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The adoption of Deep Neural Network (DNN) methods to solve problems in real‑world  scenarios  has  been  increasing  as  the  data  volume  grows.  Although  such methods present  impressive  results  in  supervised  learning,  it  is  known  that  the occurrence  of  noises modifying  the  original  data  behavior  can  affect  the model accuracies and, consequently, the generalization process, which is highly relevant in learning  tasks. Several approaches have been proposed  to  reduce  the  impact of noise on the final model, varying since the application of preprocessing steps to the design of robust DNN layers. However, we have noticed that such approaches were not  systematically  assessed  to  understand  how  the  noise  influences  have  been propagated throughout the DNN architectures. This gap motivated us to design this work,  which  was  focused  on modeling  noisy  data  with  temporal  dependencies, typically referred to as time series or signals. In summary, our main claim was to create a network capable of acting as a noise filter and being easily connected to existing networks. To reach this goal, we have defined a methodology, which was organized into four phases: (i) execution of a study about the application of DNNs to model  signals  collected  from a  real‑world  problem;  (ii)  investigation  of  different preprocessing  tools  to  transform  such  signals  and  reduce  noise  influences;  (iii) analysis about the impact of increasing/reducing the noise on the final model; and (iv) creation of a new DNN that can be embedded into DNN architectures and act as noise filtering layer to keep the overall performances. The first and second phases were  achieved  in  collaboration  with  researchers  from  the  Universidad  de  La Frontera, which provided a set of signals directly collected from the Llaima volcano in Chile.  The  modeling  performed  on  such  signals  allowed  the  creation  of  a  new architecture called SeismicNet. By knowing the behavior or such signals, we could create  a  controlled  scenario  with  different  additive  noise  levels  and  outputs produced by our original models,  thus meeting  the  third phase of  the described methodology. Next, we performed two new studies to understand the  impact of noises in our scenario. Firstly, we used statistical tests to confirm the error variation when noise is added to the expected signals. Then, we used XAI (eXplainable Artificial Intelligence)  to visually  comprehend  the noise propagation  into  the DNN  layers. Finally, we were able to finish up the last phase and accomplish our primary goal: the design  of  a  new  neural  network  architecture  with  embedding  noise  filtering  to suppress 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preprocessing phase. Interpreting the obtained results, we understand that  this  novel  approach  learned  the  noisy  features  better  and  was  capable  of delivering stable results apart from the noise level on 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signal.Keywords: 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ABSTRACT

The adoption of Deep Neural Network (DNN) methods to solve problems in real-world
scenarios has been increasing as the data volume grows. Although such methods present
impressive results in supervised learning, it is known that the occurrence of noises mod-
ifying the original data behavior can a↵ect the model accuracies and, consequently, the
generalization process, which is highly relevant in learning tasks. Several approaches
have been proposed to reduce the impact of noise on the final model, varying since the
application of preprocessing steps to the design of robust DNN layers. However, we have
noticed that such approaches were not systematically assessed to understand how the
noise influences have been propagated throughout the DNN architectures. This gap mo-
tivated us to design this work, which was focused on modeling noisy data with temporal
dependencies, typically referred to as time series or signals. In summary, our main claim
was to create a network capable of acting as a noise filter and being easily connected to
existing networks. To reach this goal, we have defined a methodology, which was orga-
nized into four phases: (i) execution of a study about the application of DNNs to model
signals collected from a real-world problem; (ii) investigation of di↵erent preprocessing
tools to transform such signals and reduce noise influences; (iii) analysis about the im-
pact of increasing/reducing the noise on the final model; and (iv) creation of a new DNN
that can be embedded into DNN architectures and act as noise filtering layer to keep the
overall performances. The first and second phases were achieved in collaboration with
researchers from the Universidad de La Frontera, which provided a set of signals directly
collected from the Llaima volcano in Chile. The modeling performed on such signals al-
lowed the creation of a new architecture called SeismicNet. By knowing the behavior or
such signals, we could create a controlled scenario with di↵erent additive noise levels and
outputs produced by our original models, thus meeting the third phase of the described
methodology. Next, we performed two new studies to understand the impact of noises in
our scenario. Firstly, we used statistical tests to confirm the error variation when noise
is added to the expected signals. Then, we used XAI (eXplainable Artificial Intelligence)
to visually comprehend the noise propagation into the DNN layers. Finally, we were able
to finish up the last phase and accomplish our primary goal: the design of new neural
network architecture with embedding noise filtering to suppress the preprocessing phase.
Interpreting the obtained results, we understand that this novel approach learned the
noisy features better and was capable of delivering stable results apart from the noise
level on the signal.

Keywords: Deep Neural Networks, Explainable AI, Time Series Analysis.
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Chapter

1
INTRODUCTION

1.1 GENERAL CONTEXT AND MAIN PROBLEM

Time is a natural and important variable present in several applications, from the most
conventional/usual activities (e.g., speaking, vision, and walking) to the most present-
day ones (e.g., robotic tasks, disaster prevention, and fake news spread). In general, such
applications deal with time by modeling events to support complex decisions such as, for
example, a better understanding of current states and the identification of possible adverse
e↵ects that might a↵ect a system in the future (FAMA, 1965). The increasing number of
applications, in which the data is characterized by temporal relationships, motivated the
development of important research areas as Time Series Analysis and Signal Processing.
For the sake of clarity, in the context of our work, we will consider both areas in an
interchangeable manner.

Time Serie (TS) (or Signal) can be defined as a sequence of data (observations) col-
lected after monitoring a system during specific time intervals (BOX et al., 2015)1. TS
can also be defined as a way of organizing, over time, quantitative information of a given
situation and, due to their natural temporal order, they are present in multiple tasks that
require some human cognitive process. Several real-world systems, through the recording
observations of numerous phenomena, yield outputs as TS (e.g., climate, stock market,
and social media data), making it possible to model and, consequently, understand their
behavior (GEOGHEGAN, 2006).

Thereby, with the increase in temporal data availability, researchers have been propos-
ing various methods in the past years to better model TS (LÜTKEPOHL, 2005; ESLING;
AGON, 2012; BAGNALL et al., 2017). However, although the development of methods
to analyze TS has remarkably increased (KEOGH; KASETTY, 2003; DIETTERICH,
2002), such a task has still been considered one of the most challenging problems in data

1At the time of writing this work, a particular type of time series has been widely studied, referred
to as Data Stream, whose observations are characterized for being collected in an open-ended manner,
i.e., a system is continuously monitored producing a data flow (GAMA et al., 2014). However, such a
time-series definition is not considered in this work.

1
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mining as discussed by Yang and Wu (2006). Such challenge is especially explainable
by the high dimensionality and the presence of noise, which jeopardize the estimation of
models once the data dynamics become very complex or even unknown (SUTSKEVER;
HINTON; TAYLOR, 2009). Therefore, the adoption of traditional methods, which only
contain a reduced number of linear/nonlinear operations, fails to precisely model such
complex data (SUTSKEVER; HINTON; TAYLOR, 2009).

In order to overcome this issue, several problems have been successfully modeled by
using Deep Neural Networks (DNNs) that are capable of capturing data information, even
presenting complex structures. DNN has been increasingly adopted to achieve state-of-
the-art results across multiple sets of reference data, solving challenging Artificial Intel-
ligence (AI) tasks. To illustrate this statement, consider PaLM, which is a Transformer
language model densely activated, trained with 540 billion parameters in a computational
infrastructure with 6144 TPU v4 chips (CHOWDHERY et al., 2022). According to the
Google Research team, PaLM is considered the state-of-the-art in its NLP (Natural Lan-
guage Process) tasks providing the best results on 28 of 29 datasets usually considered
in this area. Another impressive result is presented by Dall· 2 (RAMESH et al., 2022),
which is a new AI system capable of creating realistic images and art from a description in
natural language. Dall· 2 (RAMESH et al., 2022), designed by the OpenAI foundation2,
uses a 3.5 billion parameter model (plus a 1.5 billion parameter model to enhance the
resolution of the produced images) to learn relationships between images and the text
used to describe them. Recently, the DeepMind3 company has published AlphaFold 2,
which is an AI system that accurately predicts 3D models of protein structures and has
the potential to accelerate research in every field of biology. Essentially, AlphaFold 2 is
a novel machine learning approach that incorporates physical and biological knowledge
about protein structures (JUMPER et al., 2021). Besides those systems, 2022 has been
marked by an important step towards achieving Artificial General Intelligence (AGI) with
Gato (REED et al., 2022), which is a single generalist agent trained with 1.2 billion pa-
rameters capable of performing multiple tasks, e.g., playing Atari, caption images, and
stack blocks with a real robot arm. And, Flamingo (ALAYRAC et al., 2022), a single
visual language model, trained with 80 billion parameters, that sets a new state of the
art on a wide range of open-ended multimodal tasks.

All those systems are characterized by requiring intensive computational specifications
used to train huge models. In such scenarios, isolated noises are mitigated by the massive
volume of data. However, errors or noises embedded into the data as a pattern may
propagate accumulative errors to all layers, thus a↵ecting the final models (RAMESH
et al., 2022). In deep learning solutions designed to deal with temporal data, such as
TS classification, forecasting, and pattern recognition (LAPTEV et al., 2017; GAMBOA,
2017), the presence of noise is even harmful because it does not a↵ect isolated observa-
tions. In general, such a problem a↵ects the whole system leading to the production of
patterns known as, for example, additive or multiplicative noise.

In this sense, even presenting outstanding results in several practical problems

2https://openai.com/
3https://www.deepmind.com/
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(CURILEM et al., 2018b; CANÁRIO et al., 2020; LEE et al., 2009), the occurrence
of noise, naturally present in real-world problems, a↵ects the performance of DNN mod-
els. To overcome this issue, researchers are used to model noisy data by performing a
two-step analysis: first, a filter is applied to remove noise and, then, models are adjusted
on the resultant noise-free data. This process has called our attention and motivated
us to investigate how the noise is propagated inside DNNs, as discussed in the following
section.

1.2 HYPOTHESIS

Usually, TS collected from real-world systems present influences from stochastic4 and
deterministic5 components, thus a↵ecting the value of every single observation. As a
consequence, high accuracy results depend on modeling those components as discussed in
(HAN; LIU, 2009; RIOS; MELLO, 2016). In summary, by only modeling the deterministic
component, one may obtain malformed attractors, whereas the individual modeling of
the stochastic component tends to underestimate recurrent behavior.

By facing such a situation, researchers decompose noisy time series into stochastic
and deterministic components. Then, two main approaches are taken into account (QIU
et al., 2017; YANG; CHEN, 2019): i) the stochastic component is considered as noise to
be later removed from the analysis; or ii) stochasticity and determinism are combined in
a hybrid model, that separately considers such components (RIOS; MELLO, 2013).

In this work, we are focused on understanding better the first approach, in which
noise is just removed from the data to avoid a↵ecting model accuracies. Therefore, by
taking into account that this task is usually performed before setting a Neural Network,
we defined the following hypothesis that guides our research:

“A filter created to work as an embedding layer in Long Short-Term Memory
Networks can improve the modeling of noisy time series without requiring
a previous decomposition/filtering step.”

Aiming at validating this hypothesis, we organized the methodology of our work into
four main phases. Firstly, we started a collaborative study with researchers from the
Universidad de La Frontera to model signals from a real-world system. In this phase,
we have created a new DNN architecture that provided remarkable results to classify
signals collected from the Llaima volcano according to their seismic sources. The second
phase was planned to investigate di↵erent signal transformations usually performed as a
pre-processing step. The third phase was structured to investigate the influence of noises
during the training of the DNN models. Therefore, we created a controlled scenario to
assess the impact of di↵erent signal-to-noise ratios on the final model. In summary, we
evaluated the model degradation as higher noise was added to the signals. By knowing the
impact of this operation, we have met our last methodological phase, which was performed
in two parts. In the first one, we used eXplainable Artificial Intelligence (XAI) to visually
understand and interpret the noise propagation through the DNN layers. Then, we have

4Current observations are influenced by random variables.
5Current observations only depend on past ones.
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dedicated a great e↵ort to designing a new neural network architecture with embedding
noise filtering to suppress the pre-processing step by demonstrating the relevance of our
hypothesis.

Finally, after finishing up all methodological phases, our contributions are three-fold:
firstly, we created SeismicNet, a new DNN architecture devoted to model volcano signals.
Secondly, the study performed with XAI tools allowed us to create a new approach to
filter additive noise. Finally, we concluded this thesis with a new architecture that can be
plugged into existing neural networks to automatically denoise signals during the training
process.

1.3 CHAPTER MAP

This thesis heeds the following organization:

• Chapter 2 presents the research background and the essential issues to comprehend
our proposed work and their relations;

• Chapter 3 discusses the research and shows the methodology of our work;

• Chapter 4 describes our experimental scenarios and the performed analysis;

• Chapter 5 presents the conclusion, discussion, and the future works;

• In the Appendix, we describe the path to reach the developed network architecture
with embedding noise filtering.



Chapter

2
BACKGROUND

This chapter aims at providing a theoretical background necessary during the develop-
ment of the research proposed in this project. We organized this chapter into three
main sections: firstly, we present an overview about time series, which is the information
processing paradigm adopted in this project; then, we show details on Artificial Neural
Network, that is the Machine Learning method in which we are interested in investigating
the influence of noise on the obtained models; finally, we depict some related researches
published so far.

2.1 TIME SERIES

2.1.1 General Overview

Time Serie (TS) organizes sequence of observations over time, which allows modeling
and analyzing systems behavior (BOX et al., 2015). The importance of TS in analysis is
observed in several areas, such as: Economy, Computing, Biology, Telecommunications,
Medicine and Climatology (MORETTIN; TOLOI, 2004; SHUMWAY; STOFFER, 2006;
CHATFIELD et al., 2004). In economy, it is possible to use TS analysis to describe stock
market behavior, which looks for to model fluctuations to predict product prices and
stock values to avoid, for example, stock market failures (GUHATHAKURTA; BHAT-
TACHARYA; CHOWDHURY, 2010; CHAN et al., 1999; CHOI; KULICK; MAYER,
1999). Besides modeling economic systems, TS are widely used as decision making sup-
port to model disease symptoms, treatments evolution, tendencies of cancer in individ-
uals, and heartbeat variations (TSCHACHER; KUPPER, 2002; SATO; HOSOKAWA;
MAEDA, 2003; SUMMA et al., 2007; ZHUANG et al., 2008; PONOMARENKO et al.,
2005).

The use of TS for prediction aims to analyze n past observa-
tions ({xt�n�1, ..., xt�2, xt�1, xt}) to estimate l observations in future time
({xt+1, xt+2, ..., xt+l}). The main purpose of this function is to reduce, to maxi-
mum extent, the di↵erence between observed and predicted values. On the other hand,
the use of TS to estimate transfer functions aims to understand system dynamic behavior,

5
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whose input values are represented by means of a TS. In contrast to the predictive
approach, study and estimation of transfer functions generally aim to understand current
behavior of an observation xt based on a set of past observations {xt�k, ..., xt�2, xt�1}.
On analysis of e↵ects in events intervention, TS can be used to understand impacts
that one system has on another, such as the attempt to understand pollution e↵ect
on increase of planet temperature. Finally, the use of TS in control systems aims to
monitor a particular process of interest in order to detect possible deviations from
normal behavior and then adjust system output for it approaches to expected behavior.

These TS applications require models adjusted on the observation characteristics.
Among them, we can cite the number of variables used to compose an observation and
time interval between consecutive observations. Regarding the number of variables, TS
can be classified as univariate or multivariate. Univariate series are composed of scalar
values, sequentially collected while multivariate ones occur when k variables are observed
at each time instant t (HAMILTON, 1994).

In relation to interval between collections, Morettin and Toloi (2004) subdivided TS
into two classes:

(i) Discrete: analysis done on temporal domain, according to time intervals �t, peri-
odic and fixed in N;

(ii) Continuous: analysis carried out in frequency domain (time in R+).

In addition to the number of variables that composes each observation and the interval
time, the modeling process also involves the knowledge of components responsible for
defining the TS behavior. In this sense, a given time series Xt can be denoted by the
sum of three non-observable components Xt = Tt + St + "t, where Tt represents the
trend, St the seasonality, and "t a random component (MORETTIN; TOLOI, 2004).
These components, {Tt, St, "t}, are called unobservable because they are not collected
directly from a system but inferred through temporal relations between observations. By
understanding these components, it can be possible evaluate global aspects of TS, such
as stochasticity, stationarity and linearity, which are important to provide more accurate
TS models.

Stochastic series are composed of observations and random relations that follow proba-
bility density functions and can change over time, making it di�cult to model their events.
On the other hand, deterministic series predominantly present observations with strict
dependence on past values. Stationary series are in a particular statistical equilibrium
state (BOX et al., 2015), that is, they develop around a constant average (MORETTIN;
TOLOI, 2004). TS whose observations are modeled by stochastic processes, which do
not satisfy the stationary condition, are denominated non-stationary.

Time series can also be classified by their linearity, a rule that defines their observa-
tions in linear and non-linear. Linear TS are those whose observations are composed of a
linear combination of past occurrences and noises. Therefore, the linearity of a series is
present in model, map, or process that originated it. In turn, non-linear series are formed
by processes of non-linear combination of observations and past noises. After understand-
ing these essential aspects of TS, one can select a subset of more appropriate techniques



2.1 TIME SERIES 7

to model and understand their most representative behaviors. In this sense, the following
presents some techniques widely used to decompose and transform TS section.

2.1.2 Time Series Decomposition

TS usually has a variety of patterns, and it is commonly valuable to deconstruct the TS
data through statistical tasks into several components, each representing an underlying
pattern type (HYNDMAN; ATHANASOPOULOS, 2018). Often the TS decomposition
is done to help of the understanding a TS, but it can also be used to improve Machine
Learning (ML) algorithms performance. In this section, we consider some common meth-
ods for extracting those components that we used during our research.

2.1.2.1 Fourier Transform

We can describe a Fourier Transform (FT) as a generalization of the complex Fourier
series (FS) that transforms a function of time, f(t), to a function of frequency, F (!) (OS-
GOOD, 2002). Recall that for a general function f(t) of period T the FS has the form

f(t) =
1X

n=�1
cne

2⇡int/T , (�.�)

so that the frequencies are 0,±1/T,±2/T , and so on, making the frequency terms more
packed as the T increases. Accordingly, we describe the n� th Fourier coe�cient as

cn =
1

T

Z T
2

�T
2

e�2⇡int/Tf(t)dt. (�.�)

Then, in the limit as T ! 1 we can replace n/T by s and, despite the several common
conventions on definition of FT as an integrable function f : R ! C, formally define FT
of a function f(t) as

f̂(s) =

Z 1

�1
e�2⇡istf(t)dt, 8s 2 R. (�.�)

As the FT of TS can not describe how the TS spectral content changes over time,
which is critical in many non stationary signals, the time variable is introduced in the
FT analysis to provide a proper description of how the spectral content changes as a
function of time. Hence, the time-frequency transform could provide direct information
about frequency components at instant time t (COHEN, 1995; GRÖCHENIG, 2001).

In our studies, we chose to work with the Short-Time Fourier Transform (STFT),
an alternate form of FT, given its simplicity and results in TS processing analy-
sis (CHIKKERUR; CARTWRIGHT; GOVINDARAJU, 2007). The STFT uses a se-
quence of FT of a windowed TS providing the local time-frequency information for TS
local sections analysis as it changes over time. Thus, in the discrete domain, the STFT
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can be denoted by

SP [x(t)](n, k) = |
N�1X

m=0

x(m) · w(m� n) · ei2⇡mk|2, (�.�)

where x(t), and w(t) represent the TS and the STFT sliding window, respectively.
However, the fixed resolution of the STFT could be an issue. As the width of the

windowing function describe how it represents the TS, it directly determines whether
there is a good frequency or time resolution. Which denotes if the frequency components
close together can be separated or the time at which frequencies change. Therefore, a
wide and a narrower window gives better frequency resolution but poor time resolution
and good time resolution but poor frequency resolution, respectively. Then, to overcome
this issue, the wavelet transforms are chosen, which give good time resolution for high-
frequency events and good frequency resolution for low-frequency events. In the next
section, we further describe the wavelet transform.

2.1.2.2 Wavelet Transform

Wavelets are mathematical functions designed to decompose signals into di↵erent
scale and resolution levels (GRAPS, 1995). They work quite similar to FT, that allows
the study of signals in frequency domain. However, despite of its utility, the temporal
information from signals is completely lost by the Fourier transform, making di�cult to
distinguish transient relations and identify when structural changes do occur over time.

Wavelets, on the other hand, have been proposed to estimate spectral characteristics
from signals taking into account information from temporal and spacial scale. By using
wavelets, signals are stretched into long wavelet functions to measure low frequency in-
fluences and are compressed into short wavelet functions to measure high frequency ones.
Also, instead of using sine and cosine functions like Fourier, wavelets use wave forms
as base functions to extract coe�cients from signals. In summary, wavelet coe�cients
present two main patterns: the first one works as a smooth filter, whereas the second car-
ries signal details. Such details represent fluctuations with high frequency which can be
considered as noise. In our work, we studied discrete and continuous Wavelet transforms,
as detailed in the following sections.

Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is a wavelet transform that decomposes
a TS into a number of wavelet resolutions, where each resolution is a TS of coe�cients
describing the time evolution of the signal in the corresponding frequency band (GRAPS,
1995). Through dilations and translations of a “mother function” �(x) it can be defined
an orthogonal basis, such as

�s,l(x) = 2
s
2�(2�sx� l), (�.�)

where s and l represent scale and dilation of the mother function � that generate the
wavelets. Moreover, the scale indicates the wavelet width, whereas dilation gives its
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position. Similarly, we can notice in the Equation �.� that the mother functions are
rescaled by power of two and translated by an integer. Consequently, this make the
wavelet bases especially interesting because of the self-similarity generated by the scales
and dilations. Thus, as we know about the mother’s wavelet function, it possibly learn
everything about the basis.

The analyzing wavelet is used in the scaling equation to span the data domain at
di↵erent resolutions:

W (x) =
N�2X

k=�1

(�1)kck+1�(2x+ k), (�.�)

where W (x) is the scaling function of the mother function � and ck represent the wavelets
coe�cients. Furthermore, to satisfy the linear and quadratic constraints, the wavelet
coe�cients follow

N�2X

k=0

ck = 2, (�.�)

N�2X

k=0

ckck+2l = 2�l,0 (�.�)

where � is the delta function, and l is the location index.
The wavelets coe�cients {c0, · · · , cn} work as a bank filter that is placed in a trans-

formation matrix to apply in a raw data vector. The data is decomposed simultaneously
through a low pass filter with impulse response g and a high-pass filter h that outputs,
respectively, the detail coe�cients and approximation coe�cients. At each level of the
decomposition process, expressed by the convolutional symbol (⇤) at Equations �.� and
�.��, the filter output of the low-pass filter g is subsampled by two and further processed
by passing it again through a new low-pass filter g and a high-pass filter h with half the
cut-o↵ frequency of the previous one as denoted by

ylow = (x ⇤ g) # 2, (�.�)

yhigh = (x ⇤ h) # 2. (�.��)

In this work, we used a DWT from Daubechies family (DAUBECHIES, 1988) with a
filter Least Asymmetric. Moreover, the length of wavelet and scaling filters was equals to
8. In order to easily understand the e↵ect of such transformation on a signal, Figure 2.1
shows a TS (x(t)). The following figure (V1(t) – V8(t)) illustrate the wavelet coe�cients
varying the scale resolution from 1 to 9. As the resolution level increases, more details
are removed from the signal. Consequently, the number of observations also reduces in a
factor by 2 (see the x-axis scale in all plots). For instance, by comparing V1(t) to origi-
nal signal x(t), we notice the general behavior persists, but the number of observations
reduces from 4, 000 to 2, 000. As the resolution grows, less observations and information
are considered.

Continuous Wavelet Transform
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Figure 2.1 x(t) is a TS and V1(t) – V8(t) represent di↵erent wavelet resolutions.

The Continuous Wavelet Transform (CWT) is a formal tool that provides a com-
plete representation of a signal by continuously translating and scaling wavelet functions.
CWT is used to decompose a signal into wavelets and is considered strongly robust to
the presence of outliers and noises (SLAVIČ; SIMONOVSKI; BOLTEŽAR, 2003).

The application of CWT on a signal x(t) is expressed by

Xw(i, j) =
1

|i|1/2

Z 1

�1
x(t) 

✓
t� j

i

◆
dt, (�.��)

in which d represents a scale (i > 0) i 2 R+⇤, j 2 R is a translational value,  (t) is a
continuous function in both time and frequency domain called the mother wavelet, and
the  is its complex conjugate.

The main purpose of mother wavelet is to provide a source function to generate
daughter wavelets which are simply translated and scaled versions of mother wavelet.
In this work, the continuous wavelet transform was computed with the complex-valued
Morlet wavelet as discussed in the next section.

Morlet Wavelets

The Morlet Wavelets belong to a one-parameter family of functions firstly intro-
duced by Goupillaud, Grossman and Morlet (1984) and given by

 !0(t) = Kei!0te�
t2

2 , (�.��)

where  !0 is a complex sinusoid of the angular frequency !0 (damped by a Gaussian
envelope).

However, such equation cannot be considered an actual wavelet once it fails to satisfy
the admissibility condition as discussed in (CHATTERJEE, 1986). In order to fulfill this
gap, a correction term can be added as shown in Equation �.��.
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 !0(t) = K(ei!0t � e�
!2
0
2 )e�

t2

2 . (�.��)

Moreover, aiming at confirming  w0(t) respects the unit energy condition, the nor-
malizing constant K must be chosen by considering Equation �.��.

K = ⇡� 1
4 . (�.��)

The Morlet Wavelet became the most popular complex-valued wavelets mainly due
to its four properties. Firstly, it can be treated as an analytic wavelet. Secondly, the
peak frequency (!P

· ), energy frequency (!E
· ), and central instantaneous frequency (!I

· )
are given by Equation �.��, which makes easier the conversion from scales to frequencies.

!P
 !0

= !E
 !0

= !I
 !0

= !0. (�.��)

Thirdly, the Heisenberg box area reaches its lower bound with this wavelet. In this
sense, Morlet Wavelet has optimal joint time-frequency concentration. Lastly, time radius
and frequency radius are defined by Equation �.��, representing the best compromise
between time and frequency concentration.

�t; !0 = �!; !0 =
1p
2
. (�.��)

Figures 2.2 and 2.3 exemplify the output produced by the Morlet Wavelet on a single
TS. As one can notice, by varying the number of octaves, it is possible to scale the
obtained complex values. On the other hand, by changing the number of scales, we can
control how smooth is the transform.

Figure 2.2 From left to right a TS followed by three CWT transformations using a Morlet
Wavelet as mother wavelet with their respective number of scales in each octave.

As previously mentioned, the CWT output yields a set of complex values. Instead of
just using the real part, we adopted their modules as defined in Equation �.��, in which
a and bi are the real and imaginary part, respectively.

Mod( !0(t)) =
p
a2 + bi2. (�.��)

The better understand the advantage of using this equation, Figure 2.4 shows the
di↵erence between the modulus and the real part calculated by CWT from a TS.
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Figure 2.3 TS followed by three CWT transformations using a Morlet Wavelet as mother
wavelet with changing only the number of octaves each.

Figure 2.4 TS followed by the modulus and real part of CWT transformation.

2.2 ARTIFICIAL NEURAL NETWORKS

2.2.1 General Overview

Artificial Neural Network (ANN) are computing systems based on connected processing
unities inspired in biological neurons (GERVEN; BOHTE, 2018). The first ANN, also
known as perceptron, was developed by (ROSENBLATT, 1961), considering an earlier
work published by (MCCULLOCH; PITTS, 1943). In summary, this network is composed
of a single neuron designed to process inputs (x1, x2, x3, . . . , xn) and produce a binary
output y that can be specially used in linearly separable problems. Such output can also
be transmitted to other neurons, simulating synapses in biological brains. In ANNs, a
synapse is commonly determined by an activation function adopted to limit the neuron
output as exemplified in Equation �.��. This equation is a step function with 4 basic
elements (HAYKIN; NETWORK, 2004): i) synaptic weights (wi), that quantifies the
importance of every input (xi), by applying a dot product; ii) an adder working as a
linear operator that combines all inputs and weights; iii) an external bias (b) used to
apply an a�ne transformation on the adder output; and iv) a threshold (⌧) to define the
neuron output in terms of induced local field.



2.2 ARTIFICIAL NEURAL NETWORKS 13

y =

(
0 if v  ⌧

1 if v > ⌧
, such that v =

X

i

wi · xi + b. (�.��)

According to the literature, the main problem faced by this activation function is the
all-or-none property which provides flipping results. An alternative, widely adopted in
ANNs, is the sigmoid function, also referred to as s-shaped graph. Normally, a special case
of sigmoid function, called logistic function, is considered due to its ability of providing
values within the interval [0, 1], as shown in Equation �.��.

y =
1

1 + e�x
. (�.��)

The ANN learning process may be computed using a first-order iterative optimization
that updates the parameters by considering a gradient descent algorithm. This algorithm
looks for a network configuration in which some error measure achieves its global min-
imum. In summary, the algorithm is based on the assumption that if a multi-variable
function C(·) is defined and di↵erentiable in a neighborhood of a point wi, then C(wi) de-
creases as it approaches wi in the direction of the negative gradient of C at wi, �rC(wi),
as presented in Equation �.��.

w0
i = wi � ⌘rC(wi). (�.��)

In this equation, if term ⌘rC(wi) 2 R+ is subtracted from wi, then the learning
optimization moves against the gradient towards the minimum as illustrated in Figure 2.5.

Figure 2.5 Example of gradient descent on a level sets series.

Considering the architecture, ANN can be composed of multiples neurons organized
in layers, as shown in Figure 2.6, in which the left-most one is used to deal with inputs.
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On the other hand, the right-most layer contains the output neurons. Finally, in the
middle, neurons can be configured in one or multiple layers, also referred to as hidden
layers, aiming at extracting implicit information from data.

Figure 2.6 An Artificial Neural Network example composed by three layers. From left to right:
the input, hidden and output layer.

Although the first motivation of creating ANN was somehow inspired in the strong
Artificial Intelligence (AI) hypothesis, computers thinking as human brains, we no-
ticed its main recent success is focused on solve specific problems such as computer
vision (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), speech recognition (HINTON
et al., 2012), playing board games (SILVER et al., 2016), and medical diagnosis (AM-
ATO et al., 2013). The following sections present the ANN architectures considered in
our study.

2.2.2 Multilayer Perceptron

Multilayer Perceptron (MLP) is a well-known type of artificial neural network composed
of, at least, three layers: input, hidden, and output. The neurons adopted in such
network use non-linear activation functions (as shown in Equation �.��), whose outputs
are connected to neurons from the following layer in a nonlinear mapping. Another
important aspect related to MLP is the complexity of defining the number of neurons
and hidden layers. In this sense, Stathakis (2009) present a discussion on heuristics that
can be adopted to overcome this issue.

MLP is also viewed as a logistic regression classifier, that propagates the input data
through layers in a non-linear manner. In summary, this step transforms the data into
a space where they are linearly separable. Depending on the task, a single hidden layer
is su�cient to be used as universal approximator. An example of a MLP is shown on
Figure 2.7. Later, in Section 4.1, we present a set of experiments using MLP to classify
the TS.
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Figure 2.7 A MLP example. This MLP is composed as follow: the leftmost and rightmost are
the input and output layers, respectively, and in the middle of network there are two hidden
layers.

2.2.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is very similar to ordinary Neural Network de-
scribed in previous section. In general, CNN is a multilayer network capable of recognizing
patterns with extreme variability, distortions, and geometric transformations (LECUN et
al., 1998). Its architecture is built up using neurons with adaptable weights and biases,
following the same learning steps previously presented: neurons receive data as input,
apply an adder on inputs, weights and biases, and calculate outputs using activation
functions. The main di↵erence is related to the hidden layers, which can be organized by
considering four di↵erent architectures (KRIZHEVSKY; SUTSKEVER; HINTON, 2012):
i) convolutional; ii) activation; iii) pooling; and iv) full connection.

The convolutional layer is the core building block of CNNs and requires the heaviest
computational load during the learning process. The layer parameters consist of a set
of learnable filters spatially small, designed to deal with information in 3 dimensions:
width, height, and depth. During a forward pass, each filter is convolved across the
width and height of the input volume by computing its dot product at any position. This
convolutional step produces a 2-dimensional activation map, providing responses in every
spatial position. Intuitively, the learning process in this layer updates filters to recognize
features (e.g. edges, colors, and patterns) and produce output volumes. Figure 2.8 shows
the described operations of convolutional layer.

In addition to filters, convolutional layers use two other hyperparameters for control-
ling the output volume size. Firstly, the stride which defines the way the filter will be
slided on inputs from the convolutional layer. The greater this parameter is, the smaller
output volume is. Secondly, the zero-padding parameter fulfills the input volume with
zeros around the border.

Activation layers apply a function on neuron outputs to avoid learning problems as, for
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Figure 2.8 On left, the input layer followed by an convolutional layer. As it is observed,
multiple neurons along the depth are connected at the same region of input layer.

instance, getting stuck near zero or indefinitely growing up. Rectified Linear Unit (ReLU)
is a typical example of activation layer, which sets all negative values in a matrix or vector
to zero while all other values are constantly kept.

Pooling layers perform a downsampling operation along spatial dimensions. These
layers operate on every depth slice of input, spatially resizing it by using, for instance, a
MAX operation.

All these layers are usually set considering 2⇥ 2 filters and stride of 2 downsampling
every depth slice by shifting two units at a time and disregarding 75% of activations.
In this case, MAX operation gets the maximum value of 4 numbers from a 2 ⇥ 2 region
in some depth slice. Figure 2.9 presents an example of a max pooling operation over a
matrix input data.

Figure 2.9 On left, an input matrix and, on right, the max pooling operation result. On this
example, each max operation was taken over 4 numbers that was formed by a 2x2 filters size.

Finally, the fully connected layers, also referred to as dense layers, are used to com-
pute the class scores. They work as ordinary MLP, in which every neuron in a layer is
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completely connected to all neurons in the previous and following ones. In this work, we
used multiple types of CNNs architectures that will be detailed through the Chapter 4.

2.2.4 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a special type of ANN with feedback loop, in which
outputs are also used as neuron inputs, allowing to persist some information during the
training process. Figure 2.10 summarizes this network showing that neurons in a given
layer receive inputs and yield outputs that are transmitted to the following layer and
used again to feed such neurons along with the next inputs.

Figure 2.10 A summary of RNN, where each hidden layer output yields to the same hidden
layer input and the next one as well.

RNNs have been widely adopted in di↵erent tasks such as speech recognition, language
modeling, and signals (time series) prediction. The most used RNN architecture is the
Long Short-Term Memory (LSTM) network, which was designed to deal with long-term
dependency issues.

LSTM was introduced by (HOCHREITER; SCHMIDHUBER, 1997) and widely
adopted to deal with huge entries in several remarkable researches such as (GERS;
SCHMIDHUBER; CUMMINS, 1999; GRAVES; SCHMIDHUBER, 2005; GREFF et al.,
2017).

Similarly to standard RNNs, LSTM has a repeating block, also known as memory cell,
that is created by using a di↵erent composition: i) input, forget, and output gates; ii)
block input; iii) single Constant Error Carousel (CEC); iv) output activation function; v)
peephole connections; and vi) the block output recurrently connected back to the block
input and all gates. The described arrangement is show in Figure 2.11.

To better explain this network, let xt be the input vector and yt�1 the output vector
at time t. Then, the block input it can be written as shown in Equation �.��, in which
Wz,Rz, and bz are the input, recurrent, and bias weights, respectively. In such equation,
g(·) is a hyperbolic tangent activation function defined as g(x) = tanh(x).

zt = g
�
Wzx

t +Rzy
t�1 + bz

�
. (�.��)

The input gate with its input, recurrent, peephole, and bias weights (Wi,Ri, pi

and bi, respectively) is described in Equation �.��, such that �(·) is the logistic sigmoid
(�(x) = 1

1+e�x ) activation function.
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Figure 2.11 LSTM memory cell (adapted from Gre↵ et al. (2017).

it = �
�
Wix

t +Riy
t�1 + pi � ct�1 + bi

�
. (�.��)

The forget gate is defined in Equation �.��, in which Wf ,Rf , pf , and bf stand for
the input, recurrent, peephole, and bias weights, respectively, as well as the � denotes
the element-wise product.

f t = �
�
Wfx

t +Rfy
t�1 + pf � ct�1 + bf

�
. (�.��)

Similarly, the output gate is presented in Equation �.��, being Wo,Ro, po, and bo

the input, recurrent, peephole and bias weights, respectively.

ot = �
�
Wox

t +Roy
t�1 + po � ct + bo

�
, (�.��)

On the other hand, we can use Equation �.�� to compute CEC, taking into account
� as a point-wise multiplication of two vectors.

ct = zt � it + ct�1 � f t , (�.��)

Finally, the memory cell output it computed by Equation �.�� such that h(·) is also
a hyperbolic tangent (h(x) = tanh(x)) activation function.

yt = h
�
ct
�
� ot , (�.��)
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Then, the deltas for the LSTM memory cell are calculated by Equation �.��, such
than �t is a vector of deltas received from the higher layer.

�yt = �t +RT
z �z

t+1 +RT
i �i

t+1 +RT
f �f

t+1 +RT
o �o

t+1

�ot = �yt � h (ct)� �0 (ot)
�ct = �yt � ot � h0 (ct) + po � ot + pi � �it+1

+pf � �f
t+1

+ �ct+1 � f t+1

�f
t

= �ct � ct�1 � �0
⇣
f
t
⌘

�i
t

= �ct � zt � �0
⇣
i
t
⌘

�zt = �ct � it � g0 (zt) .

(�.��)

The loss function E formally corresponds to @E
@yt without including recurrent depen-

dencies. Moreover, input deltas are only necessary when there is a layer below that
requires to be trained. Such deltas can be calculated by using Equation �.��.

�xt = WT
z �z

t +WT
i �i

t
+WT

f �f
t
+WT

o �o
t . (�.��)

Finally, the weight gradients are computed by Equations �.��, �.��, �.��, �.��, �.��,
and �.��, in which ? can be any of {z, i, f , �} and h?·, ?·i represents the outer product
between vectors.

�pi =
T�1X

t=0

ct � �i
t+1

, (�.��)

�pf =
T�1X

t=0

ct � �f
t+1

, (�.��)

�po =
TX

t=0

ct � �ot, (�.��)

�W? =
TX

t=0

⌦
�?t,xt

↵
, (�.��)

�R? =
T�1X

t=0

⌦
�?t+1,yt

↵
, (�.��)

�b? =
TX

t=0

� ?t . (�.��)

2.3 INTERPRETABILITY

2.3.1 General Overview

This section briefly presents an overview of interpretability techniques designed explicitly
for ANNs. Such techniques have been considered a hot topic in the AI area once the cur-
rent requirements of real-world systems depend on the general performance and the steps
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taken to perform a prediction. In summary, interpretability uses a set of visualization
tools to explain how these black-box methods execute classification tasks. Consequently,
the decision process is better detailed, thus improving models and detecting patterns that
influence their executions.

Generally, AI experts use such explanation mechanisms to, for example, understand
how layers of a deep network respond to specific input data or to debug/validate a
model. In contrast, non-experts often use them to comprehend how some model outputs
are produced to ensure trustworthiness, no bias, or compliance with the regulation. In
summary, the object of explainability methods is often determined according to the users’
goals (TOMSETT et al., 2018).

The recent ANN literature on eXplainable Artificial Intelligence (XAI) is based
on di↵erent mechanisms as, for instance, perturbation analyses (RIBEIRO; SINGH;
GUESTRIN, 2016), backward propagation (BACH et al., 2015), proxy mod-
els (RIBEIRO; SINGH; GUESTRIN, 2018), and activation optimization (MONTAVON;
SAMEK; MÜLLER, 2018).

To investigate ANNs models, authors widely use backward propagation method-
ologies such as DeepLIFT (SHRIKUMAR; GREENSIDE; KUNDAJE, 2017), Smooth-
Grad (SMILKOV et al., 2017), Integrated Gradients (IG) (SUNDARARAJAN; TALY;
YAN, 2016), Guided Backprop (GB) (SPRINGENBERG et al., 2014), and Layer-wise
Relevance Propagation (LRP) (BACH et al., 2015). The backward propagation mecha-
nism works layer by layer from the output to the input layer, thus estimating the con-
tribution of all neurons to the probability yielded by the logit function used in the last
layer (e.g., softmax).

The methods mentioned above mainly di↵er on the calculation of probability contribu-
tions in the last layer. LRP and DeepLIFT compute such contributions by decomposing
target neuron activation values into constituent values coming from previous layers using
a decomposition approach. Alternatively, the GB and SmoothGrad methods estimate the
contributions based on partial gradients of a target neuron activation concerning previous
layer neurons through a sensitivity analysis approach. Finally, the IG method achieves
the contribution estimation multiplying sensitivity-based contributions by activating pre-
vious layer neurons. In this work, we decided to use LRP due to its relevant results in
interpreting a non-linear classifier, thus increasing the trust in predictions and identifying
potential data selection biases. The following section presents an overview of the chosen
method.

2.3.2 Layer-wise Relevance Propagation

In a nutshell, LRP is a visualization method used to identify the importance of pix-
els through a backward pass in Deep Neural Network (DNN), in which neurons that
contribute the most to the higher layer receive greater relevance (BACH et al., 2015;
KOHLBRENNER et al., 2020). Thus, using the LRP, it is possible to visually identify
where the DNN is looking at. Also, it is worth emphasizing that the propagation rules
used by LRP can be understood, for many architectures, as a Deep Taylor Decomposition
of the prediction. Figure 2.12 illustrates the LRP procedure.



2.4 RELATED WORK ON MODELING NOISY TIME-SERIES 21

Figure 2.12 The LRP procedure (adapted from Montavon et al. (2019)).

As shown in this figure, the principal LRP procedure implements from the right to
the left of the illustrated network. In the first step, it creates a list to store relevance
scores at each layer. Top-layer activations are first multiplied by a label indicator in
order to retain only the evidence for the actual class. Thus, it can then be propagated
backward in the network by applying propagation rules at each layer. Also, as the layers
are composed of a collection of 2D feature maps, their relevance scores can be visualized
as a 2D heatmap.

As discussed in Jung, Han and Choi (2021) , LRP can be explained by considering an
output value zLc for a given class c produced by an ANN with L layers. A possible rule
to calculate the LRP scores is defined by Equation �.��.

R(l)
n =

X

m

⇣
x(l)
n w(l,l+1)

nm

⌘+

P
n0

⇣
x(l)
n0 w

(l,l+1)
n0m

⌘+R
(l+1)
m (�.��)

In this equation, nodes in layers l and l+1 are represented by {1, · · · , n, · · · , N} and

{1, · · · ,m, · · · ,M}, respectively. R(l)
n and x(l)

n are the relevance score and the input value

for the n-th node in layer l, respectively. w(l,l+1)
nm means the weight connecting layers l

and l+1, and + represents that only positive values are used. The initial relevance score
is defined as R(L)

n = zLc , if n = c, or R(L)
n = 0, otherwise. From this score, LRP calculates

the scores for all layers, in a backward phase, until finding R(1).

2.4 RELATED WORK ON MODELING NOISY TIME-SERIES

Following a broader line of research, Kalapanidas et al. (2003) demonstrated in their
study, a variety of results of ML algorithms tested on artificially-noisy datasets. They
show a existing concern about to form a general guidelines useful to select the best ma-
chine learning algorithm for modeling or predicting noisy data. Furthermore, Nettleton,
Orriols-Puig and Fornells (2010) also conducted a research, by analyzing the e↵ect of dif-
ferent types of noise on the precision of supervised learning techniques. In that work, the
authors are specifically concerned about the classic classifiers performance, thus analyzing
how four supervised learners are a↵ected by di↵erent degrees of noise. On the other hand,
Seltzer, Yu and Wang (2013) conducted an investigation on the noise robustness of DNN
based acoustic models for speech recognition. Moreover, they introduced two methods
to further improve their DNN model that overcome the previously best published results
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on their research area.
In order to deal with noise e↵ect, some researchers use a decomposition strategy.

Sáez et al. (2014) attenuated the presence of noise in multi-class problems by using
the one-vs-one scheme. Qiu et al. (2016) present an ensemble method composed of
Empirical Mode Decomposition (EMD) algorithm and deep learning approach. In their
work, the data is firstly decomposed into several Intrinsic Mode Functions (IMFs) to be
latter modeled by a Deep Belief Network (DBN) including two Restricted Boltzmann
Machiness (RBMs). By using this way, the authors a�rm the tendencies of each IMFs
can be accurately predicted. Lastly, Yang and Cheng (2019) developed a hybrid deep
learning and empirical mode decomposition model for multi-step ahead forecasting.

Finally, it is worth emphasizing most of the related studies that transform the signal
in the frequency domain were focused on performing a fast convolution as discussed
by Bengio and Lecun (2007) , Mathieu, Hena↵ and Lecun (2013) , and Vasilache et
al. (2014) . In contrast, Rippel, Snoek and Adams (2015) have shown that, besides
presenting a faster convolution, the analysis on frequency domain can also provides a
good representation in CNNs modeling and training.

The related works presented in this section emphasizes our project is relevant to model
real-world systems, specially in situation in which the analyzed data is a↵ected by noise.
However, we understand the manuscripts listed in this chapter show a limited view on how
the scientific community has been dealing with this situation in specific problems, without
performing a study on cause-e↵ect among noise rate and classification performance. In
the next chapter, we discuss our research in-depth and explain the methodology used in
the present work.
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3
EXPERIMENTAL METHODOLOGY

3.1 RESEARCH CONTEXT

This research project analyzes the influence of noise on Deep Neural Network (DNN)
models. Instead of just applying noise reduction filters before modeling some data, as
usually performed in Machine Learning (ML), we are interested in investigating how the
noise a↵ects the final models and is propagated/smoothed through the network layers.

After understanding those points better, we intend to demonstrate the importance
of our hypothesis, which states a noise filter, created to work as an embedding Convo-
lutional Neural Network (CNN) in an Long Short-Term Memory (LSTM), can improve
the modeling of real-world time series without requiring a decomposition step. Such a
demonstration was conducted by the methodology presented in the following section.

3.2 METHODOLOGY

The main goal of this work is to assess our hypothesis, demonstrating its importance in
modeling noisy time series. The methodology designed to reach this goal was based on
four steps. Firstly, we decided to concentrate our investigation on 1-dimensional signals.
In this sense, we started collaborative work with researchers from the Universidad de
la Frontera (UFRO) and the Observatorio Vulcanológico de los Andes Sur (OVDAS) to
model and classify seismic signals from the Llaima Volcano in Chile (see Section 4.1.2).
From this collaboration, the first contribution of this thesis was published in the following
conference:

• Curilem, M., Canário, J. P., Franco, L., Rios, R. A. (2018, July). Using CNN
To classify spectrograms of seismic events from llaima volcano (Chile). In 2018
International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

The results presented in this manuscript motivated us to go further on this topic.
In this sense, we developed a deeper analysis about the usage of DNN models on this
application, supporting the development of a new architecture called SeismicNet, which
was published in the following journals:

23
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• Canário, J. P., Mello, R. F., Curilem, M., Huenupan, F., Rios, R. A. (2020). In-
depth comparison of deep artificial neural network architectures on seismic events
classification. Journal of Volcanology and Geothermal Research, 401, 106881.

• Canário, J. P., Mello, R. F., Curilem, M., Huenupan, F., Rios, R. A. (2020). Llaima
volcano dataset: In-depth comparison of deep artificial neural network architectures
on seismic events classification. Data in brief, 30, 105627.

In our second step, we have created a controlled scenario in which di↵erent synthetic
white noise influences were added to the seismic signals to measure the impact on the
final models. Our experiments (see Section 4.2) confirmed by using statistical tests that
the noise influence plays an essential role in the classification performances. As a di-
rect consequence of this result, we have conducted the third step of our methodology,
which was devoted to understanding the e↵ect of noises in classifiers not only in the final
classification task but also during the training phase.

In this step, we have used the most recently published tools from the eXplainable
Artificial Intelligence (XAI) area, aiming at visually understanding the noise propagation
inside our DNN architectures. The results have emphasized how signals and noise a↵ect
class prediction di↵erently (see Section 4.3.3). By knowing this information, we were
able to build up the second contribution of this research which is a new approach to
reconstruct signals highlighting how every observation is seen during the classification
process, e.g., noise or signal. The main advantage of this contribution is the possibility
of being used as a filter bank, i.e., depending on the region where the noise is shown,
bandpass filters can be used to separate stochastic from the deterministic behavior. The
results of this contribution are under review in the following journal:

• Canário, J. P., Ribeiro, O., Rios, R. A. (2022). Using eXplainable AI to understand
noise e↵ects in CNN: a real case study on Llaima volcano signals. Neurocomputing
(under review).

After knowing the importance of noisy influences in our classification models, we have
driven our e↵orts to the fourth step with the final and most challenging part of this work:
the designing of a new LSTM with a SeismicNet-based CNN embedded in the memory
cells. This embedded CNN acts as a noise filter, suppressing the preprocessing step
usually considered in ML. In summary, it is responsible for learning noisy features and
delivering more stable results regardless of the noise level added to the seismic signal.
The evaluation of our proposal was performed by using a straightforward experiment,
illustrated in Figure 3.1, in which we have sent noisy signals to both LSTM architectures
(traditional one and our proposal). Then, the obtained results are analyzed by using well-
defined validation criteria widely considered in classification tasks (see Section 4.1.3).

With results obtained in this last step (see Section 4.4.1), we have achieved our main
goal: to formulate a theoretical contribution to demonstrate our hypothesis, i.e., the
development of a robust embedding layer in Long Short-Term Memory Networks, thus
improving the classification process in the presence of noisy data. The final manuscript
with the full description and results yielded from this contribution will be submitted after
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Figure 3.1 The top-most figure shows our proposal that will be created to implicitly attenuate
the influence of noise on DNN. Just to exemplify, we represent a DNN with an wavelet-embedded
filter layer. In the lower pipeline, we plan to use traditional DNN, e.g SeismicNet, without the
filter layer to quantify their di↵erences in relation to the proposed approach.

the thesis defense. Due to the volume of experiments presented in this work, we have
provided more details about each step preceding their respective results.

3.3 SOCIAL CONTRIBUTION

Although not directly related to our main investigation topic, two important events have
drastically a↵ected the scientific community during the period spent developing this the-
sis. The first event was related to the coronavirus disease 2019 (COVID-19), which is
a severe acute respiratory syndrome caused by the coronavirus 2 (SARS-CoV-2), deeply
a↵ecting not only the health systems but also the global economy and politics. Aiming
at dealing with such a very aggressive virus, scientists have been dedicating e↵orts in two
main directions. The first one is the development of a new vaccine specifically designed
to immunize the population. The second direction is related to non-pharmacological
strategies, which include, for example, social distancing, quarantine, isolation, and the
adoption of alcohol-based hand sanitizers and face masks.

Among all possible non-pharmacological strategies, the adoption of face masks has
been recommended by the WHO and scientists, that have been conducting researches to
understand their influence to reduce the person-to-person spread through close contact.
In Brazil, where the high number of confirmed cases and deaths caused by coronavirus
was noticed, the public transportation, widely used by the population in general, is an
important monitoring point. The relaxation of the mask adoption in such an environment
can be responsible for increasing the reproduction number (R) of SARS-CoV-2. For
example, before starting the pandemic outbreak, more than 1,1 million passengers used
to take buses per day in Salvador – Brazil (average calculated between 2016 and 2019).
In this context, the restriction of minimum distance among passengers cannot be assured,
especially during rush hours. Additionally, the monitoring of people wearing face masks
by human supervisors is neither e�cient, due to the huge volume of passengers, nor
economically possible.

Therefore, the implementation of an Artificial Intelligence (AI) system, devoted to
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identify whether or not every passenger is respecting the mask recommendation, is es-
sential for, at least, two main reasons: (i) to support the development of more e↵ective
policies, once the main awareness campaigns can be dedicated to regions where the rate
of the facemask-wearing adoption is getting lower; and (ii) to present lines “safer” to
users where face masks have been more adopted.

Aiming at solving this problem, we have developed an AI solution based on Deep Neu-
ral Network (DNN) and Visualization to monitor all bus passengers in Salvador (Brazil)
and detect whether they wear face masks. The final results were published in the following
journal:

• Canário, J.P., Ferreira, M.V.,Freire, J., Carvalho, M., Rios, R. A. (2022) A face
detection ensemble to monitor the adoption of face masks inside the public trans-
portation during the COVID-19 pandemic. Multimedia Tools and Applications.

The second important event was related to the risk of deploying DNN systems to rec-
ognize faces. In summary, face detection approaches have been widely adopted in several
applications to create biometric markers. The advances of DNNs, especially with the
Convolutional Neural Networks (CNN), have improved the face detection performances
and made its usage more usual in many real-world scenarios.

Despite the theoretical and scientific advances, scientists are concerned about the
fairness in AI models, which is a current hot topic in computer vision, aiming at better
understand the robustness of such AI models across important human features as, for
example, age, gender, and race. Due to ethical issues, some commercial systems designed
by important companies (e.g. IBM, Microsoft, and Clarifai) were discontinued due to
the high error rates in specific groups as black women, possibly presenting a racist bias.
Recently, in New York, scientists have asked to interrupt the usage of face recognition in
some situations due to errors associated with gender, race, and ethnicity.

In our context, the problem came up during the development of an AI-based system
to detect fraud in public transportation in Salvador (Brazil). By considering Salvador
is the Brazilian city with the highest percentage of black people (about 80%), any error
may a↵ect a significant number of users, leading to a high number of false positives. In
our scenario, due to the absence of images with appropriate labels to describe users by
gender and race, we used pre-trained face detectors, published by the original authors.
Thus, we created an empirical setup to assess whether the detectors have gender and race
biases. Aiming at reaching this goal, we firstly created a specialist committee to label our
images. Then, we analyzed the errors produced by every detector by taking into account
di↵erent groups of genders and races. As discussed in the following manuscript, we have
indeed found a race bias in our environment:

• Ferreira, M.V., Almeida, A., Canario, J.P., Souza, M. Nogueira, T., Rios, R. (2021).
Ethics of AI: Do the Face Detection Models Act with Prejudice? Brazilian Confer-
ence on Intelligent Systems, 89-103.



Chapter

4
EXPERIMENTS

This chapter, organized in four sections, presents a set of experiments and analyses con-
ducted to assess every step of the proposed research. Firstly, we present a study of Deep
Neural Network (DNN) models to classify seismic events of Llaima Volcano in Chile,
which resulted in a new DNN architecture referred to as SeismicNet.

Next, we describe experiments designed to evaluate the influence of synthetic noises
on the performance of the obtained models. Such experiments motivated a deeper study
on such influences, thus leading us to apply an eXplainable Artificial Intelligence (XAI)
approach to visually understand the noise behavior better.

Finally, all those experiments naturally paved the way to our last contribution, which
was a new Artificial Neural Network (ANN) architecture that acts as an embedding layer
in Long Short-Term Memory Networks to filter noise from signals without requiring a
great e↵ort in preprocessing tasks.

4.1 SEISMICNET: STUDYING THE LLAIMA VOLCANO

4.1.1 The Llaima Dataset

The seismic signals used in our experiments were collected from the Llaima volcano,
which is one of the most dangerous volcanoes in South America. Llaima is located in
Chile, more specifically, in Araucania Region (S 38°410 - W 71°440), on the western edge
of Andes. Several researchers have studied its seismicity to design automatic classifiers
for its events (CURILEM et al., 2016; BHATTI et al., 2016; CURILEM et al., 2017).
Due to its location, Llaima is considered a touristic attraction surrounded by villages,
whose productive activity is mainly farming and livestock. Aiming at providing some
security level for the people living in the neighborhood, the state agency Observatorio
Vulcanológico de los Andes Sur (OVDAS) monitors not only the Llaima but also other 42
volcanoes over the whole country. In particular, for Llaima, OVDAS performs constant
surveillance with 9 stations, illustrated in Figure 4.1, that continuously gather seismic
activity with a 24/7 monitoring service.

27
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Figure 4.1 Seismic stations surrounding the Llaima Volcano. All stations are shown as black
triangles but LAV, in red, that was considered in our study.

This study employs the signals collected from the LAV station, highlighted in red in
Figure 4.1. Those signals were recorded in terms of the Z-vertical component from 2010
to 2016, sampled at 100 Hz and filtered using a 10th-order Butterworth bandpass filter in
the range [1, 10] Hz, therefore preserving the bandwidth containing the range of interest
for detecting seismic events (CURILEM et al., 2016; CURILEM et al., 2018a) . Then,
signals were normalized by their maximum value and organized into four classes: Long
Period (LP), Tremor (TR), Volcano-Tectonic (VT), and Tectonic (TC). Table 4.1 details
the number of each seismic events class. Moreover, it is important to emphasize that all
this process and the resultant signals were individually reviewed, segmented, and labeled
by experts from OVDAS using criteria defined in Lahr et al. (1994).

Table 4.1 Number of events by class.

LP TR VT TC Total

1310 490 304 1488 3592

The first event class presented in this table is labeled as LP events are related to
the transit of magmatic and hydrothermal fluids inside the volcanic conduits (CHOUET,
1996). The spectral pattern of LP is mainly bounded in the range [0.5, 5] Hz.
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TR is a class of events that generally present a longer duration than LP. Also, the
source of tremor is understood as a sustained pressure disturbance over magmatic and
hydrothermal fluids, which may be continuous or caused by a sequence of transient signals
similar to those generated by LP. Their broadband spectrum is typically in [0.5, 3.0] Hz,
being slowly attenuated at the end of the event.

The VT which is associated with rock fracturing inside the volcanic building. VT
events present a frequency pattern with a broadband spectrum that may reach 10 Hz.

TC events are not related to volcanic activities but they are one of the most common
results of the dynamics of geological faults (CHOUET, 1996). Such events may be local,
regional, or even distant according to the epicenter location. A TC event detected by a
station located in a region far away from the epicenter has lower frequencies than closer
ones. Depending on the source proximity, TC could be confused with LP or VT events.
However, TC events generally carry more energy (signal amplitude). To illustrate the
di↵erences among such events, Figure 4.2 shows one example of each aforementioned
normalized seismic class.

Figure 4.2 Seismic event classes: (A) LP; (B) TR; (C) VT; and (D) TC.

4.1.2 Seismic Event Processing

4.1.2.1 Seismic Spectrograms

For applying STFT to seismic signals, our experiments used experts’ specifications
with sliding windows equal to 1 second with 95% of overlapping. The signals were
all set to 6000 samples (60 seconds) filling with zeros when necessary. Although the
signals were filtered from 1 to 10 Hz, the frequency interval considered to calculate
the spectrograms was from 1 to 20 Hz, to show a better visualization of their shapes
(CURILEM et al., 2018a; CURILEM et al., 2018b; CANÁRIO et al., 2020). With these
specifications, all the spectrograms had the same dimensions in time and frequency. The
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frequency components of the spectrograms were smoothed by using a moving average
filter to obtain their envelopes. The moving average was calculated by Equation �.�, in
which Sf is the number of the averaged samples (Smooth factor).

SmoothedSP [x(t)](n, k) =
1

Sf

Sf�1X

j=0

SP (n, k + j), (�.�)

Di↵erent values for Sf were tested and the best results were obtained with 150 sam-
ples. As is illustrated by Figure 4.3, the LP spectrogram has a non-impulsive beginning
with a slow decay. TR is characterized by very narrow, regular, and long shapes. The VT
is very characteristic, presenting an impulsive at the beginning and exponential decay.
Similar to VT, the spectral content of TC is characterized by impulsive beginning and
exponential decay.

Figure 4.3 Normalized seismic events and their normal and smoothed spectrograms.

Finally, all the spectrograms were transformed into RGB images of 20 x 20 pixels and
used as input of developed DNNs. Figure 4.4 shows the shape of the spectrograms for
the di↵erent classes.

4.1.3 Performance Measures

The obtained results were evaluated by using measures traditionally computed to assess
supervised learning tasks. Firstly, the generalization capability of our predictive models
was studied by sampling the original dataset by using a 10-fold cross-validation strategy.
Then, the results were organized into contingency matrices containing the number of
True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN).
Based on such matrices, we calculated four measures: (i) Accuracy (Equation �.�); (ii)
Error (Equation �.�); (iii) Specificity (Equation �.�); and (iv) F1-score (Equation �.�).
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Figure 4.4 Smoothed spectrograms of the events: each line presents five examples of the
smoothed spectrograms for the (a) LP, (b) TR, (c) VT and (d) TC classes.

Accuracy =
(TP + TN)

n
(�.�)

Error =
(FP + FN)

n
(�.�)

Specificity =
TN

(TN + FP )
(�.�)

F1-score =
2⇥ (Recall⇥ Precision)

(Recall+ Precision)
(�.�)

In such equations, n represents the total number of classified signals, Recall corre-
sponds to the true positive rate (Equation �.�), and Precision takes into account the
number of seismic signals correctly classified as a specific event and signals wrongly clas-
sified as the same event (Equation �.�).
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Recall =
TP

(TP + FN)
(�.�)

Precision =
TP

(TP + FP )
(�.�)

In addition to these indices, the Kappa coe�cient (WITTEN et al., 2016) was also
used to measure the general agreement between our classification system and experts,
emphasizing the results were not obtained by chance. This coe�cient is based on the
di↵erence between “observed” agreement (Po) and agreement that would be expected to
occur by chance also referred to as “expected” one (Pe), as shown in Equation �.�.

P o =
CX

i=1

pii, P e =
CX

i=1

pi.p.i (�.�)

This equation considers pii as the joint proportion of agreement (diagonal), p.i and pi.
corresponds to the sum of joint proportions of our classifier (column) and experts (rows)
for every class, while C is the number of classes. Finally, the Kappa (K) coe�cient is
obtained using Equation �.�, in which the better the agreement is, the closer to 1 such
coe�cient is.

K =
Po � Pe

1� Pe
(�.�)

4.1.4 Results

It is important to recall that this work discusses a series of contributions to the state-
of-the-art in seismic signal processing. Our contribution, referred to as SeismicNet, is
based on an extension of SoundNet, which is a 1D Convolutional Neural Network (CNN)
configured to classify raw signals. The main advantage of using this CNN is to perform a
one-dimensional analysis, directly applied to the seismic signals, instead of transforming
them into a set of features before applying machine learning algorithms. Secondly, we
assessed the advantage of employing wavelets to improve the training stage of SeismicNet.
In this sense, we applied a discrete wavelet transform on signals and just considered the
first level, thus downsampling them by a factor of 2 and, as a consequence, reducing
the spatial and temporal complexities. Thirdly, we extended our previous analyses using
Continuous Wavelet Transform (CWT), which provided the bests results by considering
the numbers of scales and octaves equal to 2 and 5, respectively. It is worth emphasizing
that we performed a deep analysis on the Llaima volcano signals training more than 50
di↵erent DNN architectures. In this section, we only present the final architectures that
provided the best results, assuring the reproducibility of our achievements.

4.1.4.1 Our First Attempt: Spectrograms plus Convolutional Neural Net-
work
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At the time of writing this work, the state-of-the-art results obtained after analyzing the
Llaima volcano were previously published by our research group in (CURILEM et al.,
2018a) and (CURILEM et al., 2018b) . In Table 4.2, we summarized the final results
published in (CURILEM et al., 2018b) , showing the mean Accuracy and F1-score, along
with their standard deviation, by analyzing 4 signal classes: LP, TR, VT, and TC. The
classification was performed in two steps. Firstly, the signals were transformed into a set
of spectrograms using Fourier Transform. Then, we implemented a 2D-CNN to classify
the spectrograms according to the 4 classes.

Table 4.2 The state-of-the-art accuracies and f1-scores. We used a 2D-CNN + spectrograms
(CURILEM et al., 2018b) according to the 10-fold cross-validation strategy.

Spectrograms + 2D-CNN

Accuracy F1-score

Mean: 97.08% 95.84%
Std: 0.78% 1.27%

Table 4.3 details all performance indices obtained during this classification task, in-
cluding the Kappa coe�cient. It is important to highlight the design of our experiments
were conducted considering a 10-fold cross-validation strategy to reduce the probability
of considering overfitted results.

Table 4.3 Spectrograms plus convolutional neural network performance indices (in percent-
ages).

Performance Indices

LP TR VT TC Mean
Recall 97.86% 96.53% 91.78% 97.65% 95.95%
Specificity 98.86% 99.52% 99.24% 98.15% 98.94%
Accuracy 98.50% 99.11% 98.61% 97.94% 98.54%
Error 1.50% 0.89% 1.39% 2.06% 1.46%

Kappa: 0.956

The results have shown this CNN structure was capable of discriminating the four
classes from the spectrograms achieving the best performance so far. However, it is
worth mentioning results are obtained using a laborious preprocessing phase performed
to transform all signals into spectrogram images, also requiring a high training time.

Architecture using spectrograms plus a 2D CNN

Considering that CNNs were not commonly used on spectrograms from seismic ac-
tivities, we started analyzing the signals by using a standard architecture proposed by
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LeCun et al. (1998). In summary, we performed the following analyses: i) Changing the
number of fully-connected layers or convolutional layers by adding or removing them;
ii) Adding a dropout layer following the convolutional layers; iii) Using dropout layers
following the fully-connected layers to avoid overfitting; iv) Changing the optimization
algorithm from stochastic gradient descent to Adam (KINGMA; BA, 2014); v) Changing
the hyperparameters of some layers, such as the number of filters on convolutional layers,
dropout rate, number of neurons on fully-connected layers. The considered architecture,
illustrated in Figure 4.5, was selected based on the best performance measures. Next,
every layer is presented in detail:

1. An input layer denoted by I(h, w, c), where h is the height, w is the width and c is
the number of channels provided by the input data;

2. Two convolutional layers C(K,F, S, P ), where K is the number of filters, F is their
spatial extent, S is the stride and P is the amount of zero padding;

3. Two max-pooling layers, denoted as P (F, S), in which F is the size of the square
pooling regions and S is the stride;

4. Two fully connected layers F (u), where u is the number of units or neurons in the
layer;

5. At the output of each convolutional layer and the first fully-connected layer, the
ReLU activation function f(x) = max(0, x) was applied, where x is the output of
each neuron from the previous layer;

6. Two dropout layers D(dr), in which dr is the dropout rate;

7. Finally, on top of our CNN a softmax activation function was applied.

Figure 4.5 2D-CNN summary: conv. 2D, ReLU, max pool., dropout, conv. 2D, ReLU, max
pool., fully-connected, ReLU, dropout, fully-connected and output layer with softmax activation
function.
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4.1.4.2 Our Second Attempt: CWT plus Convolutional Neural Network

The following experiments were conducted using a 2D-CNN architecture, whose
input seismic signals were pre-processed using the Morlet complex wavelet transform
(here referred simply to as CWT), as discussed in Section 2.1.2.2, into a set of new
images. Table 4.4 summarizes accuracies and F1-scores along all 10 folds of the
cross-validation strategy. As one may notice, this CNN architecture has confirmed very
good overall results, to mention, greater than 96% and 94%. Moreover, the overall
standard deviation was lower than 0.9 and 1.3%, respectively, corroborating the network
stability.

Table 4.4 Our Second Attempt: CWT + 2D CNN performance indices and confusion matrix
(in percentages).

CWT + 2D Convolutional Neural Network

Accuracy F1-score

Mean: 96.21% 94.66%
Std: 0.84% 1.25%

Fold 1: 95.83% 93.78%
Fold 2: 95.83% 94.62%
Fold 3: 97.78% 96.66%
Fold 4: 96.67% 95.45%
Fold 5: 96.38% 94.21%
Fold 6: 95.54% 93.53%
Fold 7: 96.66% 95.98%
Fold 8: 97.21% 96.13%
Fold 9: 95.25% 93.27%
Fold 10: 94.97% 92.98%

In Table 4.5, we listed the performance indices as well as the confusion matrices and
Kappa values. By individually analyzing such matrices, one may notice that the overall
classification performance using CWT was very close to one obtained in the state-of-the-
art (Section 4.1.4.1). This is also confirmed by the Kappa coe�cient equals to 0.950.
Observe the use of CWT has kept the good results along with all classes.

CWT plus 2D CNN Architecture

The 2D-CNN architecture employed in this set of experiments is a simplification of the
CNN presented in our first attempt (CURILEM et al., 2018b) , in which a sequence of 2D-
convolution layers was proposed to classify 2D-spectrogram images of seismic events. In
this paper, we only used one convolutional layer along with one max pooling and one fully-
connected layer to process and classify the continuous wavelet transformation applied to
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Table 4.5 Our Second Attempt: CWT + 2D CNN performance indices and confusion matrix
(in percentages).

Performance Indices

LP TR VT TC Mean
Recall 97.33% 95.71% 88.82% 96.91% 94.69%
Specificity 98.42% 99.19% 99.00% 98.00% 98.65%
Accuracy 98.02% 98.72% 98.13% 97.55% 98.11%
Error 1.98% 1.28% 1.87% 2.45% 1.89%

Confusion Matrix

Predicted Labels

LP TR VT TC

True Labels

LP 1275 3 18 14
TR 4 469 0 17
VT 22 1 270 11
TC 10 21 15 1442

Kappa: 0.950

seismic signals. Finally, as the aforementioned setups, we followed the same strategy
to test and estimate the best configurations for this CNN architecture. The chosen
architecture, illustrated in Figure 4.6, was also selected based on the best performance
measures. Next, every layer is presented in detail:

1. An input layer I(w, h, c), in which w is its width, h is its height and c is the number
of channels provided the input data;

2. One convolutional layer C(K,F, S, P ), having K is the number of filters, F as the
spatial extent, S is the stride, and P is the zero-padding length;

3. One max-pooling layer, denoted as P (F, S), in which F is the size of the square
pooling region, and S is its stride;

4. One fully-connected layer expressed as F (u), having u as the number of units or
neurons at such a layer;

5. After the output of the convolutional and the fully-connected layers, we added two
batch normalization layers to finally apply the CReLU activation function;

6. After the output of feature extraction layers, the flatten layer is responsible for
collapsing all data into a single-dimensional vector;

7. Two dropout layers D(dr) were added, in which dr is the dropout rate;

8. Finally, a softmax activation function was applied.
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Figure 4.6 CNN summary: input, conv. 2D, batch normalization, CReLU, max pool. 2D,
dropout, flatten, fully-connected, batch normalization, CReLU, dropout and output layer with
softmax activation function.

4.1.4.3 Our Third Attempt: CWT plus Long Short-Term Memory

The next set of experiments was conducted after replacing the 2D-CNN by a
Long Short-Term Memory (LSTM) neural network on the CWT data obtained after
pre-processing all seismic signals, as performed in the previous section. Table 4.6
summarizes all accuracies and F1-scores for all 10 folds with the cross-validation
strategy, which allowed to confirm that the LSTM in conjunction with the CWT was
capable of producing a great performance as well, although the standard deviation was
slightly higher.

Table 4.6 Our Second Attempt: LSTM accuracies and F1-scores (in percentages).

Long Short-Term Memory

Accuracy F1-Score

Mean: 95.82% 94.08%
Std: 1.28% 1.94%

Fold 1: 94.44% 90.82%
Fold 2: 94.72% 93.67%
Fold 3: 98.06% 97.28%
Fold 4: 95.56% 93.80%
Fold 5: 97.21% 96.31%
Fold 6: 96.38% 94.57%
Fold 7: 94.15% 91.59%
Fold 8: 94.71% 92.89%
Fold 9: 97.21% 95.94%
Fold 10: 95.81% 93.90%

Table 4.7 complements our analyses by presenting the performance indices, confusion
matrix, and Kappa value. According to the individual results presented in such a table
as well as the overall performance of the mean accuracies and f1-scores, we notice the
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LSTM architecture also achieved a great performance, something confirmed by the Kappa
coe�cient 0.945.

Table 4.7 Our Second Attempt: Long Short-Term Memory performance indices and confusion
matrix (in percentages).

Performance Indices

LP TR VT TC Mean
Recall 97.71% 93.88% 87.83% 96.44% 93.96%
Specificity 97.98% 99.23% 98.94% 97.86% 98.50%
Accuracy 97.88% 98.50% 98.00% 97.27% 97.91%
Error 2.12% 1.50% 2.00% 2.73% 2.09%

Confusion Matrix

Predicted Labels

LP TR VT TC

True Labels

LP 1280 3 20 7
TR 3 460 0 27
VT 26 0 267 11
TC 17 21 15 1435

Kappa: 0.945

CWT plus LSTM Architecture

As performed in the previous experiment, the design of each LSTM layer was indi-
vidually assessed until obtaining the following best architecture (Figure 4.7):

1. An input layer I(w, h), having w as its width and h as its height;

2. One LSTM layer LSTM(Un,RS), in which Un is the output space dimensionality
and RS is the return sequence flag to ensure that LSTM cells return all of outputs
from the unrolled LSTM cell through time. If this argument is left out, the LSTM
cell will simply provide the output from the previous time step;

3. One fully-connected layer expressed as F (u), having u as the number of units or
neurons at such a layer;

4. After the output of the LSTM and the fully-connected layers, we added a batch
normalization layer followed by a CReLU activation function layer;

5. After the output of feature extraction layers, a flatten layer was added to collapse
data into a single-dimensional vector of features;
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6. Two dropout layers D(dr) were added, in which dr is the dropout rate;

7. Finally, a softmax activation function was applied on top of our neural network.

Figure 4.7 LSTM summary: input, LSTM, batch normalization, CReLU, dropout, flatten,
fully-connected, batch normalization, CReLU, dropout and output layer with softmax activation
function.

4.1.4.4 Our Fourth Attempt: CWT plus Multilayer Perceptron

After analyzing the previous results, we decided to compare the DNN architec-
tures assessed so far to a baseline composed of the same CWT input data followed
by a Multilayer Perceptron (MLP) architecture. Neurons and layers were empirically
added using the same validation criterion adopted to build up the other neural networks.
The results obtained with the best MLP architecture are summarized in Table 4.8,
which confirm great performance indices as well, allowing to conclude that the DNN
architectures evaluated so far could not significantly outperform this classical and simple
approach.

Complementary, Table 4.9 shows the performance indices for every class as well as
the confusion matrix and the Kappa value. As one may notice, an MLP containing a
reduced number of layers and hyper-parameters achieved similar results when compared
to other architectures.

CWT plus MLP Architecture

The MLP setup followed the simple structure briefly presented in Section 2.2.2. As
aforementioned, the best configuration was built up taking into account the following
step-by-step approach (Figure 4.8):

• Fully-connected layers were added or removed, as well as having their number of
neurons changed along with assessment iterations;

• Hyper-parameters at each layer were adapted, such as the dropout rate and the
activation functions;
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Table 4.8 Our Third Attempt: MLP accuracies and F1-scores in percentages.

Multi-Layer Perceptron

Accuracy F1-score

Mean: 96.74% 95.47%
Std: 0.76% 1.18%

Fold 1: 96.11% 94.09%
Fold 2: 96.94% 96.33%
Fold 3: 97.50% 96.19%
Fold 4: 96.39% 95.56%
Fold 5: 97.49% 96.39%
Fold 6: 95.82% 94.04%
Fold 7: 96.38% 94.73%
Fold 8: 97.49% 96.64%
Fold 9: 97.77% 97.07%
Fold 10: 95.53% 93.62%

• Batch normalization layers were inserted and removed along the evaluation process;

• A dropout layer was added after the fully-connected layer to avoid overfitting;

Each MLP architecture found with those steps was individually evaluated and the
best MLP architecture obtained was composed of:

1. An input layer I(w, h, c), having w as its width, h as its height, and c as the number
of channels used from input data;

2. A flatten layer to collapse all features into a single-dimensional vector to represent
the input data;

3. One fully-connected layer expressed as F (u), in which u is the number of units or
neurons;

4. One batch normalization layer to increase the stability of this MLP architecture;

5. At the output of batch normalization layer, we applied the Concatenated ReLU
(CReLU) (SHANG et al., 2016) activation function;

6. One dropout layer D(dr), in which dr is the dropout rate;

7. Finally, a softmax activation function was applied on top of our MLP to deal with
the multi-class classification problem.
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Table 4.9 Our Third Attempt: Multi-Layer Perceptron performance indices and confusion
matrix (in percentages).

Performance Indices

LP TR VT TC Mean
Recall 97.56% 95.71% 90.79% 97.58% 95.41%
Specificity 98.38% 99.58% 99.09% 98.24% 98.82%
Accuracy 98.08% 99.05% 98.39% 97.97% 98.37%
Error 1.92% 0.95% 1.61% 2.03% 1.63%

Confusion Matrix

Predicted Labels

LP TR VT TC

True Labels

LP 1278 0 19 13
TR 4 469 0 17
VT 21 0 276 7
TC 12 13 11 1452

Kappa: 0.957

4.1.4.5 Our Proposed DNN Architecture: SeismicNet

This section shows the results obtained with our proposed DNN architecture re-
ferred to as SeismicNet. Table 4.10 summarizes the model accuracies and F1-scores after
being directly applied on the raw seismic signals and their wavelet samples along with
the 10-fold cross-validation strategy. As one may notice, our CNN architecture has also
shown great results, presenting a mean accuracy greater than 0.95 (95%) and an F1-score
greater than 0.91 (91%). Those results are also very close to the ones obtained by the
state-of-the-art. By analyzing our network applied on the first wavelet level, we noticed
an improvement in the accuracy and the F1-score values, even using a considerably
smaller number of analyzed observations.

Table 4.11 shows the corresponding confusion matrices and the Kappa values for every
model. By analyzing the individual values, one may notice the overall classification was
improved after using the wavelet transform. This observation is also confirmed by Kappa
coe�cients which were greater than 0.93, highlighting the outstanding performance of
both classifiers.

In Table 4.12, we list all results of our classifiers for every class, instead of presenting
their overall performance. Similarly, the use of wavelets improved results for all classes,
but VT whose rates were slightly lower.

In contrast with previous work and the first attempt, in which intensive feature ex-
traction steps or signals to image transformations were adopted during the preprocessing
stage, our architecture directly uses seismic signals. By downsampling the signal obser-
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Figure 4.8 MLP summary: input layer, flatten, fully-connected, batch normalization, CReLU,
dropout and output layer with softmax activation function.

Table 4.10 Our Proposed DNN Architecture: SeismicNet accuracies and F1-scores in percent-
ages.

Raw Signal Wavelets (V1)

Accuracy F1-Score Accuracy F1-Score

Mean: 95.05% 91.75% 96.07% 93.02%
Std: 1.61% 2.89% 1.54% 3.97%

Fold 1: 95.79% 93.01% 98.13% 97.16%
Fold 2: 92.06% 85.87% 97.66% 97.60%
Fold 3: 93.46% 86.93% 92.99% 85.15%
Fold 4: 94.39% 91.90% 94.86% 92.41%
Fold 5: 97.66% 95.99% 97.66% 95.99%
Fold 6: 93.93% 91.95% 96.26% 94.62%
Fold 7: 95.79% 93.11% 95.79% 90.42%
Fold 8: 95.33% 92.74% 95.33% 92.05%
Fold 9: 94.86% 92.06% 97.20% 96.74%
Fold 10: 97.18% 93.40% 94.84% 88.10%

vations using the first wavelet level (V 1) of a Daubechies discrete wavelet transform (here
simply referred to as DWT), we not only improved the classification measures but also
reduced the spatial and temporal complexities. By analyzing Figure 2.1, we notice this
first level keeps the general signal behavior and reduces the observations to N/2, such
that N is the total of observations from the raw seismic signal. As a new level (e.g. V 2
or V 4) is analyzed, the representation of the signal behavior reduces in proportion to the
number of observations. As a consequence, the accuracy of our learning model is directly
a↵ected as expected, but still provides important results, e.g. the mean accuracy for V 1,
V 2, V 3, and V 4 were equal to 98.10%, 97.87%, 97.31%, and 95.34%, respectively.
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Table 4.11 Our Proposed DNN Architecture: SeismicNet confusion matrices.

Raw Signal Wavelets (V1)

Predicted Predicted

LP TR VT TC LP TR VT TC

True

LP 603 5 5 16 LP 608 4 11 6
TR 0 125 0 13 TR 1 134 0 3
VT 22 0 125 3 VT 22 0 127 1
TC 19 13 10 1180 TC 18 3 15 1186

Kappa: 0.935 Kappa: 0.948

Table 4.12 SeismicNet performance indices (in percentages).

Raw Signal

LP TR VT TC Mean
Recall 95.87% 90.58% 83.33% 96.56% 91.59%
Specificity 97.28% 99.10% 99.25% 96.51% 98.04%
Accuracy 96.87% 98.55% 98.13% 96.54% 97.52%
Error 3.13% 1.45% 1.87% 3.46% 2.48%

Wavelets (V1)

LP TR VT TC Mean
Recall 96.66% 97.10% 84.67% 97.05% 93.87%
Specificity 97.28% 99.65% 98.69% 98.91% 98.63%
Accuracy 97.10% 99.49% 97.71% 97.85% 98.04%
Error 2.90% 0.51% 2.29% 2.15% 1.96%

SeismicNet Architecture

The proposal of SeismicNet is based on a deep analysis of the DNN architecture
proposed by Aytar, Vondrick and Torralba (2016) (AYTAR; VONDRICK; TORRALBA,
2016). Such architecture, referred to as SoundNet, directly extracts features from raw
audio waveforms and classifies them using a next stage with a Support Vector Machine.
The authors proposed the use of a sequence of 1D convolutions followed by nonlinear
operators to process sound signals. They also tested two deep CNN architectures to
represent such signals: (i) the first CNN is composed of 8 convolutional layers, followed
by 3 pooling layers; and (ii) the second had 5 convolutional layers with 3 next pooling
layers. After several experiments considering those two architectures, we selected the 5-
layer SoundNet to compose the feature extraction process of our SeismicNet architecture,
then we added other layers according to the following process:

• Adding or removing extra fully-connected layers;
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• Testing di↵erent configurations of layer hyper-parameters, such as the dropout rate
and the number of neurons at each dense layer;

• Adding dropout layers after convolutional layers and dense layers to avoid overfit-
ting;

Every adaptation was individually evaluated and the final SeismicNet architecture
(illustrated in Figure 4.9) is composed of:

1. An input layer I(ln), in which ln is the input data length;

2. Five convolutional layers C(K,F, S, P ), having K is the number of filters, F as the
spatial extent, S is the stride, and P is the zero-padding length;

3. Three max-pooling layers denoted as P (F, S), in which F is the size of the square
pooling region, and S is its stride;

4. One dense layer expressed as F (u), having u as the number of units or neurons at
such a layer;

5. In the output of every convolutional and dense layer, we applied the ReLU activation
function f(x) = max(0, x), so that x is the output from neuron layers;

6. Three dropout layers D(dr), in which dr is the dropout rate;

7. Finally, a softmax activation function was applied on the CNN output.

Figure 4.9 SeismicNet summary: input layer, conv. 1D + ReLU, max pool. 1D, dropout,
conv. 1D + ReLU, max pool. 1D, dropout, conv. 1D + ReLU, max pool. 1D, conv. 1D +
ReLU, conv. 1D + ReLU, dense + ReLU, dropout and output layer plus softmax as activation
function.
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4.1.5 Studying The Llaima Volcano: Results Summary

In this experiment, we performed a broad set of analyses to explore the DNN performance
while discriminating seismic activities, discussing a series of contributions to state-of-the-
art seismic signal processing. We evaluate such architectures using traditional measures to
assess supervised learning tasks. Firstly, we tested our predictive models’ generalization
capability by sampling the original dataset using the k-fold cross-validation strategy.

Through the obtained results of the k-fold cross-validation, we could analyze that each
architecture presents, respectively, over 95% and 90% mean performance of the computed
measures: accuracy or f1-score. Figures 4.10 and 4.11 shown mean and standard devia-
tions of cited measures for each model.

Figure 4.10 Model architectures accuracies
(k-fold cross-validation mean and standard
deviation).

Figure 4.11 Model architectures f1-scores
(k-fold cross-validation mean and standard
deviation).

Similarly, performance measures computed by class presented equivalent results for
all architectures: accuracy (Figure 4.12), recall (Figure 4.13), specificity (Figure 4.14,
and error (Figure 4.15).

Finally, aside from those indices, we compute the Kappa coe�cient to measure the
general agreement between our classification system and experts. Figure 4.16 illustrates
the coe�cient overview, in which we can analyze that all models continue to deliver
equivalent results. Moreover, as observed, each model reached over 0.93 on the Kappa
coe�cient, indicating almost a perfect agreement.

4.2 NOISE INFLUENCE EXPERIMENT

This section describes an initial experiment designed to analyze the white noise influence
on the seismic signals. Results, assessed by a set of statistical tests, suggest our hypoth-
esis is relevant, i.e. the presence of the noise in seismic signals a↵ects the classification
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Figure 4.12 Architectures’ accuracy by class.

Figure 4.13 Architectures’ recall by class.

performance of our DNN models, as discussed next.

4.2.1 Noise Influence Results

As well as in our previous experiments, we used the 10-fold cross-validation strategy to
compute the accuracy of our SeismicNet. Then, to verify whether or not our results
were a↵ected by noise, we considered the following statistical tests: i) Shapiro-Wilk; ii)
Bartlett’s; iii) Wilcoxon; and iv) Student’s t-distribution (t-Student).
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Figure 4.14 Architectures’ specificity by class.

Figure 4.15 Architectures’ error by class.

In summary, we added di↵erent levels of random noise on the seismic signals (Equa-
tion �.��) by changing the standard deviation of the normal distribution function (Equa-
tion �.��), just to simulate di↵erent Signal-to-Noise Ratio (SNR).

yt = xt + f(xt | µ, �2) (�.��)

f(xt | µ, �2) =
1p
2⇡�2

e�
(xt�µ)2

2�2 (�.��)
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Figure 4.16 The Kappa coe�cients results overview.

In Equation �.��, xt and yt are, respectively, the input and the output in a time
instant t. Also, f(x | µ, �2) represents the normal distribution function where µ is the
signal mean or expectation of the distribution (and also its median and mode), � is the
standard deviation, and �2 is the signal variance. In this experiment, we fixed the mean
to zero.

For every resultant dataset, we tested the di↵erences between the data with/without
noise. Firstly, we performed a Shapiro-Wilk normality test in order to analyze if there
is su�cient evidence that the results came from a normal distribution (p-value > 5%).
Secondly, we used the Bartlett’s test to confirm that the variances are homogeneous (p-
value < 5%). Finally, we apply the Student’s t-distribution test to confirm that there
is no significant di↵erence at 5%. In case of the Shapiro-Wilk test fails, we check if
the results are significantly di↵erent using the Wilcoxon test, which emphasizes that the
results are truly di↵erent. Table 4.13 lists the results of the Shapiro-Wilk test for each
noisy seismic data that was generated.

By analyzing the individual values, one may notice that as the noise level increases,
the p-value for the Shapiro-Wilk test decays. It is important to recall that the Shapiro-
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Table 4.13 Statical tests for each noise level applied on the seismic data.

Noise level Shapiro-Wilk Wilcoxon Bartlett’s t-Student

1.5% 0.9770 - 0.3241 0.816
2% 0.9770 - 0.3241 0.816
5% 0.7611 - 0.0557 0.9982
10% 0.1417 - 4.9803 ⇥ 10�5 0.552
15% 1.3734 ⇥ 10�6 0.5201 - -
20% 1.7657 ⇥ 10�4 0.0232 - -
25% 2.0168 ⇥ 10�5 0.0038 - -
35% 6.2018 ⇥ 10�6 0.4139 ⇥ 10�3 - -
40% 5.6608 ⇥ 10�5 0.5609 ⇥ 10�3 - -
50% 6.3144 ⇥ 10�6 0.1688 ⇥ 10�3 - -

Wilk test will fail if the probability value is lower than 0.05, which occurred when the
noise level reached 15%. Also, for those datasets where the test failed, the Wilcoxon test
demonstrates that the signals with/without noise are indeed di↵erent.

On the datasets that passed on the Shapiro-Wilk test, which in our analyses were
those with noise levels lower than 15%, the Bartlett’s and Student’s t-distribution tests
were applied, as shown in respective columns of Table 4.13. As one can observe, the
variance was homogeneous (p-value < 0.05) only when the noise level was equal to 10%.
Besides that, results demonstrated that was no significant di↵erence for SNR=5% (p-
value > 0.05) for these tested datasets.

As a conclusion, these initial results have suggested our hypothesis is feasible and
our proposed project is worth being investigated. Finally, we emphasize these tests show
some relation between noise and modeling. However, aiming at understanding better the
noise influence on the DNN models, we decided to use XAI as shown in the following
section.

4.3 MODEL INTERPRETABILITY EXPERIMENT

This section details the experimental setup designed to better understand the e↵ects of
noises on signals collected from the Llaima volcano. Firstly, we describe the process of
transforming signals from 1D to 2D before using the classification method. Secondly, we
show the performance measures considered to quantify the classification di↵erences in
our study. Next, we present our CNN architecture and, finally, we discuss the obtained
results, including the overall measures and the interpretable features extracted by the
Layer-wise Relevance Propagation (LRP) approach, the XAI approach considered in our
study.
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4.3.1 Seismic Spectrograms

Before starting the classification interpretability, we repeated most of steps of the ex-
periment described in Section 4.1, preprocessing all 1D signals by using the Short-Time
Fourier Transform (STFT) method (detailed in Equation �.��), in which x is a seismic
signal and w is the sliding window size.

SP [x(t)](n, k) =

�����

N�1X

m=0

x(m) · w(m� n) · e�i2⇡mk

�����

2

(�.��)

We also used the preprocessing specifications provided by experts from OVDAS, pre-
viously described in Section 4.1.2.1. To better evidence the noise influence on the spec-
trograms, no filter was applied to smooth the outputs. Finally, all spectrograms were
transformed to RGB images with dimensions of 20 ⇥ 20 pixels. Figure 4.17 illustrates
the shape of the spectrograms for the di↵erent classes. We randomly selected four signals
from every source to exemplify their behavior and support the readers’ understanding of
the classification tasks.

4.3.2 Performance Measures

Our results were evaluated by using the same measures described in Section 4.1, which
are traditionally considered to assess supervised learning tasks. Firstly, the generalization
capability of our predictive models was studied by sampling the original dataset with a 10-
fold cross-validation strategy. Then, the results were organized into contingency matrices
containing the number of true positive (TP), true negative (TN), false positive (FP), and
false-negative (FN). Based on such matrices, we calculated the measures: i) Accuracy
(Equation �.�); and ii) F1-score (Equation �.�). Reinforcing that, in such equations, n
represents the total number of classified signals, Recall corresponds to the true positive
rate (Equation �.�), and Precision takes into account the number of seismic signals
correctly classified as a specific event and signals wrongly classified as the same event
(Equation �.�).

4.3.3 Interpretability Results

For this analysis, we decided only to use the architecture with the best results so far,
described on the Section 4.1.4.1: a 2D CNN architecture illustrated in Figure 4.5 and
published by Curilem et al. (2018b) .

Spectrogram Images

Aiming to proceed with our experimental analyses about the noise influence on the
classification performance, we split the dataset into three parts: training, validation, and
testing. To simulate di↵erent SNR, we have modified the original seismic signals by using
di↵erent additive noise as described in Section 4.2.

In our experiments, signals with di↵erent SNR were obtained by only changing the
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Figure 4.17 Samples of the LP, TR, VT, and TC seismic events converted into 20 x 20
spectrograms images.

standard deviation values. Then, we performed the same classification experiment pre-
viously performed on the original signals. Table 4.14 summarizes, in every row, the final
results by SNR. In this analysis, we show the classification results obtained from the test
fold. As the reader might notice, the greater the SNR influence, the lower the accuracies
and F1-scores. With SNR equals to or greater than 20%, the performances approaches
to the random classifier. Such observation is confirmed by the correlation tests presented
in the last three rows. The tests were performed considering the Pearson method and
the R coe�cients are closer to -1, indicating a negative correlation, i.e., the accuracy and
F1-scores have an inverse behavior when compared to the noise level. The significance of
our tests is confirmed by the p-values and the confidence intervals with 95%.

Before proceeding with the interpretability study, we have also analyzed the classi-
fication performance by class as shown in Table 4.15. Such analyses were fundamental
to understand better whether the noise influences equally a↵ect signals from di↵erent
sources (classes). We only present the results with accuracy to avoid being redundant
once the F1-score showed similar behavior.
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Table 4.14 Classification performances by considering di↵erent noise levels (SNR).

Noise Level Accuracy F1-score

0% 95.6% 94.2%
1% 95.5% 94.3%
2% 94.7% 92.8%
3% 93.5% 91.6%
4% 92.3% 90.0%
5% 90.0% 87.3%
10% 74.7% 69.9%
15% 62.3% 55.1%
20% 55.4% 48.1%
25% 53.2% 45.5%
30% 48.2% 40.7%

R -0.979 -0.979
p-value < 0.00001 < 0.00001
CI (95%) (-0.995, -0.920) (-0.995, -0.920)

Table 4.15 Individual classification performances per class by considering di↵erent noise levels
(SNR).

Accuracy per Seismic Event

Noise Level LP TR VT TC

0% 97.13% 98.65% 98.06% 97.39%
1% 97.22% 98.48% 98.23% 97.13%
2% 97.13% 98.23% 97.47% 96.71%
3% 97.05% 97.47% 97.30% 95.36%
4% 96.71% 96.29% 97.13% 94.52%
5% 95.36% 95.28% 96.37% 93.09%
10% 90.05% 85.83% 92.83% 80.86%
15% 83.98% 79.51% 90.05% 71.08%
20% 77.23% 78.25% 88.11% 67.37%
25% 72.43% 81.20% 88.28% 64.50%
30% 67.20% 83.14% 86.42% 59.70%

R -0.994 -0.876 -0.978 -0.982
p-value < 0.00001 0.00039 < 0.00001 < 0.00001
CI (95%) (-0.999, -0.978) (-0.968, -0.584) (-0.995, -0.916) (-0.995, -0.929)

According to these accuracy results, we noticed that, although all classes were a↵ected
by the increasing SNR (see accuracies when SNR is 30%), signals from LP and TC
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presented the worse results. After knowing such classification particularities, we visually
interpreted the patterns of the additive noises on the seismic signals. For a more in-depth
comparison, Table 4.16 presents the confusion matrix for datasets with 0% noise and 20%
noise.

Table 4.16 Confusion matrix obtained on evaluation of CNN with 0% and 20%.

Noise Level 0% Noise Level 20%

LP TR VT TC LP TR VT TC
LP 413 1 11 8 244 76 33 80
TR 3 151 0 8 7 137 4 14
VT 6 0 94 0 18 3 17 62
TC 5 4 6 476 56 154 21 260

The visual interpretation was conducted using the LRP approach, whose main ad-
vantage is the possibility of identifying regions on the seismic spectrograms that lead
the classifiers towards specific classes. In summary, the approach highlights the pixels
in the spectrograms that our CNN was focused during the classification process. Pixels
in red were considered relevant during this process. In turn, pixels that negatively af-
fected the classification are shown in blue. Using such a procedure, we have identified
how natural noise might a↵ect the signals collected from Llaima. To illustrate our find-
ings, Figure 4.18a exemplifies a few LRP visualizations from a TC signal by considering
di↵erent noises.

In this figure, Column I shows the noise percentages. Columns II and III present the
spectrogram and LRP images by noise. Finally, in Column IV, we see the final class
provided by our CNN. As one may notice, LRP is strongly important to identify relevant
pixels as the noise increases. In this example, as the noise is greater than 3%, the patterns
of the red (positive influence) and blue (negative influence) pixels change, inducing the
classifier to select a class TR for the signal.

Aiming to understand the transition between those two classes better, we also plotted
(Figure 4.18b) the relation between spectrograms and LRP images for a signal TR cor-
rectly classified regardless of the noise level. Knowing the region where red and blue pixels
are placed, we can find the relationship between those two classes (TR and TC), thus
leading to a misclassification when the noise level is more significant. Finally, by using
the inverse STFT, we can reconstruct the signal and locate the red and blue influences
on the raw signal.

Spectrograms

In the following experiments, we decided to directly work on the spectrograms outputs,
instead of using their resultant images, i.e., we modified our approach to process the
spectrograms outputs, without saving them as 20⇥20 images in prior step to avoid losing
information. To proceed with this modification, we computed the spectrogram module as
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(a) TC seismic event. (b) TR seismic event.

Figure 4.18 LRP visual interpretation to the pixel influence analysis on our CNN during the
classification process. Labels (I - IV) on top explain the meanings of the plot columns: I) per-
centage of noise applied on the seismic event; II) seismic spectrograms; III) LRP visualizations;
and IV) predicted classes.

defined in Equation �.��, in which a and b are the real and imaginary parts, respectively.

Mod(SP [x(t)](n, k)) =
p
a2 + bi2. (�.��)

Table 4.17 summarizes, in every row, the final results by SNR. As previously noticed
with spectrogram images, the greater the SNR influence, the lower the accuracies and
F1-scores. However, di↵erently from the spectrogram image classification, the modules of
spectrograms classification demonstrate an improvement of the noise tolerance, in which
the classifier performance only approaches the random classifier when the noise ratio is
equal to or greater than 25%. The tests were performed considering the Pearson method
and the R coe�cients are closer to -1, indicating a negative correlation, i.e., the accuracy
and F1-scores have an inverse behavior when compared to the noise level. The significance
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of our tests is confirmed by the p-values and the confidence intervals with 95%.

Table 4.17 Spectrograms classification performances by considering di↵erent noise levels
(SNR).

Noise Level Accuracy F1-score

0% 94.34% 92.93%
1% 94.25% 92.29%
2% 94.81% 93.35%
3% 94.62% 92.87%
4% 93.51% 91.98%
5% 93.32% 91.40%
10% 85.44% 78.49%
15% 73.10% 60.11%
20% 62.06% 44.90%
25% 56.22% 40.50%
30% 51.11% 32.60%

R -0.979 -0.979
p-value < 0.00001 < 0.00001
CI (95%) (-0.995, -0.920) (-0.995, -0.920)

As presented in Section 4.3.3, we also analyzed the classification performance by class
as shown in Table 4.18. This fundamental analysis allowed us to identify that the overall
classification performance is mainly reduced by the TC class, which is the seismic target
most impacted by the SNR influence.

Compared with the accuracy results described in Table 4.15, we noticed a slight
improvement on the performance of the four classes. Figure 4.19 exemplifies a few LRP
visualizations for a TR signal by considering di↵erent noises.

Similarly to the previous analysis, in Figure 4.20, we illustrate the visualizations
produced by LRP after analyzing an LP signal modified with di↵erent noise levels.

Another advantage of using the spectrogram outputs, instead of their transformed
images, is the possibility of applying an inverse transformation to reconstruct the signal
from the frequency domain to the time one. As as consequence, we can identify how each
observation influences the classification process. By using this transformation, we have
noticed that the VT and TR classes are strongly influenced by frequency, the LP class
by time, and TC is influenced by both frequency and time. Thus, to understand those
relationships better, we cropped the LP signals at 25 seconds and compared them to the
original ones, whose the results are shown in Table 4.19.

Another important application observed from our study with inverse transformation
is the possibility of using the explanation approach as a filter to remove noise from
signals, after visualizing parts of the signal that was a↵ecting positively and negatively
the classification process.



56 EXPERIMENTS

Table 4.18 Individual classification performances per class by considering di↵erent noise levels
(SNR).

Accuracy per Seismic Event

Noise Level LP TR VT TC

0% 96.38% 98.33% 98.24% 96.85%
1% 96.38% 98.33% 98.24% 96.85%
2% 96.29% 98.24% 98.24% 96.85%
3% 95.92% 98.14% 98.14% 96.66%
4% 96.20% 98.33% 98.33% 96.75%
5% 96.38% 98.24% 98.52% 96.85%
10% 97.12% 97.12% 98.24% 95.64%
15% 95.92% 89.89% 97.03% 87.11%
20% 91.19% 86.36% 93.04% 73.38%
25% 77.74% 86.36% 91.74% 56.22%
30% 66.33% 86.36% 91.56% 44.62%

Table 4.19 Hit rate of cropped LP x original LP class considering di↵erent noise levels (SNR).

Hit rate

Noise Level LP (cropped) LP (original)

0% 98.47% 97.96%
1% 98.73% 96.69%
2% 98.47% 96.69%
3% 97.46% 96.18%
4% 97.46% 95.17%
5% 97.71% 95.17%
10% 92.37% 90.08%
15% 75.57% 72.26%
20% 55.98% 51.40%
25% 33.59% 32.06%
30% 21.88% 26.21%

Essentially, LRP has the same format as the network input, meaning that if we are
classifying the spectrograms, we can accurately tell which frequencies and samples in
time have positive and negative influence in the model performance. By analyzing the
LRP output of TR and VT signals with 5% of additive noise, one may notice a clear
separation around the 5Hz mark, as shown in the top-most plots of Figure 4.21. In this
figure, the frequencies above that mark have mainly a negative impact for the TR class
and a positive influence for the VT one.
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Figure 4.19 Labels (I - IV) on top explain the meanings of the plot columns: I) percentage
of noise applied on an TC seismic event; II) seismic spectrograms; III) LRP visualizations; and
IV) predicted classes.

When a network classifies a given spectrogram, it analyzes features in both frequency
and time domains. Therefore, we decided to apply a low and a high pass filter with 5Hz
to the signal, to create two di↵erent views of it. We also split LRP at the same frequency
and summed each section over the y-axis, thus creating 1D arrays over time representing
noise and signals. Samples with negative, positive, and neutral impacts are represented
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Figure 4.20 Labels (I - IV) on top explain the meanings of the plot columns: I) percentage
of noise applied on an LP seismic event; II) seismic spectrograms; III) LRP visualizations; and
IV) predicted classes.

by blue, red, and gray colors (Figures 4.21 C-F).

In Figure 4.21, the middle plots (C and D) are then low-pass filtered signals for both
TR and VT classes, while the bottom plots (E and F) are the high-pass filtered signals
for both classes. The low-pass filter extracted positive and negative impacts for the TR
and VT classes, respectively. The opposite happened when we applied a high-pass filter.
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Then, we can conclude that the TR class would benefit from low-pass filters to pre-process
the signals, while the VT class would benefit from high-pass filters.

Figure 4.21 Example of a TR class on the left and a VT class on the right. The top plots
are the LRP outputs, which have samples with positive impact displayed in red and negative
in blue. The middle and bottom plots correspond to the signals after a low a high-pass filter
respectively. Again, the samples shown in red have a positive e↵ect on the network, the samples
in blue have a negative impact, and the ones in gray have no e↵ect.

Finally, we performed a batch experiment to assess the general behavior of the filter
process. In summary, we considered the Mean Absolute Error (MAE) to calculate the
error between the original signals against the noisy and filtered ones. The violin plots
shown in Figure 4.22 shows the general error reduces when the filtered signal is considered,
highlighting the importance of this process.
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Figure 4.22 Violin plot of the mean absolute error of the noised and filtered signals the original
signal.

4.4 DEEP LEARNING FEATURES FOR NOISY TOLERANT TIME SERIES
CLASSIFICATION

The experiments presented in previous sections were very relevant to emphasize the im-
portance of noise in DNN models. Based on conclusions drawn from the interpretability
process, we were able to design a new architecture that can be used as LSTM memory
cells to create models more robust to noise. As a consequence, our contribution modifies
the memory cells, thus making them act as noise filters and suppressing the pre-processing
step.

The evaluation of our architecture was conducted by using the same measures con-
sidered so far, described in Section 4.1. The generalization process of our predictive
models was also studied by sampling the original dataset with a 10-fold cross-validation
approach. Moreover, we compared the obtained results using an LSTM neural network
with and without our cell. Next, we discuss the proposed architecture and the obtained
results.

4.4.1 Our Proposed Artificial Neural Network Architecture

Firstly, we develop a LSTM neural network to classify raw 1D seismic signals using the
same strategies described in Section 4.1, summarized in the following steps:

• Adding or removing extra fully-connected layers;
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• Testing di↵erent configurations of layer hyper-parameters, such as the dropout rate
and the number of neurons at each dense layer;

• Adding dropout layers after convolutional layers and dense layers to avoid overfit-
ting.

We evaluated every adaptation and ended up with the following LSTM composition:

1. One LSTM layer LSTM(Un,RS), in which Un is the output space dimensionality
and RS is the return sequence flag to ensure that LSTM cells return all of outputs
from the unrolled LSTM memory cell through time.

2. One dense layer expressed as F (u), having u as the number of units or neurons at
such a layer;

3. In the output of both LSTM and dense layers, we applied the ReLU activation
function f(x) = max(0, x), so that x is the output from neuron layers;

4. Two dropout layers D(dr), in which dr is the dropout rate, after apply the ReLU
activation function;

5. Then, a softmax activation function was applied on the output of our network.

Next, to make a network architecture capable of filtering noises present in the raw
data, we firstly embed a convolutional layer in the memory cell of the LSTM layer used
by the DNN previously described. As shown in Figure 4.23, the convolutional layer is
based on SeismicNet (CANÁRIO et al., 2020).

Our final LSTM memory cell is illustrated in Figure 4.24, in which the symbol
show the places where the original LSTM cell was modified. As one may notice, our
contribution directly extracts features from the sum of the overall inputs in the LSTM
memory cell. The extracted features are, then, delivered to the LSTM gating mechanism
and, in the next stage, classified by the LSTM dense layer.

Another positive aspect of our cell is related to its usage in practical scenarios. The
user can train its parameters to learn better the noisy behavior of their data. Another
possibility is to consider frozen models to support, for example, one-shot learning pro-
cesses.

Finally, we have created final neural network, referred to as SeismicLSMTNet (Fig-
ure 4.25), putting together all architectures presented in this section:

1. An input layer I(w, h), having w as its width and h as its height;

2. One LSTM layer LSTM(Un), in which Un is the output space dimensionality, and
an embed CNN in it. This CNN is finally composed of:

(a) An input layer I(ch), in which ch is the number of channels of the input data;
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Figure 4.23 Embed CNN summary: input layer, conv. 1D + ReLU, max pool. 1D, conv. 1D
+ ReLU, max pool. 1D, conv. 1D + ReLU, conv. 1D + ReLU, max pool. 1D, and dense layer.

Figure 4.24 LSTM memory cell with the embed layers extracting features from the sum of
the overall inputs.

(b) Four convolutional layers C(K,F, S, P ), having K as the number of filters, F
as the spatial extent, S as the stride, and P as the padding length;

(c) Three max pooling layers denoted as P (F, S), in which F is the size of the
square pooling region, and S is its stride;

(d) One dense layer expressed as F (u), having u as the number of units or neurons
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at such a layer;

(e) In the output of every convolutional, we applied the ReLU activation function
f(x) = max(0, x), so that x is the output from neuron layers;

3. One dense layer expressed as F (u), having u as the number of units or neurons at
such a layer;

4. In the output of both LSTM and dense layers, we applied the ReLU activation
function f(x) = max(0, x), so that x is the output from neuron layers;

5. Two dropout layers D(dr), in which dr is the dropout rate, after apply the ReLU
activation function;

6. Then, a softmax activation function was applied on the output of our network.

Figure 4.25 SeismicLSMTNet summary: input, LSTM with embed CNN, ReLU, dropout,
flatten, dense, ReLU, dropout and output layer with softmax activation function.

4.4.2 Results

This section shows the results obtained with our proposed DNN architecture referred
to as SeismicLSMTNet. Table 4.20 summarizes the F1-scores for the LSTM Network
without our memory cell and SeismicLSMTNet, obtained after running a 10-fold cross-
validation strategy. As one may notice, the LSTM architecture shows great results,
presenting a mean F1-score greater than 91%. It is worth mentioning that such results
are also very close to the ones obtained in previous experiments. However, despite the
SeismicLSMTNet presenting in the F1-score values slightly lower, we notice that was
caused only by the poor performance in one of the folds.

Tables 4.21 and 4.22 illustrates, for each noise level added to the raw seismic signals,
the results calculated from both classifiers per class instead of just presenting their overall
performances.
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Table 4.20 K-fold cross-validation comparison: SeismicLSMTNet x LSTM Network.

LSTM Network SeismicLSMTNet

F1-Score F1-Score

Mean: 91.75% 88.05%
Std: 3.12% 15.07%

Fold 1: 83.61% 42.94%
Fold 2: 90.88% 90.90%
Fold 3: 92.64% 92.32%
Fold 4: 92.85% 93.12%
Fold 5: 93.32% 91.77%
Fold 6: 93.09% 93.17%
Fold 7: 94.16% 94.31%
Fold 8: 94.61% 94.48%
Fold 9: 94.35% 94.19%
Fold 10: 94.56% 93.36%

Table 4.21 LSTM Network individual classification performances per class by considering
di↵erent noise levels (SNR).

F1-Score per Seismic Event

Noise Level LP TR VT TC

0% 96.46% 97.22% 87.50% 97.33%
1% 79.20% 94.29% 29.06% 80.54%
2% 79.69% 91.97% 28.57% 80.32%
3% 77.83% 91.97% 25.00% 79.11%
4% 76.06% 90.37% 28.10% 79.04%
5% 77.59% 89.55% 20.56% 78.48%
10% 63.90% 80.65% 6.19% 72.40%
15% 43.03% 69.33% 0.00% 66.82%
20% 20.14% 44.44% 0.00% 62.13%
25% 7.35% 22.89% 0.00% 59.96%
30% 3.98% 9.09% 0.00% 59.24%

By analyzing the individual values for each class, side by side, one may notice the
overall performance for the SeismicLSMTNet architecture keeps stable even increasing the
noise levels (SNR) in the raw seismic signals. In the LP event, illustrated in Figure 4.26
at the noise level of 5%, the LSTM Network begins to decay very quickly in contrast to
SeismicLSTMNet.

On the TR event, the LSTM Network presents better performance than Seismi-
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Table 4.22 SeismicLSMTNet individual classification performances per class by considering
di↵erent noise levels (SNR).

F1-Score per Seismic Event

Noise Level LP TR VT TC

0% 96.11% 95.83% 89.47% 96.03%
1% 80.47% 65.77% 25.93% 77.04%
2% 80.06% 63.93% 25.93% 76.74%
3% 80.00% 66.37% 22.64% 76.91%
4% 80.00% 65.77% 20.95% 76.78%
5% 80.24% 62.67% 20.95% 76.64%
10% 81.12% 64.55% 2.17% 76.33%
15% 79.10% 65.77% 0.00% 75.38%
20% 72.67% 64.25% 0.00% 73.33%
25% 64.04% 69.23% 0.00% 70.89%
30% 53.97% 65.10% 0.00% 68.56%

Figure 4.26 LP classification performance of LSTM Network and SeismicLSTMNet by con-
sidering di↵erent SNR.

cLSMTNet for the noise level below 15%. After this point, the performances are inverted
and the LSTM Network decays until reaches a score closes to zero. Figure 4.27 shows
the TR classification performance of both architectures.

In the case of the VT and TC rates, both LSTM Network and SeismicLSMTNet
presented a similar behavior, as are illustrated by Figures 4.28 and 4.29. However, in the
TC event, after the seismic events reached a noise level of 5%, SeismicLSMTNet showed
a lower decaying when compared with the LSTM Network.
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Figure 4.27 TR classification performance of LSTM Network and SeismicLSTMNet by con-
sidering di↵erent SNR.

Figure 4.28 VT classification performance of LSTM Network and SeismicLSTMNet by con-
sidering di↵erent SNR.

In contrast with most machine learning studies, in which intensive feature extraction
steps and data transformations are usually adopted during the preprocessing stage, our
SeismicLSTMNet architecture directly uses seismic signals. As a consequence of using
our CNN embedded into LSTM layers, we have created an architecture with a stable
performance despite the addition of noise in the analyzed signals. In summary, our final
architecture was able to directly model one-dimensional signals, without transforming
them to be later used by machine learning algorithms. Moreover, SeismicLSMTNet pre-
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Figure 4.29 TC classification performance of LSTM Network and SeismicLSTMNet by con-
sidering di↵erent SNR.

sented a very stable behavior by facing higher noise levels. Finally, tt is worth emphasizing
that we performed a deep analysis on the Llaima signals training multiple variations of
the SeismicLSMTNet. In this section, we only present the architecture that provided the
best results, but we fully describe the path to the development of SeismicLSTMNet in
Appendix A.





Chapter

5
CONCLUSION

In this work, we investigated the influence of noises on Deep Neural Network (DNN)
models and present a novel deep learning approach with an embedding noise filter capable
of suppressing the preprocessing stage. Instead of just applying noise reduction filters
before modeling some data, as usually performed in the Machine Learning (ML) area,
our proposal relies on the capability of learning noisy patterns, thus delivering more
stable results regardless of the noise level added to signals and improving the modeling
of real-world systems without requiring a decomposition/filtering stage.

The development of this approach demonstrated the validity of our initial hypothesis
that stated a filter created to work as an embedding layer in Long Short-Term Mem-
ory Networks improves the modeling of noisy time series without requiring a previous
decomposition/filtering step.

At the begging of our journey to demonstrate it, we started modeling a real-world ap-
plication using DNN. Essentially, we collaborated with researchers from the Universidad
de La Frontera to model signals collected from the Llaima volcano. Firstly, we devel-
oped a 2D Convolutional Neural Network (CNN) to recognize spectrograms from seismic
events. This CNN architecture could classify spectrograms without the need for a high
number of feature extractors. The obtained results motivated us to conduct an intensive
study on the use of DNNs to classify seismic signals. The consequence of this study was
the development of a new DNN architecture, named SeismicNet, which provides compa-
rable results to the literature and demands no extra e↵ort from the end-user to explicitly
preprocess seismic signals. In summary, all learning stages were encapsulated in a single
piece of software.

Next, we created a controlled scenario in which di↵erent synthetic noise influences
were added to signals to measure the impact on SeismicNet. Then, we extended this
experiment in two directions. Firstly, we analyzed the 2D CNN architecture with the
best classification results and confirmed that the presence of noise significantly a↵ects
the final results. Secondly, we have focused on understanding the propagation of di↵er-
ent noise levels on the DNN models. In this sense, we have used the Layer-wise Relevance
Propagation (LRP) approach to visualize the impact of noises on the signal predictions.
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By incrementally varying the noise levels in our experiments, LRP highlighted the spec-
trogram parts that negatively and positively contributed to classification errors.

The results obtained with LRP allowed us to produce another important contribution
that was a study about using DNN and eXplainable Artificial Intelligence (XAI) as a
filter bank, thus separating stochastic influences from noisy signals.

After performing such a comprehensive investigation to comprehend better the noise
e↵ects on DNNmodels, we have created the main contribution of our work: a new memory
cell to make Long Short-Term Memory (LSTM) models more robust. In summary, we
have embedded a CNN into the LSTM memory cell to act as a noise filter suppressing the
preprocessing stage. Analyzing the obtained results, we noticed that this novel approach
learned the noisy features better and could deliver stable results apart from the noise
level added to the seismic signal.

Although our contributions have provided motivating results, there are some lim-
itations that are worth investigating. Firstly, we understand that the study of noise
influences with XAI has come up with a new research topic related to adopting tools to
separate noise from signals. Despite demonstrating how low- and high-pass filters can be
considered in such a scenario, it is necessary to dedicate more e↵ort to analyzing other
filters and their applicability in more complex signals.

Moreover, our final contribution has created an environment that allows the imple-
mentation of di↵erent preprocessing functions inside LSTM cells. For example, instead of
using complex DNN models, one can implement traditional signal processing tools as, for
example, the Wavelet transform and plug it in our memory cell. According to preliminary
experiments, we have noticed that wavelets can improve the classification results by only
using the first component levels extracted from the Discrete Wavelet Transform (DWT).
The improvement is explained by removing details from components, which are usually
considered stochastic behavior, i.e., noise. Therefore, by creating a learnable filter in
this way, the model result can be improved due to the lower complexity obtained by
downsampling observations while keeping the general signal behavior.

Finally, the application considered in this dissertation was completely focused on
modeling seismic signals. However, the contributions yielded from our results can be
applied to signals collected from any system. Therefore, in another future work, we
intend to apply them to neuroscience signals, which are also investigated by our research
group.
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Appendix

A
APPENDIX - PATH TO THE SEISMICLSTMNET

This appendix details the entire analysis process to reach the final architecture of Seismi-
cLSTMNet and the designed experiments to deal with noise e↵ects on the seismic signals
collected from Llaima. Next, we describe the design process of each Artificial Neural
Network (ANN) architecture assembled to deliver more stable results regardless of the
noise level added to the signals.

The evaluation of each model was conducted by using the same measures considered
in previous experiments, illustrated in Section 4.1. The generalization process of our
models was also studied by sampling the original dataset with a 10-fold cross-validation
approach. Moreover, we compared the obtained results using an LSTM neural network
with and without our cell.

A.0.1 First Stage: Embedding Position

Firstly, we conducted a test between three methods to analyze which one could perform
better on attenuation of the noise e↵ect on our dataset: a Gaussian filter, a smooth
average filter, and a convolutional layer.

Table A.1 summarizes the F1-scores per seismic classes considering di↵erent noise lev-
els (Signal-to-Noise Ratio (SNR)) and obtained after running a 10-fold cross-validation
strategy. As one may notice, the convolutional layer shows more promising results, pre-
senting better noise attenuation.

Next, we reviewed the most suitable position to set the convolutional layer: before
the LSTM cell inputs or after the sum of the overall inputs. Figure A.1 illustrates the

position review, in which the symbols and reveal the modification locations on
the original LSTM cell.

Table A.2 illustrates for each noise level added to the raw seismic signals the convo-
lutional layer position results. As it was noticed, the layer placed after the sum of the
overall inputs reached better results. However, we noticed that the layer alone could not
deliver the expected results. Consequently, we presumed that a neural network could
yield those results.

79



80 APPENDIX - PATH TO THE SEISMICLSTMNET

Table A.1 Noise filters: individual classification performances per class by considering di↵erent
noise levels (SNR).

F1-Score per Seismic Event

Noise Level LP TR VT TC

Gaussian Filter

0% 93.45% 92.78% 81.53% 95.48%
1% 40.62% 23.95% 6.38% 64.50%
2% 40.32% 20.73% 6.38% 64.08%
3% 38.08% 16.25% 6.38% 63.58%
4% 38.97% 13.92% 2.17% 63.58%
5% 37.90% 11.54% 4.30% 63.08%
10% 16.63% 2.68% 0.00% 60.28%
15% 4.95% 0.00% 0.00% 59.05%
20% 0.00% 0.00% 0.00% 58.62%
25% 0.00% 0.00% 0.00% 58.62%
30% 0.00% 0.00% 0.00% 58.62%

Smooth Average Filter

0% 93.11% 94.12% 78.95% 95.95%
1% 25.49% 11.54% 4.30% 61.57%
2% 24.67% 10.32% 2.17% 61.44%
3% 22.72% 11.54% 2.17% 61.27%
4% 20.72% 11.54% 0.00% 61.02%
5% 18.76% 7.84% 4.30% 60.69%
10% 10.10% 1.35% 0.00% 59.56%
15% 1.01% 0.00% 0.00% 58.70%
20% 0.51% 0.00% 0.00% 58.66%
25% 0.00% 0.00% 0.00% 58.62%
30% 0.00% 0.00% 0.00% 58.62%

Convolutional Layer

0% 93.71% 93.99% 83.23% 96.12%
1% 57.14% 13.92% 14.29% 68.20%
2% 57.14% 13.92% 8.42% 67.89%
3% 55.84% 15.09% 8.42% 67.89%
4% 53.91% 16.25% 14.29% 66.97%
5% 52.98% 10.32% 16.16% 66.52%
10% 29.83% 0.00% 0.00% 62.00%
15% 10.50% 0.00% 0.00% 59.51%
20% 2.01% 0.00% 0.00% 58.82%
25% 0.00% 0.00% 0.00% 58.62%
30% 0.00% 0.00% 0.00% 58.62%

A.0.2 Second Stage: Network Complexity

Based on previous stage results, we conduct our tests on three new architectures: two
SeismicNet variations (CANÁRIO et al., 2020) and a simpler CNN. The first embed
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Figure A.1 Interventions in the LSTM memory cell to set the convolutional layer’s best posi-
tion.

Table A.2 K-fold cross-validation comparison: Embed Layer (Before inputs) x Embed Layer
(After sum of the overall inputs).

Embed Layer Embed Layer
(Before inputs) (After sum of the overall inputs)

F1-Score F1-Score

Mean: 52.14% 87.93%
Std: 28.67% 1.81%

Fold 1: 34.71% 90.65%
Fold 2: 14.66% 86.08%
Fold 3: 47.59% 88.22%
Fold 4: 83.54% 86.09%
Fold 5: 14.66% 85.75%
Fold 6: 78.36% 87.09%
Fold 7: 73.35% 89.72%
Fold 8: 82.29% 89.63%
Fold 9: 14.66% 86.20%
Fold 10: 77.58% 89.91%

architecture (Figure A.2) has the following network composition:

1. An input layer I(ch), in which ch is the number of channels of the input data;
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2. Four convolutional layers C(K,F, S, P ), having K is the number of filters, F as the
spatial extent, S is the stride, and P is the zero-padding length;

3. Three max-pooling layers denoted as P (F, S), in which F is the size of the square
pooling region, and S is its stride;

4. In the output of the second, third, and fourth convolutional layers, we applied the
ReLU activation function f(x) = max(0, x), so that x is the output from neuron
layers;

5. Finally, at the end of the network, we flatten the resultant features.

Figure A.2 Embed CNN (version 1) summary: input layer, conv. 1D, conv. 1D + ReLU, max
pool. 1D, conv. 1D + ReLU, max pool. 1D, conv. 1D + ReLU, max pool. 1D, and a flatten
layer.

The second architecture, illustrated by Figure A.3, was a more complex version of our
first trial, and it has the following network:

1. An input layer I(ch), in which ch is the number of channels of the input data;

2. Six convolutional layers C(K,F, S, P ), having K is the number of filters, F as the
spatial extent, S is the stride, and P is the zero-padding length;

3. Three max-pooling layers denoted as P (F, S), in which F is the size of the square
pooling region, and S is its stride;

4. In the output of each convolutional layers, we applied the ReLU activation function
f(x) = max(0, x), so that x is the output from neuron layers;

5. Finally, at the end of the network, we flatten the resultant features.
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Figure A.3 Embed CNN (version 2) summary: input layer, conv. 1D + ReLU, max pool. 1D,
conv. 1D + ReLU, max pool. 1D, conv. 1D + ReLU, conv. 1D + ReLU, conv. 1D + ReLU,
conv. 1D + ReLU, max pool. 1D, and a flatten layer.

The third created architecture is the simpler CNN that we tested. This architecture
(Figure A.4) is composed as follows:

1. One convolutional layer C(K,F, S, P ), having K is the number of filters, F as the
spatial extent, S is the stride, and P is the zero-padding length;

2. One max-pooling layer denoted as P (F, S), in which F is the size of the square
pooling region, and S is its stride;

3. In the output of the convolutional layer, we applied the ReLU activation function
f(x) = max(0, x), so that x is the output from neuron layers;

4. One dense layer expressed as F (u), having u as the number of units or neurons at
such a layer.

Therefore, we compared each architecture performance against the LSTM Network
without any embed network in the memory cell. Table A.3 and Table A.4 synthesizes the
obtained results of the LSTM Network and each architecture, respectively.

After carefully analyzing the results obtained from each model, we perceived that the
most possible track to reach our goal is some ANN architecture derived from the sec-
ond architecture. Therefore, we develop the SeismicLSTMNet using the same strategies
described in Section 4.1, summarized in the following steps:

• Testing di↵erent configurations of layer hyper-parameters, such as the dropout rate,
the kernel size, the number of filters in convolutional layers and the number of
neurons at each fully-connected layer;

• Adding dropout layers after convolutional layers and fully-connected layers to avoid
overfitting.
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Figure A.4 Embed CNN (version 3) summary: input layer, conv. 1D + ReLU, max pool. 1D,
and a dense layer.

Table A.3 LSTM Network: individual classification performances per class by considering
di↵erent noise levels (SNR).

F1-Score per Seismic Event

Noise Level LP TR VT TC

LSTM Network

0% 93.45% 92.78% 81.53% 95.48%
1% 40.62% 23.95% 6.38% 64.50%
2% 40.32% 20.73% 6.38% 64.08%
3% 38.08% 16.25% 6.38% 63.58%
4% 38.97% 13.92% 2.17% 63.58%
5% 37.90% 11.54% 4.30% 63.08%
10% 16.63% 2.68% 0.00% 60.28%
15% 4.95% 0.00% 0.00% 59.05%
20% 0.00% 0.00% 0.00% 58.62%
25% 0.00% 0.00% 0.00% 58.62%
30% 0.00% 0.00% 0.00% 58.62%
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Table A.4 CNN Architectures: individual classification performances per class by considering
di↵erent noise levels (SNR).

F1-Score per Seismic Event

Noise Level LP TR VT TC

Architecture 1

0% 97.47% 96.22% 91.01% 96.77%
1% 0.00% 24.44% 0.00% 3.41%
2% 0.00% 24.40% 0.00% 3.00%
3% 0.00% 24.36% 0.00% 3.01%
4% 0.00% 24.34% 0.00% 3.02%
5% 0.00% 24.28% 0.00% 3.47%
10% 0.00% 24.28% 0.00% 3.90%
15% 0.00% 24.15% 0.00% 3.89%
20% 0.00% 24.33% 0.00% 5.51%
25% 0.00% 24.34% 0.00% 8.59%
30% 0.00% 24.91% 0.00% 17.29%

Architecture 2

0% 96.21% 95.77% 91.53% 96.79%
1% 27.13% 0.00% 0.00% 61.05%
2% 24.44% 0.00% 0.00% 60.76%
3% 21.72% 0.00% 0.00% 60.43%
4% 16.78% 0.00% 0.00% 60.04%
5% 12.41% 0.00% 0.00% 59.64%
10% 0.51% 0.00% 0.00% 58.66%
15% 0.00% 0.00% 0.00% 58.62%
20% 0.00% 0.00% 0.00% 58.62%
25% 0.00% 0.00% 0.00% 58.62%
30% 0.00% 0.00% 0.00% 58.62%

Architecture 3

0% 96.04% 93.95% 87.70% 96.13%
1% 5.93% 0.00% 17.13% 59.42%
2% 4.48% 0.00% 16.37% 58.81%
3% 3.01% 0.00% 14.07% 58.14%
4% 1.52% 0.00% 13.88% 58.02%
5% 1.01% 0.00% 13.91% 57.82%
10% 0.51% 0.00% 14.42% 57.89%
15% 0.00% 0.00% 8.11% 58.12%
20% 0.00% 0.00% 1.80% 57.79%
25% 0.00% 0.00% 0.00% 57.94%
30% 0.00% 4.79% 0.00% 58.34%


