
Federal University of Bahia

MASTER THESIS

Trajectory optimization applied to motion planning of industrial

manipulators

Miguel Felipe Nery Vieira

Postgraduate Program in Electrical Engineering

Salvador

2022

MIGUEL FELIPE NERY VIEIRA

TRAJECTORY OPTIMIZATION APPLIED TO MOTION

PLANNING OF INDUSTRIAL MANIPULATORS

This Master thesis was submitted to

the Postgraduate Program in Electri-

cal Engineering from the Federal Uni-

versity of Bahia, as partial require-

ment for the degree of Master in Elec-

trical Engineering.

Adviser: Prof. Dr. André Gustavo Scolari Conceição

Salvador

2022

V658 Vieira, Miguel Felipe Nery.

Trajectory optimization applied to motion planning of industrial

manipulators/ Miguel Felipe Nery Vieira. – Salvador, 2022.

48 f.: il. color.

Orientador: Prof. Dr. André Gustavo Scolari Conceição.

Dissertação (mestrado) – Universidade Federal da Bahia. Escola

Politécnica, 2022.

1. Robôs industriais. 2. Robótica. 3. Trajetória - otimização. I.

Conceição, André Gustavo Scolari. II. Universidade Federal da Bahia.

III. Título.

 CDD: 629.893 3

ACKNOWLEDGEMENTS

A todas e todos que acreditaram e me apoiaram de alguma forma nessa jornada, meus

mais sinceros agradecimentos. Em especial, agradeço:

A meus pais e irmã, Dulcinea Nery, Antenor Nunes e Lara Camila por sempre

apoiarem minhas decisões e impulsionarem meus sonhos e objetivos. Sem vocês, nada

disso seria posśıvel.

A Ederson Reis, pelas palavras de conforto nos momentos mais dif́ıceis, pelo compan-

heirismo, por me dar forças sempre que necessário.

A Cássio de Castro e Ronny Brayner, por toda a amizade, sempre presentes apesar

da distância.

A Aline Alencar, Luan Freitas e Stefanne Santos por terem sido minha segunda famı́lia

em Salvador.

Aos amigos do programa Novos Talentos em Robótica e Sistemas Autônomos, do Senai

Cimatec, em especial Anderson Queiroz, Aziel Freitas, Diogo Martins, Jean Paulo, Jéssica

Motta, Leonardo Lima, Lucas Silva, Mateus Cerqueira, Marco Reis, Oberdan Pinheiro,

Pedro Tecchio, Rebeca Lima, Rodrigo Formiga, Tiago Souza e Vińıcius Felismino, por

todo o aprendizado proporcionado.

A André Scolari por aceitar me orientar neste trabalho e por toda ajuda para o bom

desenvolvimento do mesmo.

iii

A mente que se abre a uma nova ideia jamais voltará ao seu tamanho

original.

—ALBERT EINSTEIN

RESUMO

Manipuladores robóticos estão cada vez mais presentes em diversas atividades, dentro e

fora da indústria. A utilização destes robôs permite maior precisão e exatidão na real-

ização nas tarefas, porém, é importante levar em consideração alguns fatores que garan-

tam a segurança do sistema, como a capacidade de evitar obstáculos que possam estar

presentes no ambiente operacional e a qualidade da trajetória final gerada. Neste tra-

balho, um sistema para otimização de trajetória de um robô manipulador em ambientes

complexos é implementado, utilizando os algoritmos Covariant Hamiltonian Optimization

for Motion Planning (CHOMP) e Stochastic Trajectory Optimization for Motion Plan-

ning (STOMP). Um sensor visual do tipo RGB+D é integrado para ao sistema detecção

de obstáculos no ambiente de operação. O sistema é baseado no framework open-source

Robot Operating System(ROS) e é aplicado a uma célula de manufatura aditiva composta

pelo robô colaborativo UR5 para a realização de tarefas de pick and place. Após uma

série de execuções em cenários simulados e reais, os algoritmos que compõem o sistema

foram comparados com base em sua taxa de sucesso, tempo de planejamento e duração

da trajetória gerada. Os resultados obtidos indicam a capacidade do sistema de gerar

trajetórias otimizadas e livres de colisões em ambiente estático.

Palavras-chave: Manipuladores robóticos, Robôs colaborativos, Otimização de tra-

jetória, ROS, Moveit.

v

ABSTRACT

Robotic manipulators are becoming more present in various activities, inside and outside

the industry. The use of these robots allows greater precision and accuracy in carrying

out the tasks, however, it is important to take into account some factors to ensure the

safety of the system, such as the ability to avoid obstacles that may be present in the

operating environment and the quality of the final path. In this work, we implement a

system for trajectory optimization of a robotic manipulator in static environments us-

ing the algorithms Covariant Hamiltonian Optimization for Motion Planning (CHOMP)

and Stochastic Trajectory Optimization for Motion Planning (STOMP). We integrated

an RGB+D sensor to the system for obstacle detection on manipulator’s workspace.

The system is based on open-source framework Robot Operating System (ROS) and it

is applied to pick and place tasks in an additive manufacturing cell composed by the

collaborative robot UR5. After a series of executions on real and simulated scenarios, the

algorithms were compared based on their success rate, planning time, and duration of

the generated trajectory. Results indicate that the proposed system can generate feasible

and collision-free trajectories in static environments.

Keywords: Robotic manipulators, Collaborative robotics, Trajectory optimization,

ROS, Moveit.

vi

CONTENTS

Chapter 1—Introduction 1

1.1 Literature Review . 3

1.2 Objectives of this Work . 5

1.3 Methodology . 5

1.4 Publications . 7

1.5 Organization of this Work . 8

Chapter 2—Modeling 9

2.1 Robot Manipulator . 9

2.2 Forward Kinematics . 10

2.2.1 Denavit-Hartenberg Convention 11

2.3 Inverse Kinematics . 13

2.4 Jacobian Matrix . 14

Chapter 3—Motion Planning and Optimization System 16

3.1 Motion Planning . 16

3.1.1 CHOMP . 16

3.1.2 STOMP . 18

3.2 ROS Framework . 22

3.3 Moveit . 23

3.4 Computer Vision . 24

3.5 Flowchart of the system . 25

Chapter 4—Experimental Results 27

4.1 The setup . 27

4.2 The experiments . 29

4.2.1 Simulation Scenario I . 29

4.2.2 Simulation Scenario II . 32

vii

viii CONTENTS

4.2.3 Simulation Scenario III . 35

4.2.4 Simulation Scenario IV . 37

4.2.5 Simulation Results Summary . 39

4.2.6 Real Scenario I . 41

4.2.7 Real Scenario II . 43

4.2.8 Real Scenario III . 47

4.2.9 Real Results Summary . 49

Chapter 5—Conclusions 51

LIST OF FIGURES

1.1 Collaborative UR Series from Universal Robots (from left to right: UR3,

UR5, UR10 and UR16). 2

1.2 Webots simulation containing a collaborative manipulator UR5 in an ad-

ditive manufacturing cell. 6

1.3 Additive manufacturing cell of robotics laboratory from the Federal Uni-

versity of Bahia. 7

2.1 UR5 robot kinematic. 12

3.1 Some ROS compatible robots. From left to right: Jaco, by Kinova; Open-

Manipulator and OP3, by Robotis; UR5, by Universal Robots and Warthog,

by Clearpath. 22

3.2 UR5 motion planning using Moveit and RViz. 23

3.3 The move group node. 24

3.4 Obstacle collision detection pipeline. 26

3.5 Flowchart of the developed system. 26

4.1 Experiment simulation, containing the UR5 manipulator, a 3D printer,

manufactured pieces and obstacles. 28

4.2 Collision objects representation on Rviz. 28

4.3 Simulation routine I. 30

4.4 Planning Time for each trajectory planner on simulated scene I. 31

4.5 Duration of the generated path for each trajectory planner on simulated

scene I. 32

4.6 Points of the generated path by each algorithm on simulated scenario I. . 33

4.7 Simulation routine II. 34

4.8 Planning Time for each trajectory planner on simulated scene II. 35

4.9 Duration of the generated path for each trajectory planner on simulated

scene II. 35

4.10 Simulation routine III. 36

4.11 Planning Time for each trajectory planner on simulated scene III. 37

ix

x LIST OF FIGURES

4.12 Duration of the generated path for each trajectory planner on simulated

scene III. 38

4.13 Simulation routine IV. 39

4.14 Planning Time for each trajectory planner on simulated scene IV. 40

4.15 Duration of the generated path for each trajectory planner on simulated

scene IV. 40

4.16 Planning time by scene and algorithm on simulated scenarios. 41

4.17 Trajectory duration by scene and algorithm on simulated scenarios. . . . 41

4.18 Execution routine I. 42

4.19 Real scenario and objects collision representation for 1st real routine. . . 43

4.20 Planning Time for each trajectory planner on real scene I. 44

4.21 Duration of the generated path for each trajectory planner on real scene I. 44

4.22 Execution routine II. 45

4.23 Real scenario and objects collision representation for 2nd real routine. . . 45

4.24 Planning Time for each trajectory planner on real scene II. 46

4.25 Duration of the generated path for each trajectory planner on real scene II. 46

4.26 Execution routine III. 47

4.27 Real scenario and objects identification for 3rd real routine. 48

4.28 Planning Time for each trajectory planner on real scene III. 49

4.29 Duration of the generated path for each trajectory planner on real scene III. 49

4.30 Planning time by scene and algorithm on real scenarios. 50

4.31 Trajectory duration by scene and algorithm on real scenarios. 50

LIST OF TABLES

2.1 Denavit-Hartenberg (DH) parameters for UR5 manipulator. 13

4.1 Success Rate - Simulation Scenario I. 31

4.2 Success Rate - Simulation Scenario II. 32

4.3 Success Rate - Simulation Scenario III. 37

4.4 Success Rate - Simulation Scenario IV. 38

4.5 Success rate on simulated scenarios. 41

4.6 Success Rate - Real Scene I. 43

4.7 Success Rate - Real Scene II. 46

4.8 Success Rate - Real Scene III. 48

4.9 Success rate on real scenarios. 49

xi

LIST OF ABBREVIATIONS

AI Artificial intelligence

CHOMP Covariant Hamiltonian Optimization for Motion Planning

DH Denavit-Hartenberg

DoF Degrees of Freedom

FoV Field of View

IoT Internet of Things

ROS Robot Operating System

STOMP Stochastic Trajectory Optimization for Motion Planning

URDF Unified Robot Description Format

SDRF Semantic Robot Description Format

xii

LIST OF SYMBOLS

∇̄ Functional gradient

λ Trade-off parameter

E Expectation

M STOMP cost function

U CHOMP cost function

ψ Trajectory

θi Angle of rotation

ξE Pose of end effector

di Joint displacement

I Identity matrix

p Position vector

qi Joint Variable

R Rotation matrix

xiii

Chapter

1
INTRODUCTION

The first known industrial robot was developed by George Dovel, in the early 1960s

(GASPARETTO; SCALERA, 2019). The Unimate worked on a vehicle production line

and had the function of lifting hot metal parts from a casting machine and packing them,

a dangerous task to be performed by human operators. The manipulator was installed

for the first time ah the automotive plants of the company General Motors, which became

the most automated factory in the world, producing 110 cars per hour, more than double

the standard production rate at that time, thus causing a revolution in the automotive

industry (IEEE, 2018).

Over the years, several other models of robotic manipulators have emerged, such as

the Stanford Arm, an all-electric arm with 6 Degrees of Freedom (DoF), developed by

Victor Scheinman at Stanford University in 1969 (INFOLAB, 2019), and the ASEA IRB

6, the first arm to have a microcontroller, developed by ASEA, today ABB, in 1975. The

mechanism had 5 DoF, 6kg of load capacity and it was the first of a series of manipulators

that keeps evolving until the present time (INFORMATION, 2021).

With the arrival of industry 4.0, a new model of manufacturing it’s expected to be cre-

ated. The fourth industrial revolution features smart and autonomous systems connected

and working collaboratively. This revolution is only possible due to the development and

adoption of technologies, such as additive manufacturing, blocking chain, Artificial intel-

ligence (AI), Internet of Things (IoT), and robotic systems (OLSEN; TOMLIN, 2019).

Despite some challenges, mainly related to the workers’ qualification and the digital

transformation needed for this new manufacturing concept, industry 4.0 provides a large

number of benefits, for example reduction of energy consumption, reduction of overpro-

duction and waste, flexible production, more modular products, increased productivity

and efficiency in operations (MOHAMED, 2018).

1

2 INTRODUCTION

Figure 1.1: Collaborative UR Series from Universal Robots (from left to right: UR3,
UR5, UR10 and UR16).

Source: (ROBOTS, 2021)

Industrial arms usually work isolated from humans, and their ability to share the

workspace with operators is a key factor for the industry 4.0 materialization. In smart

factories, arms will be equipped with sensors and AI to allow human-robot collaboration.

The safety mechanisms can be obtained from a combination of several technologies, such

as proximity sensors and force limitations. The use of collaborative robots, so-called

“cobots”, allows more safety for humans involved in the production process, as well as

greater reliability, repeatability, and quality in performed tasks (EVJEMO et al., 2020).

A good example of cobots are the UR series robots, Figure 1.1, from Universal Robots.

The manufacturing industry is responsible for most of the applications for collabora-

tive robots, especially in automotive industries. These robots have been mainly used on

pick and place tasks, welding, assembling items, handling materials that can be danger-

ous for human and product inspections. The cobots can perform these tasks with high

accuracy, reduced operational costs, and increased security for the operator (SHERWANI;

ASAD; IBRAHIM, 2020). To avoid accidents while performing the tasks imposed on the

manipulator, it is important to have effective motion planning that guarantees a feasible

path, free from obstacles and that respects imposed restrictions.

In this work, we implement a system for the optimization of trajectories using the algo-

rithms Stochastic Trajectory Optimization for Motion Planning (STOMP) (KALAKR-

ISHNAN et al., 2011) and Covariant Hamiltonian Optimization for Motion Planning

(CHOMP) (ZUCKER et al., 2013) applied to manipulators inserted in an environment

with obstacles, which are detected using an RGB+D sensor. The proposed system is ap-

1.1 LITERATURE REVIEW 3

plied to a robotic additive manufacturing unity, in the context of the FASTEN research

project (CONCEIÇÃO et al., 2020).

1.1 LITERATURE REVIEW

The motion planning of manipulators has received a lot of attention in the last years

and a large number of works related to this theme have been published Optimization-

based planners, such as CHOMP and STOMP, can generate relatively simple solutions

to problems with higher DoF in limited spaces, providing more consistent and reliable

results, and they have been gaining popularity among robotics community (PENG et al.,

2021).

Solutions can be developed based on these algorithms to reach collision-free opera-

tions and optimize defined cost functions, such as in (KADEN; THOMAS, 2019). In this

paper, the authors maximize the manipulator’s manipulability by adding it as a state

cost. The system used a combination of STOMP and Gaussian Mixture Models for addi-

tional optimization of trajectories generated by RRT-Connect (KUFFNER; LAVALLE,

2000). The algorithms were evaluated in a simulated confined environment and results

indicated that the proposed optimization method provides a considerable rase of the

robot’s manipulability. In (PAVLICHENKO; BEHNKE, 2017), an optimization method

based on STOMP is presented, the STOMP-NEW. The inclusion of the speed as a state

cost made possible the optimization of trajectory duration. The system also takes into

account torque costs, orientation constraints, obstacles, and joint limits. Experiments

were carried out in a Momaro 7 DoF manipulator, and results were obtained with high

success rates and short execution time, characterizing the proposed method as applicable

in situations that require frequent replanning in dynamic environments.

The use of Robot Operating System (ROS) framework (QUIGLEY et al., 2009) allows

that the simulation of robots can be evaluated with fidelity, reliability, and low cost. In

(YE; SUN, 2020), it’s presented the application of motion planning techniques for a 7 DoF

robotic manipulator. The authors used ROS and Moveit, a robotic manipulation tool,

to establish the necessary configurations for planning tasks and the RRT (LAVALLE;

JR, 2001) algorithm was selected as planner. For obstacle avoidance motion planning,

a sensor was installed on the manipulator, and the environment was monitored using

Moveit perception tools. Simulation tests indicated the efficiency of the RRT algorithm in

generating obstacle-free trajectories for redundant manipulators (7DoF). A novel system

for trajectory programming based on learning by demonstration techniques is proposed

in (ZHANG et al., 2020). The user moves a color marker with the desired path, and the

system track and records the information, teaching to the robot and allowing execution

4 INTRODUCTION

after the demonstration. This way, users unfamiliar with programming techniques can

easily send trajectories to the manipulator. Thanks to the development based on ROS, the

system is compatible with different types of robots. Experimental results were conducted

in a collaborative manipulator UR5, and results indicate that the system can reduce the

ergonomic stress of operators, as it allows a simpler and more intuitive programming of

the robot’s trajectory.

Applications involving ROS for manipulators are often related to Moveit (CHITTA;

SUCAN; COUSINS, 2012), as will be discussed later in this work. In (GRUSHKO et al.,

2020), authors realized a benchmarking to optimize the parameters related to percep-

tion and trajectory planning of Moveit. Different scenarios were performed in a motion

planning task with obstacles, using simulated and real models of the UR3 robotic manip-

ulator. The metrics used in the benchmarkings followed two indicators: time taken for

the solver to generate the trajectory, where less computational time is considered as high

performance, and execution time of the planned trajectory, where trajectories of shorter

durations are considered as high performance. Additionally, the percentage of planning

and execution successes are also measured. A defined number of variation between the

parameters were tested, each one performed 30 consecutive times for the studied trajec-

tory planning problem, and results statistically analyzed in order to verify the influence

of each parameter on the system performance.

One of the most related application for robotic manipulators is pick and place of

objects. In (JUNG et al., 2020), a simulation with object manipulation using Gazebo and

Moveit is presented. The authors applied deep learning techniques for object detection

and Gazebo’s grasp plugins for gripper control. The system has been developed using

the UR5 manipulator integrated with robotiq’s 2F-85 gripper. A system based on the

collaborative robot UR5 and Moveit is also proposed in (KUMAR et al., 2017). In

this work, the authors developed an autonomous system for pick and place tasks in

warehouses. The detection of the object to be manipulated, among 29 possibilities, was

in charge of convolutional neural networks, allied to the Moveit perception tool and

sensor data. Tests were performed with the robot in a real scenario, and results indicate

an average task execution time of 24 seconds and accuracy of 90 % for objects detection.

When talking about collaboration between humans and robots, the robot must have

the ability to plan its trajectory free from collisions with humans and other obstacles

in the work environment. In (BRITO et al., 2018), two path planning algorithms, RRT

and PRM (KAVRAKI et al., 1996), were tested and compared in a virtual model of the

collaborative manipulator UR5. The proposed system uses a Kinect sensor to perceive

the environment. Through interconnected ROS nodes, sensor data is available to Moveit,

which is responsible to plan and execute collision-free trajectories. A novel motion plan-

1.2 OBJECTIVES OF THIS WORK 5

ning algorithm based on RRT and Memory-Goal-Biasing is proposed in (HAN et al.,

2018). As a way to escape the local minimum problem, the algorithm memorizes the

exploration information in the goal extension and then selects the closest node to the

goal expecting the memorized nodes. Additionally, to improve obstacle avoidance and

the efficiency of path planning, the obstacle area was extended according to the radius of

the manipulator. The algorithm was implemented on a simulation developed on ROS and

Moveit, using the redundant manipulator Baxter robot in different scenarios with obsta-

cles. Results indicated that the proposed method has better optimization performance

and lower computation complexity than other RRT-based algorithms.

1.2 OBJECTIVES OF THIS WORK

The main objective of this work is to implement a system for the optimization of trajec-

tories of a robotic manipulator inserted in an environment with obstacles using each one

of the algorithms STOMP and CHOMP, with visual feedback for obstacle detection. In

order to accomplish the main objective, the following specific objectives were achieved:

• study and analyze the model of UR5 robotic manipulator, from Universal Robots,

in which the chosen algorithms will be applied;

• implement in C++ or Python on ROS the techniques proposed by (KALAKR-

ISHNAN et al., 2011) and (ZUCKER et al., 2013) to solve manipulator motion

planning;

• use visual data from an RBG+D sensor to detect obstacles;

• evaluate the performance of the implemented techniques in a pick-and-place situ-

ation with obstacles on real scenario containing an additive manufacturing unity,

composed by a 3D printer and a robotic arm UR5;

• analyze and compare the results of the motion planning algorithms based on plan-

ning time, path duration, and success rate.

1.3 METHODOLOGY

The first stage of this work consisted of a literature review on the theme in order to un-

derstand the state of the art for obstacle-free trajectory optimization algorithms, focusing

on techniques based on STOMP and CHOMP.

The implementation took place in the Robot Operating System (ROS) (ROS, 2017)

framework, together with Moveit (CHITTA; SUCAN; COUSINS, 2012). The routine

6 INTRODUCTION

execution was developed in Python language using open source packages available on

ROS. The selected collaborative robot was the UR5, a six DoF collaborative robot from

Universal Robots (ROBOTS, 2022), with all the models and drivers being freely available

in GitHub. The simulation was developed on Webots (CYBERBOTICS, 2021), shown

in Figure 1.2, an open source simulator that can provide realistic and complex robotic

simulations.

Figure 1.2: Webots simulation containing a collaborative manipulator UR5 in an additive
manufacturing cell.

Source: Own authorship

The use case selected for the experiments was a pick and place task on a real scenario

with obstacles containing an additive manufacturing unity, composed by a 3D printer and

the UR5 manipulator. The robot must take an object located inside of the 3D printer

and place it on the desired position. The task should be accomplished avoiding collisions

with the environment, which is assumed to be previously known and static. Information

about obstacles position will be provided by an RBG+D sensor. The CAD environment

was developed to reproduce the real workspace of the robot at the Federal University of

Bahia.

After the simulated experiments, the algorithms were validated in the real additive

manufacturing cell, shown in Figure 1.3. The obtained results will be discussed in this

document.

1.4 PUBLICATIONS 7

Figure 1.3: Additive manufacturing cell of robotics laboratory from the Federal University
of Bahia.

Source: Own authorship

1.4 PUBLICATIONS

This work provides analysis and comparison of motion planning optimization algorithms

for collaborative robots in environments with obstacles. The results obtained during this

work allowed the publication of the following scientific paper:

• Miguel Felipe Nery Vieira and André Gustavo Scolari Conceição, 2020, Motion

planning using stomp applied to UR5 manipulators. In: III Brazilian Humanoid

Robot Workshop (BRAHUR) and the IV Brazilian Workshop on Service Robotics

(BRASERO). DOI: doi://10.29327/118637.1-5

• Miguel Felipe Nery Vieira and André Gustavo Scolari Conceição, 2022, Trajectory

Optimization for a Collaborative Robot UR5 in a Scenario with Obstacles. In XXIV

Congresso Brasileiro de Automática (CBA 2022). No prelo.

8 INTRODUCTION

1.5 ORGANIZATION OF THIS WORK

The remainder of this work is organized as follows. Chapter 2 presents the basis of

the modeling techniques for robotics. In Chapter 3, the components of the proposed

system are discussed. The experimental results of this work are presented and discussed

in Chapter 4. Conclusions and future works are provided in Chapter 5.

Chapter

2
MODELING

This chapter will present a theoretical overview of forward, inverse and differential kine-

matics for robot manipulators, focusing on the cobot UR5.

2.1 ROBOT MANIPULATOR

A robot manipulator can be described as a series of rigid elements connected by joints,

that can be simple, such as prismatic and revolution, or more complex, such as ball and

socket joints. These joints allow that these rigid elements, called links, to move with each

other and the number of joints determines the manipulator’s degrees of freedom. All

this structure forms a kinematic chain. One of the ends of this chain is called base and

at the other, an end effector can be integrated, allowing manipulation of objects, with

characteristics that can vary depending on the application.

Assuming that a robot manipulator has n joints, it can be said that it will have n+ 1

links. Following the established convention in (SPONG; HUTCHINSON; VIDYASAGAR,

2005), we number the links from 0 to n, starting from the base, and the joints from 1 to

n. The joint i connects the link i − 1 to link i. As link 0 represents the base, it will be

fixed. For each ith joint, we can associate a joint variable, qi. For prismatic joints, qi is

the joint displacement and for revolution joints, qi is the angle of rotation:

qi =

di, for prismatic joints

θi, for revolution joints
(.)

For each link i, a coordinate frame oixiyizi is attached, allowing kinematics analysis

to be performed. The frame o0x0y0z0, that is attached to manipulator base, is called of

9

10 MODELING

inertial frame. Additionally, the actuation of joint i results in the motion of link i and

its attached frame oixiyizi. Supposing Ai the homogeneous transformation matrix that

defines the position and orientation, or pose, of oixiyizi with respect to o0x0y0z0, the

matrix Ai is not constant, it varies according to joints variables.

Ai = Ai(qi) (.)

The transformation matrix T ij expresses the pose of oixiyizi with respect to ojxjyjzj.

T ij =


Ai+1Ai+2...Aj−1Aj if i < j

I if i = j

(T ji)−1 if j > i

(.)

The pose of the end-effector with respect to the inertial frame is denoted by a combi-

nation of a position vector p0n and the 3x3 rotation matrix R0
n and it’s given by

H = T 0
n = A1(q1)...An(qn) (.)

where each homogeneous transformation Ai is of the form

Ai =

[
Ri−1
i pi−1i

0 1

]
(.)

which results in

T ij = Ai+1Ai+2...Aj−1Aj =

[
Ri
j pij

0 1

]
(.)

2.2 FORWARD KINEMATICS

The objective of forward kinematics is to calculate the pose of the end effector as a

function of its joints variables (SICILIANO et al., 2010). Forward kinematics can be

expressed in the form

ξE = κ(q) (.)

with ξE being the pose of end effector and κ(q) a function of joint coordinates. The pose

of the end effector has six degrees of freedom - three in translation and three in rotation

- and in order to reach arbitraries end effector poses, robot manipulators usually have six

DoF (CORKE, 2011). For UR5 manipulators, the forward kinematics equations calculate

2.2 FORWARD KINEMATICS 11

a transformation matrix T 6
0 , based on qi values, defined as:

T 0
6 (θ1, θ2, θ3, θ4, θ5, θ6) =

[
R6

0 P 0
6

0 1

]

=


X̂0

6x Ŷ 0
6x Ẑ0

6x P 0
6x

X̂0
6y Ŷ 0

6y Ẑ0
6y P 0

6y

X̂0
6z ẑ06z Ẑ0

6z P 0
6z

0 0 0 1


(.)

where P 0
6 is the origin of frame 6 seem from frame 0, and X̂0

6 , Ŷ 0
6 , Ẑ0

6 are unit vectors

defining the direction of three axes of frame 6 in relation to frame 0.

The transformation matrix shown in equation . can be split as a chain of transfor-

mations, one for each of 6 joints of UR5 manipulator:

T 0
6 = T 0

1 (θ1)T
1
2 (θ2)T

2
3 (θ3)T

3
4 (θ4)T

4
5 (θ5)T

5
6 (θ6) (.)

2.2.1 Denavit-Hartenberg Convention

The kinematic analysis of an n-link robot manipulator can become a complex task and

the use of conventions simplifies the analysis. A commonly used convention in robotics

application is the DH convention, which represents each homogeneous transformation

T i−1i as a product of four basic transformations

T i−1i = Rotz,θiTransz,diTransx,aiRotx,αi

=


cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1




1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 ai

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1



=


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di

0 0 0 1


(.)

where θi, αi, ai and di are parameters associated with link i and joint i, also known as

DH parameters. A common representation of UR5 robot kinematic structure, with all

12 MODELING

joint variables (θi) at 0, is shown in Figure 2.1.

Figure 2.1: UR5 robot kinematic.

(a) Kinematic chain. (b) Virtual model.

Source: a) (ANDERSEN, 2018) b) Own authorship

According to (SICILIANO et al., 2010; KEATING, 2014; ANDERSEN, 2018) the DH

parameters are specified as:

θi angle between axes Xi−1 and Xi, measured about axis Zi−1

αi angle between axes Zi−1 and Zi, measured about axis Xi

di distance from axis Xi−1 to Xi, measured along axis Zi−i

ai distance from axis Zi−1 to axis Zi, measured along axis Xi

The DH parameters for UR5 manipulator are shown in Table 2.1. These parameters

can be used to write 6 transformations matrixes, one for each link, with their formats

following equation .. The complete equation, from axis 6 to base, can be obtained

by multiplication of the 6 transformation matrixes, as shown in equation .. After

calculations, the matrix T 0
6 that represents the homogeneous transformation from end

effector to base is obtained.

2.3 INVERSE KINEMATICS 13

Table 2.1: DH parameters for UR5 manipulator.

i θ α d a

1 θ∗1 π/2 0.089159 0
2 θ∗2 0 0 −0.425
3 θ∗3 0 0 −0.39225
4 θ∗4 π/2 0.10915 0
5 θ∗5 −π/2 0.09465 0
6 θ∗6 0 0.0823 0

* joint variable

2.3 INVERSE KINEMATICS

The Inverse Kinematics propose to solve the inverse problem of forward kinematics: Given

a desired pose for end effector, ξE, we must calculate the joint variables (qi ∈ [0, 2π)) that

the robot needs to reach it. The inverse kinematics can be written in functional form as

q = κ−1(ξ) (.)

The function above is not unique, it can have or not have a solution, or it can also

have multiple solutions. The inverse kinematics problem is, in general, more complex than

the forward kinematics problem, and it can be stated as follows. Given a homogeneous

transformation H that represents the desired position and orientation of the end effector

H =

[
R p

0 1

]
(.)

we must find one or all joint variables values that satisfy the equation

T 0
n(q1, ...qn) = H (.)

resulting in 12 nonlinear equations in n unknown variables, with n being the manipulator

DoF, which can be written as

Tij(q1, ..., qn) = hij, i = 1, 2, 3, j = 1, 2, 3, 4 (.)

with Tij, hij referring, respectively, to the entries of T on and H. These equations are much

14 MODELING

difficult to solve in the closed form, so techniques that exploit the kinematic structure of

the manipulator are usually used to solve the inverse kinematics problem. The following

derivation of UR5 inverse kinematics is adopted from (ANDERSEN, 2018), which used

the geometrical approach to determine joint variables based on a desired pose. Another

approaches for UR5 inverse kinematics have also been developed by (KEATING, 2014;

KEBRIA et al., 2016). The equations below show the six joint variables for UR5 based

on a desired end effector pose, with P i
j expressing the location of frame j in relation to

frame i. In order to obtain each P i
j , methods based on geometrical characteristics of the

robot are applied and can be seen with more details in (ANDERSEN, 2018).

θ1 = atan2(P 0
5y, P

0
5x)± acos(

d4√
(P 0

5x)
2 + (P 0

5y)
2
) +

π

2
(.)

θ2 = atan2(−P 1
4z,−P 1

4x)− asin(
−a3sinθ3
| P 1

4xz |
) (.)

θ3 = ±acos(| P
1
4xz |2 −a22 − a23

2a2a3
) (.)

θ4 = atan2(X3
4y, X

3
4x) (.)

θ5 = ±acos(
P 0
6xsinθ1 − P 0

6ycosθ1 − d4
d6

) (.)

θ6 = atan2(
−X̂6

0ysinθ1 + Ŷ 6
0ycosθ1

sinθ5
,
X̂6

0ysinθ1 − Ŷ 6
0ycosθ1

sinθ5
) (.)

We can see that the joint variables θ1, θ3 and θ5, equations ., ., . respectively,

have more than one possible solution. For θ1, the two solutions correspond to the shoulder

joint being “left” or “right”. For θ3, the solutions correspond to “elbow up” and “elbow

down”. Lastly, the two possible solutions for θ5 correspond to the wrist joint being “up”

or “down”.

2.4 JACOBIAN MATRIX

The forward and inverse kinematics equations seen in 2.2 and 2.3 establish relationships

between the pose of the end effector and joint variables. The differential kinematics,

on its turn, relates linear and angular velocities of the end effector with the velocities

of the joints. This mapping is obtained through the Jacobian J matrix, one of the

2.4 JACOBIAN MATRIX 15

most important tools for manipulator study. The Jacobian matrix is essential for the

implementation of kinematic control and planning and execution of smooth trajectories.

In order to obtain a relationship between the velocities of the end effector and the

velocities of joints, it is necessary to determine the contribution of the velocity of each

joint q̇ to the angular velocity w and linear velocity v of the end effector. Being zi the

unit vector that defines the direction of each joint, the contribution of a revolution joint

i is given by:

wi = q̇izi,

vi = wi × (pie) = q̇izi × (pie)
(.)

This way, the velocity of the end effector Ve can be defined as:

Ve =

[
ve

we

]
=

[
z1 × p1e z2 × p2e ... zn × pne
z1 z2 ... zn

]
q̇ (.)

Ve =

[
Jp(q)

Jo(q)

]
q̇ (.)

In . the therm Jp is the matrix that represents the contribution of the joint veloci-

ties to the linear velocity ve. In the other hand, the matrix Jo represents the contribution

of the joint velocities to the angular velocity we. The 6× n matrix in . is the manip-

ulator jacobian:

J =

[
Jp

Jo

]
(.)

which represents the mapping between the joint velocity vector q̇ and the end effector

velocity vector Ve.

Chapter

3
MOTION PLANNING AND OPTIMIZATION SYSTEM

In this chapter, the components of the motion planning and optimization system used

in this work are evaluated. Optimization algorithms, CHOMP and STOMP will be

discussed, as soon as the concepts of ROS framework and Moveit. The computer vision

system used in this work and the obstacle collision detection pipeline will be exhibited.

Finally, a flowchart summarizing the execution of the proposed system is presented.

3.1 MOTION PLANNING

The goal of trajectory optimization in motion planning is to find a feasible trajectory

that minimizes a cost function and respects a set of defined constraints. This constraints

are usually related to obstacles, smoothness and joints torque. In the sequence, the

two algorithms for trajectory optimization used in this work will be explained and their

characteristics will be discussed, CHOMP and STOMP.

3.1.1 CHOMP

Covariant Hamiltonian Optimization for Motion Planning (CHOMP) (ZUCKER et al.,

2013) is a method for trajectory optimization based on covariant gradient technique which

produces both smooth and collision-free trajectories between two specified points xinit,

xgoal for complex robotic systems with many DoF. It uses a similar approach to the

elastic bands, where the trajectory is repelled from obstacles by forces, however, unlike

previous techniques, CHOMP dispenses the requirement that the initial trajectory be

collision-free. The algorithm minimizes the cost function, which consists of obstacle,

16

3.1 MOTION PLANNING 17

velocity and acceleration costs, by means of iteratively updating the trajectory. As it is

based on gradient techniques, the cost function must be differentiable.

Given a trajectory ψ : [0, 1] → C as a function mapping time to robot configuration,

the algorithm minimizes an objective functional U : Ψ→ R which maps each trajectory

ψ in the space of trajectories Ψ to a real number. The objective functional is defined as

follows

U (ψ) = Fobs (ψ) + λFsmooth (ψ) (.)

where the term Fsmooth penalizes a trajectory based on joint velocities and accelerations

to encourage smoothness. At the same time, the term Fobs penalizes proximity to objects

in the environment to encourage collision-free trajectories and λ is a defined trade-off

parameter. CHOMP defines the objective functional exclusively in terms of physical

aspects of the trajectory, so the calculations depend only on the trajectories physics. To

assure computational efficacy, the algorithm discretizes the trajectory ψ into a set of n

waypoints equally distributed in time x1,...,xn, excluding the end points xinit = x0 and

xgoal = xn+1, and computes velocities and accelerations via finite differencing.

The smooth term, Fsmooth, measures dynamical quantities across the trajectory, for

example the integral over squared velocity norms:

Fsmooth (ψ) =
1

2

∫ 1

0

∥∥∥∥ ddtψ(t)

∥∥∥∥2 dt (.)

Using the waypoint parameterization, we can write . as a sum of finite differences

Fsmooth (ψ) =
1

2

n+1∑
t=1

∥∥∥∥xt+1 − xt
∆t

∥∥∥∥2 dt (.)

Being K a finite difference matrix and e a constant vector that condenses the contri-

butions of the fixed end points x0 and xn+1, we can rewrite . as

Fsmooth (ψ) =
1

2
‖Kdψ + e‖2 =

1

2
Aψ + ψT b+ c (.)

with matrix A = KTK, vector b = KT e, and scalar c = eT e/2, the three of them

constants. The matrix A is used to measure the acceleration in the trajectory and it will

always be symmetric positive definite.

The other term, Fobs, measures the proximity to obstacles. Being c : R3 → R a scalar

potential defined on the workspace that penalizes body elements u of the robot, B ⊂ R3,

and κ : Q × B → R3 representing the forward kinematics, the obstacle cost function is

18 MOTION PLANNING AND OPTIMIZATION SYSTEM

defined as:

Fobs =

∫ 1

0

∫
B
c(κ(ψ(t), u))

∥∥∥∥ ddτ κ(ψ(t), u)

∥∥∥∥ du dt (.)

By multiplying c by the norm of the velocity of each body point, . represents the

arc-length parametrized integral of the robot’s body in the workspace’s cost function. For

the computation, the set B is discretized and the integral becomes a summation. The

algorithm also maps the central differences of the elements xt of ψ by the jacobian J to

compute the velocity and position of a point.

Then, CHOMP minimizes the cost function U iteratively updating the initial tra-

jectory ψ0, which is, in general, a straight-line path. As we said before, the algorithm

does not require that the initial trajectory be feasible. It minimizes a first order Taylor

expansion of U around ψi:

ψi+1 = arg min
ψ

U [ψi] + (ψ − ψi)T ∇̄U [ψi] +
η

2
‖ψ − ψi‖2M (.)

where ∇̄U represents the computed functional gradient. The CHOMP’s update rule

is obtained by taking the gradient of the equation . and equalizing it to zero, which

gives:

ψi+1 = ψi −
1

η
A−1∇̄U [ψi] (.)

CHOMP uses a signed distance field as an environment representation, which allows

obtaining gradients even for non-collision-free points of the trajectory (PAVLICHENKO;

BEHNKE, 2017). However, since it uses gradient descent based techniques for optimiza-

tion, CHOMP’s cost function must be differentiable.

3.1.2 STOMP

STOMP (KALAKRISHNAN et al., 2011) is another algorithm that treats the motion

planning problem as an optimization problem. It is based on CHOMP and uses the

same environment representation that the previous one. But, in contrast, as it uses

a stochastic approach for cost minimization, STOMP does not require that the cost

function be differentiable, this way reducing the risk of local minima. The objective is

to find a smooth and collision-free trajectory which minimizes a predefined cost function

that contains costs related to obstacles and constraints of the robot.

The algorithm starts with a trajectory not necessarily feasible, i.e it can be in collision

with the environment, of fixed duration and discretized in n points equally spaced in

3.1 MOTION PLANNING 19

time. It takes as input the start and the goal pose of the end effector (xinit, xgoal), both

kept fixed during optimization and outputs a path vector ψ ∈ RN for each manipulator

joint. In order to simplify its demonstration, the algorithm will be presented considering

trajectories of only one dimension, which naturally extends for multiple dimensions.

The trajectory cost function M(ψ) in STOMP is defined as the sum of state costs

Mx(ψ) and control costs Mu(ψ)

M(ψ) = Mx(ψ) + Mu(ψ) (.)

The term Mx includes the state-dependent costs and it can contain costs about ob-

stacles, constraint violations, and other objectives related to the task accomplishment.

Being f(ψt) an arbitrary state-dependent cost function at time t, the state costs can be

defined as:

Mx(ψ) =
N∑
t=1

f(ψt) (.)

The other term, Mu(ψ), is quadratic in parameters ψ and, being B a positive semi-

definite matrix that represents the control costs, it is defined as:

Mu(ψ) =
1

2
ψTBψ (.)

The matrix B is chosen so Mu(ψ) represents the sum of squared accelerations along

the trajectory, by using a finite differencing matrix A that produces acceleration (ψ̈) when

multiplied by the position vector ψ. The finite differencing matrix A is defined as:

A =



1 0 0 0 0 0

−2 1 0 . . . 0 0 0

1 −2 1 0 0 0
...

. . .
...

0 0 0 1 −2 1

0 0 0 . . . 0 1 −2

0 0 0 0 0 1


(.)

ψ̈ = Aψ (.)

ψ̈T ψ̈ = ψT (ATA)ψ (.)

so the definition of B = ATA ensures that Mu(ψ) represents the sum of squared accelera-

tions over the trajectory. STOMP optimizes the objective function using a derivative-free

20 MOTION PLANNING AND OPTIMIZATION SYSTEM

stochastic optimization method, this way enabling arbitrary costs to be optimized, even

those that are non-differentiable or non-smooth. Being ψ̃ a noisy parameter vector with

mean ψ and covariance Σ, the algorithm attempts to solve the following optimization

problem:

min
ψ

E [M(ψ)] = min
ψ

E

[
N∑
t=1

f(ψ̃t) +
1

2
ψ̃TBψ̃

]
(.)

Taking the gradient of the expectation in .:

∇ψ̃

(
E

[
N∑
t=1

f(ψ̃t) +
1

2
ψ̃TBψ̃

])
= 0 (.)

equation . leads to:

E (ψ) = −B−1∇ψ̃

(
E

[
N∑
t=1

f(ψ̃t)

])
(.)

which results in:

E (ψ) = −B−1E

(
∇ψ̃

[
N∑
t=1

f(ψ̃t)

])
(.)

The equation . can be written as E (ψ) = −B−1δψ̂G, where δψ̂G is now the esti-

mated gradient as it follows below:

δψ̂G = E

(
∇ψ̃

[
N∑
t=1

f(ψ̃t)

])
(.)

Based on probability matching and path integral reinforcement learning, STOMP es-

timates the gradient as the expectation of the noise ε in the vector ψ under the probability

metric P ∝ exp
(
− 1
λ
M(ψ̃)

)
. So, the stochastic gradient can be formulated as:

δψ̂G =

∫
ε dP =

∫
exp

(
−1

λ
M (ψ + ε)

)
ε dε (.)

The equation . is estimated, in practice, by sampling a finite number of trajectories:

δψ̂G =
K∑
k=1

P (ψ + εk)ε (.)

P (ψ + εk) =
exp

(
− 1
λ
M(ψ + εk)

)∑K
l=1 exp

(
− 1
λ
M(ψ + εl)

) (.)

3.1 MOTION PLANNING 21

At every iteration of the algorithm, the gradient update shown in equation . is

applied to the original trajectory with sample trajectories being re-generated from the

newly updated trajectory. In equation ., the probabilities of each noisy parameter are

computed per time-step. The parameter λ regulates the sensitivity of the exponential

cost, and this term can be calculated as:

e(−
1
λ
M(ψk,t)) = e

−h
M(ψk,t)−minM(ψk,t)

maxM(ψk,t)−minM(ψk,t) , (.)

with h set to be a constant value. Additionally, by considering that the state cost f(ψi) is

purely dependent on the parameter ψi and not taking future or past costs to the current

state, STOMP accelerates the convergence of the algorithm. The STOMP algorithm can

be seen in Algorithm 1:

Algorithm 1 STOMP

• Given:

- Start pose xs

- Goal pose xg

- Initial trajectory ψ discretized in N points

- State-dependent cost function f(ψi)

- Control cost matrix B

- Standard deviation of exploration noise σ

• Repeat until convergence of M(ψ):

1. Create K noise trajectories ψ1, ψ2...ψk with parameters ψ + εk, where εk is a zero

mean normal distribution (εk = N (0, σ2B−1)

2. For k = 1...K and t = 1...N , compute:

a) M(ψ̃k,t) = f(ψ̃k,t) +
1

2N
ψTBψ

b) P (ψ̃k,t) =
e(−

1
λ
M(ψ̃k,t))∑K

l=1

[
e(−

1
λ
M(ψ̃k,t))

]
3. For t = 1...(N − 1), compute:

[
δ̃ψ
]
t

=
∑K

k=1 P (ψ̃k,t) [εk]t

4. Update vector ψ ← ψ +B−1δ̃ψ

5. Calculate trajectory cost M(ψ) =
∑N

t=1 f(ψt) + 1
2
ψTBψ

22 MOTION PLANNING AND OPTIMIZATION SYSTEM

3.2 ROS FRAMEWORK

Robot Operating System (ROS) is an open-source framework that works between multiple

platforms and provides a series of tools and databases for robotics development. It has

high compatibility, being used with a wide number of robots, and we can say ROS is one

of the most popular robot development platform nowadays (XU; DUGULEANA, 2019).

The official description of ROS is:

ROS is an open-source, meta-operating system for your robot. It provides

the services you would expect from an operating system, including hardware

abstraction, low-level device control, implementation of commonly-used func-

tionality, message-passing between processes, and package management. It

also provides tools and libraries for obtaining, building, writing, and running

code across multiple computers (ROS.ORG, 2018).

The main goal of ROS is to make the components of a robotic system more easy to

develop and share, so they can be used on other robots with minimal changes, allowing

code reuse and improving code’s quality (MAHTANI et al., 2016). ROS provides essential

functions for robots programming, such as communication among heterogeneous hardware

and error treatment and it has been forming an ecosystem that distributes packages made

by users (PYO et al., 2017). A lot of research institutions and companies have been

developing projects in ROS by adding hardware drivers and sharing code samples, some

examples of compatible ROS robots can be seen in Figure 3.1. In this work, we use ROS

packages to calculate UR5 forward and inverse kinematics, get RBG+D sensor data and

integrate it into the system, and control the movements of the arm.

Figure 3.1: Some ROS compatible robots. From left to right: Jaco, by Kinova;
Open-Manipulator and OP3, by Robotis; UR5, by Universal Robots and Warthog, by
Clearpath.

Source: (ROBOTICS, 2022b; ROBOTIS, 2022; ROBOTS, 2022; ROBOTICS, 2022a)

3.3 MOVEIT 23

3.3 MOVEIT

Moveit is a library for manipulation that integrates a set of tools for motion planning

and control of robot arms. It supports popular solutions for inverse kinematics, such as

KDL, IKFast and TRAC-IK (BEESON; AMES, 2015). It also integrates advanced mo-

tion planning algorithms, including OMPL (SUCAN; MOLL; KAVRAKI, 2012), CHOMP

(ZUCKER et al., 2013) and STOMP (KALAKRISHNAN et al., 2011). Moveit combines

state-of-the-art algorithms for motion planning, kinematics, control, perception and nav-

igation, and we can say it is the most advanced tool for robotic manipulation. It also

offers a friendly easy-to-use interface for the development of advanced applications, as we

can see in Figure 3.2, and it has been extensively used with a wide range of robots for

industry, research, commerce, and other sectors.

Figure 3.2: UR5 motion planning using Moveit and RViz.

In the center of Moveit architecture, we have the move group node, as shown in

Figure 3.3. This node integrates all the individual components to provide ROS actions

and services for users (MOVEIT, 2018). From ROS Param Server, it collects the robot

kinematics data, such as Unified Robot Description Format (URDF), Semantic Robot

Description Format (SDRF) and configuration files. The SDRF and the configuration files

are both generated when we create the Moveit package for our robot, and they contain

the parameters of the manipulator, such as joint limits, kinematics and end effector. The

move group node also provides the state and control of the robot through ROS topics and

actions, for example the /joint states topic and the JointTrajectoryAction interface.

The move group also provides a interface to motion planners which can use different

24 MOTION PLANNING AND OPTIMIZATION SYSTEM

libraries, so it can generate trajectories for desired locations of the end effector respecting

constraints such as position, orientation or joint constraints.

Figure 3.3: The move group node.

Source: (MOVEIT, 2022)

In this work, Moveit is used to integrate TRAC-IK, for inverse kinematics, with

STOMP and CHOMP, for motion planning, allowing it to control a UR5 collaborative

manipulator and the Robotiq gripper attached to the manipulator end effector in a pick

and place application at an environment with obstacles. The Point Cloud provided by the

Intel Realsense D435 is integrated into the framework to provide obstacle and collision

detection. In addition, the framework provides visualization of the noisy trajectories

generated by STOMP, as well as the final trajectory optimized by both algorithms.

3.4 COMPUTER VISION

Computer vision is a common topic in robotic researches nowadays, since vision sensors

have becoming more accessible than other types of perception sensors, while the comput-

ers are getting smaller and more powerful, enabling the use of complex vision algorithms.

In this work, we use Intel Realsense D435 to provide data utilized for obstacles detec-

tion. Some technical specifications of the used sensor are listed below (INTEL, 2022;

MEJIA-TRUJILLO et al., 2019):

• Technology: Active stereoscopy

• Depth Field of View (FoV) (Horizontal x Vertical): 85.2°x 52°(+/- 3°)

3.5 FLOWCHART OF THE SYSTEM 25

• Depth resolution: 1280 x 720

• Depth frame rate: 90 fps

• Minimum depth distance: 0.11 m

• Maximum Range: close to 10 meters

• RGB resolution: 1920 x 1080

• RGB frame rate: 30 fps

• RGB FoV (Horizontal × Vertical): 69.4°x 42.5°(+/- 3°)

The depth camera is mounted on the robot’s end effector, in an eye-on-hand config-

uration, which means that the camera is attached to the wrist frame of the robot. The

captured data by the depth sensor was then used to provide information about objects

on the scene and avoid collisions. Based on the perception tool of Moveit, a schematic of

the obstacle detection pipeline is shown in Figure 3.4 as it contains the following stages:

1. The initial state of the robot is stored.

2. The image of the camera obtained.

3. As we use an RGB+D sensor, the point cloud data is obtained.

4. Based on the robot state and point cloud data, a Planning Scene is generated with

geometrical representation of the objects in the environment.

5. If some link of the robot is assumed to be in contact with any object, the mesh

in contact is represented in the color red, and the movement is not allowed to be

executed. Examples of collision detection with objects (5a) and printer (5b) are

shown.

3.5 FLOWCHART OF THE SYSTEM

A flowchart with a high-level overview of the system described in this chapter is presented

in Figure 3.5.

26 MOTION PLANNING AND OPTIMIZATION SYSTEM

Figure 3.4: Obstacle collision detection pipeline.

Figure 3.5: Flowchart of the developed system.

Chapter

4

EXPERIMENTAL RESULTS

4.1 THE SETUP

All the experiments were conducted in an additive manufacturing unit composed by an

UR5 robotic manipulator, from Universal Robots, controlled by ROS/Moveit and a 3D

printer. Units like these can be used in a wide range of applications evolving cobots

for the industry 4.0, such as pick and place of manufactured components in dynamic

environments. In this work, the experiments were performed with the objective of a pick

and place task, avoiding collision with obstacles in the scene.

The simulation was developed on Webots, reproducing the characteristics of Robotics

Lab, from Federal University of Bahia. In figure 4.1 its shown the simulation environment,

with the cobot UR5 placed on a table, in front of a 3D printer, containing the target

piece. Besides other manufactured pieces placed on the table, it’s also displayed one of

the obstacles that should be avoided, a cylinder of 0.25 m height and 0.04 m radius.

The CPU platform used was an Intel® Core™ i7-7050H CPU @ 2.60GHz, 8GB mem-

ory, and the GPU platform was NVIDIA® GeForce® GTX 1650 4GB.

From an simulated Intel Realsense D435 camera, coupled to the manipulator’s end

effector, and from the Perception tool, integrated into moveit, it is possible to detect

obstacles present in the environment, in order to plan trajectories that avoid them. Figure

4.2 shows a representation on Rviz of the detected collision objects present on cobot’s

workspace.

27

28 EXPERIMENTAL RESULTS

Figure 4.1: Experiment simulation, containing the UR5 manipulator, a 3D printer, man-
ufactured pieces and obstacles.

Figure 4.2: Collision objects representation on Rviz.

4.2 THE EXPERIMENTS 29

4.2 THE EXPERIMENTS

As already explained, experiments were performed with the objective of realize a pick

and place task, avoiding collision with obstacles of known location in the scene. After

the execution, the cobot must return to its initial position. We developed four simulation

and three real scenarios for the tests. On these scenarios, the cobot routine was executed

using CHOMP and STOMP algorithms, one each at a turn. Additionally, for comparison,

we have also executed the routine using the algorithm RRT-Connect from OMPL, the

default planner on Moveit.

All the code used in this work in available at 〈https://github.com/migueelnery/ur5

trajectory optimization〉 and the videos from the performed experiments can be seen at:

〈https://youtu.be/ARbzy7xFaq8〉.

4.2.1 Simulation Scenario I

For the first simulation scenario, the cobot must pick a manufactured piece and place it

on the table, while avoiding collisions with a cylinder located on the robot’s workspace.

Figure 4.3 shows the simulated scenario and the desired routine. The routine was executed

15 times for each algorithm, CHOMP, and STOMP and RRT-Connect.

The metrics used to compare the performance of the algorithms were: Success Rate,

Planning time(s), and Trajectory Duration(s). From the plan() function, implemented

on moveit commander, API in python for Moveit, it is possible to obtain as a return a

boolean variable indicating success and a float variable containing the planning time. The

function also returns a RobotTrajectory message, which contains the planned trajectory,

indicating the time in which each point of the trajectory must be performed. In this

way, from the execution time of the last point of this message, it’s possible to infer the

trajectory duration.

The success rate for the experiments performed on the first simulated scenario can be

seen in Table 4.1. Results indicate that CHOMP, STOMP, and RRT-Connect have good

and similar success rates in the routine execution, generating feasible trajectories for the

collaborative robot in the presence of obstacles, successfully getting to solve the planning

problem in most of the tries.

To analyze the planning time and the duration of the computed path, the trajectory

referring to the displacement between frames 4.3f to 4.3g was selected. This trajectory

characterizes a displacement from the center to the left of the table, with the obstacle

(cylinder) to be avoided between the initial and final points, while the manipulator holds

the manufactured part with its end effector. The collected data were analyzed using the

30 EXPERIMENTAL RESULTS

Figure 4.3: Simulation routine I.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

4.2 THE EXPERIMENTS 31

Table 4.1: Success Rate - Simulation Scenario I.

Algorithm CHOMP STOMP RRT-Connect

Success (%) 97.33 98.33 97.33

R statistical programming language, and the boxplot graphs generated for each variable

can be seen in the Figures 4.4 and 4.5.

As exhibited in Figure 4.4, the algorithms have similar results for planning time. The

algorithm RRT-Connect obtained median value of 1.026 s, upper value of 1.734 s and

lower value of 0.751 s; STOMP presented median value of 1.339 s, upper value of 2.695 s

and lower value of 0.876 s; lastly, CHOMP presented median value of 0.401 s, upper value

of 0.806 s and lower value of 0.252 s. Results indicate that CHOMP obtained slightly

better results for planning time, and STOMP presenting more variation in the obtained

data, which can be a reflex of its stochastic approach.

Figure 4.4: Planning Time for each trajectory planner on simulated scene I.

Regarding the duration of the trajectory, shown in Figure 4.5, the algorithm RRT-

Connect obtained median value of 10.218 s, upper value of 11.159 s and lower value of

8.718 s; STOMP presented median value of 2.755 s, upper value of 3.205 s, and lower

value of 2.664 s; CHOMP presented median value of 2.866 s, upper value of 3.183 s and

lower value of 2.746 s. We can see that STOMP and CHOMP produces trajectories of

shorter duration than RRT-Connect. Figure 4.6 shows an example of a point to point

trajectory for each one of the algorithms, with the same start and goal, and it’s notable

32 EXPERIMENTAL RESULTS

Figure 4.5: Duration of the generated path for each trajectory planner on simulated scene
I.

that the trajectory generated by RRT-Connect has longer duration than the others.

4.2.2 Simulation Scenario II

In the second simulated scenario, we have added a cylinder of 0.25 m height and 0.04

m radius, and a cube of dimensions 0.15 x 0.15 x 0.15 m and on cobot’s workspace, as

shown in Figure 4.7. In this way, it is expected that the robot executes collision-free

trajectories, avoiding the present obstacles.

The success rate for the second simulated scenario can be seen in Table 4.2, and

the obtained results indicate that CHOMP, STOMP, and RRT-Connect have good and

similar values, being able to generate feasible trajectories in mostly cases.

Table 4.2: Success Rate - Simulation Scenario II.

Algorithm CHOMP STOMP RRT-Connect

Success (%) 95.71 97.14 95.71

The trajectory referring to the displacement between frames 4.7e to 4.7f was selected

in order to analyze the planning time and the duration of the computed path. This

trajectory characterizes a displacement from the 3D printer, where the piece is picked,

to the target location while avoiding obstacles in the scene. Results for planning time

can be seen in Figure 4.8, the algorithm RRT-Connect obtained median value of 0.309 s,

4.2 THE EXPERIMENTS 33

Figure 4.6: Points of the generated path by each algorithm on simulated scenario I.

(a) STOMP (b) RRT-Connect

(c) CHOMP

upper value of 0.567 s and lower value of 0.139 s; STOMP presented median value of 1.36

s, upper value of 2.036 s and lower value of 0.983 s; CHOMP presented median value of

0.145 s, upper value of 1.01 s and lower value of 0.087 s.

As we can see in Figure 4.9, for trajectory duration the algorithm RRT-Connect

obtained median value of 4.794 s, upper value of 6.038 s and lower value of 3.93 s; STOMP

obtained median value of 3.509 s, upper value of 3.997 s and lower value of 3.374 s;

CHOMP presented median value of 4.353 s, upper value of 4.847 s, and lower value of 4.119

s. We can notice that, although STOMP needs a longer planning time than CHOMP and

RRT-Connect, it generates trajectories of shorter duration than the others, consequently

preventing the cobot from performing unnecessary movements during execution.

34 EXPERIMENTAL RESULTS

Figure 4.7: Simulation routine II.

(a) (b) (c)

(d) (e) (f)

(g) (h)

4.2 THE EXPERIMENTS 35

Figure 4.8: Planning Time for each trajectory planner on simulated scene II.

Figure 4.9: Duration of the generated path for each trajectory planner on simulated scene
II.

4.2.3 Simulation Scenario III

In the simulation scenario III, we have added a cylinder of 0.25 m height and 0.04 m

radius, and two cubes, one of dimensions 0.1 x 0.1 x 0.1 m, and another of 0.15 x 0.15 x

0.15 m, on cobot’s workspace, as shown in Figure 4.10.

The success rate for the third simulated scenario can be seen in Table 4.3, and the ob-

tained results are very similar with scenarios I and II, indicating that CHOMP, STOMP,

and RRT-Connect are able to generate feasible trajectories in mostly cases.

36 EXPERIMENTAL RESULTS

Figure 4.10: Simulation routine III.

(a) (b) (c)

(d) (e) (f)

(g) (h)

As was done in 4.2.2, the trajectory referring to the displacement between frames

4.10e to 4.10f was selected in order to analyze the planning time and the duration of

the computed path, since this trajectory represents a displacement from the 3D printer

to the target location while avoiding obstacles in the scene. According to the results

4.2 THE EXPERIMENTS 37

Table 4.3: Success Rate - Simulation Scenario III.

Algorithm CHOMP STOMP RRT-Connect

Success (%) 95.71 97.14 97.14

for planning time exhibited in Figure 4.11, the algorithm RRT-Connect obtained median

value of 0.487 s, upper value of 0.798 s and lower value of 0.347 s; STOMP presented

median value of 0.528 s, upper value of 1.651 s and lower value of 0.362 s; CHOMP

presented median value of 1.789 s, upper value of 1.925 s and lower value of 1.617 s.

Figure 4.11: Planning Time for each trajectory planner on simulated scene III.

Regarding trajectory duration, as seen in Figure 4.12, the algorithm RRT-Connect

obtained median value of 5.290 s, upper value of 5.693 s, and lower value of 4.998 s;

STOMP presented median value of 4.614 s, upper value of 4.73 s, and lower value of

3.585 s; CHOMP presented median value of 4.862 s, upper value of 5.033 s, and lower

value of 4.726 s. We can notice that the behavior is similar to what has already been

shown in the previous situations, with STOMP and CHOMP needing a longer planning

time than RRT-Connect, although generating trajectories of shorter duration.

4.2.4 Simulation Scenario IV

The Simulation Scenario IV can be seen in Figure 4.13. This scenario represents a more

difficult workspace, since it contains more obstacles: a cylinder of 0.25 m height and 0.04

m radius, a cube of dimensions 0.1 x 0.1 x 0.1 m, and a parallelepiped of dimensions 0.15

38 EXPERIMENTAL RESULTS

Figure 4.12: Duration of the generated path for each trajectory planner on simulated
scene III.

x 0.15 x 0.30 m, which the cobot must avoid while executing the routine. The success rate

for the fourth simulated scenario can be seen in Table 4.4. The obtained results are very

similar with scenarios seen before, indicating that CHOMP, STOMP, and RRT-Connect

are able to generate feasible trajectories in the presence of obstacles.

Table 4.4: Success Rate - Simulation Scenario IV.

Algorithm CHOMP STOMP RRT-Connect

Success (%) 95.71 95.71 95.71

As was done in 4.2.2 and 4.2.3, the trajectory referring to the displacement between

frames 4.13e to 4.13f was selected in order to analyze the planning time and the duration

of the trajectory, since it represents a displacement from the 3D printer to the target

location while avoiding obstacles. Results for planning time can be seen in Figure 4.14,

the algorithm RRT-Connect obtained median value of 0.312 s, upper value of 0.49 s, and

lower value of 0.256 s; STOMP obtained median value of 1.218 s, upper value of 1.717 s,

and lower value of 0.373 s; lastly, CHOMP presented median value of 1.02 s, upper value

of 1.368 s, and lower value of 0.321 s.

Figure 4.15 shows the results for trajectory duration, RRT-Connect presented median

value of 5.776 s, upper value of 6.165 s, and lower value of 5.093 s; STOMP presented

median value of 4.717 s, upper value of 4.893 s, and lower value of 4.255 s; CHOMP

presented median value of 4.426 s, upper value of 4.783 s, and lower value of 4.361 s. We

4.2 THE EXPERIMENTS 39

Figure 4.13: Simulation routine IV.

(a) (b) (c)

(d) (e) (f)

(g) (h)

can notice that in all simulated scenarios the algorithm RRT-Connect generated trajec-

tories of longer duration than the others, consequently increasing the risk of executing

trajectories that could cause some type of damage to the manipulator.

4.2.5 Simulation Results Summary

The results obtained in 4.2.1, 4.2.2, 4.2.3 and 4.2.4 have been condensed and are shown in

the following. The values exhibited in Table 4.5 indicates that the three algorithms have

40 EXPERIMENTAL RESULTS

Figure 4.14: Planning Time for each trajectory planner on simulated scene IV.

Figure 4.15: Duration of the generated path for each trajectory planner on simulated
scene IV.

obtained similar success rates in the routine execution, generating feasible trajectories

for the collaborative robot.

As we can see in Figure 4.16, the algorithms also have similar average planning time,

with STOMP presenting more variation in the obtained data. When analyzing the dura-

tion of the trajectory obtained by each algorithm in Figure 4.17, we can see that STOMP

tends to produce trajectories of shorter duration than CHOMP and RRT-Connect. It

is also notable that, in all simulated scenarios, RRT-Connect generated trajectories of

longer duration than the others, consequently increasing the risk due to the execution of

unneeded movements.

4.2 THE EXPERIMENTS 41

Table 4.5: Success rate on simulated scenarios.

CHOMP STOMP RRT-Connect
Success 96.66% 96.66% 93.33%

Figure 4.16: Planning time by scene and algorithm on simulated scenarios.

Figure 4.17: Trajectory duration by scene and algorithm on simulated scenarios.

4.2.6 Real Scenario I

After the execution and validation of the algorithms in the already described simulation

scenarios, tests were carried out in a real environment, in the robotics laboratory of the

Federal University of Bahia. The experiments made for the real scenarios are an approach

42 EXPERIMENTAL RESULTS

task for a 3D printed part, while avoiding collisions with obstacles in the workspace.

Figure 4.18 shows the real scenario I and the desired cobot routine.

Figure 4.18: Execution routine I.

(a) (b)

(c) (d)

(e)

Working with high quality image data for obstacle detection implies a high compu-

tational cost involved. As a workaround, and as the obstacles have known dimensions

and static positions, we have modelled them as known geometric shapes, simplifying the

input information. Thus, we have modelled 3D printer as a box of dimensions 0.11 x 0.5

x 0.75 m and also the objects in the workspace, following their respective dimensions.

Figure 4.19 shows the simplified model side by side with the real scenario.

As in the simulation tests, we observed that the RRT-Connect algorithm generated

longer duration trajectories, which often led the cobot to some kind of self-collision during

the execution, this way, for security, we have executed the real tests only for CHOMP and

STOMP. The success rate is exhibited in Table 4.6, and we can see that both algorithms

have achieved high values, indicating that they are able to generate feasible trajectories

for this scenario.

The trajectory referring to the displacement between frames 4.18b to 4.18c was se-

4.2 THE EXPERIMENTS 43

Figure 4.19: Real scenario and objects collision representation for 1st real routine.

Table 4.6: Success Rate - Real Scene I.

Algorithm CHOMP STOMP

Success (%) 93.33 93.33

lected in order to analyze the planning time and the duration of the computed path. This

trajectory characterizes an approach to the 3D printer, while avoiding collision with the

boxes in the cobot’s workspace. The results of obtained data for planning time can be

seen in Figure 4.20, the algorithm STOMP obtained median value of 0.359 s, upper value

of 0.489 s, and lower value of 0.245 s. CHOMP presented median value of 0.026 s, upper

value of 0.062 s, and lower value of 0.02 s.

Results for trajectory duration are exhibited in Figure 4.21, with STOMP presenting

median value of 3.0 s, upper value of 3.04 s, and lower value of 2.994 s; and CHOMP

presenting median value of 4.684 s, upper value of 4.684 s, and lower value of 3.539 s. We

can see that while STOMP needs a bit longer planning time than CHOMP, it delivers

shorter trajectories, a similar behavior to what we have observed on simulated scenarios.

4.2.7 Real Scenario II

For the second real test scenario, we added a box of dimensions 0.12 x 0.12 x 0.25 m

to the scenario seen in 4.2.6, increasing the difficulty for planning the trajectory. Figure

4.22 shows the real scenario 2 and the desired approach routine for the manipulator. We

have also modelled the objects as known geometric shapes, as we have done in first real

scenario, in order to reduce computational cost. Figure 4.23 shows the simplified model

side by side with the real scenario.

44 EXPERIMENTAL RESULTS

Figure 4.20: Planning Time for each trajectory planner on real scene I.

Figure 4.21: Duration of the generated path for each trajectory planner on real scene I.

The success rate for the second real scenario can be seen in Table 4.7. The obtained

results were satisfactory for both algorithms, indicating that they are able to generate

feasible trajectories for this scenario.

We have selected the trajectory referring to the displacement between frames 4.18c to

4.18d in order to analyze the planning time and the duration of the computed path. The

selected trajectory characterizes an approach to the 3D printer, while avoiding collision

with the boxes in workspace. The results of obtained data for planning time can be seen

in Figure 4.24, STOMP obtained median value of 0.238 s, upper value of 0.326 s, and

lower value of 0.221 s. CHOMP presented median value of 0.096 s, upper value of 0.097

s, and lower value of 0.096 s. Regarding trajectory duration, exhibited in Figure 4.25,

4.2 THE EXPERIMENTS 45

Figure 4.22: Execution routine II.

(a) (b)

(c) (d)

(e) (f)

Figure 4.23: Real scenario and objects collision representation for 2nd real routine.

STOMP presented median value of 2.314 s, upper value of 2.332 s, and lower value of

2.249 s, while CHOMP presented median value of 2.688 s, upper value of 2.733 s, and

lower value of 2.653 s.

We can observe on real scenario II the same behavior to the tests performed earlier

in this work, with STOMP needing a longer planning time than CHOMP and producing

shorter trajectories. We have also observed a small variation in the collected data, this

46 EXPERIMENTAL RESULTS

Table 4.7: Success Rate - Real Scene II.

Algorithm CHOMP STOMP

Success (%) 92.33 96.66

Figure 4.24: Planning Time for each trajectory planner on real scene II.

Figure 4.25: Duration of the generated path for each trajectory planner on real scene II.

can be caused by the representation of collision objects as geometric shapes, which could

lead the algorithms to plan trajectories of similar durations, and with similar planning

times, in all performed executions.

4.2 THE EXPERIMENTS 47

4.2.8 Real Scenario III

The real scenario III can be seen in Figure 4.26. It is a more difficult scenario than 4.2.6

and 4.2.7, and in the same way as in the previous ones, the cobot should execute the

approach routine while avoiding the obstacles in the scene.

Figure 4.26: Execution routine III.

(a) (b)

(c) (d)

(e)

As a way to provide more realistic results, we have decided to use camera data

for object detection in this scenario. To make this possible, some steps were neces-

sary. First, we connected the camera’s and manipulator’s frames using the static trans-

form ROS tool, considering its relative position and orientation. Second, the topic

/camera/depth/color/points was connected to the Moveit perception tool, providing a

pointcloud with information about the environment, then represented as collision objects

in the Planning Scene. In order to mitigate the high computational costs due to the use

of the camera, we reduced the image size and used 10 fps. Figure 4.27 shows the object

detection seen in Rviz side by side with the real scenario.

Table 4.8 summarizes the success rate for the third real scenario. The behavior is

quite similar to all the performed experiments, assuring that both algorithms can generate

feasible trajectories in environments with obstacles.

48 EXPERIMENTAL RESULTS

Figure 4.27: Real scenario and objects identification for 3rd real routine.

Table 4.8: Success Rate - Real Scene III.

Algorithm CHOMP STOMP

Success (%) 94.28 97.14

In a similar way with we have done before, the trajectory referring to the displacement

between frames 4.22a to 4.22b was selected to analyze the planning time and the duration

of the computed path, since this trajectory characterizes an approach to the 3D printer,

while avoiding collision with obstacles in workspace. The results for planning time can

be seen in Figure 4.28, STOMP obtained median value of 0.439 s, upper value of 0.682

s, and lower value of 0.369 s. CHOMP presented median value of 0.122 s, upper value of

0.188 s, and lower value of 0.014 s.

Regarding trajectory duration, exhibited in Figure 4.29, STOMP presented median

value of 3.165 s, upper value of 3.181 s, and lower value of 3.111 s, while CHOMP presented

median value of 3.463 s, upper value of 3.619 s, and lower value of 3.378 s. Results indicate

that STOMP can generate trajectories of shorter duration than CHOMP, in a scenario

with obstacles, despite needing more planning time.

4.2 THE EXPERIMENTS 49

Figure 4.28: Planning Time for each trajectory planner on real scene III.

Figure 4.29: Duration of the generated path for each trajectory planner on real scene III.

4.2.9 Real Results Summary

The results obtained in 4.2.6, 4.2.7 and 4.2.8 have been condensed and are shown in the

following. The values exhibited in Table 4.9 indicates that the three algorithms have

obtained satisfactory results for success rate, generating feasible trajectories for all the

scenarios.

Table 4.9: Success rate on real scenarios.

CHOMP STOMP
Success 93.33% 93.33%

Results on Figures 4.30 and 4.31 indicate that STOMP can generate trajectories of

50 EXPERIMENTAL RESULTS

shorter duration than CHOMP, in a scenario with obstacles, preventing the cobot from

performing unnecessary movements, and reducing risks and efforts on its joints. There-

fore, the collected data allow us to conclude that STOMP delivers smoother trajectories

than the others algorithms analyzed in this work. By comparing the obtained results, we

can also see that the addition of a perception sensor to the system on real scene 3 did

not bring major impacts on the planning time.

Figure 4.30: Planning time by scene and algorithm on real scenarios.

Figure 4.31: Trajectory duration by scene and algorithm on real scenarios.

Chapter

5
CONCLUSIONS

Collaborative robotics is a topic of growing relevance and the presence of these robots in

the most diverse scenarios is increasingly frequent. In this context, in order to guarantee

the safety of the operator and also of the device, it is important to ensure that the

trajectory planning algorithm is capable of generating obstacle-free paths and that it can

respect restrictions that may be desired.

In this work, we implemented a system for trajectory optimization of a collaborative

robot UR5 ia a scenario with obstacles, using the algorithms CHOMP and STOMP. For

obstacle detection and collision avoidance, data provided by a Point Cloud topic from an

RGB+D sensor was used. According to the results, both studied algorithms presented

similar performances for planning time and success rate. However, analyzing the duration

of the trajectory, the STOMP algorithm showed better results, indicating that it has a

greater capacity to deliver smoother trajectories to the robot, avoiding possible collisions

with the environment, thus guaranteeing safety to the device and the operator.

Furthermore, due to STOMP stochastic optimization method, several other costs can

be optimized, whether or not they are differentiable. It was identified that STOMP have

usually took more time than the others to generate trajectories, and the use of another

(faster) trajectory planner to generate the initial trajectory to be optimized by STOMP

is an alternative that could reduce the algorithm planning time, contributing to better

performance and keeping the quality of the final trajectory.

The scope of this work covers scenarios that contained static obstacles, and a sugges-

tion of a possible future contribution to this would be the development of strategies for

planning and replanning trajectories in environments with dynamic obstacles. This type

of environment is even closer to the real operating environment for collaborative robotics,

51

52 CONCLUSIONS

in which an unexpected object can eventually enter the robot’s operating environment

and must be detected and avoided.

BIBLIOGRAPHY

ANDERSEN, R. S. Kinematics of a UR5. Aalborg University: Aalborg, Denmark, 2018.

BEESON, P.; AMES, B. Trac-ik: An open-source library for improved solving of generic
inverse kinematics. In: IEEE. 2015 IEEE-RAS 15th International Conference on Hu-
manoid Robots (Humanoids). [S.l.], 2015. p. 928–935.

BRITO, T.; LIMA, J.; COSTA, P.; PIARDI, L. Dynamic Collision Avoidance System for
a Manipulator Based on RGB-D Data. Advances in Intelligent Systems and Computing,
v. 694, p. 643–654, 2018. ISSN 21945357.

CHITTA, S.; SUCAN, I.; COUSINS, S. Moveit![ros topics]. IEEE Robotics & Automation
Magazine, IEEE, v. 19, n. 1, p. 18–19, 2012.

CONCEIÇÃO, A. G.; COSTA, F. S.; NASSAR, S. M.; GUSMEROLI, S.; SCHULTZ, R.;
XAVIER, M.; HESSEL, F.; DANTAS, M. A. FASTEN IIoT: an open real-time platform
for vertical, horizontal and end-to-end integration. Sensors, MDPI, v. 20, n. 19, p. 5499,
2020.

CORKE, P. Robotics, vision and control: fundamental algorithms in MATLAB. [S.l.]:
Springer, 2011.

CYBERBOTICS. Webots - Open Source Robot Simulator. 2021. Dispońıvel em: 〈https:
//cyberbotics.com/〉. Acesso em: 2021-09-23.

EVJEMO, L. D.; GJERSTAD, T.; GRØTLI, E. I.; SZIEBIG, G. Trends in smart man-
ufacturing: Role of humans and industrial robots in smart factories. Current Robotics
Reports, Springer, v. 1, n. 2, p. 35–41, 2020.

GASPARETTO, A.; SCALERA, L. From the unimate to the delta robot: the early
decades of industrial robotics. In: Explorations in the History and Heritage of Machines
and Mechanisms. [S.l.]: Springer, 2019. p. 284–295.

GRUSHKO, S.; VYSOCKY, A.; JHA, V. K.; PASTOR, R.; PRADA, E.; MIKOVA, L.;
BOBOVSKY, Z. Tuning perception and motion planning parameters for moveit! frame-
work. MM Science Journal, v. 2020, n. November, p. 4154–4163, 2020. ISSN 18050476.
Dispońıvel em: 〈https://dx.doi.org/10.17973/MMSJ.2020\ 11\ 2020064〉.

HAN, D.; NIE, H.; CHEN, J.; CHEN, M. Optimal randomized path planning for re-
dundant manipulators based on Memory-Goal-Biasing. International Journal of Ad-
vanced Robotic Systems, v. 15, n. 4, p. 1–11, 2018. ISSN 17298814. Dispońıvel em:
〈https://dx.doi.org/10.1177/1729881418787049〉.

53

54 BIBLIOGRAPHY

IEEE. Unimate. 2018. Dispońıvel em: 〈http://robots.ieee.org/robots/unimate/〉. Acesso
em: 2021-08-01.

INFOLAB, S. Robots and their Arms. 2019. Dispońıvel em: 〈http://infolab.stanford.edu/
pub/voy/museum/pictures/display/1-Robot.htm〉. Acesso em: 2021-08-01.

INFORMATION, H. Asea Produces the IRb 6, the First Microcomputer Controlled
Electric Industrial Robot. 2021. Dispońıvel em: 〈https://www.historyofinformation.com/
detail.php?entryid=4352〉. Acesso em: 2021-08-01.

INTEL. Intel RealSense Product Family D400 Series. [S.l.], 2022. Rev. 13.
Dispońıvel em: 〈https://www.intelrealsense.com/wp-content/uploads/2022/05/
Intel-RealSense-D400-Series-Datasheet-April-2022.pdf〉.

JUNG, H.; KIM, M.; CHEN, Y.; MIN, H. G.; PARK, T. Implementation of a unified sim-
ulation for robot arm control with object detection based on ROS and Gazebo. 2020 17th
International Conference on Ubiquitous Robots, UR 2020, p. 368–372, 2020. Dispońıvel
em: 〈https://doi.org/10.1109/UR49135.2020.9144984〉.

KADEN, S.; THOMAS, U. Maximizing Robot Manipulability along Paths in Collision-
free Motion Planning. In: 2019 19th International Conference on Advanced Robotics
(ICAR). IEEE, 2019. p. 105–110. ISBN 978-1-7281-2467-4. Dispońıvel em: 〈https://dx.
doi.org/10.1109/ICAR46387.2019.8981591〉.

KALAKRISHNAN, M.; CHITTA, S.; THEODOROU, E.; PASTOR, P.; SCHAAL, S.
STOMP: Stochastic trajectory optimization for motion planning. p. 4569–4574, 2011.
Dispońıvel em: 〈https://doi.org/10.1109/ICRA.2011.5980280〉.

KAVRAKI, L. E.; SVESTKA, P.; LATOMBE, J.-C.; OVERMARS, M. H. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE transactions
on Robotics and Automation, IEEE, v. 12, n. 4, p. 566–580, 1996.

KEATING, R. UR5 Inverse Kinematics. 2014. Dispońıvel em: 〈https://github.com/
yorgoon/ur5\ Final\ Project/blob/master/UR5\ Inverse\ Kinematics.pdf〉. Acesso em:
2021-08-15.

KEBRIA, P. M.; AL-WAIS, S.; ABDI, H.; NAHAVANDI, S. Kinematic and dynamic
modelling of ur5 manipulator. In: IEEE. 2016 IEEE international conference on systems,
man, and cybernetics (SMC). [S.l.], 2016. p. 004229–004234.

KUFFNER, J. J.; LAVALLE, S. M. Rrt-connect: An efficient approach to single-query
path planning. In: IEEE. Proceedings 2000 ICRA. Millennium Conference. IEEE In-
ternational Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065). [S.l.], 2000. v. 2, p. 995–1001.

KUMAR, S.; MAJUMDER, A.; DUTTA, S.; RAJA, R.; JOTAWAR, S.; KUMAR, A.;
SONI, M.; RAJU, V.; KUNDU, O.; BEHERA, E. H. L.; VENKATESH, K. S.; SINHA,

BIBLIOGRAPHY 55

R. Design and Development of an automated Robotic Pick & Stow System for an e-
Commerce Warehouse. p. 1–15, 2017. Dispońıvel em: 〈http://arxiv.org/abs/1703.02340〉.

LAVALLE, S. M.; JR, J. J. K. Randomized kinodynamic planning. The international
journal of robotics research, SAGE Publications, v. 20, n. 5, p. 378–400, 2001.

MAHTANI, A.; SANCHEZ, L.; FERNÁNDEZ, E.; MARTINEZ, A. Effective robotics
programming with ROS. [S.l.]: Packt Publishing Ltd, 2016.

MEJIA-TRUJILLO, J. D.; CASTANO-PINO, Y. J.; NAVARRO, A.; ARANGO-
PAREDES, J. D.; RINCÓN, D.; VALDERRAMA, J.; MUNOZ, B.; OROZCO, J. L.
Kinect™ and intel realsense™ d435 comparison: A preliminary study for motion analysis.
In: IEEE. 2019 IEEE International Conference on E-health Networking, Application &
Services (HealthCom). [S.l.], 2019. p. 1–4.

MOHAMED, M. Challenges and benefits of industry 4.0: an overview. International
Journal of Supply and Operations Management, Kharazmi University, v. 5, n. 3, p. 256–
265, 2018.

MOVEIT. Concepts. 2018. Dispońıvel em: 〈http://moveit.ros.org/documentation/
concepts/〉. Acesso em: 2021-08-23.

MOVEIT. Concepts - Moveit. 2022. 〈https://github.com/ros-industrial/universal robot〉.
Accessed: 2022-09-26.

OLSEN, T. L.; TOMLIN, B. Industry 4.0: Opportunities and challenges for operations
management. Available at SSRN: https://ssrn.com/abstract=3365733, 2019.

PAVLICHENKO, D.; BEHNKE, S. Efficient stochastic multicriteria arm trajectory
optimization. IEEE International Conference on Intelligent Robots and Systems, v.
2017-Septe, n. September, p. 4018–4025, 2017. ISSN 21530866. Dispońıvel em: 〈https:
//dx.doi.org/10.1109/IROS.2017.8206256〉.

PENG, Y. C.; CHEN, S.; JIVANI, D.; WASON, J.; LAWLER, W.; SAUNDERS, G.;
RADKE, R. J.; TRINKLE, J.; NATH, S.; WEN, J. T. Sensor-guided assembly of seg-
mented structures with industrial robots. Applied Sciences (Switzerland), v. 11, n. 6,
2021. ISSN 20763417.

PYO, Y.; CHO, H.; JUNG, R.; LIM, T. ROS Robot Programming. [S.l.]: Robotis, 2017.

QUIGLEY, M.; CONLEY, K.; GERKEY, B.; FAUST, J.; FOOTE, T.; LEIBS, J.;
WHEELER, R.; NG, A. Y. et al. Ros: an open-source robot operating system. In: KOBE,
JAPAN. ICRA workshop on open source software. [S.l.], 2009. v. 3, n. 3.2, p. 5.

ROBOTICS, C. Clearpath Website. 2022. Dispońıvel em: 〈https://clearpathrobotics.
com/〉.

ROBOTICS, K. Kinova Website. 2022. Dispońıvel em: 〈https://www.kinovarobotics.
com〉.

56 BIBLIOGRAPHY

ROBOTIS. Robotis Website. 2022. Dispońıvel em: 〈https://www.robotis.us/〉.

ROBOTS, U. Collaborative Robots from Universal Robots. 2021. Dispońıvel em: 〈https:
//www.universal-robots.com/products/〉. Acesso em: 2021-08-01.

ROBOTS, U. UR5 collaborative robot arm — flexible and lightweight robot arm. 2022.
〈https://www.universal-robots.com/products/ur5-robot/〉. Accessed: 2022-05-15.

ROS. ROS Website. 2017. Dispońıvel em: 〈http://www.ros.org〉.

ROS.ORG. ROS - Introduction. 2018. Dispońıvel em: 〈http://wiki.ros.org/ROS/
Introduction/〉. Acesso em: 2021-08-17.

SHERWANI, F.; ASAD, M. M.; IBRAHIM, B. Collaborative robots and industrial rev-
olution 4.0 (ir 4.0). In: IEEE. 2020 International Conference on Emerging Trends in
Smart Technologies (ICETST). [S.l.], 2020. p. 1–5.

SICILIANO, B.; SCIAVICCO, L.; VILLANI, L.; ORIOLO, G. Robotics: modelling, plan-
ning and control. [S.l.]: Springer Science & Business Media, 2010.

SPONG, M. W.; HUTCHINSON, S.; VIDYASAGAR, M. Robot modeling and control.
[S.l.]: John Wiley & Sons, 2005. 1st edition.

SUCAN, I. A.; MOLL, M.; KAVRAKI, L. E. The open motion planning library. IEEE
Robotics & Automation Magazine, IEEE, v. 19, n. 4, p. 72–82, 2012.

XU, X.; DUGULEANA, M. Trajectory Planning of 7-Degree-of-Freedom Manipulator
Based on ROS. IOP Conference Series: Materials Science and Engineering, v. 677, n. 5,
2019. ISSN 1757899X. Dispońıvel em: 〈https://dx.doi.org/10.1088/1757-899X/677/5/
052072〉.

YE, L.; SUN, C. Trajectory planning of 7-DOF redundant manipulator based on ROS
platform. Proceedings of 2020 IEEE International Conference on Information Technology,
Big Data and Artificial Intelligence, ICIBA 2020, n. Iciba, p. 733–736, 2020. Dispońıvel
em: 〈https://dx.doi.org/10.1109/ICIBA50161.2020.9277001〉.

ZHANG, H. D.; LIU, S. B.; LEI, Q. J.; HE, Y.; YANG, Y.; BAI, Y. Robot programming
by demonstration: a novel system for robot trajectory programming based on robot
operating system. Advances in Manufacturing, Shanghai University, v. 8, n. 2, p. 216–229,
2020. ISSN 21953597. Dispońıvel em: 〈https://doi.org/10.1007/s40436-020-00303-4〉.

ZUCKER, M.; RATLIFF, N.; DRAGAN, A. D.; PIVTORAIKO, M.; KLINGENSMITH,
M.; DELLIN, C. M.; BAGNELL, J. A.; SRINIVASA, S. S. Chomp: Covariant hamilto-
nian optimization for motion planning. The International Journal of Robotics Research,
SAGE Publications Sage UK: London, England, v. 32, n. 9-10, p. 1164–1193, 2013.

