We evaluated 1959 refactorings applied in Web-based systems and 4608 applied in
Android-based systems regarding the high complexity smell. We observed that 1268
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Table 8.4: Refactoring probability in non-smelly and long methods pointed out by metric
thresholds derived from distinct techniques

Web-based Android-based
Technique Smelly Non-Smelly Smelly Non-Smelly
Alves et al. 20.69% 0.65% 30.9% 1.34%
Vale and Figueiredo 11.43% 0.23% 20.6% 0.75%
Aniche et al. 15.24% 0.59% 32.3% 1.34%
[T1] 16.72% 0.64% 31.0% 1.34%
[T2] 14.50% 0.55% 29.8% 1.32%

Table 8.5: Refactoring probability in non-smelly methods and methods with high com-
plexity pointed out by metric thresholds derived from distinct techniques

Web-based Android-based
Techniques Smelly Non-Smelly Smelly Non-Smelly
Alves et al. 15.4% 0.61% 16.7% 1.15%
Vale and Figueiredo 10.0% 0.23% 15.6% 0.75%
Aniche et al. 14.6% 0.57% 20.4% 1.13%
[T1] 15.6% 0.60% 16.7% 1.15%
[T2] 11.7% 0.54% 19.7% 1.10%

(64.7%) refactorings in Web-based systems and 1760 (38.1%) refactorings in Android-
based systems were applied in smelly methods. We consider a method with high com-
plexity when it has cyclomatic complexity higher than at least one of the thresholds
derived from the five evaluated techniques. These results mean that many refactorings
able to reduce ciclomatic complexity were also applied in non-smelly methods.

We also observed the refactoring probability in non-smelly methods and complex
methods per each technique. Table 8.5 summarizes the results. For instance, considering
the metric threshold derived by [T1] technique, we observed that refactoring occurred in
15.6% of the methods pointed out as smelly versus 0.60% of the methods pointed out as
non-smelly in Web-based systems. In Android systems, developers refactored 16.7% of
smelly methods with high complexity versus 1.15% of non-smelly methods. These results
show that the refactoring probability of complex methods code smell was always higher
than non-smelly methods. In Web-based systems, this probability was at least twenty-five
times higher than they occur in non-smelly methods. Whereas in Android-based systems,
the refactoring probability of complex methods was at least fourteen times greater than
non-smelly methods.

We analyzed 1914 refactorings applied in Web-based systems and 4531 applied in
Android-based systems related to the high efferent coupling smell. We observed that 1191
(62.2%) refactorings in Web-based systems and 1734 (38.2%) refactorings in Android-
based systems were applied in smelly methods. We consider a method with high efferent
coupling when it is has efferent coupling metric higher than at least one metric threshold
derived from the five evaluated techniques. These results mean that many refactorings
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Table 8.6: Refactoring probability in non-smelly methods and methods with high efferent
coupling pointed out by metric thresholds derived from distinct techniques

Web-based Android-based
Techiniques Smelly Non-Smelly Smelly Non-Smelly
Alves et al. 15.0% 0.53% 17.3% 1.07%
Vale and Figueiredo 10.3% 0.25% 14.5% 0.71%
Aniche et al. 11.3% 0.51% 16.7% 1.05%
[T1] 14.7% 0.52% 16.7% 1.07%
[T2] 10.3% 0.49% 15.2% 0.99%

able to reduce efferent coupling were also applied in non-smelly methods.

We also observe the refactoring probability of non-smelly methods and smelly methods
with high efferent coupling per technique. Table 8.6 summarizes the results. For instance,
considering the metric threshold derived by Alves technique, we observed in Web-based
systems that the refactoring probability was 15.0% in methods pointed out as smelly
versus 0.53% in methods pointed out as non-smelly. In Android-based systems, developers
refactored 17.3% of the methods pointed with high efferent coupling versus 1.07% of the
non-smelly methods. These results show that the refactoring probability of methods
with high efferent coupling was always higher than non-smelly methods. In Web-based
systems, this probability was at least twenty times higher than they occur in non-smelly
methods. Whereas in Android-based systems, the refactoring probability of methods
assigned to this code smell was at least fifteen times greater than non-smelly methods.

Finally, we analyzed 239 refactorings applied in Web-based systems and 535 applied
in Android-based systems related to the long list of parameters code smell. We observed
that 62 (25.94%) refactorings in Web-based systems and 115 (21.4%) refactorings in
Android-based systems were applied in smelly methods. We consider a method with a
long list of parameters when it is pointed out as smell by at least one metric threshold
derived from five evaluated techniques. These results mean that most refactorings able
to reduce the number of parameters were applied in non-smelly methods.

We also observed the refactoring probability of non-smelly methods and smelly meth-
ods with long list of parameters per technique. Table 8.7 summarizes the results using
metric thresholds derived from the five techniques. For instance, considering the metric
threshold derived by Alves technique, we observed in Web-based systems that the refac-
toring probability was 0.69% in methods pointed out as smelly versus 0.08% in methods
pointed out as non-smelly. In Android-based systems, developers refactored 0.6% of the
methods pointed with high efferent coupling versus 0.16% of the non-smelly methods. De-
spite the low refactoring probability in both cases, we observe that smelly methods with
a long list of parameters was more refactored than non-smelly methods. In Web-based
systems, this probability was at least two times higher than they occur in non-smelly
methods. Whereas in Android-based systems, the refactoring probability of methods
assigned to this code smell was at least three times greater than non-smelly methods.

In summary, the results allow us to answer RQ1 as follows:
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Table 8.7: Refactoring probability in non-smelly methods and methods with high number
of parameters pointed out by metric thresholds derived from distinct techniques

Web-based Android-based
Techiniques Smelly Non-Smelly Smelly Non-Smelly
Alves et al. 0.69% 0.08% 0.60% 0.16%
Vale and Figueiredo 0.55% 0.06% 0.62% 0.13%
Aniche et al. 0.21% 0.08% 0.56% 0.17%
[T1] 0.65% 0.08% 0.60% 0.16%
[T2] 0.50% 0.07% 0.57% 0.16%

Table 8.8: Aggregate Results for Long Methods Refactored during Software Evolution

Web-based Android-based
TP Precision Recall F-measure MCC TP Precision Recall F-measure MCC

Alves et al. 216 0.20 0.20 0.20 0.20 230 0.31 0.09 0.14 0.16
Vale and Figueiredo 1214 0.11 0.81 0.20 0.29 2596 0.21 0.68 0.32 0.35
Aniche et al. 346 0.15 0.31 0.21 0.21 285 0.32 0.11 0.17 0.18
[T1] 200 0.17 0.19 0.18 0,17 230 0.31 0.09 0.14 0.16
[T2] 408 0.15 0.36 0.22 0.23 367 0.30 0.14 0.19 0.19

Regarding the four studied code smells in Web-based and Android-based systems,
the refactoring probability of smelly methods was always higher than non-smelly
methods. Therefore, metric-based strategies to detect code smells are helpful to
point out methods more prone to refactoring. However, there were still a consid-
erable number of refactorings in non-smelly methods.

RQ2: Which technique proposes metric thresholds that best pointed out refactored
smelly methods during software evolution?

Findings: Regarding the LOC metric, Table 8.8 shows the aggregate results of true
positives (TP), Precision, Recall, F-measure, and MCC for long methods refactored
during Web-based and Android-based systems evolution. We observe that Vale and
Figueiredo’s technique had higher True positives, Recall, and MCC metrics for both ar-
chitectural domains. However, the technique always presents the lowest precision among
the evaluated techniques because it derives the lowest metric thresholds, significantly
increasing false positives. The [T2] technique presented precision similar to the other
techniques, but it obtained better recall. The result is that the technique [T2] obtained
the second-best performance concerning the aggregated F-measure and MCC metrics.
It is worth mentioning that the precision metric here is about the methods that were
effectively refactored and not the methods that should be refactored. Developers may
not refactor some methods due to organizational pressure (LAVALLÉE; ROBILLARD,
2015). Additionally, thresholds too low can also point out methods whose refactoring
aimed at not exclusively improving the maintainability and comprehensibility of the
source (PALOMBA et al., 2017).

Figure 8.1 illustrates differences between the distribution of Recall metric for refac-
tored long methods. It shows the two graphs for two evaluated architectural domains,
one for Web-based and the other one for Android-based systems, with five box plots each.
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Figure 8.1: Distribution of Recall Metrics for Long methods Refactored during Software
Evolution

Each graph is about Recall of refactored long methods pointed out by LOC threshold
derived from one of the five evaluated techniques. The graphs also illustrated the advan-
tage of Recall metrics to Vale and Figueiredo’s technique, followed by the [T2] technique
for both architectural domains evaluated.

We obtained similar results using statistical tests to Web-based and Android-based
systems. To test the hypothesis H0 to Recall, we use the Shapiro-Wilk test of normality,
and we can not assume the normality for distributions of the Recall values from evaluated
techniques. So, we perform the Kruskal-Wallis test, and we identify there are significant
differences between the techniques (p − value = 1.722e-09 and p − value = 1.353e-11,
respectively) rejecting the null hypothesis (H0). This means that at least one technique
proposes metric thresholds that improve the Recall to detect code smells refactored.
Pairwise comparisons using the Mann-Whitney-Wilcoxon test with 5% confident level
and Bonferroni correction (MANN; WHITNEY, 1947) showed that the Recall of Vale
and Figueiredo’ technique is significantly greater than other techniques. We obtained a
large effect size applying Cliff’s δ. In Web-based systems, we also obtained a statistically
significant improvement in the recall values of the technique [T2] compared to the tech-
nique of Alves. We obtained a medium effect size applying Cliff’s δ. These results mean
that the Vale technique proposes metric thresholds for LOC metric that improved Recall
metric to detect long methods refactored. In Web-based systems, [T2] technique also
proposes metric thresholds for LOC that improved recall metric to detect long methods.
We do not found differences between recall obtained by [T1] and Aniche techniques.
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Table 8.9: Aggregate Results for Methods with High Complexity Refactored during Soft-
ware Evolution

Web-based Android-based
TP Precision Recall F-measure MCC TP Precision Recall F-measure MCC

Alves et al. 482 0.15 0.39 0.22 0.23 216 0.17 0.10 0.12 0.12
Vale and Figueiredo 1268 0.10 0.83 0.18 0.27 1760 0.16 0.59 0.25 0.28
Aniche et al. 577 0.15 0.46 0.22 0.24 322 0.20 0.14 0.17 0.16
[T1] 493 0.16 0.40 0.23 0.24 216 0.17 0.10 0.12 0.12
[T2] 630 0.12 0.49 0.19 0.23 462 0.20 0.20 0.20 0.19

Regarding the CC metric, Table 8.9 shows the aggregate results of true positives (TP),
Precision, Recall, F-measure, and MCC of methods with high complexity refactored dur-
ing Web-based and Android-based systems evolution. Similar to LOC metric evaluation,
we observe that Vale and Figueiredo’s technique obtained higher True positives, Recall,
and MCC metrics for both architectural domains. However, the technique also presented
the lowest precision among the evaluated techniques because it derives the lowest metric
thresholds, significantly increasing false positives. In Web-based systems, we observed a
tiny difference between the techniques evaluated in the MCC metric and a slightly more
significant difference in Android-based systems. After Vale and Figuiredo’s technique,
the [T2] technique obtained the best-aggregated results to the MCC metric.

Figure 8.2 illustrates differences between the distribution of Recall metric for refac-
tored methods with high complexity during software evolution. It shows two graphs for
two evaluated architectural domains, one for Web-based and the other one for Android-
based systems, with five box plots each. Each graph is about the distribution of Recall
of refactored methods with high complexity pointed out by CC metric thresholds derived
from five evaluated techniques. The graphs also illustrated the advantage of Recall to
Vale and Figueiredo’s technique, followed by the [T2] technique for both architectural
domains evaluated.

We obtained similar results using statistical tests to Web-based and Android-based
systems. To test the hypothesis H0 to Recall, we use the Shapiro-Wilk test of normality,
and we can not assume the normality for distributions of the Recall values from evaluated
techniques. So, we perform the Kruskal-Wallis test, and we identify there are significant
differences between the techniques (p − value = 1.114e-06 and p − value = 2.552e-10,
respectively), rejecting the null hypothesis (H0). This means that at least one technique
proposes metric thresholds that improve the Recall to detect smelly methods refactored
during software evolution. Pairwise comparisons using the Mann-Whitney-Wilcoxon test
with 5% confident level and Bonferroni correction (MANN; WHITNEY, 1947) showed
that the Recall of Vale technique is significantly greater than other techniques. We ob-
tained a large effect size applying Cliff’s δ. In Android-based systems, we also obtained
a statistically significant improvement in the Recall values of the technique [T2] com-
pared to the technique of Alves and [T1]. We obtained a medium effect size applying
Cliff’s δ. These results mean that the Vale technique proposes metric thresholds for CC
metric that improved Recall metric to detect methods with high complexity refactored
during software evolution. In Android-based systems, [T2] technique also proposes metric
thresholds for CC that improved Recall metric to detect methods with high complexity.
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Figure 8.2: Distribution of Recall Metrics for High Complexity Methods Refactored dur-
ing the Software Evolution

Table 8.10: Aggregate Results for Methods with High Efferent Coupling Refactored dur-
ing Software Evolution

Web-based Android-based
TP Precision Recall F-measure MCC TP Precision Recall F-measure MCC

Alves et al. 664 0.15 0.50 0.23 0.26 507 0.17 0.22 0.19 0.18
Vale and Figueiredo 1191 0.10 0.80 0.18 0.27 1734 0.14 0.60 0.23 0.27
Aniche et al. 705 0.11 0.53 0.19 0.23 582 0.17 0.25 0.20 0.19
[T1] 675 0.15 0.51 0.23 0.26 507 0.17 0.22 0.19 0.18
[T2] 728 0.10 0.55 0.17 0.22 753 0.15 0.31 0.20 0.20

We do not found differences between recall obtained by [T1] and Aniche techniques.

Regarding the EC metric, Table 8.10 shows the aggregate results of true positives
(TP), Precision, Recall, F-measure, and MCC of methods with high efferent coupling
refactored during Web-based and Android-based systems evolution. Similar to LOC and
CC metric evaluations, we observe that Vale and Figueiredo’s technique obtained higher
True positives, Recall, and MCC metrics for both architectural domains. However, the
technique also presented the lowest precision among the evaluated techniques because
it derives the lowest metric thresholds, significantly increasing false positives. In Web-
based systems, we observed a tiny difference in the MCC metric between the techniques
evaluated and a slightly more significant difference in Android-based systems. After Vale
and Figuiredo’s technique, the [T1] and [T2] techniques obtained the best-aggregated
results to the MCC metric for Web-based and Android-based systems, respectively.

Figure 8.3 illustrates differences between the distribution of Recall for refactored meth-
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Figure 8.3: Distribution of Recall Metrics for High Efferent Coupling Methods Refactored
during the Software Evolution

ods with high efferent coupling during the software evolution. It shows two graphs for
two evaluated architectural domains, one for Web-based and the other one for Android-
based systems, with five box plots each. Each graph is about the distribution of Recall of
refactored methods with efferent coupling pointed out by EC metric thresholds derived
from five evaluated techniques. The graphs also illustrated the advantage of Recall to
Vale and Figueiredo’s technique, followed by the [T2] technique for both architectural
domains evaluated.

We obtained similar results using statistical tests to Web-based and Android-based
systems. To test the hypothesis H0 to Recall, we use the Shapiro-Wilk test of normality,
and we can not assume the normality for distributions of the Recall values from evaluated
techniques. So, we perform the Kruskal-Wallis test, and we identify there are significant
differences between the techniques (p − value = 2.782e-06 and p − value = 3.835e-08,
respectively), rejecting the null hypothesis (H0). This means that at least one technique
proposes metric thresholds that improve Recall to detect smelly methods refactored dur-
ing the software evolution. Pairwise comparisons using the Mann-Whitney-Wilcoxon test
with 5% confident level and Bonferroni correction (MANN; WHITNEY, 1947) showed
that the Recall of Vale technique is significantly greater than other techniques. We ob-
tained a large effect size applying Cliff’s δ. In Android-based systems, we also obtained
a statistically significant improvement in the Recall values of the technique [T2] com-
pared to Alves and [T1] techniques. We obtained a medium effect size applying Cliff’s δ.
These results mean that the Vale technique proposes metric thresholds for EC metric that
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Table 8.11: Aggregate Results for Methods with Long List of Parameters Refactored
during Software Evolution

Web-based Android-based
TP Precision Recall F-measure MCC TP Precision Recall F-measure MCC

Alves et al. 34 0.007 0.25 0.014 0.036 45 0.006 0.146 0.012 0.021
Vale and Figueiredo 62 0.006 0.43 0.011 0.041 115 0.006 0.361 0.012 0.036
Aniche et al. 32 0.002 0.23 0.004 0.013 38 0.006 0.125 0.011 0.018
[T1] 36 0.007 0.26 0.013 0.035 45 0.006 0.146 0.012 0.021
[T2] 35 0.005 0.26 0.010 0.029 61 0.006 0.196 0.011 0.023

improved Recall metric to detect methods with high efferent coupling refactored during
software evolution. In Android-based systems, [T2] technique also proposes metric thresh-
olds for EC that improved Recall metric to detect methods with high efferent coupling.
We do not found differences between Recall obtained by [T1] and Aniche techniques.

Finally, the NOP metric, Table 8.11 shows the aggregate results of true positives
(TP), Precision, Recall, F-measure, and MCC of methods with long list of parameters
refactored during Web-based and Android-based systems evolution. We observe that Vale
and Figueiredo’s technique obtained a tiny difference in True positives, Recall, and MCC
metrics for both architectural domains. However, all techniques presented low MCC and
F-measure values due to the low precision. Despite the low accuracy of all techniques,
Vale and Figueiredo’s technique obtained a slightly better performance followed by [T1]
and Alves techniques in Web-based systems. In Android-based systems, [T2] had the
second-best MCC result.

Figure 8.4 illustrates differences between the distribution of Recall for refactored meth-
ods with long list of parameters during software evolution. It shows two graphs for two
evaluated architectural domains, one for Web-based and the other one for Android-based
systems, with five box plots each. Each graph is about the distribution of Recall of
refactored methods with long list of parameters pointed out by NOP metric thresholds
derived from five evaluated techniques. The graphs illustrate some advantage of Recall
to Vale and Figueiredo’s technique, followed by the [T2] technique for both architectural
domains evaluated.

We carry out procedures using statistical tests to Web-based and Android-based sys-
tems. To test the hypothesis H0 to Recall, we use the Shapiro-Wilk test of normality, and
we can not assume the normality for distributions of the Recall values from evaluated
techniques. So, we perform the Kruskal-Wallis test, and we identify there are not sig-
nificant differences between the techniques (p− value = 0.5736 and p− value = 0.2052,
respectively), not rejecting the null hypothesis (H0). This means that no technique pro-
poses metric thresholds for NOP metric that improved Recall metric to detect methods
with long list of parameters refactored during software evolution.

In summary, the results allow us to answer RQ2 as follows:
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Figure 8.4: Distribution of Recall Metrics for Methods with a Long List of Parameters
Refactored during the Software Evolution

Vale and Figueiredo’s technique proposed metric thresholds that improved the
Recall metric to detect the four evaluated code smells during software evolution.
The highest MCC values are due to the high recall generally achieved by the
technique due to the very low derived threshold metric. However, the precision of
this technique was always very low, consequently increasing the number of false
positives. Our two proposed techniques, which relied on design roles, improved
results, better balancing the recall and precision metrics. We suggest considering
them for deriving thresholds that improve recall without damaging precision.

8.4 THREATS TO VALIDITY

This section discusses the threats to validity of our study following common guidelines
(KITCHENHAM et al., 2006).

Internal validity. There might be a threat associated with the correctness of the tools
we used to identify refactored methods and calculate software metrics. We used the
RefactoringMiner tool (TSANTALIS; KETKAR; DIG, 2020) , which was already used in
other studies. Also, we manually checked many metric values and identified refactorings.
Moreover, we evaluated our tool and heuristic for design role identification by means of a
study with developers and Web-based governmental systems, as described in Section 4.2.

Construction validity. There is a possible threat related to metrics we selected for our
study. The selected method-level metrics cover important aspects of source code quality
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and are widely used for software fault prediction (CATAL; DIRI, 2009; GIGER et al.,
2012). Errors in calculating metrics may also occur (ALVES; YPMA; VISSER, 2010).
However, these errors are usually small and to minimize these interferences we use the
Kruskal-Wallis and Cliff’s δ statistical tests.

External validity. Some of the findings might be specific to the selected metrics,
software systems, and domains assessed. To minimize this bias, we discussed in Section
8.2.3 some well-defined and replicable criteria for selecting representative systems in each
architectural domain. Although other domains use similar mechanisms to implement the
architecture, we still intend to extend this investigation to other systems and domains.
So, although we restricted to the systems and domains analyzed, this is an important
step toward improving the accuracy of derived metric thresholds.

8.5 RELATED WORKS

Bavota et al. (2015) mined the evolution history of three Java open source projects to
investigate whether refactoring activities occur on smelly code detected by tools. Re-
sults indicate that refactoring operations focused on code components for which quality
metrics do not suggest there might be a need for refactoring operations. Finally, 42% of
refactoring operations were performed on code entities affected by code smells. Moreover,
only 7% of the performed operations remove the code smells from the affected class. We
performed a large-scale study using Web-based and Android-based systems focusing on
refactoring able to solve related code smell. For example, we consider the extract method
refactoring to reduce the LOC metric, but it is not a guarantee of code smell resolution.
We evaluated distinct techniques to derive metric thresholds that impact the selection of
smelly methods. We found that between 10% to 20% of refactoring was applied in smelly
methods. We argue that, despite some questioning the usefulness of metrics as a filter
mechanism for evaluating source code quality, this result becomes representative when
we observe that refactored non-smelly methods were below 1%. It is noteworthy that we
evaluate metrics individually because our goal was to evaluate derived metric thresholds,
but metric-based detection strategies of code smells can combine these metrics aiming to
improve the accuracy. Cedrim et al. (2017) analyze how often commonly-used refactoring
types affect the density of 13 types of code smells along with the version histories of 23
projects. The results show that even though 79.4% of the refactorings touched smelly
elements, 57% did not reduce their occurrences, and only 9.7% of refactorings removed
smells, while 33.3% introduced new ones. More than 95% of such refactorings induced
smells not removed in successive commits, which suggest refactorings tend to introduce
long-living smells instead of eliminating existing ones more frequently. We argue that
there are significant variations according to the used metric thresholds derived by eval-
uated techniques. Additionally, we discuss that many refactorings able to solve related
code smells applied in non-smelly methods. We suggest that future studies assess the
context of the application of these refactorings.

Palomba et al. (2017) argue that software repository studies could corroborate the
achieved findings surveying developers. They perform a quantitative investigation on the
relationship between different types of code changes and 28 different refactoring types
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coming from 3 open-source projects. Results showed that developers tend to apply a
higher number of refactoring operations to improve the maintainability and comprehen-
sibility of the source code when fixing bugs. They also argued that developers perform
more complex refactoring operations to improve code cohesion when new features are im-
plemented. Our study using real-world software repositories from popular architectural
domains aim to complement the results discussed in Chapter 7. We reinforce the results
showing that the deriving of metric thresholds considering class design role can improve
code smell detection.

Sousa et al. (2020) investigate if smells can serve as indicators of architectural refac-
toring opportunities performing a retrospective study over the commit history of 50 soft-
ware projects. They investigated if refactored elements had architectural problems that
automatically-detected smells could have indicated. They found that the proportion of
refactored elements without smells is much lower than those refactored with smells. They
concluded that smells are indicators of architectural refactoring opportunities, and smells
that often co-occurred with other smells (67.53%) are indicators of architectural refactor-
ing opportunities in most cases (88.53% of refactored elements). However, the study use
strategies to detect cod smells based on predefined metric thresholds. Our study evaluates
distinct metric thresholds carrying out a large-scale study with software projects from
popular architectural domains. We suggest that future studies evaluate using detection
strategies combining metric thresholds derived from techniques that consider the class
design roles.

8.6 SUMMARY

We conducted a large-scale retrospective study to investigate which technique derived
metric thresholds that pointed out more methods refactored during the software evolution.
We investigated software projects from two popular architectural domains: Web-based
and Android-based projects. The study analyzed the software evolution of 20 Web-
based and 26 Android-based real-world projects. We summarize the results and their
implications for research and practice as follow:

Smelly methods pointed by metric thresholds derived using five evaluated techniques are
more refactored than non-smelly methods. Initially, our results showed that five evaluated
techniques derived metric thresholds that point out methods more prone to refactoring.
A practical implication of these results is that, regardless of the technique used to derive
metric thresholds, metric-based strategies can point out a relevant subset of methods for
quality assessment.

Many refactorings are performed in non-smelly methods. We observe a large num-
ber of refactorings performed in methods that which metric thresholds derived from five
evaluated techniques not pointed out as smelly. As discussed in Chapter 7, Vale and
Figueiredo’s technique proposed metric thresholds so low that developers end up evaluat-
ing most of them as false positives. Interestingly, we found several refactorings effectively
applied to non-smelly methods during the software evolution. A potential implication
of this for research is that future works could investigate these refactoring in non-smelly
methods. Refactorings in non-smelly methods that aim to improve the source code’s
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quality can help improve code smell detection strategies.
Metric thresholds derived from techniques using Design role as context improving re-

call. Vale and Figueiredo’s technique proposed metric thresholds that improved the MCC
metric to detect four evaluated code smells during the software evolution. The highest
MCC values are due to the high recall generally achieved by the technique due to the very
low derived threshold metric. However, the precision of the technique was always very
low, consequently increasing the number of false positives. Our two proposed techniques
that considered the design role as context achieved the second-best results, better balanc-
ing the recall and precision metrics. A practical implication of this is that derive metric
thresholds using our proposed techniques improve recall without damaging precision.



Chapter

9
FINAL REMARKS

State-of-the-art techniques implemented by current automated static analysis tools (ASATs)
rely on metric-based detection strategies. However, the accuracy of a detection strategy
is heavily influenced by the calibration of thresholds for the used metrics (SHARMA;
SPINELLIS, 2018; SOBRINHO; LUCIA; MAIA, 2018). Metric thresholds not tailored
can generate an overload of alarms. Many of these alarms are false positives since manual
inspection reveals no effect on the software quality and maintenance effort (OLBRICH;
CRUZES; SJØBERG, 2010; KHOMH et al., 2011; SJOBERG et al., 2013; YAMASHITA,
2013; PALOMBA et al., 2014; HOZANO et al., 2018).

This research aimed to propose and evaluate two novel techniques to derive design-
sensitive metric thresholds. Our central hypothesis is that deriving a metric threshold
that relies on fine-grained design decisions could point out more relevant code smells.
We carry out a series of empirical studies to understand the problem, propose a design
context to consider by novel techniques, and evaluate the accuracy of metric thresholds
derived by them.

Firstly, we conducted a web-based survey with 350 Brazilian practitioners engaged in
the software development industry. We found that code analysis practices are widespread
among Brazilian practitioners who recognize its importance. However, there is no routine
for applying these practices. In addition, they report difficulties in fitting static analysis
tools in the software development process. One possible reason, recognized by practition-
ers, is that most of these tools use a single metric threshold, which might not be adequate
to evaluate all system classes. As a result, we propose improving guidelines to use and
fit code analysis practices into the software development process to make them widely
used. We also propose that ASATs offer different ways to be used in distinct phases of
the software development process, making it easier to fit them into any process. Finally,
the survey proposes investigating whether multiple metric thresholds that take source
code context into account reduce static analysis tool false alarms.

Secondly, we proposed investigating design decisions that could be considered context
to derive design-sensitive metric thresholds based on previous insights. We investigated
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whether other fine-grained design decisions also influenced the distribution of software
metrics. Our findings showed that distribution of metrics are sensitive to the following
design decisions: (i) design role of the class (ii) used libraries, (iii) coding style, (iv)
exception handling, and (v) logging and debugging code mechanisms. In this way, the
distribution of software metrics is sensitive to fine-grained design decisions, and we should
consider taking them into account when building benchmarks for metric-based source code
analysis. We used these findings to propose new techniques to derive design-sensitive
metric thresholds.

Finally, we carry out two empirical studies aiming to evaluated proposed techniques.
The first study evaluated developers’ perception of code smells pointed by metric thresh-
olds derived from two proposed techniques with the other three state-of-the-art tech-
niques. Among other findings, we found evidence that class design roles influenced devel-
opers’ perception of code smells. The second study investigated which technique derived
metric thresholds that pointed out more methods refactored during the software evolution
from two popular architectural domains. Our two proposed techniques that considered
the design role as context improved recall without damaging precision.

In summary, based on a series of empirical studies, our work proposed automated ap-
proaches to identify the class design role, the similarity between systems, and two novel
design-sensitive techniques to derive metric thresholds. Software engineers practitioners
can directly use our results to improve the detection of code smells using automated tech-
niques. Thereby, in the next section, we describe possible directions for future research.

9.1 FUTURE RESEARCH DIRECTIONS

We suggest the following directions for future work that arise from our research:

Carry out studies to show and spread code analysis benefits to software developers.
In Chapter 3, we showed that Brazilian practitioners know code analysis practices and
recognize their importance. However, development teams do not apply these practices
regularly. We suggest to conduct studies to clarify the impact and benefits of applying
code analysis practices.

Improve static analysis tools to fitting in software development processes. In Chapter
3, we reported that many practitioners stated unaware of automated static analysis tools.
They also reported many issues and challenges to adopt these tools regularly. We suggest
to investigate how to fit these tools to be adopted in software development processes
regularly.

Investigate whether the class design role concept helps in software comprehension. In
Chapter 4, we observed developers regularly using the class design role to comprehend
or make design decisions over classes. We suggest evaluating whether the design role
assigned by our heuristic improves the comprehension of software design. Therefore,
software development tools could also create class design role views to help source code
comprehension.

Investigate whether the similarity between systems relied on class design role helps
to monitor design violations. In Chapter 4, we proposed an approach to calculate the
similarity between systems using the class design role. We suggest to carry out studies to
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assess whether the proposed similarity measure could detect the distancing of the planned
design during the software evolution.

Investigate whether class design roles impact the distribution of class-level metrics. In
Chapter 5, we showed that design roles affected the distribution of method-level metrics.
We suggest to carry out studies to evaluate the impact of class design role on the distri-
bution of class-level metrics. A potential implication of this is that metric-based analysis
methods can take design roles into account when using class-level metrics.

Investigate whether ContextSmell tool prevents the introduction of code smells by soft-
ware developers. In Section 6.3, we showed ContextSmell, an Eclipse plugin that enables
the just-in-time detection of the four studied code smells. The tool allows identifying
code smells using metric thresholds derived from distinct techniques. We made the tool
publicly available and open-source to encourage the research community to improve fur-
ther the tool with additional code smells detectors or evaluate other techniques to derive
metric thresholds.

Carry out a deep investigation about factors of agreement on developers’ perception of
code smells. In Chapter 7, we compared developers’ perceptions about code smells refac-
toring. Our results contradict previous studies because we found substantial agreement
between developers. We argue that familiarity with design decisions impacted obtained
results. We suggest carrying out an in-depth study looking for factors that lead to a high
or low agreement regarding the developer’s perception of code smell.

Investigate categories of code smells performed in non-smelly methods. In Chapter 8
we showed many refactorings performed in non-smelly methods. We suggest applying a
taxonomy, like proposed by Hassan et al. (HASSAN, 2009), based on commit message
analysis. They suggest (i) Fault Repairing Modification (FR), (ii) Feature Introduction
Modification (FI), and (iii) General Maintenance Modification (GM).

Evaluate the accuracy of more complex detection strategies to detect code smells using
metric thresholds derived from our proposed techniques. In Chapters 7 and 8 we used
strategies based on a single metric because our goal is to individually assess the impact
of the metric threshold proposed by different techniques. We suggest evaluating other
metric-based strategies to detect code smells that combine metric thresholds derived from
our proposed techniques.

Evaluate the accuracy of our proposed techniques according to the number of classes
assigned to design roles. We observed a significant difference in the number of classes
playing the Undefined design role among the systems. Also, we identify some design roles
assigned to a few classes in a system. Although it is possible to adjust the predefined
design roles table, we suggest evaluating the impact of considering all class design roles
to calculate system similarity and derive metric thresholds. One possibility would be
to evaluate to derive different metric thresholds only to class design roles assigned to a
significant number of classes.
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