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"Tenho esperança de que um maior conhecimento do mar, que há milênios 

dá sabedoria ao homem, inspire mais uma vez os pensamentos e as ações 

daqueles que preservarão o equilíbrio da natureza e permitirão a 

conservação da própria vida." (Jacques Cousteau).  

 

 

 

 

 

 

 

 

 

 

Eu amava como amava um pescador  

que se encanta mais com a rede que com o mar.. 

 (Oswaldo Montenegro). 

  



 
 

Agradecimentos 

Agradeço à Universidade Federal da Bahia por ser essa instituição de excelência e ter me 

acolhido durante a minha formação acadêmica e pessoal. Agradeço à Fapesb pelo apoio 

financeiro com a bolsa de doutorado (BOL0077/2017) e a CAPES pelo apoio financeiro 

durante minha formação no doutorado sanduíche (N° Processo: 88887.363563/2019-00). 

Ao programa de pós-graduação em ecologia: Teoria, Aplicação e Valores e todo seu 

corpo de professores e funcionários que compartilharam além dos ensinamentos formais, 

sua paixão pelo que fazem, inspirando a todos nós a extrairmos o melhor de nós na busca 

pela excelência.  

Ao meu orientador, por todos os valiosos ensinamentos ao longo de todos estes anos e 

pela confiança de navegar comigo por mais essa etapa da minha formação. A certeza que 

eu tenho é que sempre terei algo novo e relevante a aprender com você. Se eu cheguei 

bem até aqui, é porque pude contar com seu conhecimento e seu apoio. Agradeço também 

a minha banca de acompanhamento que tanto me ajudou a refletir e corrigir os rumos ao 

longo desta longuíssima estrada. Irene Martins, que calorosamente me recebeu durante o 

doutorado sanduíche, me deu valorosos direcionamentos, apoio para explorar um 

universo novo e me despertou o interesse pela modelagem. Gilson Carvalho, que até nas 

rápidas conversas de corredor ou em um comentário breve no manuscrito me ajudou a 

pôr o prisma em um ângulo novo e pensar novamente sobre as questões.  

Aos meus amigos do Laboratório de Ecologia Bentônica-LEB que construíram um 

maravilhoso local de trabalho, onde a crítica existe e mora ao lado do apoio mútuo. Aos 

meus amigos que fazem a vida parecer mais leve: Chico, Vanessa, Guilherme, Alice, 

Amanda, Anchieta, Jessé, Michelle, Jéssica, Gustavo, Eudes, Robson, Yuri A., Jane, 

Moisés, Vânia, Anderson, Ismarley e Ivana. E finalmente agradeço imensamente a minha 

família, testemunha ocular deste caminho, de cada gota de suor e lágrimas derramadas, 

que sempre me apoiou. À minha mãe Dina, meus irmãos Bruno, Igor e Davi e minha 

esposa Juliane.  

 

Muito obrigado! 

  



 
 

Texto de divulgação 

 

Como as mudanças climáticas podem afetar a fauna que vive entre o rio e mar?  

 

YURI COSTA 

O tema das mudanças climáticas tem ganhado mais importância uma vez que a 

humanidade tem experienciado com mais intensidade diversos fenômenos naturais, como 

chuvas intensas, inundações e secas cada vez mais severas. Estes eventos confirmam as 

previsões realizadas pelo Painel Intergovernamental sobre Mudanças Climáticas (IPCC - 

Intergovernmental Panel on Climate Change) que apresentou seu primeiro relatório em 

1990. Entre os principais efeitos das mudanças climáticas, a elevação do nível do mar é 

particularmente preocupante pois terá como consequência a progressiva inundação de 

grande parte da zona costeira pelo oceano nas próximas décadas. Alguns ambientes de 

transição como praias arenosas, baías e estuários serão os primeiros a sofrer esses efeitos. 

Os estuários são ambientes de transição aquáticos entre os rios e o oceano onde ocorre o 

encontro da água salgada do oceano com água doce do rio, formando o que se chama de 

gradiente de salinidade. O encontro dessas massas de água com características distintas 

dá origem a um ambiente importante para a sociedade. O ambiente estuarino abriga uma 

exuberante fauna (peixes, crustáceos e moluscos) e flora (manguezais e marismas) 

criando um ecossistema muito importante para manutenção de serviços ecossistêmicos 

como local de alimentação e berçário para diversas espécies de aves e peixes. Os seres 

vivos que habitam as águas salobras e sedimentos (areia e lama) de grande parte do 

estuário são adaptados a viver em um ambiente inóspito para muitas espécies marinhas e 

de água doce. Dessa forma alterações neste ecossistema, como mudanças no padrão da 

salinidade, causadas pela elevação do nível do mar, podem alterar a distribuição espacial 

dos organismos e impactar serviços ecossistêmicos importantes como a pesca. Assim, é 

extremamente importante que as autoridades como gestores e políticos planejem quais 

ações devem ser tomadas para minimizar os impactos dos efeitos das mudanças climáticas 

nos estuários. Para isso, ferramentas que forneçam previsões sobre as respostas 

ecológicas aos efeitos da elevação do nível do mar são necessárias. Este estudo foi 

proposto para investigar possíveis estratégias para previsão de efeitos ecológicos das 



 
 

mudanças climáticas sobre os estuários. Após a revisão de diversos artigos científicos que 

analisaram os efeitos da elevação do nível do mar em estuários, foi observado que a 

intrusão salina e a inundação são temas centrais. Particularmente a intrusão salina foi o 

fenômeno ao qual os pesquisadores dedicaram maior atenção. Essa intrusão é o avanço 

progressivo da água do mar (salgada) em direção ao rio, resultando no aumento da 

salinidade em regiões onde a salinidade atualmente é mais baixa. Os resultados de 

modelos computacionais de circulação indicaram que quanto maior a elevação do nível 

do mar, maior será a penetração da salinidade no estuário, principalmente em condições 

de redução da vazão dos rios, que pode ser causadas por secas ou construção de barragens. 

Outro levantamento buscou identificar os principais modelos ecológicos que utilizam a 

fauna bentônica (animais que vivem no fundo do estuário) como forma de investigar 

alterações nos ambientes aquáticos. Os resultados indicaram que os pesquisadores têm 

usado principalmente modelos de distribuição espacial das espécies aplicados a temas 

como impacto de atividades humanas nos ecossistemas aquáticos (biomonitoramento), 

potenciais efeitos das mudanças climáticas e introdução de espécies invasoras. Por fim, a 

presente tese testou uma dessas ferramentas preditivas em um estuário real. Para tal, 

aplicamos projeções de cenários futuros de elevação do nível do mar para o estuário do 

Jaguaripe, na Bahia e usamos a modelagem de distribuição de espécies pra avaliar os 

efeitos ecológicos da intrusão salina na distribuição da fauna bentônica. De modo geral, 

a resposta da fauna à intrusão salina foi a migração para regiões mais internas do estuário. 

Isso pode representar uma ameaça ao ecossistema, pois a intrusão salina pode favorecer 

acesso de muitas espécies marinhas a regiões mais internas do estuário, alterando relações 

biológicas como a competição e a predação. Concluimos neste estudo que a modelagem 

de distribuição de espécies pode ser usada para previsão do efeito da intrusão salina sobre 

a fauna bentônica em estuários. Os modelos ecológicos preditivos devem ser explorados 

por pesquisadores conjuntamente com gestores para o plenejamento de medidas de 

mitigação dos impactos das mudanças climáticas nos ecossistemas costeiros.  

  



 
 

Resumo 

Entre os principais efeitos das mudanças climáticas na zona costeira a elevação do nível 

do mar é um dos mais relevantes, pois pode levar a inundação, erosão costeira e 

salinização dos solos e corpos d’agua. Os estuários podem ser os primeiros ambientes a 

serem afetados pela intrusão salina induzida pela elevação do nível do mar. Alterações 

no padrão de distribuição da salinidade no estuário podem afetar os organismos (fauna e 

flora), uma vez que são adaptados a viver neste ecossistema que está sujeito a fortes 

gradientes (e.g., salinidade, sedimento). Entre os organismos que habitam o estuário, a 

fauna bentônica tem sido utilizada com sucesso para acessar efeitos ecológicos das 

alterações nas variáveis físicas do ambiente. Esses organismos tem se mostrado muito 

úteis também na construção de modelos ecológicos preditivos. Esses modelos podem 

fornecer valiosas informações sobre quais serão os efeitos das mudanças climáticas e da 

elevação do nível do mar. Este estudo propõe a i) sistematização dos principais modelos 

preditivos ecológicos que utilizam a fauna bentônica; ii) compilação e discussão dos 

estudos que simularam os efeitos da elevação do nível do mar em estuários e iii) 

simulação do efeito da elevação do nível do mar na distribuição espacial da fauna 

bentônica em um estuário real, usando modelagem de distribuição de espécies. Foi 

observado que os principais modelos preditivos aplicados aos organismos bentônicos 

utilizaram modelagem de distribuição de espécies no monitoramento ambiental para 

prever impactos causados por atividades humanas, alterações causadas por mudanças 

climáticas e introdução de espécies exóticas.  Recentemente a aplicação de técnicas de 

machine learning e uso de softwares gratuitos (e.g., R) apontam para o contínuo 

crescimento deste tópico de pesquisa. A literatura apontou também que os principais 

efeitos da elevação do nível do mar em estuários são a intrusão salina, as inundações e os 

efeitos ecológicos destes dois fenômenos. A síntese obtida com dados de modelos 

numéricos também indicou a influência da descarga dos rios sobre os efeitos diretos da 

elevação do nível do mar na intrusão salina. Os efeitos ecológicos da intrusão salina e 

inundação foram estudados principalmente através de experimentos manipulativos ou 

usando abordagens baseadas em sistemas de informação geográfica (e.g., modelo digital 

do terreno). Uma vez que modelos hidrodinâmicos numéricos possuem maior acurácia na 

previsão de tais efeitos, o uso de tais previsões em modelos ecológicos deve ser 

priorizado. A modelagem de distribuição de espécies foi aplicada com sucesso para 

previsão dos efeitos da intrusão salina no estuário do Jaguaripe - BA sobre a distribuição 

espacial de oito famílias de organismos bentônicos. De modo geral o modelo previu a 

progressiva migração dos organismos para regiões mais internas do estuário através de 

processos de colonização e extinção local. Essa migração poderá resultar em um efeito 

conhecido como marinização, causando possíveis desequilíbrios em médio prazo. Este 

estudo mostrou que os modelos ecológicos preditivos (i) são úteis para compreensão dos 

impactos ecológicos da elevação do nível do mar em ecossistemas estuarinos na fauna 

bentônica e (ii) representam uma importante ferramenta para gestores no planejamento 

de ações mitigatórias. 

Palavras-chave: modelos ecológicos preditivos, estuários, organismos bentônicos, 

modelagem de distribuição de espécies, elevação do nível do mar, mudanças climáticas. 

  



 
 

Abstract 

Among the main effects of climate change in the coastal zone, the sea-level rise is one of 

the most relevant as it can lead to flooding, coastal erosion and salinization of soils and 

water bodies. Estuaries in particular may be the first environments to be affected by saline 

intrusion induced by sea-level rise. Changes in the salinity distribution pattern in the 

estuary can affect the organisms (fauna and flora), as they had to adapt to living in this 

ecosystem that is subject to strong gradients (e.g., salinity, sediment). Among the 

organisms that inhabit the estuary, the benthic fauna has been used successfully to assess 

ecological effects of natural or antroppgenic changes. Additionally, these organisms are 

used in the construction of predictive ecological models that can provide valuable 

information about the responses to future changes in the estuarine environment, such as 

sea level rise. This study proposes the investigation of i) the main predictive ecological 

models that use the benthic fauna; ii) the studies that simulated the effects of sea-level 

rise in estuaries and iii) to simulate the effect of sea-level rise on the macrobenthic spatial 

distribution in a estuary using species distribution modeling. The main predictive models 

applied to benthic organisms used species distribution modeling in environmental 

monitoring to predict human impacts and alterations caused by climate change and 

introductions of exotic species. The use of well-established approaches, the incorporation 

of machine learning techniques and the use of open-source software (e.g., R) contributed 

to the growth of this research topic. The main sea-level rise effects in estuaries were saline 

intrusion, flooding and the ecological effects associated with these two phenomena. The 

synthesis obtained with data from numerical models indicated a direct effect of sea-level 

rise on saline intrusion and highlighted the influence of river discharge. The ecological 

effects of saline intrusion and flooding have been studied primarily through manipulative 

experiments or using approaches based on geographic information systems (e.g., digital 

elevation models). Since numerical hydrodynamic models are more accurate in predicting 

such effects, the use of such predictions in ecological models should be encouraged. 

Species distribution modeling was successfully applied to predict the saline intrusion 

effects on the spatial distribution of eight families of benthic invertebrates in the Jaguaripe 

estuary. In general, local extinction and colonization processes resulted in migrations to 

the estuary innermost regions. These migrations can result in an effect known as estuary 

marinization and may cause important environmental changes as saline intrusion 

advances. This study showed that predictive ecological models are useful for 

understanding the ecological impacts of sea-level rise in estuarine benthic fauna and are 

an important tool for managers in planning mitigation actions. 

Keywords: predictive ecological models, estuaries, benthic organisms, species 

distribution modelling, sea level rise, climate change.  
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__________________________________________________________ 

Estrutura da Tese 

 

A presente tese está estruturada em Introdução geral três capítulos e Conclusões como 

segue: 

Capítulo I – General trends after forty years of predictive models applied to benthic 

macroinvertebrates from marine, estuarine and freshwater environment 

O primeiro capítulo é uma revisão sistemática da literatura e aborda os principais modelos 

ecológicos preditivos usados para investigar a resposta dos organismos bentônicos a 

alterações das variáveis físicas do ambiente. Neste capítulo foram levantados estudos 

preditivos realizados nos diferentes ambientes (i.e., marinho, estuarino e de água doce), 

avaliadas quais foram as principais abordagens, métodos e softwares utilizados. 

Manuscrito a ser submetido ao periódico Scientometrics    

Capítulo II – Trends of sea-level rise effects on estuaries: A qualitative and 
quantitative synthesis towards for a simple general model to estimate 
future saline intrusion in estuaries 

O segundo capítulo é uma revisão sistemática da literatura e aborda os principais efeitos 

da elevação do nível do mar sobre os ecossistemas estuarinos. Os efeitos do nível do mar 

sobre o estuário foram investigados sob os pontos de vista quantitativo e qualitativo. Sob 

o ponto de vista quantitativo foi realizada uma síntese dos resultados dos modelos 

preditivos que investigaram a intrusão salina no estuário. Sob o ponto de vista qualitativo 

foram levantadas informações sobre a distribuição dos estudos no mundo, quais os 

principais impactos físicos (alteração da salinidade, transporte se sedimentos e 

temperatura), econômicos (salinização de aquíferos) e ecológicos (perda de biomassa, 

exclusão de espécies, espécies exóticas) indicados pelos estudos.    

Manuscrito a ser submetido ao periódico Marine Environmental Research 

Capítulo III - Sea-level rise effects on macrozoobenthos distribution within an 

estuarine gradient using Species Distribution Modeling 

O terceiro capítulo trata da simulação da resposta da fauna bentônica aos efeitos da 

intrusão salina em diferentes cenários de elevação do nível do mar no estuário do Rio 

Jaguaripe, Bahia.  

Manuscrito a ser submetido ao periódico Ecological Informatics 
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_________________________________________________________ 

Introdução geral 

 

Alterações climáticas são processos causados principalmente pela variação de 

gases de efeito estufa (e.g., CO2 e vapor de água) na atmosfera (Moss et al., 

2010). Desde os primeiros relatórios emitidos pelo IPCC (Intergovernamental 

Panel on Climate Change) a partir de 1990, alertava-se sobre a influência que 

atividades humanas (e.g., agricultura, indústrias) poderiam exercer sobre 

alterações no clima do planeta (Rahmstorf et al., 2007). O relatório mais recente 

do IPCC atesta como inequívoca a influência de atividades humanas sobre a 

aceleração do processo de aquecimento global (IPCC, 2021). 

O aumento da temperatura global possui diversos desdobramentos 

preocupantes para humanidade como o aumento de eventos extremos (e.g., 

como chuvas fortes, tempestades, inundações, secas intensas e prolongadas) 

(Nicholls et al., 2011). Outro efeito direto da elevação da temperatura global é o 

derretimento das geleiras, que resulta em elevação do nível dos oceanos e pode 

levar a inundação de grande parte das zonas costeiras ao redor do globo (Allison 

et al., 2009; Nicholls and Cazenave, 2010).  

Cerca de 80% da população mundial vive em cidades litorâneas e diversas 

atividades importantes são desenvolvidas na zona costeira, grande atenção tem 

sido dada ao efeito da elevação do nível do mar  (Hallegatte et al., 2013; 

McGranahan et al., 2007). Entre as principais ameaças da elevação do nível do 

mar estão a inundação permanente do território, salinização do solo e aquíferos. 

Gerando grandes prejuízos econômicos e sociais (Nicholls, 2011).  

Ambientes de transição como praias arenosas, baías e estuários então entre os 

primeiros ambientes a sofrer com os impactos da elevação do nível do mar 

(Prandle and Lane, 2015; Ross et al., 2015).  Os estuários são especialmente 

sensíveis à elevação do nível do mar uma vez que este fenômeno pode resultar 

em modificações no regime de circulação, afetando a estratificação e distribuição 

da salinidade (Mohammed and Scholz, 2018). Outros efeitos estão associados 

a mudanças na dinâmica de erosão, transporte de nutrientes, poluentes e 

patógenos (Prandle and Lane, 2015; Robins et al., 2016). Estas alterações 
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podem afetar importantes serviços (e.g., pesca, navegação, estocagem de 

carbono) desempenhados pelos estuários e ecossistemas fortemente 

associados como manguezais e marismas (Donato et al., 2011; Ewel et al., 1998; 

Lee, 2008; Lee et al., 2014).   

O principal impacto causado pela elevação do nível do mar está associado com 

a salinidade dos estuários que, por definição, são ambientes cuja principal 

característica é a diluição da água oceânica pela água doce dos rios (Pritchard, 

1967). Devido a essa diluição é formado um gradiente de salinidade, que 

representa a variação da salinidade da região oceânica (média 35 psu) até a 

montante, onde a salinidade da água é próxima a zero (Day et al., 2012). Com a 

elevação do nível do mar é esperado que ocorra a intrusão salina, que 

representa a progressiva entrada de água mais salgada oriunda da região 

oceânica para regiões mais internas do estuário (Serrano et al., 2020).  

A intrusão salina é um dos principais parâmetros usados para avaliar a 

sensibilidade de estuários à elevação do nível do mar (Prandle and Lane, 2015). 

Os estudos que avaliaram a sensibilidade de diversos estuários no hemisfério 

norte indicaram que os maiores impactos serão percebidos em estuários rasos 

(profundidade média em torno de 10 m), que possuem forte influência da maré 

e que estejam sujeitos a redução da vazão do rio (Prandle and Lane, 2015; 

Robins et al., 2016; Serrano et al., 2020).  

Do ponto de vista ecológico, a salinidade é a principal variável que influencia a 

distribuição espacial de organismos da fauna e flora ao longo do estuário (Attrill 

and Rundle, 2002; Barros et al., 2012; Costa et al., 2015; Gogina and Zettler, 

2010a; Whitfield et al., 2012). Em particular, a fauna de invertebrados bentônicos 

apresenta a sua distribuição espacial fortemente influenciada pela salinidade 

(Barros et al., 2012; Ysebaert et al., 2003). Essa relação é explicada em boa 

parte pela origem marinha dos organismos, que desenvolveram estratégias 

adaptativas (e.g., tolerância à baixa salinidade) e comportamentais (e.g., 

construção de tubos e galerias) para habitar um ambiente sujeito a variações na 

salinidade em função da maré (Barros et al., 2012; Beesley et al., 2000; Remane 

and Schlieper, 1971; Telesh et al., 2013a).  
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Outro fator que influencia a distribuição espacial da fauna bentônica nos 

estuários é o padrão de distribuição do sedimento (Little et al., 2017b). Os 

organismos podem possuir afinidade por diversos tipos de sedimento (e.g., 

cascalho, areia e lama) (Anderson, 2008; Barnes, 1989). Esta afinidade pode 

estar relacionada com os traços biológicos (e.g., modo de alimentação, 

locomoção, reprodução) de cada espécie (Beauchard et al., 2013; Fauchald, 

1977; Otegui et al., 2016).  

Devido a os organismos bentônicos apresentarem respostas previsíveis a 

diversas variáveis ambientais como matéria orgânica e poluentes (Egres et al., 

2019; Krull et al., 2014; Pearson and Rosenberg, 1978; Tagliapietra et al., 2012; 

Villeneuve et al., 2018), possuírem mobilidade reduzida e longos ciclos de vida, 

esses organismos são amplamente usados como ferramentas de monitoramento 

de alterações ambientais (Borja et al., 2013; Bremner et al., 2006; Dolédec and 

Statzner, 2008). 

Respostas previsíveis é um pré-requisito importante para elaboração de modelos 

preditivos (Jørgensen and Bendoriccihio, 2011). Esses modelos podem ser 

usados para prever quais efeitos de alterações ambientais sobre parâmetros 

ecológicos (e.g., distribuição, abundância e riqueza) das comunidades da fauna 

bentônica (Attrill, 2002; Gamito et al., 2010; Martins and Marques, 2011).  

Os modelos ecológicos preditivos podem ser ferramentas úteis para 

compreensão da resposta da fauna bentônica a alterações no padrão de 

salinidade como resultado da intrusão salina forçada pela elevação do nível do 

mar. Esse tipo de ferramenta pode fornecer informações valiosas pra o 

planejamento de ações mitigadoras dos efeitos da elevação do nível do mar em 

estuários, contribuindo para melhor gestão desses ecossistemas (Müller, 1998; 

Reiss et al., 2015).   
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__________________________________________________________ 

Objetivos 

Objetivo Geral 

O objetivo desta tese é investigar através de modelos ecológicos preditivos quais 

as respostas dos organismos bentônicos aos efeitos da elevação do nível do mar 

em estuários.  

 

Objetivos específicos 

1. Identificar as principais abordagens, métodos e ferramentas usadas para 

criação de modelos ecológicos preditivos aplicados aos organismos 

bentônicos. 

2. Sintetizar qualitativa e quantitativamente os principais efeitos da elevação 

do nível do mar sobre os estuários por meio de revisão da literatura.  

3. Simular a resposta da fauna bentônica aos efeitos da intrusão salina em 

diferentes cenários de elevação do nível do mar no estuário do Rio 

Jaguaripe, Bahia. 
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__________________________________________________________ 

Metodologia Geral 

Área de estudo 

O estuário do Rio Jaguaripe é raso (profundidade média inferior a 10 m), com 

circulação dominada pelas marés e representa um dos principais tributários da 

Baía de Todos os Santos. Possui área de superfície de 2.200 km² e vazão média 

mensal de 28 m3s-1 (Cirano and Lessa, 2007) e máxima de (Q = 363 m3s-1) 

(SNIRH, 2019). 

 

Figura 1. Pontos de amostragem do programa de monitoramento do estuário do 
Jaguaripe. Foram cinco campanhas realizadas em 10 pontos e uma campanha 
realizada em quatro regiões ao longo do gradiente longitudinal estuarino e duas 
campanhas realizadas em quatro regiões ao longo do gradiente transversal (ou 
seja, entre as margens). 
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Dados usados na modelagem 

Os dados usados neste estudo são oriundos dos trabalhos realizados pelo 

Laboratorio de Ecologia Bentônica da UFBA nos estuários da Baía de Todos os 

Santos. As amostras da macrofauna bentônica foram coletadas entre 2006 e 

2019 em oito campanhas de coleta. Os locais para amostragem biológica e 

ambiental (ou seja, sedimento e salinidade) foram visitados várias vezes ao 

longo dos últimos anos  (dados biológicos disponíveis em (Barros et al., 2021)). 
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Capítulo 1 

 

 

General trends after forty years of predictive models applied to benthic 

macroinvertebrates from marine, estuarine and freshwater environment 
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Abstract  

Ecological modeling of benthic fauna is a research topic that emerged about 40 

years ago. Researchers in marine, estuarine and freshwater environments have 

produced predictive models using different strategies (i.e., approaches, methods 

and software). To understand how this research topic evolved in terms of its 

practices (i.e., modeling methods and tools) and to identify future trends, a 

systematic literature review was carried out using the Web of Science platform. 

We retrieve 969 articles, of which 206 were selected for review and the results 

suggest that the most recurrent approaches were Species Niche Modeling, 

Bioassessment and Trophic Web Model. The most popular software were R, 

Matlab, Ecopath, Maxent, FORTRAN, SPSS, WEKA, ERSEM, SAS, Stella, 

Excel, AUSRIVAS, and RIVPACS. There was a considerable number of articles 

that did not indicate software (16%) used in their models. The dominance and 

growth of free software (e.g., R) is a trend also seen in other fields of ecology. 

The growing number of implementations from software widely used in many 

approaches (e.g., Ecopath, Maxent, Stella and Streambugs) for R packages 

tends to increase the popularity of this software and will likely establish it as the 

main software for predictive modeling in ecology. Predictive modeling of benthic 

fauna has its growth strongly associated with computational development and 

can be an important tool for resources management based on prediction of 

anthropogenic impacts, invasive species and climate change. 
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Introduction 

The understanding of the spatial distribution, composition and abundance of 

benthic organisms are key to determine the quality of aquatic environments and 

to improve management (Šiaulys and Bučas, 2012). Furthermore, to design good 

management strategies it is necessary to take into account possible future 

changes in the aquatic environment (Reiss et al., 2015). Faced with 

environmental changes driven by natural disturbances and human impacts, 

benthic community ecologists are frequently challenged to provide models to 

predict biological responses (Carvalho et al., 2015; Jørgensen and Bendoriccihio, 

2011). For instance, future climate change scenarios, interactions with different 

environmental impacts (e.g., pollution, biological invasion) and its mitigations are 

important research topics (Duarte et al., 2020). In fact, several ecological models 

using benthic fauna have been developed to predict potential environmental 

changes and provide tools for decision-making on important topics such as 

invasive species management (Munguia et al., 2010; Zhang et al., 2019), creation 

of Marine Protected Areas (Gorman et al., 2017; Patrizzi and Dobrovolski, 2018), 

establishment of long-term environmental monitoring (Reiss et al., 2015) and 

species distribution scenarios (Meißner et al., 2014; Moraitis et al., 2019; Weinert 

et al., 2016).  

During the last four decades, benthic ecologists working on aquatic environments 

(i.e., marine, brackish and freshwater) incorporated several modeling technics 

from other scientific fields (Schlüter et al., 2019). For instance, models that seek 

to understand systems dynamics through differential equations have a 

conceptual foundation in mathematics and applications in physics and 

engineering (Goddard, 1957; Poole, 1936). In benthic ecology these models are 

used to estimate population and community dynamics (Angulo et al., 2017; 

Hughes, 1984; Olive, 1992), species dispersion (Jacobsen et al., 1990; Yearsley 

and Sigwart, 2011), secondary production (Ehrnsten et al., 2020; Rowe et al., 

1997) and energy flow between trophic levels (Paillex et al., 2017; Schuwirth et 

al., 2008). Similarly, other methods such as Fuzzy Inference Systems originally 

developed to solve logic and computer programming problems (Maddox, 1983; 

Zadeh, 1965) can be applied in environmental monitoring (Marchini and Marchini, 

2006) and habitat suitability (Theodoropoulos et al., 2018). Moreover, the 
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incorporation of techniques from other scientific fields is a natural process (Pickett 

et al., 2013). 

The accelerated growth of computational sciences applied in the ecological 

context has resulted in a large number of techniques and algorithms used for 

ecosystem management and for advances in theoretical ecology (Guo et al., 

2015). Since ecology is increasingly becoming a quantitative and computational 

science (Petrovskii and Petrovskaya, 2012; Touchon and McCoy, 2016), a 

continuous critical assessment of the available and routinely applied methods for 

ecological modeling is necessary (Austin, 2007) to give a global perspective of 

the development trends in approaches and techniques (Guo et al., 2015). This 

will avoid seeking solutions for problems which we already have good tools to 

solve (Jørgensen and Bendoriccihio, 2011), allows models performance 

comparisons (Elith and Graham, 2009), improvement of the available techniques 

and help to orient novel research groups (Austin, 2007; Guo et al., 2015). 

Considering that ecologists dedicated to the study of benthic fauna have 

developed studies in different environments (freshwater, estuaries and marine) it 

is expected that the most used modeling approaches and techniques used in 

these environments would be different (Constable, 1999; Zhang and Liu, 2012). 

Different research groups may also use different approaches, techniques and 

methods due to inherent demands and expertises when addressing different 

issues (e.g., water quality monitoring and fisheries resources management) 

(Johnson and Hallstan, 2018; Ortiz and Stotz, 2007). Thus, creating their own 

modeling culture and a tool kit possibly restricted to their context and environment 

(Wenger-Trayner, 1998). For instance, in freshwater modeling, some approaches 

were derived from environmental monitoring protocols developed by managers 

from government regulatory agencies (Stalnaker et al., 1995) while in the marine 

environment modeling is frequently related with theoretical ecology hypothesis 

tests and scenarios simulations such as larval dispersion (Lal et al., 2020), 

biomass variation (Zhou et al., 2009) and climate change effects on species 

distribution (Weinert et al., 2016). Therefore, it would be very insightful to describe 

and compare tools used by researchers working in different aquatic environments 

which can lead to incorporation of new technique to answer specific questions in 
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innovative and better ways (Jørgensen and Bendoriccihio, 2011; Pickett et al., 

2013).  

There are few methodological review papers on benthic fauna modeling focusing 

on pattern description using statistical tools (e.g., Carvalho et al., 2015; 

Constable, 1999) and predictive modeling (e.g., Reiss et al., 2015). However, 

there are no assessments considering different predictive model classes (e.g., 

mathematical, statistical, computational, etc.) at different aquatic environments 

(i.e., freshwater, brackish and marine) simultaneously. Thus, the aim of this 

systematic literature review is to provide an overview of the main approaches and 

tools available for predictive ecological modeling of benthic fauna and how they 

evolved over time. This review does not intend to provide detailed technical 

explanations of the numerous modeling techniques. Instead, provide a road map 

of the modeling strategies associated and their different purposes, highlighting 

the most used strategies and tools (i.e., approaches, methods and software), as 

well the environment in which the approaches and tools were most frequently 

used.  

Methods 

In order to synthesize the main predictive models applied to benthic 

macroinvertebrates, we conducted a systematic literature review. The reporting 

of this systematic literature review was guided by the standards of the Preferred 

Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement. 

PRISMA is a guideline that helps researchers to report more clearly the 

methodology applied in systematic reviews (i.e., information source, eligibility 

criteria, selection of included studies, data extraction and analysis) in order to 

make it more transparent and reliable (Moher et al., 2009; Sarkis-Onofre et al., 

2021). The main steps in the classification of studies for this systematic review 

are depicted in Fig 1. Studies were identified in the Web of Science database in 

December 2020  applying the limit date from 1945 to 2020, using the following 

search terms: ((model* OR simula*) AND (benth* OR macrozoobenth* OR 

macrobenth OR macroinvertebrates OR invertebrates) NOT (Benth OR Bentham 

OR Bentheim OR Bentheimer OR BENTHEM OR BENTHIOCARB OR benthamii 

OR benthamiana)). The terms included after the ‘NOT’ boolean operator were 

used to avoid records not related to the benthic fauna.  
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A total of 969 records (i.e., papers) were retrieved from the Web of Science 

platform database, no duplicate articles were identified. After reading the titles 

and abstracts and applied the screening criteria, 681 documents were excluded, 

and 288 were kept. Among these records, 82 articles were excluded because 

they are not predictive models (statistical models, n = 49; mathematical models, 

n = 33) but were descriptions of patterns and processes in which benthic fauna 

were studied. Thus, our review was conducted with 206 articles (Fig 1). 

 

 

Fig 1 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) diagram indicating the number of records retrieved in the search, 

articles evaluated for eligibility and documents included in this review after 

applying screening criteria 

 

After obtaining the search result, the files were screened on Web of Science 

platform and the following screening criteria were applied i) had predictive 

modeling as their objective; ii) used the aquatic environment (i.e., marine, 

freshwater or brackish water) as an ecosystem model and iii) used benthic 

invertebrate fauna at different levels of ecological organization (e.g., individuals, 

populations or communities). Consequently, studies that, for example, which 
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aimed to model the benthic environment (i.e., sea floor) without including fauna 

and flora in the model, developed predictive models for other groups of 

invertebrates (e.g., butterflies) outside the aquatic environment were excluded. 

Documents considered eligible were read in full and those that did not match with 

the aforementioned inclusion criteria were excluded. Finally, the articles (n = 206) 

were read to extract the relevant information for our study. 

The variables extracted from articles were related to manuscript identification 

(e.g., year of publication, title and authors), environment (e.g., fresh water, marine 

or brackish water), ecosystem (e.g., rivers, lakes, estuaries, bays, ocean floor), 

biological model (e.g., individuals, populations or community) and ecological 

modeling objective. Related to the models were extracted information about 

model class (e.g., statistical, mathematical, computational), modeling strategy 

(i.e., approach, methods, techniques, software and the algorithm used to perform 

the modeling). Finally, information about the model's evaluation and methods 

used for validation were extracted. All of this information was compiled into an 

electronic spreadsheet available in Costa, (2022). 

Data analysis 

The categories were created based on the information synthesis extracted from 

the articles after filling in 30% of the retrieved records (about 60 documents). 

Since the level of detail reported by the authors was quite different, the 

information was initially recorded at the most detailed level indicated by the 

authors, and then the categories were created with the aid of information from 

the literature and based on the most compatible level among the studies. For 

instance, the main modeling approaches were grouped into eight categories 

according to the author's purpose. The categories included studies of Species 

Distribution Modeling, Bioassessment, Trophic Web Model, Dispersion-

Colonization, Population Dynamics, Secondary Production, Ecotoxicological 

studies and Ecological Functions.  

We evaluated the evolution in the number of publications obtained from articles 

frequency published by year and a cumulative curve was built. The most relevant 

study categories were determined. For this, each variable, frequency value was 

obtained based on the number of unique records in each category. The 
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categories of each variable were ranked according to their frequency and those 

that occurred in more than one article were maintained (freq.> 1). To assess the 

relationship between the categories of the different variables, an alluvial diagram 

was produced from the matrices of variables. Alluvial diagrams uses streamlines 

to connect nodes assigned to clusters (variables) in different networks. This 

approach can be used to investigate relationships between sets of bipartite 

networks (Rosvall and Bergstrom, 2010). The alluvial diagram was performed 

using the ‘sankeynetwork’ function of the networkD3 package (Allaire et al., 2017) 

of the R software (R Development Core Team, 2016). 

Results  

Research Topic Evolution  

Overall, predictive ecological modeling applied to benthic fauna is an emerging 

research topic (Fig 2). From the first studies, there was a clear increase in the 

number of publications around the 1990s (Fig 2). We discussed the research 

topic evolution considering four different phases (i.e., Phase 1: from 1977 to 

1989; Phase 2: 1990 - 1999; Phase 3: 2000 - 2009; Phase 4: 2010 - 2020). Thus, 

it is possible to identify and compare the main changes in the use of approaches 

and tools in different environments over decades as well as identify similarities in 

the use of those tools and future trends. 

Fig 2 Predictive ecological models applied to benthic fauna between 1977 and 
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2020. The annual number of publications is represented in absolute values (bars) 

and accumulated (curve) 

 

In the first phase (1977-1989), five studies were carried out mainly in the marine 

(40% of total studies in the first phase; n = 2) and freshwater (40%; n = 2) 

environments, only one study was registered in the estuarine environment. The 

first study retrieved (Levinton and Lopez, 1977) used the Secondary Production 

approach (Fig 3). Through logistic equation the authors built a model for 

predicting the carrying capacity based on resource consumption and intraspecific 

competition of a snail population (Hydrobia minuta) in an estuary. The most used 

approach for modeling was Bioassessment (40%; n = 2) being applied both in the 

marine environment and in freshwater. Other approaches such as Population 

Dynamics, Species Distribution Modeling and Secondary Production were also 

applied in this first phase (Fig 3). The most used method was Regression Models 

(40%; n = 2) and other methods such as Differential Equations and dimensionality 

reduction techniques such as Multiple Discriminant Analysis were applied (Fig 

4). The software used were Fortran and PHABSIM (Physical Habitat Simulation) 

(Fig 5). There was a program developed to carry out the Neutral model and two 

studies in which the software was not indicated. 

Fig 3 Evolution of the main approaches used for modeling benthic fauna over the 

four decades 
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In the second phase (1990-1999), 25 studies were carried out mainly in the 

marine (44% of total studies in the second phase; n = 11) environment, followed 

by freshwater (32%; n = 8) and brackish water (24%; n = 6). The most used 

approach for modeling were both Trophic Web Model (28%; n = 7) and Population 

Dynamics (20%; n = 5), Dispersion-Colonization (12%; n = 3), Secondary 

Production (12%; n = 3), Ecotoxicological studies (12%; n = 3), Bioassessment 

(8%; n = 2) and Species Distribution Modeling (8%; n = 2) were also recurrent 

(Fig 3). The most used method was Differential Equation (60%; n = 15), 

Regression Models (20%; n = 5) and Individual Based Models (8%; n = 2) were 

the most recurrent (Fig 4). Among eleven software used in this phase, the most 

recurrent were FORTRAN (16%; n = 4), ERSEM (12%; n = 3) and Stella (8%; n 

= 2). In eight studies (32%) there was no indication of the software used in the 

modeling (Fig 5). 

 

Fig 4 Main Methods used for modeling benthic fauna over the four decades. Here 

are shown the methods applied in more than one study (freq. > 1)  

 

In the third phase (2000-2009), 54 studies were carried out mainly in freshwater 

(42.5%; n = 23) and marine (40.7%; n = 22), followed by seven studies (12.9%) 

in the brackish water environment. In two studies (3.7%), predictive models that 

can be applied to benthic organisms inhabiting any aquatic environment were 
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used. The most used approaches for modeling were Bioassessment (31.5%; 

n = 17), Species Distribution Modeling (16.7%; n = 9), Trophic Web Models 

(16.7%; n = 9), Population Dynamics (14.8%; n = 8), Ecological Function studies 

(9.3%; n = 5), Secondary Production (5.6%; n = 3) and Dispersion-Colonization 

(3.7%; n = 2) (Fig 3). The most used methods were Differential Equation (25.9%; 

n = 14), Regression Models (14.8%; n = 6), Multiple Discriminant Analysis 

(11.1%; n = 6), Mathematical Model (11.1%; n = 6), Individual Based Modelling 

(7.4%; n = 4), Decision Tree Models (5.6%; n = 3), Ensemble models (5.6%; n = 

3) and Neural Networks (3.7%; n = 2) (Fig 4). During this phase 28 software were 

used, among which the most recurrent were R-Software (7.4%; n = 4), Ecopath 

(7.4%; n = 4), MatLab (5.5%; n = 3), SAS (5.5%; n = 3), RIVPACS (5.5%; n = 3), 

FORTRAN (3.7%; n = 2), Stella (3.7%; n = 2) and S-Plus (3.7%; n = 2). In eleven 

studies (20.4%) the software was not indicated (Fig 5). 

Fig 5 Main software (freq. > 1) used for modeling benthic fauna over the four decades. 

Colors indicate interface types and lines indicate if distribution is open source (free 

distribution) or proprietary  

 

In the fourth phase (2010-2020), 122 studies were retrieved which were carried 

out mainly in marine (43.4%; n = 53) and freshwater (40.2%; n = 49) 

environments, followed by 12 studies (15.6%) in the brackish water environment. 

In one study (0.8%), a predictive model was proposed to a generic aquatic 
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environment. The most used approaches for modeling were Species Distribution 

Modeling (45.1%; n = 55), Bioassessment (22.1%; n = 27), Dispersion-

Colonization (11.5%; n = 14), Trophic Web Models (8.2%; n = 10), Secondary 

Production (5.7%; n = 7), Ecotoxicological (4.9%; n = 6) and Population Dynamics 

(2.5%; n = 3) (Fig 3). The most used method were Regression Models (27%; n = 

33), Ensemble (14.8%; n = 18), Differential Equation (14.8%; n = 18), Decision 

Tree Models (12.3%; n = 15), Mathematical Model (7.4%; n = 9), Individual Based 

Modelling (4.9%; n = 4), Neural Networks (3.3%; n = 4), Structural Equation 

Model (2.5; n = 3), Multiple Discriminant Analysis (2.5%; n = 3), Fuzzy Inference 

System (1.6%; 2) and Connectivity Matrix (1.6%; 2) (Fig 4). During this phase 36 

software were used, among which the most recurrent were R-Software (39.4%; 

n = 48), MaxEnt (6.5%; n = 8), MatLab (5.7%; n = 7), Ecopath (4%; n = 5), WEKA 

(2.5%; n = 3) and SPSS (2.5%; n = 3). In fourteen studies (11.4%) the software 

was not indicated (Fig 5).  

Additionally, in relation to software characteristics, such as license type (i.e., free 

or proprietary) and user interface, among the 22 most popular software, 13 were 

based on Graphical User Interface (GUI) while software using Command Line 

and Visual Programming Language (VPL) are represented by five and four 

software, respectively. Finally, researchers preferred to use Open Source (n = 

13) over Proprietary (n = 9) license software (Fig 5). 



 

 42 

 

Fig 6 Alluvial diagram indicating the relationship between variables (columns) used to perform predictive ecological modeling of 

benthic fauna (i.e., Environment, Approach, Method and Software). In this network, blocks represent clusters of nodes (papers) 

belonging to the same category and edges represent the connection between these clusters from different variables. The size of the 

block represents the size of the group and the edge width indicates the number of components connected by each edge
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Overall, there was little difference in the number of studies carried out in the 

marine (43%) and freshwater (41%) environments (Fig 6). However, only 16% of 

the studies were carried out in estuaries. Most studies in the marine and estuarine 

environment used Species Distribution Modeling and Trophic Web Model as the 

main modeling strategy while in the freshwater environment most studies focused 

mainly on Bioassessment and, secondarily Species Distribution Modeling. 

Studies based on Species Distribution Modeling mostly used Regression Models 

(e.g., logistic regression), Decision Tree Models (e.g., Random Forest) and 

Ensemble models. Bioassessment studies mainly used Multiple Discriminant 

Analysis, Decision Tree Models and Regression Models. Finally, Trophic Web 

Model studies used methods based on Mathematical Model and Differential 

Equation as simulation strategies. Among the most popular software R, Ecopath, 

MaxEnt, MatLab and FORTRAN were the most used and are associated with the 

most used methods such as Regression Models and Differential Equation (Fig 

6). 

Discussion  

Evolution of approaches in different environments 

Macrobenthic predictive modeling as a research topic has received contributions 

from studies carried out mainly in marine and freshwater environments and, to a 

lesser extent, in brackish water environments. In the early years, there was a 

distinction regarding the objectives of the studies. Studies in freshwater focused 

on the development of models that used biota as a tool to predict the impacts 

caused by changing environmental variables (e.g., acidification and water flow) 

(Gore and Judy Jr., 1981; Weatherley and Ormerod, 1989). Thus, they used the 

benthic organisms responses as a way to access and predict the environment 

status (Stalnaker et al., 1995). In marine and brackish water environments, the 

main objectives were related to testing ecological theories (e.g., simulations of 

factors that influence patterns of diversity, carrying capacity and organisms 

interactions) (Hughes, 1984; Levinton and Lopez, 1977; Platt and Lambshead, 

1985).  

From the 1990s onwards, several approaches showed an increase in the number 

of studies. The first increase was registered for studies that dealt with the energy 

flow between trophic levels (Trophic Web Models). 



 

 44 

Trophic Web Model studies carried out in the marine environment investigated, 

for example, carbon cycling (Rowe, 1998; Ruardij and Van Raaphorst, 1995), fish 

species top-down control over the benthic community (Pockberger et al., 2014) 

and, more recently, themes associated with emerging topics such as recovery of 

benthic communities to high carbon dioxide exposure (Lessin et al., 2016). In the 

freshwater environment, Trophic Web Models addressed issues such as 

pollutants bioaccumulation and biomagnification (Morrison et al., 1996; Patwa et 

al., 2007), top-down population control (Descy et al., 2003; Hong et al., 2020) and 

invasive species impact on trophic relationships (Paillex et al., 2017; Zhang et al., 

2019). In the estuarine environment, studies focused on themes such as 

eutrophication (Le Pape et al., 1999), macrofauna influence on debris cycling 

(Alemanno et al., 2017) and aquaculture impact on the benthic community 

(Sequeira et al., 2008). The Trophic Web Models had more impact on the 

research topic between 1995 and 2002 and maintained a constant production. 

Bioassessment studies became more frequent after the 2000s and had a greater 

contribution from the freshwater environment. In this environment, there where 

increased interest in predicting the impacts of land use (e.g., agriculture, 

urbanization) (Lee et al., 2020) combined with the climate change effects (Guse 

et al., 2015; Li et al., 2018). In the marine environment were recurrent studies on 

the impacts of the aquaculture on benthic fauna (Jusup et al., 2007; Weise et al., 

2009), eco-social impacts of the non-native species introduction (Ortiz and Stotz, 

2007), regional climate change effects such as North Atlantic Oscillation (Junker 

et al., 2012) and glaciers melting (Torre et al., 2017). In the estuarine 

environment, the most recent studies have focused mainly on predicting 

biological parameters (e.g., composition, abundance, richness) of the benthic 

fauna (Rosa-Filho et al., 2004), estuarine sections classification using community 

structure  (Marchini and Marchini, 2006) and disturbance quantification (e.g., 

eutrophication) in the estuarine system (Miller et al., 2018). Interest in 

bioassessment studies has shown the greatest growth since 2005 and is on the 

rise. 

Species Distribution Modeling was the approach that showed the most recent 

growth and had the highest number of publications. Although this type of 

approach is mostly used in the marine environment, the first studies were carried 
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out in the freshwater environment (Gore et al., 1998), where emerging machine 

learning techniques (e.g., Neural Networks, Decision Tree Models) were applied 

to predict species occurrence (D’heygere et al., 2003; Dedecker et al., 2004). The 

greatest growth was observed from 2010 where this approach was used mainly 

in the marine environment to simulate habitat suitability (Peterson and Herkül, 

2019; Reiss et al., 2011). In addition, this approach was associated with emerging 

themes that contribute to the creation of management support tools (e.g., priority 

conservation areas)(Gonzalez-Mirelis and Buhl-Mortensen, 2015; Rioja-Nieto et 

al., 2013), climate change large-scale impacts on the benthic fauna distribution 

(Weinert et al., 2016) and invasive species expansion monitoring (Crickenberger, 

2016). In the freshwater environment, in addition to the habitat suitability models 

creation (Hoang et al., 2010; Jowett and Davey, 2007; Li et al., 2009), more 

recently, the SDM's addressed issues such as distribution shifts due climate 

change effects (Domisch et al., 2013) and small-scale modeling of the species 

distribution (Kuemmerlen et al., 2014; Mehler et al., 2017). The development of 

small-scale species distribution models is critical to support management as it is 

more aligned with the ecosystems scale (e.g., bays, rivers, lakes and 

estuaries)(Becker et al., 2020; Singer et al., 2016). Finally, the studies in brackish 

water environment focused on the fauna distribution influenced by the 

environmental gradients (e.g., salinity, sediment and nutrients) (Bucas et al., 

2013; Gogina and Zettler, 2010; Šiaulys and Bučas, 2012). Species Distribution 

Modeling is an approach in recent rise and showed promise for assessing 

environmental change at different scales and dealing with emerging issues such 

as climate change and invasive species. 

Evolution of the methods  

Classical modeling methods such as Differential Equations and Regression 

Models were most frequently used. Models based on Differential Equation were 

used mainly in population dynamics studies (Savina and Ménesguen, 2008; Torre 

et al., 2017), larval dispersion (Lal et al., 2020; Yearsley and Sigwart, 2011), 

invertebrate drift (Anderson et al., 2017), trophic relationships (Descy et al., 2003) 

and nutrient cycling (Rowe, 1998; Ruardij and Van Raaphorst, 1995). Regression 

Models were more associated with themes such effects of human interventions 

in the aquatic environment (e.g., artificial cascades) and climate change effects 
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on species distribution  (Gore et al., 1998; Moraitis et al., 2019), secondary 

production (Tumbiolo and Downing, 1994) and bioassessment studies (Dowd et 

al., 2014). In addition to the classic methods, emerging methods such as Decision 

Tree Models, Individual Based Models, Neural Networks and Structural Equation 

Model were also among the most frequent. Decision Tree Models were more 

associated with Species Distribution Models studies (Gezie et al., 2020). 

Individual Based Models were more applied to Population Dynamics studies 

(Alexandrids et al., 2017) and Dispersion-Colonization (Conklin et al., 2018).  

From the 2000s onwards, the Ensemble method was recurrently used. This 

method consists of combining the results of different modeling techniques (e.g., 

Random Forest, Maximum entropy) to obtain better predictive performance (Elith 

et al., 2008; Reiss et al., 2015).  

On the other hand, there are methods allow combining different approaches to 

answer more complex questions. For instance, Individual Based Models are able 

to integrate information from the life cycle (e.g., spatial dispersion and growth) of 

each individual to functional relationships with the ecosystem and biological 

interactions (e.g., predation and competition) to generate predictive β-diversity 

models (Alexandridis et al., 2018). Thus, emerging methods are being 

successfully employed in approaches that are already well explored and also 

have contributed to the incorporation of new levels of complexity into models, 

allowing the investigation of processes through the understanding of mechanisms 

acting at different scales. 

Main software used to model benthic fauna 

In general, the most used software has shown greater growth since the 2000s. 

Most of them have an interface based in CLI (Command Line Interface), (e.g., R, 

Matlab, Fortran, SAS and C ++). CLI-based programs are faster and more flexible 

than those developed in other types of interfaces (e.g., Graphical User Interface 

and Visual Programming Language). Flexibility means which the user can edit 

pre-existing script codes (also called ‘routines’, ‘libraries’ or ‘packages’) and 

create their own scripts to suit their needs (Chen and Zhang, 2007). Among the 

most popular software the most used was R which is a freely distributed 

programming language created in 2003 and which is based on a command line 

interface (R Development Core Team, 2016). Although this last feature seems to 
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be an impediment for non-programmers, the number of publications in various 

areas of science citing R is on the rise, especially in biological sciences 

(Tippmann, 2015). The first record was in 2005 with the Species Distribution 

Modeling in the freshwater environment (Sanderson et al., 2005). Its popularity 

grew from 2010 onwards, being applied in practically all approaches, mainly to 

Species Distribution Modeling. The versatility of R and its ability to rapidly 

incorporate emerging techniques (e.g., machine learning) (Nunes et al., 2020; 

Tippmann, 2015) may be important features for the future growth of benthic fauna 

modeling as a research topic (Petrovskii and Petrovskaya, 2012; Pickett et al., 

2013). A very likely trend is that R will become the main tool within this research 

topic. For instance, popular GUI programs were incorporated into the R 

environment (e.g., Maxent, Ecopath) (Lucey et al., 2020; Phillips, 2017). 

Additionally, packages were created to ‘translate’ files from popular software 

based on VPL (e.g., Stella®) (Naimi and Voinov, 2012) and GUI (e.g., OpenBugs) 

(Sturtz et al., 2010) for the R environment allowing researchers working on 

different platforms to collaborate.  

Software based on Graphical User Interface was more diverse and its popularity 

is due to its familiar and intuitive interface to most users. It is important to highlight 

the importance of software developed by government agencies and institutional 

partnerships. For instance, the PHABSIM (Physical Habitat Simulation) software 

developed by the USGS (U.S. Geological Survey) government agency uses 

statistical models (e.g., Exponential Polynomial Analysis and GAM) to explore the 

relationships between environmental variables and benthic fauna in 

Bioassessment studies. (Gore and Judy Jr., 1981; Hayes et al., 2015). The 

success of this initiative allowed the development of other software such as 

RIVPACS (River Invertebrate Prediction and Classification System) and 

AUSRIVAS (Australian River Assessment System) that incorporated new 

techniques (i.e., Multiple Discriminant Analysis) to the Bioassessment approach. 

In this way, it was possible to address new issues such as eutrophication (Nichols 

et al., 2014) and dams impacts on benthic fauna (Marchant and Hehir, 2002). 

Similarly, in the marine environment, predictive tools were developed through 

institutional partnerships such as Ecopath software (NOAA, 2017) and ERSEM 

(European Regional Seas Ecosystem Model) (Baretta et al., 1995) applied as 
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ecosystem models through the Trophic Web Model approach. These tools were 

used to establish reference conditions (Davy-Bowker et al., 2006) and setting 

goals for conservation (Duarte et al., 2020; Welp, 2001). Thus, it is highly 

recommended that government agencies encourage institutional partnerships in 

the development of such tools aiming at management goals. As pointed out by 

Carvalho et al., (2015) the choice of software can be linked to its availability. We 

identified that software designed to address specific approaches can be an 

important factor in consolidating an approach within the research topic. 

Additionally, software based on emerging machine learning techniques such as 

Decision Tree Model (e.g., WEKA) and Fuzzy Inference Systems (e.g., CASiMiR) 

have been used to solve old and new research questions such as abundance 

prediction (D’heygere et al., 2003), habitat suitability (Gezie et al., 2020; Hough 

et al., 2019) and use of macroinvertebrates as indicators of pathogenic 

microorganisms (Jerves-Cobo et al., 2018). 

Software based on Visual Programming Language (e.g., Stella, Visual Works) 

were less recurrent. Model building using this interface is based on 'drag and 

drop' graphic elements (e.g., boxes, wires) and linking them by arrows (Myers, 

1990). Studies using this type of interface were used to solve issues involving the 

structure and evolution of processes  (e.g., Population Dynamics, Secondary 

Production) (Rowe et al., 1997; Van Den Brink et al., 2007). This is perhaps the 

most intuitive and attractive form of modeling for non-programmers who can build 

a simulation starting directly from the conceptual model(Costanza and Voinov, 

2001). Thus, it represents an important tool for teaching modeling. Its limitation 

lies in the limited capacity to expand the models and process a very large amount 

of information (Jørgensen and Bendoriccihio, 2011; Naimi and Voinov, 2012). 

Although modeling studies are carried out in different environments, the sharing 

of strategies and tools is an indication of the existence of a community of practice 

around the research topic (Wenger-Trayner, 1998). Thus, benthic fauna 

modelers can benefit from new approaches introduced by their colleagues 

working in different environments. The increasing incorporation of approaches 

and tools to expand the scope of questions that can be answered are an 

indication that the predictive modeling of benthic organisms is a research topic 

that tends to continue its growth. Finally, the availability of monitoring data is a 
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growing movement, advances in the research topic can be reached in exploring 

this data using the latest methods (e.g., big data and deep learning) (Nunes et 

al., 2020). 

Conclusion 

Predictive benthic macroinvertebrates modeling is a research topic that began 

about forty years ago. The first studies were carried out independently in different 

ecosystems in the marine, estuarine and freshwater environments. Initially in the 

freshwater environment the benthic fauna was used to develop models to predict 

the ecosystem status, while in the marine and estuarine environment the models 

were used to create predictive models to test theoretical assumptions of ecology. 

During the early years there was an important inter-institutional effort to create 

modeling tools (e.g., RIVPACS, ERSEM, and Ecopath). More recently, due to 

computational advances that allowed the incorporation of new strategies, 

emerging themes (e.g., climate change and invasive species) were recurrently 

addressed in all ecosystems using similar strategies. For example, the last two 

decades have seen the growth of approaches such as Species Distribution 

Modeling, which has been shown to be important for assessing the effects of 

climate change. Among the most used software, R has become the most popular 

and due to its versatility and, as a free tool, it should continue to increase its 

importance for the research topic. Compared to marine and freshwater 

environments, the estuarine ecosystem has received less attention. The growing 

demand from managers for predictive responses related to the climate change 

effects makes it urgent to develop studies that consider such effects at a local 

scale. In this sense, small-scale species distribution modeling studies can be 

carried out to assist decision-makers in ecosystem management. 
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Abstract  

The Sea-Level Rise (SLR) already has effects on estuarine ecosystems around 

the globe. In this study, we used the systematic review to perform a qualitative 

and quantitative synthesis of predictive studies that investigated the effects of 

sea-level rise on estuaries. The results showed that most studies were carried 

out in the northern hemisphere and investigated the effects of saline intrusion 

through numerical hydrodynamic modeling. Ecological studies used a predictive 

approach and laboratory experiments and mainly dealt with the flooding and 

salinity increase effects. The quantitative synthesis showed that the relationship 

between saline intrusion and SLR is direct and inverse in relation to river flow. 

The incorporation of hydrodynamic models to ecological models and simulations 

that assess the effects of human interventions to mitigate the sea-level rise 

impacts on estuaries are recommended. Such information can be decisive for 

decision-makers to propose strategies for adapting to the sea level rise effects. 

Keywords: Saline Intrusion, Climate Change; Coastal Management; Ecological 

Impacts; Mangroves  

 

1 Introduction 

One of the effects associated with climate change is the sea-level rise (SLR), 

which is particularly worrying since 80% of the world population lives in the 

coastal zone (Nicholls, 1995) and approximately 10% of the population lives in 

coastal areas with elevations below 10 meters. Such low elevation coastal zones, 
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including many bays and estuaries, are particularly vulnerable to flooding 

(McGranahan et al., 2007) which have the potential to generate large losses to 

due to the close relationship between human activities (e.g., fishing and 

aquaculture) and such ecosystems (Huppert et al., 2003; Mclusky and Elliott, 

2008). 

The Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate 

Change (IPCC) projected that the global sea level may increase up to 60 cm by 

2100 due to warming ocean waters and melting glaciers (Stocker et al., 2013). 

However, the accelerated reduction in polar masses (Allison et al., 2009; 

Velicogna, 2009) increases the possibility of future SLR of 1 m or more (Pfeffer 

et al., 2008). Global SLR values still vary widely in forecasts ranging from 30 to 

180 cm by 2100 (Stocker et al., 2013) but regional-scale studies projections 

suggested that it can reach up to 2 m (Kuang et al., 2014; Nicholls et al., 2011; 

Sriver et al., 2012). Paradoxically, the potential effects of SLR on estuarine 

ecosystems are by and large poorly understood (Robins et al., 2016).  

The speed at which the average sea level rises is increasing (Watson et al., 

2015). For instance, evidences from tide gauge surveys indicated that sea levels 

have increased at a rate of 1.7 ± 0.3 mm / year since 1950 (Church and White, 

2011). Although, since the 1990s sea level rise has been measured by high-

precision satellite altimetry and between 1993 and 2009 it was observed that the 

rate at which the average sea level increased may reach 3.3 ± 0.4 mm/year 

(Ablain et al., 2009). The accelerated rates of sea level rise demand studies that 

assess the short-, medium- and long-term impacts in transition environments in 

coastal zones. 

The results of satellite altimetry revealed that sea level rise is not uniform (Carson 

et al., 2016), furthermore, in some regions (e.g., Western Pacific) sea level rise 

occurs three times faster than the global average (Nicholls, 2011). These 

variations are partially explained by the non-uniform regional distribution of heat 

and salt in the ocean (Wunsch et al., 2007) and by isostatic movements (i.e., due 

to tectonic activity) which also change the relative sea level (Christie-Blick et al., 

1988). This raises the need to understand how different sea-level rise magnitudes 

affect transitional environments around the globe. 
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Non-climatic components of sea-level variation associated with anthropogenic 

activities (e.g., oil extraction, groundwater and dams) can also amplify the local 

vulnerability (Nicholls, 2011). For instance, the dams building can intensify saline 

intrusion by reducing the fresh water input into estuaries (Alcérreca-Huerta et al., 

2019; Le et al., 2007). On the other hand, reductions of sediment supply in river 

deltas by dam construction throughout the 20th century may cause land uplift 

counterposing sea level by about -0.5 mm/year (Chao et al., 2008). Although 

extremely important for creating appropriate mitigation strategies, these non-

climatic components of SLR receive less attention than the climatic components 

because they are considered a local issue (Nicholls and Cazenave, 2010).  

The physical impacts of sea-level rise are well known (Nicholls et al., 2007),  short 

and medium-term effects are submergence (Little et al., 2017a; Temmerman et 

al., 2013), increased flooding in coastal lands and saline intrusion in estuaries 

(Eidam et al., 2020; Robins et al., 2016). In the long-term, processes such as 

erosion will reshape the coastal zone and saline intrusion will affect groundwater 

reservoirs (Nicholls et al., 2007; Reeve and Karunarathna, 2009). Ecological 

effects such as mangroves and salt marshes retraction due to reduced sediment 

supply, are also expected in future likely impacting important ecosystem services 

as carbon storage (Perera et al., 2018). All of these processes (e.g., salinization, 

flooding) may generate direct and indirect socio-economic impacts and the 

prediction is that the magnitude of the impacts will become increasingly apparent 

(Nicholls et al., 2007). For instance, the coast of the African continent, and south, 

southeast and east Asia are identified as endangered regions due to the high 

population living in delta regions (Nicholls and Cazenave, 2010). Unfortunately, 

there is a lack of the effects of SLR of the other regions of globe since, for instance 

southern hemisphere estuaries are not included in the search for general 

ecological models (Barros et al., 2012). Therefore, it is expected that the studies 

already carried out will provide relevant information on how these systems are 

responding and what are the projections for future scenarios (Robins et al., 2016). 

The lack of available information on local sea-level rise is clearly impeditive for 

management and decision making (Thorne et al., 2017). In contrast to sea-level 

rise studies on a global scale, predictive studies that assess the sea-level rise 

impacts on regional and local scale (e.g., estuaries) are more diffuse in the 
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literature. In this sense, a synthesis will help to improve our understanding of the 

effects of sea level rise on saline intrusion in estuaries, if there are general trends 

predicted by models. Thus, the objective of this study is to perform a qualitative 

and quantitative synthesis of the expected impacts of sea-level in estuarine 

systems. 

 

2 Methods 

2.1 Systematic review 

The review process followed the PRISMA protocol for systematic review (Moher 

et al., 2009). The search was performed on the Web of Science platform in 

December 2020 using the search string:  ((sea level rise OR SLR  OR climate 

chang*) AND (estuar* OR river*) AND (saltwater intrusion OR salinity intrusion 

OR salt-hedge OR sal*)). After a few rounds of search it was identified that the 

term related to saline intrusion showed variations that reduced the number of 

retrieved target articles. Thus, the synonyms were added to the search string. 

The search period was from 1945 to 2020. After obtaining the search result, the 

files were downloaded and eligibility criteria were applied. 

2.1.1 Screening criteria 

After records search, documents were read to select the articles that addressed 

the prediction of sea-level rise effects in estuarine systems. The included studies 

accessed topics in which SLR has a direct impact (e.g., saline intrusion, flooding 

and estuarine erosion process) for future SLR scenarios, ecological impacts due 

to SLR or changes in environmental conditions (e.g., increased salinity) and 

evaluation of interventions to mitigate the effects of the SLR. The excluded 

articles dealt with processes in the estuary were not related to sea-level rise. For 

instance, studies that measured or simulated saline intrusion or erosion and 

silting in the estuary due to factors such as natural reduction of discharge or 

artificial (e.g., construction of dams), floods associated with events (e.g., 

monsoons) and ecological impacts not associated with sea level rise (e.g., cover 

loss and introduction of invasive species) were excluded. After applying the 

eligibility criteria, the articles were read to extract the relevant information for our 

study. 
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2.1.2 Records retrieved in the systematic review 

 

A total of 81 records (i.e., papers) were retrieved from the Web of Science 

platform database, no duplicate articles were identified. After reading the titles 

and abstracts and applied the screening criteria, 15 documents that presented 

simulations of saline intrusion without the sea level rise influence were excluded, 

and 66 were kept. After reading the texts and applying the eligibility criteria, 5 

records were deleted and 61 kept. Among the excluded, three were review 

studies and two dealt with saline intrusion due to the operation of dams. For the 

qualitative analysis, 61 papers were included, among which 26 contained 

information that was extracted for quantitative analysis (Figure 1). 

 

Figure 1. PRISMA diagram indicating the number of records retrieved in the 
search, articles evaluated for eligibility and documents included in this review 
after applying screening criteria. 
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2.2 Variables extracted from articles 

The qualitative variables extracted from articles were related to manuscript 

identification (i.e., year of publication, title and authors), estuary (i.e., estuary 

name, country) and study category. The studies were classified into five 

categories based on the impacts caused by sea level rise on physical and 

biological variables and simulation of interventions in order to mitigate the sea-

level rise effects (Table 1). All of this information was compiled into an electronic 

spreadsheet (Costa et al., 2022). 

Table 1. General categories of the sea-level rise effects in estuaries 

Study category Description 

Salinity intrusion Studies that presented predictions about the effects of sea-level rise 
on saline intrusion in estuaries. 
 
 

Ecological effects Studies that dealt with potential SLR effects (e.g., saline intrusion, 
flood) on the biota. 
 
 

Sedimentary 
dynamic 

SLR effects on sediment erosion, transport and deposition. 
 
 

Management Tools Studies that presented management strategies for mitigation. 
 
 

Water temperature SLR effects on estuary temperature. 

 

In addition to the qualitative variables, four quantitative variables whenever 

available were extracted from the articles, these were: (i) the extension of the 

estuary based on the maximum salinity penetration in the baseline scenario 

(present); (ii) the position of isohalines in the baseline scenario and in different 

scenarios of sea-level rise and (iii) the isohalines position on different scenarios 

of river discharge.   

2.3 Data extraction 

The position of the saline wedge was extracted in different scenarios (e.g., sea-

level rise and discharge) using the WebPlotDigitizer software (Rohatgi, 2012). 

The extracted values were used to calculate the saline intrusion increment in 

different sea-level rise scenarios and to investigate the discharge influence on 

saline intrusion.  

2.4 Data treatment 
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The saline intrusion was calculated through the difference between saline wedge 

length in the baseline scenario (spresent) and future scenarios (sfuture) (Figure 2). 

These values were measured from the same spatial point downstream to its 

maximum extent towards the upstream.  

Figure 2. Saline intrusion length calculation obtained by difference between the 

present (Spresent) and future (Sfuture) saline wedge length.   

 

However, the saline intrusion is influenced by the estuary length. In order to make 

the values comparable, the Saline intrusion increment (Sincrement) was estimated 

by dividing the saline intrusion by the present saline wedge length (Equation 1). 

𝑠𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
(|𝑠𝑝𝑟𝑒𝑠𝑒𝑛𝑡− 𝑠𝑓𝑢𝑡𝑢𝑟𝑒|)

𝑠𝑝𝑟𝑒𝑠𝑒𝑛𝑡
                      (1) 

 

2.5 Statistical analysis 

In order to investigate the relationship between sea-level rise and the saline 

intrusion increment and the influence of discharge on the magnitude of this effect, 

a linear multiple regression analysis was used. The predictor variables were SLR 

(m) and discharge (m3s-1) and the response variable was the saline intrusion 

increment (dimensionless). The linear multiple regression was performed using 

‘lm’ function in the software R (R Development Core Team, 2016). From the 

multiple regression model, future scenario predictions were made for a real 

estuary considering SLR scenarios (0.25, 0.5, 0.75 and 1) and characteristic 

discharge for the Jaguaripe estuary (Q = 363 m3s-1) (SNIRH, 2019). 
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3 Results 

3.1 Evolution of publications 

Over nearly thirty years (1992 to 2020), there was an increase in the number of 

publications related to the sea-level rise effects on estuaries (Figure 3). The first 

study retrieved in the search was carried out in 1992 and was unique for a 

decade. In the following decade (between 2000 and 2010) there was a gradual 

increase in the studies frequency but a marked growth occurred in the last ten 

years (2010-2020). 

 

 

Figure 3. Trend of publications related to the Sea-level rise effects on estuaries. 

 

3.2 Global distribution of studies on the sea-level rise effects in estuaries 

Studies on the sea-level rise impacts in the estuaries were carried out mainly in 

the northern hemisphere (Figure 4). The main countries that performed such 

studies were the USA and China. The most frequent objectives were to 

investigate the sea-level rise effects on (i) salinity intrusion in the estuary, (ii) 

ecological effects on estuarine fauna and flora, (iii) transport of suspended 

sediment, erosion, deposition and changes in estuarine geomorphology (iv) 
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management tools formulation and (v) heat distribution pattern on estuary 

(Figure 4). 

Most studies that sought to investigate the sea-level rise effects on saline 

intrusion were performed using hydrodynamic numerical models (blue in Figure 

4), statistical models (red), machine learning (light green) and digital terrain 

elevation models (pink). Predictions of how sea-level rise would affect erosion, 

transport and sediment deposition, as well as changes in estuarine 

geomorphology (i.e., squares in Figure 4) were carried out using hydrodynamic 

models, statistical models and systems dynamics modeling. 

Ecological predictions (i.e., triangles in Figure 4) were made using digital 

elevation models, statistical models, hydrodynamic modeling and laboratory 

experiments. In a particular case, sea level rise was used as the background for 

a study (i.e., hypothetical scenario) that aimed to predict the fish genetic 

adaptation to environmental change due to saline intrusion. In addition, there 

were studies that aimed to create management tools related to investigating 

estuary sensitivity, potential economic and social impacts and assessing the 

managers preparedness in face of saline intrusion due to sea-level rise scenarios. 

The management tools created to address such issues were based on results 

from hydrodynamic models, digital elevation models, systems dynamics models 

and expert assessment based on publications for the region analyzed.  
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Figure 4. Worldwide distribution of the studies on the sea-level rise effects on estuaries. Different symbols refer to studies 
objectives and colors represent different methods used at each study. 



 

 68 

3.3 Qualitative synthesis 

3.3.1 Ecosystems simulation models 

All the hydrodynamic numerical modeling were calibrated and validated in each 

study. Some simulations were carried out in idealized estuaries and later applied 

to real estuaries (e.g., Chua and Xu, 2014; Krvavica and Ružić, 2020). 

Techniques were combined to improve the simulation results. For instance,  

hydrodynamic models were coupled with process-based modeling to assess salt 

transport (Rodrigues et al., 2019) and statistical modeling (using Monte-Carlo 

method) to improve the prediction for estuarine systems with few data (He et al., 

2018). The studies that applied machine learning methods used past databases 

(e.g., salinity, discharge, tide, winds) to make future predictions for saline 

intrusion (Lin et al., 2019).   

3.3.2 Scenarios 

The scenarios chosen were based mostly on climate change projections made 

by the IPCC (Intergovernmental Panel for Climate Change) (Stocker et al., 2013), 

government agencies (e.g., NOAA) and on specific research of the studied 

system (e.g., Rice et al., 2012). The studies considered sea-level rise scenarios 

combined with increasing the amplitude of hydrological events (e.g., periods of 

prolonged drought inducing a discharge reduction), subsidence (W. Chen et al., 

2020), storms and cyclones (Akter et al., 2019) and future interventions (e.g., 

dredging) (Eidam et al., 2020). 

3.3.3 Sea-Level Rise effects on estuaries   

Considering the predicted future scenarios, in general, studies suggest that saline 

intrusion is highly sensitive to sea-level rise (Yuan et al., 2015). In addition to the 

increase in the estuarine salinity, the sea-level rise may also increase the 

estuarine water residence time (Chen et al., 2015), tide range upstream (Hong et 

al., 2020), stratification (Y. Chen et al., 2016) and tidal prism volume (Krvavica 

and Ružić, 2020). 

According to most simulations, the region of the lower estuary (Euhaline zone) 

will be the most influenced by the sea-level rise effects (Xiao et al., 2014; Zhou 

et al., 2017), mainly in shallow estuaries (mean depth < 10 m) (Krvavica and 

Ružić, 2020). However, in some simulations, it was found that the sea-level rise 
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has a greater effect in intermediate than at the lower and upper estuary (e.g., W. 

B. Chen et al., 2015; He et al., 2018). Particularly, in flow reduction scenarios, 

the greatest effects can be seen in the upper estuary portion (Oligohaline zone), 

with salinities increasing from the intermediate region to upstream (Rice et al., 

2012). 

3.3.4 Discharge effects on saline intrusion increment  

Most studies pointed to river discharge as the main factor influencing salt 

intrusion forced by sea level rise in estuaries (Robins et al., 2014). Under higher 

flow conditions, the river discharge acts to reduce the effect of saline intrusion 

(Zhou et al., 2017). However, the greatest sea-level rise influence occurred in 

discharge reduction scenarios where there was a greater saline intrusion (Akter 

et al., 2019). Therefore, most studies have shown that saline intrusion is directly 

related to sea level rise and inversely related to river discharge (Etemad-Shahidi 

et al., 2015; Haddout and Maslouhi, 2018; Liu and Liu, 2014). In addition to the 

discharge, studies pointed to stratification as an important factor that influences 

saline intrusion in the estuary. While in shallow and well-mixed estuaries the 

spread saline intrusion is more efficient (Vargas et al., 2017) in estuaries with 

strong stratification, the spread of the salinity intrusion is reduced even in low flow 

conditions (Y. Chen et al., 2016; Khangaonkar et al., 2016).  

3.3.5 SLR impacts on human activities 

The main sea-level rise effects on estuaries are associated with the floods 

represented by the increase in the tidal prism (Krvavica and Ružić, 2020) and the 

increase in saline intrusion upstream. The recovered records focused mainly on 

saline intrusion and its impacts on water for consumption and agriculture. The 

results show that in moderate scenarios of sea-level rise (i.e., 2030), minor 

impacts are expected (Tri and Tuyet, 2016). However for scenarios predicted for 

2100 it is expected that the "salinity violation" values (how many times the salinity 

exceeds the drinking water salinity of 0.45 psu) may exceed between 45 and 48% 

the reference value in high latitudes  (Etemad-Shahidi et al., 2015; Haddout and 

Maslouhi, 2018).  
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3.3.6 Intervention 

Considering the impacts caused by saline intrusion on human activities, 

simulations were carried out to assess the efficiency of interventions (e.g., dams). 

The results showed that although the dam prevents saline intrusion from affecting 

the drinking water reservoirs upstream of the dam, a reduction of up to 25% in 

productivity in the downstream region is expected (Hariati et al., 2019). Similarly, 

simulations of the construction of submerged barriers (i.e., weirs) to reduce flow 

velocity also proved ineffective for moderate scenarios and can aggravate flood 

events contributing to the creation of hypersaline plains (Miloshis and Valentine, 

2013). 

3.3.7 SLR effects on sediment and heat distribution pattern 

 

In addition to the effect on salinity and flooding, there were studies that have 

predicted how the sea-level rise effects can affect other processes (e.g., erosion 

and transport and sediment deposition) and distribution of variables (e.g., 

temperature) in the estuary. Hydrodynamic simulations showed that for sediment 

transport more moderate scenarios did not show changes in relation to the 

baseline scenario and for more extreme scenarios (e.g., 2100) the intensification 

of erosion and deposition processes become too complex to be estimated (Ngoc 

et al., 2013). Hydrodynamic simulations were also used to predict 

geomorphological alteration processes at the mouth of the estuary due to the 

sediment supply reduction (Luan et al., 2017) and suspended (Huang et al., 

2016).  

The potential losses in areas caused by flooding associated with sea-level rise 

were simulated with potential losses for mangroves, agriculture and aquaculture 

(Saleem Khan et al., 2012) and that in the medium term built structures increase 

the flow and sandbanks erosion and in the long term they intensify the siltation 

process in the estuary (Le et al., 2007).  

3.3.8 Ecological impacts  

The ecological impacts of sea-level rise were predicted for plants (e.g., seagrass 

and mangroves), benthic fauna and fish. The effect of flooding can result in a loss 

of up to 64% in seagrass coverage (Shaughnessy et al., 2012). The combined 

effect of flooding and saline intrusion can result in up to 46% in biomass reduction 
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(Woo and Takekawa, 2012), facilitate the establishment of invasive seagrasses 

(Xue et al., 2018), lead to changes in the spatial distribution of species (Davis et 

al., 2016), cover loss (Yang et al., 2014) and reduction in the process of carbon 

storage by mangrove forests (Perera et al., 2018).  

For the benthic fauna, the main sea-level rise effect studied was the saline 

intrusion in the estuary. The effect of increasing salinity can affect oyster growth 

(Huang et al., 2015). The saline intrusion on estuaries can affect on the 

distribution and composition of the community (Little et al., 2017b). Furthermore, 

the combined effect of flooding with artificial structures (e.g., walls) along the 

estuary (i.e., coastal squeeze) can result in a reduction of up to 23% of the benthic 

macrofauna total biomass in wetlands (Fujii and Raffaelli, 2008).    

3.4 Quantitative synthesis 

3.4.1 Description of estuaries studied 

The studied estuaries varied in size between 4 and 320 km, considering the 

distance from the estuary mouth to the maximum penetration of the zero 

isohaline. The sea-level rise amplitude scenarios ranged from 0.05 m to 2 m. The 

shortest estuary (Skagit River Estuary, USA) simulated a sea-level rise scenario 

of 0.46 m and obtained a maximum saline penetration of 420 m for isohaline of 

0.5 (Khangaonkar et al., 2016). The longest estuary (Chesapeake Bay, USA) 

presented the lowest saline intrusion value (around 3 km for 0.5 isohaline) in the 

scenario of 0.4 m of sea-level rise and 11 km for the scenario of 1 m of sea-level 

rise (Hong and Shen, 2012).  

3.4.2 SLR effects on salinity intrusion length 

In general, a positive relationship was observed between sea-level rise and the 

increase in saline intrusion (Figure 5). In this graph, points represent the salinity 

intrusion increment values in the different sea-level rise scenarios while the colors 

correspond to the simulated discharge scenario. For the studies analyzed, the 

sea-level rise increased the value of saline intrusion increment. The values of 

saline intrusion increment showed high variability among the studies for the same 

values of sea-level rise (Figure 5). For instance, the 1 m rise in SLR resulted in 

a saline intrusion increment that ranged from 4% (Hong and Shen, 2012) to 331% 

(Krvavica and Ružić, 2020).         
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Since the salinity along an estuary is affected by river discharge, numerical 

modeling studies considered this variable in the simulations. The discharge 

values varied between 0.62 m³/s (minimum discharge scenario) (Krvavica et al., 

2017) and 28300 m³/s (maximum discharge) (W. Chen et al., 2016). The saline 

intrusion increment was inversely related to discharge. This means that for the 

same sea-level rise scenario, higher discharge values will result in lower saline 

intrusion values (Figure 5). Additionally, from the multiple regression model, it 

was possible to infer that for scenarios of sea-level rise below 0.25 m and flows 

close to 30000 m³/s it is possible that there is a decrease in the saline intrusion 

length in the estuary (Figure 5).  

 

Figure 5. Saline intrusion increment in the different sea-level rise scenarios 
extracted from the 26 articles obtained in the systematic review. Each point in this 
multiple regression represents the 0.5 isohaline in different discharge scenarios. 
The different lines and dots color represent the different discharge Q (m³s-¹) 
magnitude from the estuaries. Grey lines represent discharges close to zero and 
light blue represents discharges close to 30000 (m³s-¹).    

 

3.5 Estimating the saline intrusion increment from sea-level rise scenarios 
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From the multiple regression model, it is possible to predict new saline intrusion 

increment values based on SLR and discharge (Figure 5). We used these results 

is to estimate saline intrusion scenarios in Jaguaripe estuary. In this case study, 

saline intrusion values were predicted using the multiple regression model. SLR 

data and typical discharge from the Jaguaripe River were used (Q = 363 m3s-1) 

(SNIRH, 2019) (Table 2).  

Table 2. Predicted saline intrusion estimators for the Jaguaripe estuary. The 
coefficients were obtained from the expected values for SLR and estuary typical 
discharge (Figure 6).  

 Prediction CI (Confidence interval) Prediction Interval (PI) 

SLR Fitted Lower Upper Lower Upper 

0.25 0.26 0.15 0.37 -0.79 1.31 

0.50 0.38 0.28 0.47 -0.67 1.43 

0.75 0.49 0.39 0.60 -0.56 1.54 

1.0 0.61 0.48 0.74 -0.44 1.67 

2.0 1.09 0.79 1.38 0.00 2.17 

 

To obtain the saline intrusion increment values, we used the scenarios generated 

by the 'Fitted' predicted coefficients (moderate scenario) and the model prediction 

interval (extreme scenario) (Figure 6). Applying these values to the length of the 

saline wedge of the Jaguaripe estuary, expected salinity distributions were 

obtained for different SLR scenarios.  

  

Figure 6. Saline intrusion increment in the different sea-level rise scenarios. The 
moderate saline intrusion increment scenarios were obtained to the sea-level rise 
values using mean model (blue line) and the extreme scenarios using the model 
prediction interval (red dotted line). 
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Comparing the salinity distribution along the estuary longitudinal section for the 

present (Figure 7A-B) with the scenarios predicted from the multiple regression 

model (Figure 7C-H), the minimum salinity scenario can reach about 13 km 

upstream in addition to the value registered for the present scenario. While for 

maximum salinity this increase can reach 20 km. 

 

 

Figure 7. Salinity intrusion scenarios for Jaguaripe River estuary. Minimum 
salinity values (left) and maximum (right). The represented scenarios were 
present (A-B), 0.50 m moderate (C-D), 1 m moderate (E-F) and 1 m extreme 
(G-H).  
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4 Discussion 

Predicting the sea-level rise effects on estuaries is a research topic that has 

emerged over the past 30 years. Studies have become more frequent since the 

2000s and had greater growth since 2012. The increase in the number of studies 

from this period onwards is associated with the introduction and improvement of 

satellite altimetry (Watson et al., 2015). The resolution and accuracy increased 

allowing investigations of sea-level rise at regional and local scales (Carson et 

al., 2016). Particularly for management, this is a key information, since the 

scarcity of local scale accurate data is pointed out as a limiting factor in decision 

making (Thorne et al., 2017).   

4.1 Worldwide distribution of the studies on the sea-level rise effects on 

estuaries  

Most of the studies were on the eastern and western portion of the North 

American continent, the western coast of the European continent, and the south 

and southeast of the Asian continent. The regions of South and Southeast Asia 

coincide with areas indicated as most vulnerable to the sea-level rise effects and 

subsidence processes (Nicholls and Cazenave, 2010). Possibly, the largest 

number of studies in these regions may have been motivated by the already 

noticeable effects of the increase in sea level near densely populated regions 

(Nicholls, 2011, 1995; Slangen et al., 2014). The small number of studies carried 

out in the southern hemisphere represents a gap in knowledge and raises the 

need for further studies to assess its vulnerability, especially in regions that 

present sea level rise values above the global average (Carson et al., 2016). 

The use of hydrodynamic numerical models has the advantage of providing a 

detailed spatial and temporal description of the dilution and transport processes 

of the variables (e.g., salt, sediment and suspended matter). The results provided 

by these models allow the use in other predictive models (e.g., ecological) (e.g., 

Savina and Ménesguen, 2008) and assist managers in decision making. 

However, the performance quality lies in the amount of observed data on salinity, 

hydrology, and estuary high-resolution topography, in addition to the significant 

effort for setting up, programming and computational resources (Lin et al., 2019). 

These factors may represent a limitation on the use of hydrodynamic modeling 

by managers to prepare for the sea level rise effects in estuaries, especially those 
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further away from more developed areas due to resources and technical support 

limitations (Thorne et al., 2017). Recently, machine learning techniques have 

been applied to saline intrusion prediction in the estuary (Lin et al., 2019; Zhou et 

al., 2017). The combination of these techniques in the process of building such 

models is a promising way to deal with the scarcity of data (He et al., 2018).  

The overall sea-levels rise effects on estuaries (e.g., coastal flooding, saline 

intrusion) are well known in global and regional scale (Robins et al., 2016). The 

results presented here show several tools for reaching more detailed forecasts of 

how sea-level rise may affects estuaries locally. The increase in the average sea 

level induces an increase in the tide range upstream (Hong et al., 2020), the 

estuary water volume (tidal prism) (Krvavica and Ružić, 2020), likely causing 

flooding and increases in water residence time and stratification (Chen et al., 

2015; Y. Chen et al., 2016). However, the results of the combination of these 

processes at different estuaries are highly variable. For instance, sea-level rise 

can induce increase in stratification (Khangaonkar et al., 2016), which in turn can 

reduces saline intrusion (Y. Chen et al., 2016). The intensification of stratification 

may compromise oxygen exchanges between the upper and lower layers (Hong 

and Shen, 2012). This type of scenario can represent ecological risk for benthic 

and planktonic communities (Hallett et al., 2018). To deal with such issues, more 

complex models need to be created.  

Studies have shown that the variability in prediction of saline intrusion due to sea 

level rise was strongly influenced by river discharge (Hallett et al., 2018; Ross et 

al., 2015). Our result shows the importance of considering other climate change 

effects on estuaries (e.g., drought scenarios), since the intensification of the 

saline intrusion process has great potential to cause economic and ecological 

losses (Shaughnessy et al., 2012; Shirazi et al., 2019).  

Future scenarios suggest an intensification of extreme events, mainly severe 

droughts and temperature increase (IPCC) (Stocker et al., 2013). In these 

scenarios, the decrease in drainage is expected to influence the increase in 

salinity due to evaporation and saline intrusion in parts of the upper estuary, in 

addition to reducing the supply of sediment. This extreme salinity scenario poses 

a risk to human activities such as collect drinking water (Etemad-Shahidi et al., 
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2015), agriculture, aquaculture and industry (Rice et al., 2012; Yang et al., 2015). 

Simulations aiming at evaluating the sea-level rise mitigation intervention 

efficiency are scarce and presented mitigation results restricted to a portion of the 

estuary and in the short and medium-term (Miloshis and Valentine, 2013; Hariati 

et al., 2019). For instance, the use of check dams can prevent the salinization of 

water upstream, while in the lower part, discharge reduction can promote a 

marinization process (Hallett et al., 2018; Nunes-Vaz, 2012) that could impact 

activities, such as fishing (Alcérreca-Huerta et al., 2019; Prasad et al., 2018). 

Studies that estimate the ecological damage caused by mitigation interventions 

are also rare. For example, physical barriers to prevent flooding can lead to 

habitat and biomass loss of benthic species due to coastal squeeze (Fujii and 

Raffaelli, 2008) and saline intrusion can be enhanced by the discharge control by 

dams (Alcérreca-Huerta et al., 2019; Prasad et al., 2018) leading to estuarine 

marinization and favoring the exclusion of species less tolerant to higher salinity 

(Woo and Takekawa, 2012), being replaced by opportunistic species or even by 

invasive species (Xue et al., 2018). Thus, in addition to the physical effects, it is 

important that decision-makers consider the inclusion of models that estimate the 

potential ecological impacts associated with such interventions. 

4.2 Quantitative synthesis 

The quantitative analysis showed that even with great variability between the 

systems (e.g., size and discharges) the sea-level rise results in a saline intrusion 

increment on the estuary and this increment is strongly influenced by river 

discharge (Hallett et al., 2018; Robins et al., 2016). The result obtained in this 

quantitative synthesis (i.e., multiple regression model) represent the expected 

general trend for saline intrusion in estuaries and can be used to explore possible 

sea-level rise scenarios. This exploratory tool can have important implications for 

management. Since most coastal regions are experiencing the acceleration of 

sea-level rise rate (Willis and Church, 2012) and effects will be perceived 

differently across regions (Nicholls, 2011), managers should consider such 

effects when planning future mitigation measures. Thus, efforts must be made to 

predict the sea-level rise effects in different estuaries around the globe. 

Simultaneously, simulations to estimate potential impacts of mitigation 

interventions must be measured.  
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Since the construction of more complex models (e.g., hydrodynamic numerical 

models) takes time and resources, an application of the model obtained in this 

quantitative synthesis can be an initial exploration of plausible scenarios for future 

saline intrusion length increase. Here, saline intrusion scenarios were obtained 

for the Jaguaripe estuary and should be considered as a preliminary step to 

estimate saline intrusion since it is sensitive to several factors such as 

geomorphology, depth and local hydrodynamics (Robins et al., 2016; Willis and 

Church, 2012).  

Finally, the search for the synthesis of general patterns helps us to better 

understand the mechanisms that govern processes and allow us to draw 

forecasts for future events (Pickett et al., 2013; Underwood et al., 2000). Different 

studies carried out around the globe have shown a clear pattern of increased 

saline intrusion in response to sea-level rise. These studies also pointed out the 

important role that river discharge plays in regulating saline intrusion. 

Additionally, they showed that human interventions such as dams construction 

have a great potential to aggravate the saline intrusion effects such as 

hypersalinization, loss of species, biomass and favoring exotic species (Hallett et 

al., 2018). Such information is important for defining strategies on how managers 

should prepare for the impacts that will come in the medium and long term (IPCC, 

2021; Thorne et al., 2017). 

5 Conclusion 

 

Over thirty years of sea-level rise effects research in estuaries, predictive models 

were developed to investigate its influence on salinity, flooding and sediment 

transport. The overall model presented here derived from climate change 

projections indicated that sea-level rise will result in saline intrusions. These 

studies showed saline intrusion magnitude is strongly influenced by the river 

discharge, mainly in decrease flow scenarios that increase the saline intrusion. 

Studies have also shown that changes in the salinity pattern of the estuary have 

economic (e.g., salinization of aquifers and soil) and ecological (e.g., biomass 

loss, species exclusion and favoring of exotic species) implications, affecting 

important services (e.g., carbon storage). Thus, the search for predictive tools 

that help to estimate such impacts at a local scale are particularly important for 
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managing these ecosystems. In this sense, hydrodynamic models were the main 

predictive tool. Ecological studies that evaluated the effects of sea level rise in 

estuaries mainly used strategies such as measurement, laboratory manipulative 

studies and models based on geographic information systems. In this sense, we 

encourage the use of the hydrodynamic models results as a basis for forecasting 

future scenarios of the sea level rise effects (e.g., saline intrusion and flooding) 

in ecological studies since the predictions generated by the hydrodynamic 

models are more accurate and properly adjust to the scale of the estuaries. 

Future efforts should be made to build modeling tools that can present 

satisfactory results with less data (e.g., incorporation of machine learning 

techniques into systemic models) and to create decision support tools to assist 

managers in sea-level rise predictive models use (e.g., data collection, model 

conception and results interpretation). Increasing the reliability of sea-level rise 

data forecasts on a regional scale coupled with the improvement of predictive 

modeling techniques allow scientists to work to generate better quality data to 

meet the complex demand of decision-makers in face of this problem so 

challenging that is our adaptation to climate change. 
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Abstract 

The sea-level rise induced by Climate has caused impacts (eg floods and saline 

intrusion) in estuaries. In this work, we used monitoring data (salinity, sediment and taxa 

occurrence), simulated saline intrusion and Species Distribution Model to predict the 

spatial distribution of families in the estuary at two levels of SLR (0.5 m and 1 m) for two 

scenarios (moderate and extreme). For the simulation, we used the ensemble method 

applied to five models (MARS, GLM, GAM, RF and BRT). High AUC and TSS values 

indicated "good" to "excellent" accuracy. RF and GLM obtained the best and worst 

values, respectively. The model predicted local extinctions and new colonization in the 

upper estuarine zones. With the effects of climate change intensifying, it is extremely 

important that managers consider the use of predictive tools to anticipate the impacts of 

climate change on a local scale on species migration. 

 

 

Keywords: Ecological predictive modeling; Ensemble Forecast; Machine-learning; 

Climate change; Random Forest 
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1 INTRODUCTION 

We are living in a time of climate emergency (Nicholls et al., 2011; Slangen et al., 2014). 

The sixth Intergovernmental Panel for Climate Change report (IPCC, 2021) points out 

that the aggravation of various phenomena influenced by global warming such as 

droughts, floods  and sea-level rise (SLR) (Hallegatte et al., 2013; Nicholls and 

Cazenave, 2010; Robins et al., 2016) is accelerating due to human action (Nerem et al., 

2018). Furthermore, the results indicate, with very high confidence, that many of these 

processes such as ocean acidification and glacier melts are already irreversible (IPCC, 

2021). As a result of the warming of the surface of the oceans and the melting of glaciers, 

we have been recording an acceleration in SLR (Church and White, 2011; Dangendorf 

et al., 2019; Velicogna, 2009; Watson et al., 2015). The SLR will affect human societies 

on a global and local scale (Nicholls et al., 2011), causing displacement of human 

communities living in the coastal area and enhancing coastal erosion influenced by 

marine transgression (Zhou et al., 2013). At smaller scales, in bays and estuaries, 

gradual loss of the coastline and saline intrusion is expected, likely causing drastic 

change in adjacent aquatic systems (e.g., rivers, lakes and groundwater) (Eidam et al., 

2020; Phan et al., 2018). The salinization of these environments can result in economic 

(e.g., water catchment) and ecological losses (e.g., habitat reduction, introduction of 

exotic species and local extinction) (Davis et al., 2016; Little et al., 2017; Xue et al., 

2018). Species displacement and biomass loss are also worrisome effects of rising sea 

levels in estuaries (Fujii and Raffaelli, 2008). Since transitional environments such as 

estuaries are among the first ecosystems to suffer from the sea-level rise effects (Carson 

et al., 2016), predictions of the potential impacts expected for these environments are 

extremely valuable for management and decision making (Thorne et al., 2017). 

Estuaries are, by definition, characterized by having a salinity gradient formed by the 

dilution of oceanic water by river water (Pritchard, 1967) which is strongly influenced by 

precipitation and tides (Prandle and Lane, 2015). In addition, estuaries are subject to 

other gradients, such as sedimentary gradients, influenced by river and marine transport 

and organic matter in the water column and sediments (Compton et al., 2013; Glover et 

al., 2019; Peterson et al., 1984). The existence of such gradients requires organisms to 

develop evolutionary (e.g., low salinity and low oxygen) and behavioral (e.g., burrowing) 

adaptations to inhabit the estuarine environment (Elliott and Whitfield, 2011; Pearson 

and Rosenberg, 1978; Telesh et al., 2013a). Changes in salinity and sediment dynamics 

have the potential to cause significant impacts on the estuarine ecosystem (Wolansky 

and McLusky, 2012). For instance, the implementation of dams often reduces river 

discharge, favoring saline intrusion (Alcérreca-Huerta et al., 2019; Prasad et al., 2018) 
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which can lead to an imbalance in the ecosystem (e.g., opportunistic species bloom) 

(Schone et al., 2003). Similarly, sea-level rise has the potential to change salinity 

patterns in ecosystems in the medium term (i.e., 2050) (Mohammed and Scholz, 2018; 

Robins et al., 2016). Several simulations of sea-level rise at a local scale using numerical 

models have shown that estuaries are suscetible to SLR effects, especially to saline 

intrusion (Prandle and Lane, 2015; Robins et al., 2016; Serrano et al., 2020). Changes 

in the salinity pattern can affect the structure (i.e., distribution, abundance and richness) 

of the benthic fauna (Kimmerer, 2002; Little et al., 2017). While the effects of sea level 

rise on salinity is a well-studied issue and general patterns are being elucidated (Little et 

al., 2017; Robins et al., 2016; Ross et al., 2015), other important variables for benthic 

macroinvertebrates such as sediment still have high uncertainty (Mulligan et al., 2019). 

Numerical simulations of SLR influence on estuarine sediments transport suggest that 

for moderate scenarios (i.e., 30 cm in 2050) there is no expected change in the 

distribution of sediments, while for extreme scenarios (i.e., 100 cm in 2100) there is still 

great uncertainty about such changes due to the complexity of erosion and deposition 

processes (Mulligan et al., 2019; Ngoc et al., 2013).  

The benthic fauna presents predictable responses to changes in environmental variables 

such as salinity and sediments (Anderson, 2008; Attrill, 2002), which in turn allows them 

to be used in monitoring and environmental impact assessment studies (Borja & Basset, 

2012; Reiss et al., 2015). Thus, benthic fauna has a great potential to provide future 

responses of estuarine ecosystems to climate change effects, especially sea-level rise 

(Elliott et al., 2015; Gogina et al., 2010; Singer et al., 2016). Usually, changes in the 

species spatial distribution due to environmental changes (e.g., climate change) are 

recurrently addressed through Species Distribution Modeling (SDM's) (Guisan and 

Zimmermann, 2000). This approach uses species occurrence and environmental 

variables data to define the suitability of other areas where species may inhabit (Elith 

and Leathwick, 2009). Among the various applications are ecosystem management 

(Patrizzi and Dobrovolski, 2018), improving the sampling design of monitoring programs, 

assessing the risk of potential invasions of non-native species and forecasting future 

scenarios (Reiss et al., 2015). In general, species distribution modeling studies have 

focused on global and regional scale simulations (Degraer et al., 2008; Moritz et al., 

2013; Weinert et al., 2016). At the local scale (i.e., less than 1 km²), species distribution 

projections are scarce (e.g., Becker et al., 2020; Mehler et al., 2017; Singer et al., 2016) 

due to the available climate change predictions being more compatible with the regional 

(1 km² to 10 km²) and global (>108 km²) scales (Guisan et al., 2007; Tyberghein et al., 

2012). Predictions of SLR patterns at local scale are important to assess changes in the 
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salinity distribution pattern at a scale compatible with the phenomenon (i.e., benthic 

distribution) (Becker et al., 2020). Understanding how changes caused by SLR affect the 

species distribution in estuaries is extremely useful for predicting how species 

relationships and ecosystem functioning will be affected by saline intrusion (e.g., Gogina 

et al., 2021). The aim of this work was to simulate the effects of sea-level rise on benthic 

macroinvertebrates distribution along the estuarine environmental gradient using 

Species Distribution Modeling and a set of environmental layers refined to the local scale. 

2 Methods 

2.1 Study area and data 

The Jaguaripe River estuary is a shallow estuary (the average depth is less than 10 m) 

dominated by tides, and represents one of the main tributaries of the Todos os Santos 

Bay. It has a surface area of 2200 km² and a mean monthly discharge of 28 m3s-1 (Cirano 

and Lessa, 2007). The sediment spatial distribution pattern is characterized by the 

predominance of sandy sediments, with the coarse sand fraction upstream with a 

reduction of these sediment fractions towards the downstream where the predominant 

fractions are medium to fine sand. The salinity in the Jaguaripe estuary is characterized 

by the formation of a gradient from downstream (marine environment) that reaches a 

maximum salinity of 41 to upstream (freshwater environment) where salinity reaches 

zero (Barros et al., 2008). The marked distribution of salinity allows classification into 

salinity zones as proposed by the Venice system (Venice System, 1959). This 

classification defines estuary zones based on the salinity in the Euhalina (30-40), 

Polyhaline (18-30), Mesohaline (5-18) and Oligohaline (0.5-5) zones. This type of 

classification can be a useful tool to study the salinity influence on the distribution of 

organisms (Bleich et al., 2011; Wolf et al., 2009). The upstream region is dominated by 

polychaetes of the Nereididae, Capitelidae and Spionidae families. In the intermediate 

regions, the bivalve Tellinidae is dominant, and further downstream, greater richness is 

observed and taxa such as polychaetes of the Cirratulidae, Sillydae, Maldanidae and 

Sternaspidae families are quite frequent (Barros et al., 2012). These taxa play important 

roles in the ecosystem (e.g., nutrient cycling, aeration of lower sediment layers, 

fragmentation of organic matter)(Martins and Barros, 2022).  

All benthic macrofauna samples were collected along the estuarine longitudinal gradient 

between 2006 and 2019 in 8 field campaigns (for more details about methods see 

Appendix A). The sites for biological and environmental (i.e., sediment and salinity) 

sampling were collected over 13 years (2006, 2007, 2009, 2010, 2014, 2016, 2019a and 

2019b) along the long-term monitoring program of the Todos os Santos Bay estuaries 

(biological data available in Barros et al., (2021)). For the 2006, 2007, 2009, 2014, 2016 
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and 2019a campaigns, the design consisted of collecting macrofauna samples in 10 

sampling stations (n = 8 replicates per station; total = 80 per campaign) using a 'corer' 

sampler (cylinder 10x15 cm) (Figure 1). Additionally, sediment samples were collected 

and surface salinity measured with a refractometer, data logger (HOBO©) and 

multiparameter probe (Horiba©) in 10 georeferenced sampling stations distributed along 

the longitudinal section of the estuary. In the collections carried out in 2010 (n = 65 

samples) and 2016 (n = 21 samples) the samples were collected using the same method 

at sampling points along the cross section of the estuary in different zones of the estuary 

(i.e., euhaline, polyhaline, mesohaline and oligohaline) (Figure 8). Finally, in the 2019b 

campaign, biological samples were collected (total = 120 samples) randomly distributed 

in the different zones of the estuary (n = 10 per zone; n = 3 replicates per point) (Figure 

1) using a van veen grab sampler.  

2.2 Occurrence data 

Data from 254 benthic sampling sites were used as an input for distribution models. The 

taxa used in the simulation were the most representative. To obtain the most 

representative taxa, a table was created containing the results of all sampling campaign 

and select the most recurrent taxa with the highest abundance values (>70% of the total 

abundance) along campaigns.  

The taxonomic resolution was standardized for the family since a considerable part of 

the campaigns used this classification. The chosen families were Cirratulidae, 

Magelonidae, Nereididae, Orbiniidae, Spionidae, Tellinidae, Pilargidae and Paraonidae. 

According to evidence, this decision should not significantly influence the results since 

studies in which taxa multivariate responses are tested, show that the use of family 

resolution introduces less noise into the analysis than the species resolution level (Bailey 

et al., 2001; Souza and Barros, 2014). 

2.3 Environmental data  

Salinity and sediment data were used as independent variables in the models to predict 

the macrobenthos spatial distribution. This data obtained during the monitoring program 

were used to create a spatial data grid. The spatial data grids were converted to raster 

layers in a geographic information system (ESRI ArcGIS geodatabase file) by using the 

IDW (Inverse Distance Weighting) method. Since the macrobenthic fauna spatial 

distribution is strongly influenced by the sediment pattern, which in estuaries occurs in 

small-scale mosaics (Anderson, 2008; Gimínez et al., 2005; Ysebaert and Herman, 

2002), the 10 m spatial resolution was defined for all environmental layers to be 

compatible with the fine-scale fauna distribution. The sediment classes used as 
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environmental layers were pebble, granule, very coarse sand, coarse sand, medium 

sand, fine sand, very fine sand and mud (silt and clay fractions). This sediment data was 

used in present and future scenario models as it was assumed that sediment does not 

change significantly over time (Barros et al., 2012; Mulligan et al., 2019; Ngoc et al., 

2013).  

 

 

Figure 1. Sampling points from monitoring program in the Jaguaripe estuary. There were 

five campaigns carried out at 10 points and one campaign carried out in four regions 

along the estuarine longitudinal gradient and two campaigns carried out in four regions 

along the transverse gradient (i.e., between the margins).  

2.4 Sea-Level Rise scenarios 

Baseline scenarios (i.e., without sea-level rise influence) were created from the minimum 

and maximum salinity data obtained in the monitoring program. For this, the maximum 

and minimum values recorded during the monitoring program for each sampling point 

were used. The salinity was measured using multiparameter probes (Horiba©) and data 

loggers (HOBO U24©). 

Plausible sea-level rise scenarios were proposed through the quantitative synthesis from 

a systematic review of numerical models that simulated saline intrusion as a result of sea 

level rise in estuaries (Costa and Barros, Unpublished results). The predict function in R 

software (R Development Core Team, 2016) was used in the GLM (i.e., multiple 
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regression model) to obtain the saline intrusion values for each scenario. The calculation 

consisted in the product of saline increment value associated with Jaguaripe estuary 

discharge by the isohalines length. Minimum and maximum salinities were simulated for 

baseline and SLR scenarios (0.5 m and 1 m) under moderate (mean model) and extreme 

conditions (using model’s prediction interval) (Table 1). To visualize the graphical 

representation of the scenarios, see Appendix A Figure A.2. 

 

Table 1. Predicted saline intrusion estimators for the Jaguaripe estuary. The moderate 

scenario is represented by the fitted Prediction model and the extreme scenario by the 

upper Prediction Interval of the model. 

 Prediction CI (Confidence interval) Prediction Interval (PI) 

SLR Fitted Lower Upper Lower Upper 

0.5 0.38 0.28 0.47 -0.67 1.43 

1 0.61 0.48 0.74 -0.44 1.67 

 

2.5 Species Niche modeling 

2.5.1 Data preparation 

The spatial autocorrelation between occurrence data was tested using SDMtoolbox 

package (Brown, 2014) on ArcGIS software (ESRITM) and autocorrelated occurrences 

were removed. The multicollinearity between the environmental variables was 

investigated using the occurrence data of each family by the method variance influence 

factor stepwised using the 'vifstep' function of the usdm package (Naimi, 2017) do R (R 

Development Core Team, 2016). 

2.5.2 Modelling techniques  

Niche models were run for each taxon individually using the main techniques used to 

modeling macrozoobenthos distribution (Costa et al., Unpublished results). The 

modeling methods chosen were MARS (Multivariate Adaptive Regression Spline), GLM 

(Generalized Linear Models), GAM (Generalized Additive Models), RF (Random Forest) 

and BRT (Boosted Regression Trees). MARS is a non-parametric flexible regression 

modeling algorithm that uses hinge functions to fit models, through a recursive 

partitioning approach, where the number of parameters is automatically determinate by 

the data (Friedman, 1991). GLM is a linear model class that allows working with data 

that assume different types of distributions (e.g., normal, binomial and Poisson) and are 

fitted using link functions and the maximum likelihood principle (Nelder and Wedderburn, 

1972). GAM are semi-parametric (i.e., exact parametric form of these functions is 

unknown) extensions of GLMs in which part of the linear predictor is specified in terms 
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of a sum of smooth functions of predictor variables. GAM are useful for fitting non-linear 

relationships without prior assumptions on the shape of the response (Clark, 2013; 

Wood, 2006). Random Forest is an ensemble machine learning algorithm that uses input 

data (supervised learning) to create large number of independent decision trees (typically 

500–1000) perform classification and regression tasks. The responses are predicted 

based on averages (regression) or by majority rules (classification) from all trees 

(Breiman, 2001). BRT is an ensemble method for fitting statistical models and combines 

the strengths of regression trees and boosting (an adaptive combination of simple 

models to obtain improved predictive performance). The final BRT model is an additive 

regression in which individual terms are simples trees, fitted in a forward, stage wise way 

(Reiss et al., 2015; Elith and Leathwick, 2009; Elith et al., 2008; Hastie and Tibshirani, 

1990). For ecological applications and pros and cons see Appendix B (Table B.1) . 

Since the models results can present large discrepancies, the ensemble method was 

used to combine the results of the different models, incorporating their advantages and 

reducing the limitation of each technique (Thuiller et al., 2009). All models were fitted in 

R (R Development Core Team, 2016) version 4.1.0, using sdm package (Naimi and 

Araujo, 2016). The script and data used in the simulation is available in a Markdown 

format (Costa et al., 2022). 

 

2.5.3 Evaluation of the predictive performance of models 

Two metrics, the Area Under the receiver operating characteristic Curve (AUC) and True 

Skill Statistics (TSS) were used to assess the agreement between the presence-absence 

records and the predictions. The AUC metric measures the ability of a model to 

discriminate between sites where a species is present, versus those where it is absent 

(Hanley and McNeil, 1982). The AUC values range from 0 to 1, where a score of 1 

indicates perfect discrimination, a score of 0.5 implies predictive discrimination that is no 

better than a random guess, and values <0.5 indicate bad predictions. According to 

Swets (1988), AUC values > 0.9 are considered highly accurate or “excellent”, between 

0.7 - 0.9 moderately accurate or “good”, and those < 0.7 poorly accurate or “poor”. Since 

the evaluation based only on AUC is not highly informative and reliable (Raman et al., 

2020), TSS scores were also estimated for accuracy (Allouche et al., 2006). TSS values 

larger than 0.8 are considered highly accurate (“excellent”), 0.8 to 0.6 substantially 

accurate (“Very good”), 0.6 to 0.4 moderately accurate (“Good”) and values less than 0.4 

are considered “Poor” (Landis and Koch, 1977). Both metrics indicate that when we 

randomly take sites of presence and absence, it is expected that presence sites have 

higher suitability values in relation to absence sites (Elith et al., 2006). Finally, to evaluate 
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the changes in the taxa distribution for the different scenarios in relation to the current 

scenario the ‘niche.overlap’ function of the ENMeval package was used (Muscarella et 

al., 2018) in the R software (R Development Core Team, 2016).  

 

3 Results 

3.1 Models evaluation 

The obtained ensemble models had AUC and TSS tests with good to excellent accuracy 

results (AUC average = 0.9; TSS average = 0.7) (Figure 2A). In general, the two metrics 

agreed in their results and the TSS was the more conservative metric and resulted in 

relatively lower values. For AUC, the models were classified as "Excellent" (n = 17), 

"Good" (n = 22), and one as "Poor". For TSS, 23 models were classified as "Very good", 

9 as "Excellent", 5 as "Good" and 3 models were classified as "Poor" (Figure 2B). Both 

AUC and TSS had similar pattern and the methods that had the best performance were 

Random Forest, GAM, MARS and BRT, by decreasing order. While the GLM method 

showed the worst results. The least accurate model occurred for the Nereididae family 

when the GLM method was applied (Table 2). 

   

 

Figure 2. Performance of the five predictive modeling methods (Generalized Linear 

Models – GLM; Boosted Regression Trees – BRT; Multivariate adaptive regression 

spline – MARS; Generalized Additive Models - GAM and Random Forest - RF) for 

occurrence data based on AUC (A) and TSS (B) metrics. The performance of different 

methods is shown by a combination of strip charts and color dots indicating results for 

family. 
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Table 2. Performance of predictive model methods for ensemble final model using 

AUC and TSS. Excellent performances on both evaluators are highlighted in bold. 

Occurrence points Family Method AUC 
     AUC 
classification      TSS 

     TSS 
classification      

91 Cirratulidae Random Forest 0.96 Excellent 0.83 Excellent 

 Cirratulidae GAM 0.92 Excellent 0.8 Excellent 

 Cirratulidae MARS 0.95 Excellent 0.8 Excellent 

 Cirratulidae BRT 0.92 Excellent 0.73 Very good 

 Cirratulidae GLM 0.83 Good 0.54 Good 

104 Magelonidae Random Forest 0.94 Excellent 0.77 Very good 

 Magelonidae GAM 0.84 Good 0.71 Very good 

 Magelonidae MARS 0.92 Excellent 0.76 Very good 

 Magelonidae BRT 0.9 Excellent 0.69 Very good 

 Magelonidae GLM 0.77 Good 0.46 Good 

133 Nereididae Random Forest 0.96 Excellent 0.83 Excellent 

 Nereididae GAM 0.88 Good 0.75 Very good 

 Nereididae MARS 0.88 Good 0.68 Very good 

 Nereididae BRT 0.86 Good 0.62 Very good 

 Nereididae GLM 0.66 Poor 0.35 Poor 

99 Orbiniidae Random Forest 0.95 Excellent 0.82 Excellent 

 Orbiniidae GAM 0.85 Good 0.65 Very good 

 Orbiniidae MARS 0.87 Good 0.66 Very good 

 Orbiniidae BRT 0.87 Good 0.65 Very good 

 Orbiniidae GLM 0.72 Good 0.36 Poor 

121 Paraonidae Random Forest 0.97 Excellent 0.86 Excellent 

 Paraonidae GAM 0.91 Excellent 0.74 Very good 

 Paraonidae MARS 0.89 Good 0.68 Very good 

 Paraonidae BRT 0.89 Good 0.7 Very good 

 Paraonidae GLM 0.74 Good 0.39 Poor 

115 Pilargidae Random Forest 0.94 Excellent 0.8 Excellent 

 Pilargidae GAM 0.88 Good 0.74 Very good 

 Pilargidae MARS 0.86 Good 0.66 Very good 

 Pilargidae BRT 0.87 Good 0.65 Very good 

 Pilargidae GLM 0.85 Good 0.49 Good 

130 Spionidae Random Forest 0.97 Excellent 0.84 Excellent 

 Spionidae GAM 0.92 Excellent 0.75 Very good 

 Spionidae MARS 0.89 Good 0.67 Very good 

 Spionidae BRT 0.89 Good 0.65 Very good 

 Spionidae GLM 0.75 Good 0.44 Good 

150 Tellinidae Random Forest 0.97 Excellent 0.86 Excellent 

 Tellinidae GAM 0.93 Excellent 0.79 Very good 

 Tellinidae MARS 0.9 Excellent 0.67 Very good 

 Tellinidae BRT 0.88 Good 0.61 Very good 

  Tellinidae GLM 0.8 Good 0.54 Good 
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3.2 Environmental variables influence on spatial distribution 

Maximum salinity was the most influential environmental variable in predicting the spatial 

distribution of the main taxa such as Cirratulidae, Magelonidae and Orbiniidae (Figure 

3). Minimum salinity proved to be the most influential variable for Nereididae. While for 

Paraonidae, Tellinidae Spionidae, salinity was less influential than mud (silt and clay) 

percentage in sediments. 

 

Figure 3. Influence of environmental variables in predicting faunal distribution. Higher 

values indicate higher importance in the model for salinity (minimum and maximum) and 

sediment (pebble, granule, csand: coarse sand, msand: medium sand, fsand: fine sand, 

vfsand: very fine sand and mud). 
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3.3 Saline intrusion effect on macrobenthos spatial distribution 

The general trend obtained from the future scenarios simulations was a reduction in the 

taxa occurrence probability, in relation to the current scenario, and increase in the 

occurrence probability upstream (Figure 4). Model predictions indicated a greater 

reduction in the occurrence probability for the taxa Cirratulidae and Paraonidae in the 

euhaline zone. For the Magelonidae and Orbiniidae families the reduction occurred in 

the euhaline and polyhaline zones. For the Pilargidae family, a greater reduction was 

predicted in the mesohaline zone and for Nereididae in the oligohaline zone (Figure 4). 
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Figure 4. Changes in the occurrence probability of macroinvertebrate families for future 

(moderate and extreme) scenarios using the ensemble method. Zero indicates no 
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changes, 1 (blue) indicates expansion or colonization and -1 (red) indicates retraction or 

extinction. 

3.4 Changes in taxa spatial distribution 

In general, there was a significant change in the families' spatial distribution for all 

scenarios in relation to the baseline scenario, as indicated by Schoener's D index (Figure 

5). The differences between the current and future scenarios were observed in the 1 m 

moderate and 0.5 m extreme scenarios. The families that showed the greatest changes 

in spatial distribution were Cirratulidae, Magelonidae, Orbiniidae and Paraonidae.  

 

Figure 5. Changes in the families' spatial distribution using Schoener’s D index for niche 

overlap. The x-axis represents elevation values (0.5 and 1 m) in moderate and extreme 

conditions. The y-axis represents the amount of change from the baseline scenario. Zero 

indicates no overlap in the niche models and 1 indicates that niche models are identical. 
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4 Discussion 

4.1 Models performance 

The high values of AUC and TSS indicate that the SDM represented a good tool for 

generating predictive models applicable to small-scale environments subject to strong 

gradients such as estuaries. Other small-scale studies in the marine and freshwater 

environment reinforce the potential of using SDM as an ecosystem management tool. 

For instance, SDM was used successfully in building species distribution maps for 

protected area management (Becker et al., 2020) and assess the impacts of 

environmental changes on faunal distribution in the recent past (i.e., 1970 to 2009) 

(Singer et al., 2016). In the freshwater environment, SDM was used to develop a 

management tool for detecting fish feeding sites and predicting the occurrence of exotic 

species using local influence variables (i.e., depth, sediment and flow velocity) (Mehler 

et al., 2017). The results obtained in this study show that, in addition to being useful for 

application on a small scale, it can be applied to environments with strong environmental 

gradients. Thus, Species Distribution Modeling represents an important predictive tool 

for dealing with problems where large-scale processes affect local scale. This type of 

information is essential for decision makers to feel prepared to plan climate change 

adaptation strategies (Thorne et al., 2017).  

Random forest modeling proves to have the greatest predictive capacity compared to 

the other models. This is an expected result since this type of model is good in perform 

classifications (Breiman, 2001; Maxwell et al., 2018; Šiaulys and Bučas, 2012; Turner et 

al., 2018). The basic principle behind the random forest is that results obtained from 

many models with low predictive ability can perform better than a single model with high 

predictive ability. What makes this approach very useful at both constructing good 

predictive models and not overfitting datasets (Breiman, 2001; Elith et al., 2008). On the 

other hand, the worst performance was registered for simulations generated from GLM. 

It has already been demonstrated in comprehensive comparative studies that non-

parametric models (e.g., boosted regression trees, maximum entropy modelling) have 

better performance than parametric and semi-parametric models (e.g., GLMs, GAMs) in 

species distribution models (Elith et al., 2006; Reiss et al., 2011).  Gogina & Zettler (2010) 

applied the GLM method to model benthic invertebrates in the Baltic Sea and the authors 

pointed out the limited ability of GLMs to fit complex nonlinear relationships between 

species and environmental variables. As way of overcoming individual performance 

limitations, the use of the ensemble technique allowed us to combine the best 

contributions of the different models as has been highly recommended (Drake, 2014; 

Elith et al., 2008; Naimi and Araújo, 2016; Reiss et al., 2015). 
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4.2 Importance of environmental variables 

As expected salinity was the environmental variable that most influenced the spatial 

distribution of most families. This is because salinity acts as an environmental filter, 

restricting the establishment of these marine organisms according to their physiological 

tolerance to lower salinities (Barros et al., 2012; Remane and Schlieper, 1971; Whitfield 

et al., 2012). Similarly, finer sediments such as mud were very important for most of the 

organisms studied. Finer sediments also act as constraint variables since they can 

subject organisms to anoxic conditions lead to the occurrence of severe oxygen 

depletion when subsurface organic matter is decomposed, consuming oxygen, and the 

smaller the distance between the grains reduces gas exchange between the water 

column and the sediment  lower layers (Barnes, 1989; Gerwing et al., 2018; Moodley et 

al., 2011), especially rich in organic matter such as estuarine sediments (Pearson and 

Rosenberg, 1978; Yoshino et al., 2010). Sites with low-oxygen sediment require 

organisms to have physiological (i.e., tolerance) and/or behavioral (e.g., tube or 

burrowing) adaptations to survive in this type of habitat (Kristensen, 1983; Pearson and 

Rosenberg, 1978). Thus, organisms that have such characteristics can benefit from the 

low interaction (competition or predation) and colonize the environment (Montagna and 

Ritter, 2006). For instance, populations of these organisms (e.g., Nereididae and 

Spionidae) can often reach high abundance values, even in undisturbed environments 

due to the action of environmental filters that reduce biological interactions (e.g., 

predation and competition) (Botter-Carvalho et al., 2011).  

4.3 Consequences of saline intrusion in distribution 

Saline intrusion as a result of sea level rise is an expected trend for most estuaries 

around the globe (Mohammed & Scholz, 2018; Robins et al., 2016) and may be 

intensified by reduced rainfall and increased temperature as recently predicted for 

northeastern Brazil (IPCC, 2021). Such changes in salinity have great potential to modify 

the benthic fauna distribution in the medium term (i.e., with a 0.5 m scenario expected 

for 2050) (Little et al., 2017). Our results point to a trend towards colonization upstream 

from the euhaline region (e.g., Cirratulidae) while suggesting the local extinction of 

families occurring in the oligohaline region such as the Nereididae family that are known 

to have a higher tolerance to low salinities (e.g., Nereididae) (Mazurkiewicz, 1975; 

Prevedelli and Vandini, 1997). In the latter case, it is possible that local extinction occurs 

in parallel with colonization of new niches formed by saline intrusion upstream, having 

as restriction in the short term natural factors (geomorphology and substrate) and 

artificial (e.g., walls and dams) (Fujii and Raffaelli, 2008). Additionally, saline intrusion 

may allow other marine organisms that were previously prevented from colonizing the 
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estuary because they do not have evolutionary mechanisms for tolerance to low salinity, 

to occupy this area (Smyth and Elliott, 2016). Hallett et al., (2018) studied extreme saline 

intrusion on estuaries and found that the main ecological effect of estuarine marinization 

was the increase of the typically marine species upstream. The authors pointed out the 

increase in interspecific interactions (predation and competition) as mechanism for 

ecosystem unbalance that can lead to exclusion (or extinction) of taxa that have 

important biological traits for the functioning of the estuarine ecosystem (Hallett et al., 

2018; Hughes, 1984). 

In contrast to the marine environment, where organisms subject to similar environmental 

conditions can be regulated mainly by biological interactions (e.g., predation and 

competition) (Solan and Whiteley, 2016), in the estuarine environment, restrictive 

environmental variables may play a more important role than biological interactions and 

act as environmental filters, influencing mainly estuarine longitudinal spatial distribution 

(Alves et al., 2020; Telesh et al., 2013b). Populations of organisms capable of 

overcoming environmental filters will be subject to conditions at the limit of their 

physiological tolerance in relation to such variables (Cartier et al., 2011; Montague and 

Ley, 1993; Pechenik et al., 2000) and they have to use strategies to minimize the 

biological interactions effects (e.g., habitat partitioning) (Flint and Kalke, 1986). Thus, it 

is expected that during the process of saltwater intrusion due to sea level rise, a greater 

number of taxa that previously did not have access to the innermost regions of the 

estuaries will be able to colonize upstream regions (Fujii and Raffaelli, 2008). In addition 

to the interaction with native species, organisms in estuaries will be more subject to 

competition and predation by invasive species that remarkably have adaptive 

advantages over native species (Ménesguen et al., 2018; Xue et al., 2018). Additionally, 

saline intrusion can result in changes in essential habitats for ecosystem functioning 

whose distribution is affected by the salinity gradient such as mangroves tree species 

(e.g., Costa et al., 2015). Consequently, the change in adjacent ecosystems and the 

intensification of biological interactions upstream by increasing diversity can compromise 

important roles played by estuarine ecosystems, such as the nursery of marine species 

(Brown et al., 2016; Lee et al., 2014; Vasconcelos et al., 2012; Attrill and Power, 2002). 

4.4 Expected impact on estuarine functioning 

Important ecological functions performed by estuaries (e.g., degradation of organic 

matter) (Basset et al., 2013; Quintino et al., 2009) aided by benthic invertebrates through 

biological traits (e.g., morphology, food habits and movement) (Kristensen et al., 2014) 

can be effected by salinity intrusion due their influence on spatial distribution of 

organisms (Little et al., 2017). For example, all studied organisms are burrowers and, 
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thus, contribute to the sediment mobilization (Rouse and Pleijel, 2001) (See Appendix 

C). By producing their galleries, these organisms favor the flow of oxygen-rich water to 

the sediment layers (Queirós et al., 2015; Aubry and Elliott, 2006) resulting in the 

acceleration of the organic matter degradation process and incorporation of released 

nutrients into the food chain (Quintino et al., 2009). Changes in the spatial distribution of 

these organisms can contribute to the loss of this function (i.e., degradation of organic 

matter), contributing to the excessive accumulation of organic matter in the subsurface. 

As the degradation of organic matter consumes large amounts of oxygen, the absence 

of these organisms can lead to sediment anoxia, impacting foraging or even the local 

extinction of other species (Moodley et al., 2011). At the same time, changes in the 

spatial distribution of bioengineering organisms (e.g., Magelonidae, Cirratulidae and 

Spionidae) can affect sediment stabilization (Hooper et al., 2005) and promote erosion 

processes resulting from a new circulation regime forced by sea-level rise (Kuang et al., 

2014) and bioeroding organisms (e.g., Nereididae) (Kristensen et al., 2013). Dietary traits 

contribute to top-down control, via consumption, of organisms such as bacteria, 

flagellates, diatoms, plankton and small animals (Jumars et al., 2015; Rouse & Pleijel, 

2001; Jones & Wolff, 1981). At the same time these organisms will be consumed by 

various organisms with higher trophic level (e.g., birds, fish, crustaceans) (Wolansky and 

McLusky, 2012). Changes in the distribution of these organisms may impact secundary 

production and species that seek the estuary for food (Hallett et al., 2018). Furthermore, 

it may impact other ecosystems with strong connectivity such as coral reefs, whose fish 

depend on this ecosystem as a safe place for the early stages of their offspring (Brown 

et al., 2016).  

5 Conclusion and recommendations 

We conclude that changes in the spatial distribution of benthic macroinvertebrates in 

estuaries due to sea level rise at local scales can be successfully predicted by combining 

monitoring data and various predictive modeling techniques through species distribution 

modeling. Our results suggest that saline intrusion will result in taxa displacement 

upstream and extinction of some estuarine benthic invertebrates in future scenarios. In 

extreme scenarios of reduced rainfall and increased evaporation due to increased 

temperature as predicted by the IPCC in 2021, it is possible that shallow estuaries in 

tropical regions suffer a strong process of marinization. Future models (e.g., population 

dynamics) should focus on these new scenarios (i.e., rainfall reduction and increased 

evaporation) where changes in environmental filters distribution can favor competitive 

exclusion and predation in the structuring of the community including exotic species. 

Since macrobenthic fauna are essential for estuarine trophic webs, alterations in the 
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distribution of benthic organisms can change the distribution of other species of 

commercial interest (e.g., fishes, shrimps, birds). With increasing necessity in obtaining 

forecasts at the local scale for management purposes, improvements can be reached 

using salinity and sediment distribution data from numerical simulations produced 

specifically for an estuary. In face of the effects of climate change at the local scale that 

can directly influence the lives of a large part of the human population, it is recommended 

the incorporation of numerical tools to predict effects and propose interventions in 

estuarine ecosystem management in order to minimize the ecological and social impacts 

of climate change. Our study showed that predictive species distribution modeling can 

be an important tool to assess possible future ecological changes in estuaries due to 

climate change effects. This tool can be very useful for the management and planning of 

adaptations to the effects of climate change on estuarine ecosystems. 
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Appendix A 

 

Data source and Sampling design 

Data were obtained over 13 years (2006, 2007, 2009, 2010, 2014, 2016, 2019a and 

2019b) where sediment samples containing the benthic macrofauna, sediment samples 

for determination of particle size classes and salinity data were collected. For the 2006, 

2007, 2009, 2014, 2016 and 2019a campaigns, the design consisted of collecting 

macrofauna samples in 10 sampling stations (n = 8 replicates per station; total = 80 per 

campaign) using a 'corer' sampler (cylinder 10x15 cm). Additionally, sediment samples 

were collected and surface salinity measured with a refractometer, data logger and 

multiparameter probe in 10 georeferenced sampling stations distributed along the 

longitudinal section of the estuary. In the collections carried out in 2010 (n = 65 samples) 

and 2016 (n = 21 samples) the samples were collected using the same method at 

sampling points along the cross section of the estuary. The cross sections were 

distributed in different zones of the estuary (i.e., euhaline, polyhaline, mesohaline and 
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oligohaline). Finally, in the 2019b campaign, biological samples were collected (total = 

120 samples) randomly distributed in the different zones of the estuary (n = 10 per zone; 

n = 3 replicates per point) using a van veen grab sampler. 

Sediment treatment 

At each of the 10 sampling stations, sediment samples were collected with corer 

(5x10cm). In the laboratory, the samples were dried in an oven at 120 °C and the 

proportion of each sedimentological class in the sample was obtained by the sieving 

method, where the weight of the sediment retained in each sieve was obtained on an 

analytical balance. The classification of fractions was obtained using the method of Folk 

and Ward (Folk and Ward, 1957) using Sysgram software (Camargo, 2006)  

Species occurrence  

The distribution of each family (Figure A.1) was obtained by assigning the geographic 

coordinates (latitude and longitude) of the collection point to the record of the occurrence 

of the family in each sampling campaign. 
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Figure A.1. Species occurrence for Cirratulidae, Magelonidae, Nereididae, Orbiniidae, 

Spionidae, Tellinidae, Pilargidae and Paraonidae. Gradient scale means maximum 

salinity values. 

 

  



 

 117 

Surface salinity measurements (Figure A.2) were performed with a refractometer. 

According to the need for each campaign, additional measurements were performed 

using a multiparameter probe (Horiba®) and data loggers (HOBO®). 

Salinity scenarios 

 

Figure A.2. Minimum and maximum salinity for the different scenarios in the Jaguaripe 

River estuary. The salinity representation for Jaguaripe was performed using the oce 

package (Kelley et al., 2020) on R software 
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Appendix B 

Table B.1. Description of models used to predict macrozobentos distribution (Adapted from Reiss et al., 2015). 

Modelling method Description Pros Cons 

GLM; Generalized 

Linear Model 

Based on analysis of variance and covariance; various 

distributions and link functions used subject to the 

distribution features of both predictors and response 

variables (binomial for binary, Poisson for count data, 

negative binomial for overdispersed count data, logit 

for probability of binary response, etc.); from simple to 

multivariate regression 

Variety of handled distributions, 

common, straightforward 

interpretation, high predictive power. 

Model selection uncertainty and 

autocorrelation should be accounted 

for; the greater the flexibility (e.g. 

number of polynomials), the higher 

is the risk to overfit the data. 

GAM; Generalized 

Additive Model 

Straightforward extension of GLM where scatterplot smoothing functions (locally weighted 

mean) are used to build a sum of a set of arbitrary functions 

Overfitting risk, complexity of 

interpretation suggests the use of 

sequence of non-parametric GAM 

to determine the dominant 

relationships and then apply 

parametric GLM for fine model 

fitting and prediction 

MARS; Multivariate 

Adaptive Regression 

Splines 

Non-parametric regression technique combines linear 

regression, mathematical construction of splines and 

binary response cursive partitioning to model (non-

)linear relationships between environmental variables 

and species occurrence, coefficients differ across 

levels of predictor variables 

Flexible, easy to interpret, 

automatically models non-linearities 

and interactions between variables 

Does not give as good fits as 

boosted trees methods 

RF; Random Forest Uses collection of decision tree models to achieve top 

predictive performance 

Ability to handle different types of  

variables and missing values,  

fitting interactions between predictors, 

 immunity to extreme outliers 

BRT; Boosted 

Regression Trees 

Boosting algorithm uses iterative forward stage wise  

modelling. Final model is developed by progressively  

adding simple CART trees by re-weighting data to  

emphasize cases poorly predicted by previous trees 
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Appendix C 

 

Taxa biological traits from Beesley et al., 2000, Fauchald, 1977, Jumars et al., 2015 

and Rouse and Pleijel, 2001 

Organisms of the Cirratulidae family are burrowing, tubiculous, surface and subsurface 

deposit feeders. It feeds mainly on detritus and diatoms with the help of palps. They are 

mostly found in high salinities (30 to 40 PSU). Are able to tolerate moderate salinities (18 

to 30) and are found in lower abundance in salinities below 18. They are associated with 

sediments ranging from blocks, sandy and muddy sediments. 

 The Magelonidae family are excavators and tubiculous. They have varied food habits 

such as surface deposit feeders, suspension feeders and predators. Their diet varies 

between detritus, microalgae and small animals. They play an important role in 

bioturbation. Are found in greater abundance in high salinities (30-40) and may occur in 

moderate salinities (18-40 PSU). It has a greater affinity with sandy to muddy sediments. 

Orbiniidae are crawling organisms, burrowing tubiculous and deposit feeders. They feed 

on detritus, diatoms and foraminiferans. They have an important role as biodiffusor. They 

are found in sediments that range from sandy to muddy. 

Nereidiae are organisms of varied living habits. In relation to movement, it can be a 

swimmer, crawler and tubiculous. They are omnivores, depositivores, detritivores, active 

suspenders of suspended organic matter and predators. It plays an important role as a 

bioturbator and biodiffuser. Its tolerance to low salinity is high, being able to reach great 

abundance in salinities close to zero. It has an affinity for sandy-mud sediments. 

Paraonidae are crawling and burrower organisms. They are deposit feeders and 

herbivores, feeding on bacteria, flagellates, diatoms, foraminifera and debris. They are 

biodiffusers and are associated with sandy sediments. 

Spionidae are crawler, burrower and tubicolous. They are deposit and suspensory 

feeders, feeding on particulate matter, planktonic organisms, diatoms, meiofauna 

organisms and molluscs. They are preyed on by other annelids, fish, birds, molluscs and 

echinoderms. They have an affinity with sandy to muddy sediments. Can be found in 

blocks. 

Tellinidae are active suspensive and deposit feeders on suspended and deposited 

phytoplankton, diatoms and debris. They are burrowers, crawlers and borrow dwelling. 

They have moderate tolerance to low salinity (18-40). They are associated with variety 

of sedimentary classes such as sediment mixtures containing coarse sand gravel and 

mud. 
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__________________________________________________________ 

Conclusões Gerais 

O objetivo desta tese foi contribuir para o entendimento sobre o uso de 

ferramentas ecológicas preditivas para investigação dos principais efeitos da 

elevação do nível do mar sobre a fauna bentônica em ecossistemas estuarinos. 

Este objetivo foi alcançado através de duas abordagens: i) a síntese da literatura 

que identificou as principais ferramentas ecológicas preditivas e os impactos 

causados pela elevação do nível do mar em estuários e ii) através de simulação 

computacional dos efeitos da intrusão salina sobre a fauna bentônica em um 

estuário real. 

A síntese dos principais modelos ecológicos preditivos que utilizaram os 

organismos bentônicos para investigação de alterações ambientais mostrou que 

ao longo dos últimos quarenta anos os pesquisadores nos diferentes ambientes 

(i.e., marinho, estuarino e de água doce) contribuíram para consolidação deste 

tópico de pesquisa. Inicialmente os pesquisadores utilizaram abordagens e 

ferramentas distintas, motivados pela resolução de questões associadas à 

cultura de pesquisa já estabelecida nestes ambientes. Por exemplo, estudos 

preditivos em água doce estiveram associados principalmente a estudos de 

biomonitoramento como à previsão de distúrbios causados por ação humana e 

classificação da qualidade da água e do ecossistema. Estudos no ambiente 

marinho e estuarino focaram na implementação de teorias ecológicas em 

modelos preditivo para investigar sua efetividade no estudo da biodiversidade e 

relações ecológicas. Mais recentemente (últimos 20 anos), os estudos realizados 

nos diferentes ambientes passaram a utilizar ferramentas comuns e abordar 

temas mais gerais como efeitos de larga escala sobre ecossistemas locais 

(mudanças climáticas) e das espécies exóticas. Entre as ferramentas usadas é 

importante destacar a importância de parcerias institucionais para criação de 

programas de computador (e.g., Ecopath, RIVPACS) para resolução de 

questões específicas. Este tipo de iniciativa deve ser incentivada, principalmente 

pensando na gestão dos ecossistemas. Nos últimos anos, o software R tornou-

se a ferramenta mais popular, possuindo aplicações em diversos temas, 

principalmente modelagem de distribuição de espécies e biomonitoramento. A 

modelagem preditiva de organismos bentônicos como tópico de pesquisa possui 
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estratégias e ferramentas bem estabelecidas e ao longo do tempo incorporou 

novas ferramentas (e.g., R), técnicas (e.g., machine learning) e tem buscado 

respostas para questões emergentes como recuperação de ecossistemas, 

espécies invasoras e efeitos das mudanças climáticas sobre os ecossistemas 

aquáticos.  

Os estudos que investigaram os efeitos da elevação do nível do mar sobre os 

estuários ao redor do globo apontaram que a intrusão salina e a inundação dos 

terrenos adjacentes ao estuário são os impactos mais preocupantes. A intrusão 

salina em particular foi um efeito bastante estudado e modelos computacionais 

hidrodinâmicos mostraram que a elevação do nível do mar possui influência 

direta sobre essa intrusão. Adicionalmente, estes estudos destacaram o papel 

da vazão dos rios neste processo e para o risco de que em cenários futuros de 

baixa vazão o resultado seja a hipersalinização do estuário. Os estudos que 

avaliaram os efeitos ecológicos mostraram que a inundação e intrusão salina 

podem contribuir para a perda da biodiversidade, biomassa, favorecer o 

estabelecimento de espécies exóticas e interferir em serviços ecossistêmicos 

importantes como estocagem de carbono.  Além disso, a intrusão salina poderá 

causar prejuízos econômicos como a captação de água para abastecimento, 

indústria e agricultura. Poucos estudos apresentaram simulações dos efeitos de 

intervenções com intuito de mitigar os efeitos da intrusão salina em estuários. As 

simulações realizadas com objetivo de avaliar a eficiência de intervenções para 

a redução da velocidade das correntes por meio da construção de diques 

submersos ou impedir a propagação da intrusão salina através de barragens se 

mostraram ineficazes no médio prazo. Tais intervenções podem causar sérios 

danos ao ecossistema estuarino como inundações, hipersalinização e criação de 

planícies salinas adjacentes ao estuário. Simulações de possíveis intervenções 

para mitigação dos impactos da intrusão salina e inundações são extremamente 

complexas, devem ser mais encorajadas e contar com a inclusão de gestores 

públicos.     

O uso de modelos preditivos para investigação dos efeitos da intrusão salina 

sobre a distribuição espacial de macroinvertebrados bentônicos no estuário do 

Jaguaripe apresentou resultados muito satisfatórios. Estes resultados não 

haviam sido alcançados antes para a pequena escala no gradiente de salinidade 
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estuarino. A previsão do modelo indicou que a intrusão salina como resultado da 

elevação do nível do mar poderá induzir alterações na distribuição da 

macrofauna bentônica. Especificamente para o estuário do Rio Jaguaripe a 

progressiva elevação do nível do mar poderá provocar a colonização de zonas 

mais internas do estuário, com extinção local na região originalmente habitada. 

A migração desses organismos para regiões mais internas pode resultar em um 

fenômeno conhecido como marinização do estuário, onde espécies marinhas 

que antes eram impedidas de acessar regiões internas do estuário passam a 

colonizar este ambiente, como consequência é esperado o aumento das 

interações ecológicas como competição e predação, resultando em exclusão 

dessas espécies. Modelos preditivos com foco nas interações ecológicas (e.g., 

modelos de redes tróficas) podem ser usados para explorar este tipo de cenário. 

Uma vez que a fauna macrobentônica é um nível essencial das teias tróficas 

estuarinas, mudanças na distribuição de organismos bentônicos podem alterar 

a distribuição de outras espécies de interesse comercial (e.g., peixes, siris, 

camarões). Estudos ecológicos futuros podem aprimorar a acurácia de suas 

previsões ao utilizar os resultados de modelos computacionais hidrodinâmicos 

na exploração de cenários de alteração das variáveis ambientais (e.g., 

salinidade, sedimento, nutrientes). Este estudo mostrou que a modelagem 

ecológica preditiva da fauna bentônica pode ser uma ferramenta importante para 

avaliar os impactos de mudanças ambientais futuras. Esta ferramenta pode ser 

muito útil para a gestão e planejamento de adaptações aos efeitos das mudanças 

climáticas nos ecossistemas estuarinos. 
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Supplementary Material 

Chapter 1: General trends after forty years of predictive models applied to 

benthic macroinvertebrates from marine, estuarine and freshwater environment 

The information extracted from the articles used in the systematic review can be 

consulted in the electronic spreadsheet: 

 

Table 1: “Chapter 1 Table 1_Eco_Models.xls”  

 

Chapter 2: Trends of sea-level rise effects on estuaries: A quali-quantitative 

synthesis in toward for a simple general model to estimate future saline intrusion 

in estuaries 

The information used in the quali-quantitative sysnthesis can be consulted in the 

electronic spreadsheet: 

Table 1: “Chapter 2 Table 1.xls” 

• In the "Papers" tab you will find information regarding the studies (e.g., 

publication date, title, authors, affiliation). 

• The "Map" tab contains information about the distribution of studies in the 

world. This information was used for the elaboration of figure 4. 

• The “Saline Intrusion” tab contains the data for quantitative analysis that 

represents the relationship between sea-level rise, saline intrusion and 

river flow. 

 

Chapter 3: Sea-level rise effects on macrozoobenthos distribution in the 

estuarine gradient using Species Distribution Modeling 

 

Data source and Sampling design 

Data were obtained over 13 years (2006, 2007, 2009, 2010, 2014, 2016, 2019a 

and 2019b) where sediment samples containing the benthic macrofauna, 

sediment samples for determination of particle size classes and salinity data were 

collected. For the 2006, 2007, 2009, 2014, 2016 and 2019a campaigns, the 

design consisted of collecting macrofauna samples in 10 sampling stations (n = 
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8 replicates per station; total = 80 per campaign) using a 'corer' sampler (cylinder 

10x15 cm). Additionally, sediment samples were collected and surface salinity 

measured with a refractometer, data logger and multiparameter probe in 10 

georeferenced sampling stations distributed along the longitudinal section of the 

estuary. In the collections carried out in 2010 (n = 65 samples) and 2016 (n = 21 

samples) the samples were collected using the same method at sampling points 

along the cross section of the estuary. The cross sections were distributed in 

different zones of the estuary (i.e., euhaline, polyhaline, mesohaline and 

oligohaline). Finally, in the 2019b campaign, biological samples were collected 

(total = 120 samples) randomly distributed in the different zones of the estuary (n 

= 10 per zone; n = 3 replicates per point) using a van veen grab sampler. 

Sediment treatment 

At each of the 10 sampling stations, sediment samples were collected with corer 

(5x10cm). In the laboratory, the samples were dried in an oven at 120 °C and the 

proportion of each sedimentological class in the sample was obtained by the 

sieving method, where the weight of the sediment retained in each sieve was 

obtained on an analytical balance. The classification of fractions was obtained 

using the method of Folk and Ward (Folk and Ward, 1957) using Sysgram 

software (Camargo, 2006)  

Species occurrence  

The distribution of each family (Figure 1) was obtained by assigning the 

geographic coordinates (latitude and longitude) of the collection point to the 

record of the occurrence of the family in each sampling campaign. 
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Figure 2. Species occurrence for Cirratulidae, Magelonidae, Nereididae, 
Orbiniidae, Spionidae, Tellinidae, Pilargidae and Paraonidae. Gradient scale 
means maximum salinity values. 
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Surface salinity measurements (Figure 2) were performed with a refractometer. 

According to the need for each campaign, additional measurements were 

performed using a multiparameter probe (Horiba®) and data loggers (HOBO®). 

Salinity scenarios 

 

Figure 3. Minimum and maximum salinity for the different scenarios in the 
Jaguaripe River estuary. The salinity representation for Jaguaripe was performed 
using the oce package (Kelley et al., 2020) on R software
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Table 1. Description of models used to predict macrozobentos distribution (Adapted from Reiss et al., 2015). 
Modelling method Description Pros Cons 

GLM; Generalized 
Linear Model 

Based on analysis of variance and covariance; various 
distributions and link functions used subject to the 
distribution features of both predictors and response 
variables (binomial for binary, Poisson for count data, 
negative binomial for overdispersed count data, logit 
for probability of binary response, etc.); from simple 
to multivariate regression 

Variety of handled distributions, 
common, straightforward 
interpretation, high predictive power. 

Model selection uncertainty and 
autocorrelation should be 
accounted for; the greater the 
flexibility (e.g. number of 
polynomials), the higher is the risk 
to overfit the data. 

GAM; Generalized 
Additive Model 

Straightforward extension of GLM where scatterplot smoothing functions (locally weighted 
mean) are used to build a sum of a set of arbitrary functions 

Overfitting risk, complexity of 
interpretation suggests the use of 
sequence of non-parametric GAM 
to determine the dominant 
relationships and then apply 
parametric GLM for fine model 
fitting and prediction 

MARS; Multivariate 
Adaptive Regression 
Splines 

Non-parametric regression technique combines linear 
regression, mathematical construction of splines and 
binary response cursive partitioning to model (non-
)linear relationships between environmental variables 
and species occurrence, coefficients differ across 
levels of predictor variables 

Flexible, easy to interpret, 
automatically models non-linearities 
and interactions between variables 

Does not give as good fits as 
boosted trees methods 

RF; Random Forest Uses collection of decision tree models to achieve 
top predictive performance 

Ability to handle different types of  
variables and missing values,  
fitting interactions between predictors, 
 immunity to extreme outliers 

BRT; Boosted 
Regression Trees 

Boosting algorithm uses iterative forward stage wise  
modelling. Final model is developed by progressively  
adding simple CART trees by re-weighting data to  
emphasize cases poorly predicted by previous trees 
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Taxa biological traits from Beesley et al., 2000, Fauchald, 1977, Jumars et al., 

2015 and Rouse and Pleijel, 2001 

Organisms of the Cirratulidae family are burrowing, tubiculous, surface and 

subsurface deposit feeders. It feeds mainly on detritus and diatoms with the help 

of palps. They are mostly found in high salinities (30 to 40 PSU). Are able to 

tolerate moderate salinities (18 to 30)and are found in lower abundance in 

salinities below 18. They are associated with sediments ranging from blocks, 

sandy and muddy sediments. 

 The Magelonidae family are excavators and tubiculous. They have varied food 

habits such as surface deposit feeders, suspension feeders and predators. Their 

diet varies between detritus, microalgae and small animals. They play an 

important role in bioturbation. Are found in greater abundance in high salinities 

(30-40) and may occur in moderate salinities (18-40 PSU). It has a greater affinity 

with sandy to muddy sediments. 

Orbiniidae are crawling organisms, burrowing tubiculous and deposit feeders. 

They feed on detritus, diatoms and foraminiferans. They have an important role 

as biodiffusor. They are found in sediments that range from sandy to muddy. 

Nereidiae are organisms of varied living habits. In relation to movement, it can be 

a swimmer, crawler and tubiculous. They are omnivores, depositivores, 

detritivores, active suspenders of suspended organic matter and predators. It 

plays an important role as a bioturbator and biodiffuser. Its tolerance to low 

salinity is high, being able to reach great abundance in salinities close to zero. It 

has an affinity for sandy-mud sediments. 

Paraonidae are crawling and burrower organisms. They are deposit feeders and 

herbivores, feeding on bacteria, flagellates, diatoms, foraminifera and debris. 

They are biodiffusers and are associated with sandy sediments. 

Spionidae are crawler, burrower and tubicolous. They are deposit and 

suspensory feeders, feeding on particulate matter, planktonic organisms, 

diatoms, meiofauna organisms and molluscs. They are preyed on by other 

annelids, fish, birds, molluscs and echinoderms. They have an affinity with sandy 

to muddy sediments. Can be found in blocks. 

Tellinidae are active suspensive and deposit feeders on suspended and 

deposited phytoplankton, diatoms and debris. They are burrowers, crawlers and 

borrow dwelling. They have moderate tolerance to low salinity (18-40). They are 

associated with variety of sedimentary classes such as sediment mixtures 

containing coarse sand gravel and mud. 
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R Code 

Cirratulidae 
YuriCosta 

16/06/2021 

Sea-Level Rise effects on benthos in 
estuarine ecosystems using Species 

Distribution Modeling 
The purpose of this script is to describe the ecological niche modeling steps carried out to 

investigate sea-level rise effects on benthic macroinvertebrates in estuarine ecosystems. 

Installing packages 

The codes used for simulation consist of ecological niche modeling packages (sdm), geospatial to 

deal with environmental layers (raster, sf), tables (dplyr) and figure generation package 

(ggplot2). 

# install.packages("sdm")     # Species distribution modeling package 

# library(sdm)                # To use the installAll function 

# installAll()                # Install all dependencies 

# install.packages("sp")      # To work with shape file 

# install.packages("raster")  # To work with raster (ASCII) file 

# install.packages("dplyr")   # To work with tables 

# install.packages("tidyr")   # To work with tables 

Loading packages 

library(sp) 

library(raster) 

library(usdm) 

library(dismo) 

library(dplyr) 

library(tidyr) 

library(shiny) 



132 
 

 132 

library(sf) 

Get biological data 

Loading spcies occurence data 

spp<- read.csv("occur_ab_spp_all.csv", sep = ";") 

 

head(spp) 

##         site longitude  latitude    species abundance 

## 1     J01a2a -38.83341 -13.12746 Acteonidae         2 

## 2     J01a2c -38.83338 -13.12755 Acteonidae         2 

## 3     J01a5a -38.83136 -13.12115 Acteonidae         1 

## 4 JP#01_2019 -38.83980 -13.12090 Albuneidae         1 

## 5     J01b1a -38.83834 -13.12743  Alpheidae         1 

## 6     J01b5c -38.83559 -13.11987  Alpheidae         1 

Filtering interest species 

cirratulidae <- subset(spp, species=="Cirratulidae", select= c(species

, longitude, latitude, abundance)) 

The number of rolls for this taxa is 91. Inspecting the spatial distribution of the taxa, the record 

was observed to have a point of occurrence containing only 1 specimen in an area of the estuary 

for which no other records were obtained. This record has been deleted to avoid including noise 

in the model. 

##          species longitude  latitude abundance 

## 406 Cirratulidae -38.95895 -13.04419         1 

First, we find occurrence point to exclude based on latitude. 

max(cirratulidae$latitude) 

## [1] -13.04419 

cir<-subset(cirratulidae, latitude!= max(cirratulidae$latitude)) 

After this process the number of rolls is 90. Let’s look the filtered data. 

##          species longitude  latitude abundance 

## 319 Cirratulidae -38.83980 -13.12050         4 

## 320 Cirratulidae -38.84020 -13.12050        13 

## 321 Cirratulidae -38.84000 -13.12010        12 

## 322 Cirratulidae -38.83940 -13.12050        10 
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## 323 Cirratulidae -38.83341 -13.12746         7 

## 324 Cirratulidae -38.83348 -13.12753        11 

Preparing the data 

The first step is to remove NA’s rolls. 

sp<- cir               # putting species value in a generic vector. 

sp<- cir %>% drop_na() # Removing rolls containing NA values. 

There is 0 rolls containing NA values. 

Preparing species geographical data for species. This data contains latitude and longitude 

information and add reference value to represent species. 

spg <- sp %>% select(longitude, latitude) 

 

spg$species <- 1   

Now, we create a “SpatialPointsDataFrame” matrix object 

coordinates(spg) <- c('longitude', 'latitude') 

Get environmental data 

In this section, we used environmental layers from the monitoring database. The first data 

included in the simulation were salinity (minimum and maximum) for the baseline scenario and 

0.5m and 1m for moderate and extreme scenarios. 

Salinity data 

Baseline scenario (SLR 0 m) 

Loading raster file in ‘.ascii’ format. 

salminbaseline <- raster("envlayers/salmin.asc") 

salmaxbaseline <- raster("envlayers/salmax.asc") 

Future scenarios 

Moderate scenarios 

The moderate scenarios were obtained using the predict function on SLR model versus salinity 

increment model. 
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# 0.50m SLR scenario  SLR moderado 

salmin050 <- raster("envlayers/salminsce050.asc")   

salmax050 <- raster("envlayers/salmaxsce050.asc") 

 

# 1m SLR Scenario moderado 

salmin1m <- raster("envlayers/salminsce1m.asc")   

salmax1m <- raster("envlayers/salmaxsce1m.asc") 

Extreme scenarios 

The extreme scenarios were obtained from the model prediction interval of the SLR versus 

salinity increment model. 

# 0.50m SLR Extreme scenario  

salmin050ext <- raster("envlayers/salmin050ext.asc")   

salmax050ext <- raster("envlayers/salmax050ext.asc") 

 

# 1m SLR Extreme scenario  

salmin1mext <- raster("envlayers/salmin1mext.asc")   

salmax1mext <- raster("envlayers/salmax1mext.asc") 

Sediment 

The sediment layers (pebble, granule, very coarse sand, coarse sand, medium sand, fine sand, 

very fine sand and mud) were the same for all simulation scenarios. 

pebble <- raster("envlayers/pebble.asc")      # Pebble 

granule <- raster("envlayers/granule.asc")    # Granule 

vcsand <- raster("envlayers/vcssand.asc")     # Very Fine Sand 

csand <- raster("envlayers/csand.asc")        # Coarse Sand 

msand <- raster("envlayers/msand.asc")        # Medium Sand 

fsand <- raster("envlayers/fsand.asc")        # Fine Sand 

vfsand <- raster("envlayers/vfsand.asc")      # Very Fine sand 

mud <- raster("envlayers/mud.asc")            # Mud (Coarse Silt and c

lay) 

Stacking layers 

The environmental raster layers were put together into a single r object. 

envbaseline <- stack( salminbaseline, salmaxbaseline, 
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              pebble, granule, vcsand, csand, msand, fsand, vfsand, mu

d) 

Visualizing layers and species occurrence 

Plotting maximum salinity and occurrence for Cirratulidae on Jaguaripe estuary. 

plot(envbaseline[[2]], main="Maximum salinity and species occurrence") 

points(spg, col= "red") 

 

Evaluating environmental layers multicollinearity 

The multicollinearity was evaluated by considering environmental data related to species 

occurrence. Thus, multicollinearity was investigated for the taxa Cirratulidae. The first step was 

to extract environmental values from occurrence points. 

Data extraction 
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Here we created an object called ‘ex’ to keep the extracted values. 

ex <- raster::extract(envbaseline, spg)  

Multicollinearity analysis 

The multicollinearity analysis method used was the VIF (Variance Inflation Factor). The VIF 

method determines the strength of the correlation between independent variables. It is 

predicted by taking one variable and regressing it against all other variables. This analysis was 

applied on the ‘ex’ object to obtain the variables most correlated with each other. 

v <- vifstep(ex)  

## 1 variables from the 10 input variables have collinearity problem:  

##   

## vcssand  

##  

## After excluding the collinear variables, the linear correlation coe

fficients ranges between:  

## min correlation ( csand ~ salmax ):  0.003699734  

## max correlation ( granule ~ pebble ):  0.9143079  

##  

## ---------- VIFs of the remained variables --------  

##   Variables      VIF 

## 1    salmin 5.269894 

## 2    salmax 5.087673 

## 3    pebble 6.362427 

## 4   granule 7.198731 

## 5     csand 2.857778 

## 6     msand 5.666423 

## 7     fsand 4.101032 

## 8    vfsand 3.535946 

## 9       mud 2.088451 

• VIF starts at 1 and has no upper limit 

• VIF = 1, no correlation between the independent variable and the other variables 

• VIF exceeding 5 or 10 indicates high multicollinearity between this independent 

variable and the others 

Fixing Multicollinearity 

The multicollinearity was fixed by removing the most correlated variables. In this case, was the 

variable vcssand 
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envbaseline2 <- exclude(envbaseline, v)  

Performing Species Niche Modeling for baseline 

scenario 

The Species niche model was created using sdm package (Naimi and Araújo, 2016) available for 

R software (R Development Core Team, 2016). 

 library(gbm) 

 library(sdm) 

Creating Species Niche Modeling data 

The Species Niche Modeling used to model Cirratulidae on Jaguaripe estuary were occurrence 

data ( spg ) and their respective environmental data obtained after multicollinearity evaluation. 

The method to generate ‘pseudoabsenses’ was grandom. 

d <- sdmData(species~., spg,  

             predictors = envbaseline2,  

             bg = list(method='gRandom', n=1000))  

Creating the model for Species Niche Modeling 

To perform Species Niche Modeling was used the sdm function from sdm package. The most 

used methods to perform species niche modeling were used in order to compare the methods 

performance. 

library(parallel) 

 

m <- sdm(species~., d, methods=c('rf', 'brt', 'glm', 'gam', 'mars'),  

         replication= c('sub', 'boot'),  

         test.p=30, n=3,  

         parallelSettings= list(ncore=4, method='parallel')) 

Results 

Relative variable importance 

Create a summary based on Correlation or AUC metric 

getVarImp(m, id=1) 
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## Relative Variable Importance  

## =============================================================  

## method              : Permutation based on two metrics (Pearson Cor

relation and AUC) 

## number of variables :  9  

## variable names      :  salmin, salmax, pebble, granule, csand, msan

d, fsand, vfsand, mud, ...  

## =============================================================  

## Relative variable importance  

## ----------------------------------------------  

## Based on Correlation metric:  

## ----------------------------------------------  

## salmin              : *************** (30.4 %)  

## salmax              : ******************************* (61.3 %)  

## pebble              : ***** (10.4 %)  

## granule             : ******** (16.4 %)  

## csand               : ******** (16.1 %)  

## msand               : **** (7.1 %)  

## fsand               : ******* (13.9 %)  

## vfsand              : ***** (10.5 %)  

## mud                 : **** (8.9 %)  

## =============================================================  

## Based on AUC metric:  

## ----------------------------------------------  

## salmin              : ******** (15.5 %)  

## salmax              : ******************** (40.2 %)  

## pebble              : *** (6.8 %)  

## granule             : *** (6.5 %)  

## csand               : **** (7.2 %)  

## msand               : ** (4.9 %)  

## fsand               : *** (5.5 %)  

## vfsand              : *** (6.9 %)  

## mud                 : *** (6.6 %)  

## ============================================================= 

Plot Relative importance variables based on Correlation metric 

plot(getVarImp(m, id=1))    
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Using correlation metric was observed that most important variables for Cirratulidae are 

maximum salinity, minimum salinity, fine sand and coarse sand. 

Plot Relative importance variables obtained by Random forest method 

plot(getVarImp(m, method= 'rf')) 

##  

## The values of relative variable importance are generated from 6 mod

els... 
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Visualizing response curves 

Here we obtain the response curves 

rcurve(m) 

## The id argument is not specified; The modelIDs of 30 successfully f

itted models are assigned to id...! 
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Predict species distribution for baseline scenario 

Were created the object called predbaseline considering the model m and environmental 

variables envbaseline2 to represent the baseline distribution scenario for the species. 

 library(sdm) 

 

predbaseline <- predict(m, envbaseline2, filename='output/predbaseline

.img', overwrite=TRUE) 

Models contribution evaluation 

plot(predbaseline[[c(1, 7, 13, 19)]],  

     main = c("Random Forest", "BRT", "GLM", "GAM"), col=cl(200)) 
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Now we can integrate the results of all models. 

Ensemble for baseline scenario 

The ensemble model for baseline scenario was performed using ‘m’ and ‘predbaseline’. This 

procedure combines the best results of the different models. 

ensemble1<- ensemble(m, predbaseline, filename='output/ensemblebaselin

e.img', 

                     setting = list(method='weighted', stat='tss', opt

=2)) 

##  

##  ......... the Raster object is used as the predicted probabilities

... 

Here was plotted the results for ensemble model for baseline scenario. 

plot(ensemble1, col=cl(200), main= 'Ensemble for baseline scenario') 
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Predict distribution for the future 

scenarios 

Here we stack the layers without the layers (vcssand) indicated by multicollinearity analysis. 

Stacking layers for the Moderate scenario 

envf050 <- stack( salmin050, salmax050, pebble, granule, csand, msand, 

fsand, vfsand, mud) 

envf1m <- stack( salmin1m, salmax1m, pebble, granule, csand, msand, fs

and, vfsand, mud) 

Stacking layers for the Extreme scenario 

envf050ext <- stack( salmin050ext, salmax050ext, pebble, granule, csan

d, msand, fsand, vfsand, mud) 
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envf1mext <- stack( salmin1mext, salmax1mext, pebble, granule, csand, 

msand, fsand, vfsand, mud) 

To perform future prediction we must change future layers names to the same names of the 

baseline scenario. 

# Moderate scenario 

names(envf050) <- names(envbaseline2) 

names(envf1m) <- names(envbaseline2) 

 

# Extreme scenario 

names(envf050ext) <- names(envbaseline2) 

names(envf1mext) <- names(envbaseline2) 

Creating ensemble predictive models for future 

scenarios 

Moderate scenario 

enf50 <-ensemble(m, envf050, filename='output/enf050.img', setting=lis

t(method='Weighted', stat='tss', opt='2')) 

enf1m <-ensemble(m, envf1m, filename='output/enf1m.img', setting=list(

method='Weighted', stat='tss', opt='2')) 

Extreme scenario 

enf50ext <-ensemble(m, envf050ext, filename='output/enf050ext.img', se

tting=list(method='Weighted', stat='tss', opt='2')) 

enf1mext <-ensemble(m, envf1mext, filename='output/enf1mext.img', sett

ing=list(method='Weighted', stat='tss', opt='2')) 

Explore future scenarios results 

We created a stack object to keep the ensemble results for future predictions. 

ens_future <- stack(enf50, enf1m, enf50ext, enf1mext) 

Plot ensemble results for future (moderate and extreme scenarios) 

plot(ens_future[[c(1,2,3,4)]],  

     col=cl(200), 

     main= c("SLR 0.50 m","SLR 1 m", "SLR 0.50 m extreme","SLR 1 m ext

reme")) 
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Quantifying differences between baseline, 0.50m and 

1m for moderate scenarios 

Calculate the changes between 0.5m and baseline scenario We can calculate the differences 

between scenarios using simple math operations. 

change1 <- enf50 - ensemble1 

Now we can plot the changes between baseline and the 0.5m SLR scenario. In this plot red and 

yellow colors represents suitability reduction, green and blue regions means suitability growth 

and gray regions shows regions where there is no change. 

plot(change1, 

     main="Change between baseline and 0.50 m scenarios", 

     axes=FALSE, col=cl8(200))  
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Calculate the changes between 1m and baseline scenario 

We can also perform this process using a overlay function. It is useful in cases where the rasters 

are too large. 

change2<- overlay(enf1m, 

                  ensemble1, 

                  fun=function(r1, r2){return(r1-r2)}) 

Now we can plot the changes between baseline and the 1m SLR scenario 

# Plot output change 

plot(change2, 

     main="Change between baseline and 1 m scenarios", 

     axes=FALSE, col=cl5(200))  



147 
 

 147 

 

Niche overlap analysis 

To evaluate the future prediction variation related with baseline scenario we performed the 

niche overlap analysis (Warren et al, 2008). The metric used was Schoener’s D. 

library(dismo) 

 

overlap_50 <- nicheOverlap(ensemble1, enf50, stat='D', mask=TRUE, chec

kNegatives = TRUE) 

overlap_1m <- nicheOverlap(ensemble1, enf1m, stat='D', mask=TRUE, chec

kNegatives = TRUE) 

overlap_50ext <- nicheOverlap(ensemble1, enf50ext, stat='D', mask=TRUE

, checkNegatives = TRUE) 

overlap_1mext <- nicheOverlap(ensemble1, enf1mext, stat='D', mask=TRUE

, checkNegatives = TRUE) 
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Now we can compare the results for each scenario 

###Schoenerer’s (1968) statistic for niche overlap 

• 0 Niche models have no overlap 

• 1 Niche models identical 

Converting occurrence probability in presence-absence 

Preparing the data 

df <- as.data.frame(d) 

df <- data.frame(species=df$species, coordinates(d)) 

xy<- as.matrix(df[,c('longitude', 'latitude')]) 

Extracting suitability values from ensemble1 prediction for baseline scenario. 

p<- raster::extract(ensemble1, xy) 
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ev<- evaluates(df$species, p) 

Quantifying differences using threshold 

Convert suitability prediction from baseline and future scenarios to presence-absence based on 

threshold. 

th <- ev@threshold_based$threshold[2] 

Create an empty raster with the same extent as the baseline raster to receive the results. 

pa_baseline <- raster(ensemble1)  

pa_enf50 <- raster(enf50)  

pa_enf1m <- raster(enf1m) 

pa_enf50ext <- raster(enf50ext)  

pa_enf1mext <- raster(enf1mext) 

Converting occurrence probability (suitability) in presence-absence 

pa_baseline[] <- ifelse(ensemble1[] >= th, 1, 0)   

pa_enf50[] <- ifelse(enf50[] >= th, 1, 0)   

pa_enf1m[] <- ifelse(enf1m[] >= th, 1, 0)   

pa_enf50ext[] <- ifelse(enf50ext[] >= th, 1, 0)   

pa_enf1mext[] <- ifelse(enf1mext[] >= th, 1, 0)   

Plot changes considering presence-absence data 

Comparing baseline and future scenario 

pa_all <- stack(pa_baseline, pa_enf50, pa_enf1m, pa_enf50ext, pa_enf1m

ext) 

 

plot(pa_all[[c(1,2,3,4,5)]],  

          main= c("Baseline","SLR 0.50 m","SLR 1 m", "SLR 0.50 m extre

me","SLR 1 m extreme")) 
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Calculate changes for presence-absence results 

Calculate changes 

ch_enf50 = pa_enf50 - pa_baseline 

ch_enf1m = pa_enf1m - pa_baseline 

ch_enf50ext = pa_enf50ext - pa_baseline 

ch_enf1mext = pa_enf1mext - pa_baseline 

Stack changes 

changes_Pres_Ab <- stack(ch_enf50, ch_enf1m, ch_enf50ext, ch_enf1mext) 

Plot changes for ensemble future results (moderate and extreme scenarios) 

plot(changes_Pres_Ab[[c(1,2,3,4)]],  

     col=c('red', 'gray', 'blue'), 
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     main= c("SLR 0.50 m","SLR 1 m", "SLR 0.50 m extreme","SLR 1 m ext

reme")) 

 

Legend 

• zero indicates no changes 

• 1 indicates niche expansion or colonization 

• -1 indicates nicheretraction or extinction 
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