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Abstract of Dissertation presented to PEI/UFBA as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

The use of electrical submersible pumps (ESP) for oil lifting is a widely used method

in the oil and gas industry to increase production. Therefore, controlling and opti-

mizing this process to ensure stable and economical production is crucial, minimizing

operational costs and maximizing production e�ciency. A widely used technique to

maximize performance, reduce costs, and define operational goals is real-time opti-

mization (RTO). In order to adequately implement this technique, it is necessary

that the control layer works appropriately and is aligned with the challenges and re-

quirements of the process. Recently, the literature has found excellent results using

the advanced model predictive control (MPC) technique due to its ease of incorpo-

rating constraints and economic requirements into its formulation. Although it is

a powerful technique, a reasonable definition of MPC parameters is necessary for

its good operation; otherwise, the system may operate at suboptimal or ine�cient

conditions. However, tuning the MPC controller is a complex problem requiring

specialized knowledge to select controller parameters, such as prediction horizons,

control horizons, and control weights. In addition, most of the literature tuning

methods are dedicated to specific MPC formulations, performance, or robustness

goals, not exploring the impact of tuning on economic indicators. So, it is a need for

a generalized tuning method that works for di↵erent formulations, processes, and

tuning requirements. Besides that, no studies in the literature investigate the ef-

fect of MPC tuning on the optimization and operation of ESP-lifted wells, whether

by performance, robustness, or economic criteria. Therefore, a generalized MPC

tuning method is presented, based on an online receding horizon optimization algo-

rithm capable of encompassing di↵erent MPC formulations, constraints, and tuning

criteria, from performance to economics. This method provides a new perspective

for the online optimization of ESP-lifted oil wells, explicitly addressing the MPC

tuning problem. The results show that the proposed approach has potential for the

oil and gas industry since it was possible to test di↵erent case studies and control

formulations in simulated results, achieving a 5.7% improvement in oil production

or a 2.1% reduction in energy consumption, depending on the desired criteria.

Keywords: MPC controllers, MPC Tuning, Economic Tracking, ESP-lifted wells
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Chapter 1

Introduction

The petroleum industry has become increasingly complex, with environmental safety

requirements and the need for validated methods to maximize profits in oil produc-

tion systems. Optimizing oil production systems involves handling concurrent and

multi-objective decisions to achieve profitability and success (Franklin et al. 2022).

Among the various artificial lift methods available, the Electrical Submersible Pump

(ESP) stands out for its ability to produce large volumes of oil, making it a popular

choice for onshore and o↵shore applications.

Various studies have explored the economic e�ciency of artificial lift-employing

ESP installations in oil wells by applying Real-time Optimization (RTO) approaches.

Khalid et al. (n.d.) implemented a real-time workflow that uses real-time data and

well models to minimize ESP failure and downtime in an ESP-lifted oil wells grid.

This system provides ESP performance and operation indicators that are helpful

for monitoring, decision-making, and optimizing the wells. Sharma & Glemmestad

(2013) presented a nonlinear steady-state optimization approach to maximize pro-

fits in a simulated environment of 5 ESP-lifted wells. The optimization problem

considered factors such as oil production, energy consumption, separator operating

costs and process constraints like flow rate window, bubble point pressure, and final

control element limitations. Ho↵mann & Stanko (2016) presented a Mixed-Integer

Linear Programming with a Piecewise model approximation to maximize the oil

production of a network with 15 ESP-lifted wells. The optimizer computed the

optimal rotational frequency of each ESP and the wells’ status (open/close) for

di↵erent case studies evaluating constraints, operational failure, and operation con-

ditions. Finally, Noorbakhsh & Khamehchi (2020) optimized oil field production

using sequential quadratic programming using an integrated model simulation (i.e.,
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reservoir, wells, and surface facilities model). The proposed optimization algorithm

increased daily revenue and cumulative oil production in di↵erent scenarios.

One of the primary concerns with RTO implementations is the time required

to execute the economic optimization process. This process involves static data

analysis, which includes data reconciliation constrained by mass and energy balan-

ces and parameter estimation of a rigorous static model. Once these preliminary

steps are completed, a nonlinear programming solver determines the optimal control

targets to meet economic requirements (Engell 2007, Darby et al. 2011, Santos et al.

2021). In addition, RTO implementations require a well-functioning control layer,

which means having a control system that can e↵ectively track and lead the process

towards the optimal steady-state target calculated by the RTO.

In the ESP-lifted oil field, Model Predictive Control (MPC) strategies have gai-

ned attention in recent years as a potential alternative control system for ESP ope-

ration due to their flexibility in incorporating constraints, such as the operational

envelope and economic goals. Notable research e↵orts in this area include works that

consider linear MPC formulations (Binder et al. 2014, Krishnamoorthy et al. 2016,

Patel et al. 2019, Binder et al. 2019, Fontes et al. 2020), highlighting Pavlov et al.

(2014), who proposed an MPC formulation that tracked ESP intake pressure and

minimized power consumption by incorporating a production choke opening target

in the controller’s objective function while also explicitly considering operational

envelope constraints. Traditional linear MPC formulations, on the other hand, may

function ideally only under certain operating conditions or near the model lineari-

zation point. Some publications have proposed the usage of adaptive MPC (Delou

et al. 2019, 2020, Santana et al. 2021, Matos et al. 2022) or nonlinear MPC (Osnes

2020, Hernes 2020, Santana et al. 2022) architectures to overcome this issue. These

solutions may provide better flexibility and performance in more complicated and

dynamic operational contexts.

While there have been significant advancements in the control and optimization

techniques applied to ESP-lifted oil production, it is noteworthy that the problem

of MPC tuning has yet to be widely explored. Although several tuning methods

are available in the literature (Alhajeri & Soroush 2020), the lack of attention to

this issue may be attributed to the application of expert knowledge or the inherent
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di�culty in tuning MPC problems.

It is common to find MPC tuning strategies specifically designed for a particular

MPC formulation and based solely on the performance of the system variables or ro-

bustness requirements (Garriga & Soroush 2010, Alhajeri & Soroush 2020). Several

of these methods are based on guidelines and simple algebraic expressions to meet

predetermined requirements for specific MPC formulations (Short 2016, Yamashita

et al. 2016, Jabbour & Mademlis 2018, Klopot et al. 2018, He et al. 2020, Nebeluk &

 Lawryńczuk 2021). In contrast, some MPC tuning methods, denominated as auto-

tuning, are described as optimization problems. Consequently, they do not require

much knowledge about the system and can be systematically applied to di↵erent

MPC formulations (Garriga & Soroush 2010, Alhajeri & Soroush 2020). Nonethe-

less, most auto-tuning methods are also based on performance or robustness indices.

Due to their high computational cost, they are implemented o✏ine (Francisco et al.

2010, Exadaktylos & Taylor 2010, Weber dos Santos et al. 2017, 2019) or based on

algebraic simplifications of specific MPC formulations (Han et al. 2006, van der Lee

et al. 2008) to facilitate the tuning optimization problem or online implementation

Fan & Stewart (2009).

Furthermore, the aforementioned tuning methods can provide only implicit eco-

nomic gains associated with a better process response (lesser oscillations, smoother

response) since the respective tuning parameters are not evaluated using explicit

economic criteria. There has recently been a growing interest in MPC design stra-

tegies based on detailed economic requirements. De Carvalho & Alvarez (2020)

employed o✏ine simultaneous process design and control (SPDC) to achieve desi-

red dynamics and economic performance. De Schutter et al. (2020) developed an

o✏ine tool to provide a first-order feedback law equivalent for a nonlinear economic

MPC by computing optimal steady states or periodic trajectories and cost matri-

ces. However, as far as we know, there is a lack of research on MPC auto-tuning

methods that explicitly track economic goals and are flexible enough to be used

with di↵erent control formulations. In particular, there are no studies about MPC

tuning methods applied to improve the ESP installations in terms of performance

or economic requirements.
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1.1 Objectives of the work

This thesis aims to track the economic requirements of oil wells lifted by ESP (Elec-

tric Submersible Pump) by proposing an economic-oriented Model Predictive Con-

trol (MPC) auto-tuning strategy. The proposed auto-tuning strategy should have

a flexible structure incorporating various MPC formulations, tuning requirements,

and process features. Additionally, it should be able to interact online with both

the RTO (Real-Time Optimization) and MPC layers.

The contributions of the proposed method stand out as follows:

• To present a novel MPC auto-tuning framework based on a receding optimi-

zation problem, which is flexible in applying to di↵erent MPC formulations,

di↵erent tuning criteria, and designed for online implementation.

• To derive a flexible receding horizon optimization framework that enables the

process and control system monitoring, the optimal parameters computing,

when necessary, the tuning requirements tracking, keeping the best parameters

for the control system, composed of (i) a closed-loop simulation in the presence

of model-plant mismatch; (ii) a sequence of tunable parameters; (iii) tuning

requirements in a cost function form;

• To address the proposed framework flexibility in the face of di↵erent MPC for-

mulations and some regulatory tuning requirements design (as cost functions),

including the manipulated and controlled variables trade-o↵ performance;

• To evaluate robustness of the technique in oil production systems with ESP

installations considering the operation envelope with reasonable computational

time and optimization feasibility

1.2 Publications

This thesis encompasses the idea and findings of the principal papers obtained by

this research, namely

• Fontes, R. M., Martins, M. A. F., & Odloak, D. (2019). An Automatic Tuning

Method for Model Predictive Control Strategies. Industrial & Engineering
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Chemistry Research, 58(47), 21602–21613;

• Fontes, R. M., Santana, D. D., & Martins, M. A. F. (2022). An MPC auto-

tuning framework for tracking economic goals of an ESP-lifted oil well. Journal

of Petroleum Science and Engineering, 217(July), 110867.

1.3 Organization of this thesis

The overall structure of this work is organized into 5 chapters, including this in-

troductory chapter. The remaining chapters present the findings of the research,

focusing on the objective and contributions pointed out previously.

The second chapter concerns a systematic literature review of MPC strategies

applied to artificial lifting by ESP and existent MPC tuning methods, presenting

the main features of the MPC formulation applied to ESP operation and classifying

the overall MPC tuning methods.

Chapter 3 presents an online automatic tuning method based on two steps: mo-

nitoring and optimal tuning. The flexibility and suitability of the technique are

tested in the face of a Dynamic Matrix Control, an Infinite Horizon Model Predic-

tive Control, di↵erent simulation scenarios, and performance tuning criteria.

The fourth chapter presents the research findings, focusing on the trade-o↵

between economic and performance tuning requirements. Di↵erent economic go-

als for ESP-lifted well operation are employed in the auto-tuning layer, resulting in

gains without compromising the process.

Chapter 5 summarizes the preliminary contributions of this work and suggests

the future stages.
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Chapter 2

Literature review

Implementing artificial lifting systems, specifically Electrical Submersible Pumps

(ESPs), is essential for e�cient oil production from reservoirs. Model Predictive

Control (MPC) strategies have been widely applied to optimize the operation of

ESPs, leading to significant improvements in oil production and reduced operating

costs.

This chapter presents a systematic literature review of the various MPC strate-

gies applied to artificial lifting by ESPs and existing MPC tuning methods, outlining

the main features of the MPC formulation applied to ESP operation and classifying

the overall MPC tuning methods.

By doing so, this chapter provides a comprehensive overview of the state-of-the-

art MPC-based control strategies for ESPs and MPC tuning methods, which can

aid in developing more e↵ective optimization for artificial lifting systems in the oil

and gas industry.

2.1 Advanced control in ESP-lifted oil wells

The classical PID framework can e↵ectively execute control tasks and provide stable

and safe ESP operations. In fact, it is possible to design a PID controller for each

control variable in a single-input single-output structure. However, this classical so-

lution does not explicitly consider process constraints, which are instead handled by

other control layers (Haapanen & Gagner 2010, Sharma & Glemmestad 2013, Souza

et al. 2014, Krishnamoorthy et al. 2019). Consequently, ESP operations could achi-

eve better results in reaching optimal operations, such as maximizing oil production

or minimizing power consumption, if process constraints were incorporated into the
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control framework.

To address these challenges, MPC can systematically handle multivariable and

constrained systems with associated economic goals. As a result, MPC-based soluti-

ons for oil production wells with ESP installations are recognized for their functional

role in achieving optimal, stable, and safe ESP operations, including upthrust and

downthrust operational envelope-type time-varying constraints, robust processes,

and guaranteed feasibility.

Over the last several years, there has been an increasing focus on applying MPC

strategies to optimize ESPs. Notable research e↵orts in this area include the work

of Pavlov et al. (2014), who proposed an MPC formulation that tracked ESP intake

pressure and minimized power consumption by incorporating a production choke

opening target in the controller’s objective function while also explicitly conside-

ring operational envelope constraints. Similarly, Binder et al. (2014) used the same

MPC controller formulation and ESP dynamic model as Pavlov et al. (2014) to

investigate the implementation of an embedded MPC on a programmable logic con-

troller. However, the regulation of ESP power minimization relied on an ESP motor

current target, and downthrust and upthrust force limits were explicitly omitted.

Krishnamoorthy et al. (2016) designed an MPC controller for ESP installations

producing heavy viscous crude oil using a linearized model obtained from a high-

fidelity simulator and the same control objectives as Pavlov et al. (2014). Patel

et al. (2019) implemented advanced control strategies that used a linear MPC with

rotational speed, choke valve opening, and ESP voltage as manipulated variables.

This approach achieved a 20% reduction in power consumption. Binder et al. (2019)

explored several MPC formulations that included measured disturbances, such as

reservoir pressure, to evaluate the control performance. More recently, Fontes et al.

(2020) proposed an infinite-horizon-based MPC (IHMPC) that explicitly considered

downthrust and upthrust constraints and maximized ESP oil production by tracking

the economic target of the production choke valve opening and ESP intake pressure

set-point control.

These recent research e↵orts have demonstrated the potential of MPC strate-

gies in optimizing ESP operations by considering process constraints and achieving

economic targets. However, such formulations tend to work well only around the
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model linearization point, i.e., operating conditions. To overcome this limitation,

some authors have proposed adaptive MPC structures. Delou et al. (2019) deve-

loped an adaptive MPC control law that broadens the ESP-lifted oil production

operating range using step-response linear models. However, instead of tracking

targets, the ESP power minimization was tracked by a conservative set-point, and

the set of time-variant ESP operating envelope constraints was not incorporated

into the control problem formulation. Delou et al. (2020) presented an adaptive

constrained MPC based on a model scheduling strategy. The proposed schedu-

ling strategy has equivalent performance compared to the successive linearization

method. Additionally, a model scheduling Kalman filter coupled to the proposed

MPC formulation addresses the losing measurements problem due to the aggressive

subsea environment. Santana et al. (2021) extended the work of Fontes et al. (2020)

by considering a linearization of a nonlinear phenomenological model of the system

at each instant of sampling, which serves as the control model of the zone control

IHMPC formulation. Using a fuzzy model approximation of the nonlinear system

to a linear parameter-varying model, Matos et al. (2022) developed a fuzzy infinite

horizon MPC (FIHMPC) strategy and applied it to an ESP-lifted oil well system in

embedded hardware. Moreover, the ESP time-varying operation envelope is inclu-

ded as slacked terminal constraints and zone control scheme to ensure optimization

feasibility.

In parallel, recent studies have suggested designing predictive controllers based

on nonlinear models to capture the nonlinearities of the ESP system. Using a data-

driven representation of the ESP system presented by Pavlov et al. (2014), Osnes

(2020) developed a nonlinear MPC (NMPC) based on a recurrent network. Similarly,

Hernes (2020) implemented an echo state network-based NMPC. However, both

authors assumed that all variables are measured and did not consider operational

envelope constraints. In contrast, Santana et al. (2022) proposed an implementable

NMPC law based on a target zone scheme coupled with an extended Kalman filter

estimator as a soft sensor while considering the downthrust and upthrust constraints.

Despite the notable progress made in controlling and optimizing ESP-lifted oil

production, it is essential to highlight that the issue of MPC tuning has received

limited attention thus far. Notably, there needs to be more research exploring MPC
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tuning methods for enhancing ESP installations in terms of performance and eco-

nomic considerations. Consequently, this thesis aims at addressing the economic

requirements of oil wells lifted by ESP through the proposal of an auto-tuning stra-

tegy for Model Predictive Control with an economic focus.

2.2 An overview about model predictive control

tuning methods

Tuning MPC parameters is especially challenging due to their non-intuitive interac-

tion (Alhajeri & Soroush 2020). This section discusses this problem by conducting

a systematic literature review of MPC tuning methods. Table 2.1 summarizes the

main features of some tuning methods found in the literature from 2001 to 2022.

Table 2.1: Some tuning methods found in the literature from 2001 to 2022.

Ref.
MPC Formula-

tion
Parameters

Tuning Cri-

teria
Method and Implementation

Al-Ghazzawi

et al. (2001)
MPC-FIR MIMO Qy and R PV response

Tunnel/ Quadratic Opti-

mization
Online

Ali (2001) MPC-FIR MIMO Qy, R and p PV response
Tunnel/ Fuzzy Inference

System
Online

Li & Du (2002) GPC(AS) SISO R PV response Fuzzy decision sets Online

Wojsznis et al.

(2003)
DMC(AS) SISO R Robustness

Mismatch/ analytical Ex-

pressions
O✏ine

Han et al.

(2006)
DMC(AS) MIMO R, p and m

PV and MV

response / Ro-

bustness

Min-Max optimization/-

Mismatch
O✏ine

van der Lee

et al. (2008)
DMC(AS) MIMO R, p and m PV response

Multi-objetive fuzzy deci-

sion making optimization
O✏ine

Fan & Stewart

(2009)
MPC(AS) MIMO Qy, Qu, R Robustness

Frequency Analysis/ Max-

Min optimization
Online

Francisco et al.

(2010)
IHMPC-SS SISO R Robustness

Frequency domain/ Min-

max optimization
O✏ine

Exadaktylos &

Taylor (2010)
MPC-SS MIMO Qy and R PV response

Multi-objetive Goal-

attainment Optimization
O✏ine

Cairano &

Bemporad

(2010)

DMC/MPC-

SS(AS) SISO
Qx and R

Equivalence

with linear

controller

Inverse Matching O✏ine

Shah & Engell

(2011)
GPC(AS) MIMO Qy and R PV response

Frequency domain/ Semi-

Definite Programming

Problem Optimization

O✏ine

(AS) - Analytical Solution of Unconstrained MPC SS - State Space Model
A - Adap-

tive
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Continuation of Table 2.1

Ref.
MPC Formula-

tion
Parameters

Tuning Cri-

teria
Method and Implementation

Waschl et al.

(2012)

MPC-SS(AS)

MIMO
Qy and R

PV and MV

response
Quadratic Optimization O✏ine

Suzuki et al.

(2012)
MPC-SS MIMO Qy and R PV response

Particle Swarm Optimiza-

tion
O✏ine

Tran et al.

(2014)
MPC-SS MIMO R

Optimal

bandwith

Extremum Seeking/ Qua-

dratic Optimization
O✏ine

Ho et al. (2014) AGPC(AS) SISO R Robustness

Conditional number/

analytical Expressi-

ons(Shridhar & Cooper

1997)

Online

Nery et al.

(2014)
MPC-SS MIMO Qy, R, p and m

PV and MV

response/ Ro-

bustness

Worst-Case Optimization O✏ine

Yamashita

et al. (2016)
MPC-SS MIMO Qy and R PV response

Multi-objective Optimiza-

tion
O✏ine

Short (2016)

DMC /

AGPC(AS)

SISO

R Robustness
Well-Conditioned/ analyti-

cal Expressions

O✏ine/

Online

Abrashov et al.

(2017)
GPC(AS) MISO Q and R Robustness

Frequency domain/ Opti-

mization
O✏ine

Weber dos San-

tos et al. (2017)
MPC MIMO Q, R and Sy

PV response /

Robust Perfor-

mance Number

(RPN)

Optimization O✏ine

Klopot et al.

(2018)
DMC(AS) SISO Ts, m, p, N , R Embedded analytical Expressions O✏ine

Ira et al. (2018) MPC-SS MIMO Q, e R PV response
Machine learning /

Gradient-free Optmization
O✏ine

Jabbour & Ma-

demlis (2018)

AMPC-SS(AS)

SISO
R PV response Fuzzy Inference System Online

Weber dos San-

tos et al. (2019)
MPC MIMO Q, R and Sy

Pv response /

relative RPN

Optimization / Diferent

operacional points
O✏ine

De Carvalho &

Alvarez (2020)
IHMPC MIMO Q, R

Simultaneous

process design

and control

Optimization O✏ine

De Schutter

et al. (2020)
MPC MIMO

SP trajecto-

ries, steady

states, and cost

matrices

Economic

NMPC equiva-

lency

Optimization O✏ine

Elsisi et al.

(2021)
NMPC

Ts, m, p, Q, and

R
PV response Neural Network O✏ine

(AS) - Analytical Solution of Unconstrained MPC SS - State Space Model
A - Adap-

tive
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Continuation of Table 2.1

Ref.
MPC Formula-

tion
Parameters

Tuning Cri-

teria
Method and Implementation

Nebeluk &

 Lawryńczuk

(2021)

DMC MIMO Q PV response Optimization O✏ine

Giraldo et al.

(2022)
MPC MIMO m, p, Q, and R

PV and MV

response
Hybrid Optimization O✏ine

Yu et al. (2022) NMPC Q, and R
PV and MV

response

Optimization Genetic Al-

gorithm
Online

(AS) - Analytical Solution of Unconstrained MPC SS - State Space Model
A - Adap-

tive

Like other controllers, MPC performance is related to its tuning parameters:

the weighting matrices of the controlled, manipulated and state variables (Qy , Qu

, and, Qx); manipulated variation weights (R) and slack variables weighting (S);

prediction, model and control horizons (p,N,m); reference trajectory filters. Due

to the flexibility of the MPC algorithm, di↵erent MPC formulations with di↵erent

characteristics are found. Therefore, the MPC tuning problem is considered a non-

trivial task and, for this reason, di↵erent methods of parameter adjustment are

found in the literature (Rani & Unbehauen 1997, Garriga & Soroush 2010, Alhajeri

& Soroush 2020).

Several of these MPC tuning methods are based on heuristic techniques (methods

based on guidelines), as seen in Rani & Unbehauen (1997), Garriga & Soroush

(2010) and Alhajeri & Soroush (2020). In general, such methods present a list of

instructions and simple algebraic expressions to meet predetermined requirements.

In contrast, Garriga & Soroush (2010) present methods described as auto-tuning or

self-tuning. Unlike the guidelines-based methods, auto-tuning methods are based

on optimization that o↵ers the advantage of not requiring much knowledge about

the system, however, they have the disadvantage of high computational cost, since

there are two simultaneous optimization problems: the tuning one and the MPC

itself (Garriga & Soroush 2010).

Regardless of the method types, as for implementation, they can be o✏ine, like

most heuristic or auto-tuning methods, or online, such as some methods based on

heuristic rules or auto-tuning with simplifications of the optimization problems (Ta-

ble 2.1). The limitation of the o✏ine methods lies in the fact that their designs must

be repeated to ensure good performance of the control system either to unforeseen
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changes, namely operating condition changes and unmeasured disturbance, or even

in scenarios of performance criteria changes. On the other hand, the implemen-

tation of online strategies attempts to circumvent these drawbacks as they correct

the system parameters in a real-time mode to meet specifications designed from a

nonconformity detected.

Most of the tuning methods are specific to conventional controllers, such as

Dynamic Matrix Control (DMC) (Wojsznis et al. 2003, Han et al. 2006, van der

Lee et al. 2008, Cairano & Bemporad 2010, Short 2016, Klopot et al. 2018, Nebeluk

&  Lawryńczuk 2021), Generalized Predictive Control (GPC) (Li & Du 2002, Short

2016, Ho et al. 2014, Abrashov et al. 2017) or MPC based on the state space model

(MPC-SS) (Exadaktylos & Taylor 2010, Cairano & Bemporad 2010, Waschl et al.

2012, Suzuki et al. 2012, Tran et al. 2014, Nery et al. 2014, Yamashita et al. 2016,

Jabbour & Mademlis 2018) (Table 2.1). The specificities of these methods are

usually tied to the use of some properties of the controllers, such as: analytical

solution (Li & Du 2002, Wojsznis et al. 2003, Han et al. 2006, van der Lee et al.

2008, Fan & Stewart 2009, Cairano & Bemporad 2010, Shah & Engell 2011, Waschl

et al. 2012, Ho et al. 2014, Short 2016, Abrashov et al. 2017, Klopot et al. 2018,

Jabbour & Mademlis 2018) and objective function (Francisco et al. 2010); or process

type, such as: Single Input Single Output (SISO) Li & Du (2002), Francisco et al.

(2010), Cairano & Bemporad (2010), Ho et al. (2014), Short (2016), Klopot et al.

(2018), Jabbour & Mademlis (2018). Due to the specificities of the methods, the

applications in other controller formulations require the restructuring of equations,

guidelines, or optimization problems in order to adapt it to new controllers or process

dynamics. For example, Ali (2001) presents an online tuning method of Finite

Impulse Response MPC (MPC-FIR) using a Fuzzy Inference System (FIS), based

on heuristic knowledge to meet controlled variables performance requirements. This

FIS is modified for di↵erent applications, such as the work of Ali & Al-Ghazzawi

(2008), who use the same MPC-FIR but applied in another system, and Ali (2003)

and Zarkogianni et al. (2011), who apply it in a Nonlinear MPC (NMPC) with

di↵erent systems.

In this case, the present work contributes to a method based on an online closed-

loop simulation in the presence of model-plant mismatch, which can be designed from
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the MPC and plant model desired, enabling flexibility and easy implementation in

di↵erent cases.

Another important point for tuning methods is the performance/robustness re-

quirements. It is known that heuristic methods have pre-set adjustment criteria,

while auto-tuning methods are based on the desired response information. Howe-

ver, most auto-tuning methods are designed to meet either the robustness or per-

formance criteria, highlighting some research (Table 2.1) that explicitly considers

the robustness requirement in the tuning method through min-max optimization

formulations. For instance, Han et al. (2006) and Francisco et al. (2010) deal with

frequency domain based formulations, whereas Nery et al. (2014), Weber dos San-

tos et al. (2017) and Weber dos Santos et al. (2019) use robustness criteria based

on time-domain model analysis. The solution of these cases can be more complex,

with most methods implemented o✏ine, apart from the online methods proposed

by Fan & Stewart (2009), Ho et al. (2014) and Short (2016). These last papers pre-

sent some simplifications on the optimization problem, derived from specific MPC

analytical solutions, in order to decrease the computational cost and enable online

implementations.

In the performance criteria case, the requirements are mostly represented by

indices describing the behavior of the controlled variables in the time domain and

the parameters are then adjusted from the comparison of the closed-loop simulation

to the desired response, using optimization or heuristic rules (Al-Ghazzawi et al.

2001, Ali 2001, Li & Du 2002, van der Lee et al. 2008, Shah & Engell 2011, Suzuki

et al. 2012, Yamashita et al. 2016, Weber dos Santos et al. 2017, Ira et al. 2018,

Jabbour & Mademlis 2018, Weber dos Santos et al. 2019). The parameters evaluated

to achieve performance criteria indexed based on the response of controlled variables

(PV) only may result in a more aggressive control action since there is a tendency

to value the PV response to the detriment of manipulated variables (MV). Thus,

some works explicitly show the combination of the variables’ response (Han et al.

2006, Waschl et al. 2012, Nery et al. 2014, Elsisi et al. 2021, Giraldo et al. 2022, Yu

et al. 2022) and others are based on multi-objective formulations, which may allow

the implementation of requirements for the PVs and MVs (van der Lee et al. 2008,

Exadaktylos & Taylor 2010, Yamashita et al. 2016, Ira et al. 2018).
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It is crucial to highlight that a few studies have investigated the association

between economic requirements and MPC tuning methods (De Carvalho & Alvarez

2020, De Schutter et al. 2020). Due to the trade-o↵ between performance and

economic criteria, optimal economic solutions are hardly associated with a well-

behaved system response, as a better system response can only provide implicit

economic improvements.

In addition, in presenting a flexible structure for the di↵erent MPC strategies,

this work proposes an auto-tuning method based on a receding horizon optimization

problem with an objective trade-o↵ function designed to encompass performance

(including MV response) and explicit economic requirement. The closed-loop si-

mulation in the presence of model-plant mismatch coupled with this optimization

framework contributes to robustness issues and more flexible performance criteria.

In terms of implementation, online methods are designed for simplifications in

closed-loop simulation (Al-Ghazzawi et al. 2001, Ali 2001, 2003, Ali & Al-Ghazzawi

2008), MPC analytical solution (Li & Du 2002, Fan & Stewart 2009, Jabbour &

Mademlis 2018) or updating of the prediction model (Adaptive MPC) followed by

the application of guidelines corresponding to the controller formulation and model

structure (Ho et al. 2014, Short 2016), resulting in limited applications.

Therefore, the optimization framework proposed in this work also includes de-

cision variables called tuning actions. These tuning actions are comparable to the

MPC control actions and are evaluated for a defined horizon, and only the first value

is implemented, contributing to the online implementation.

In summary, in the current context, a range of MPC tuning methods is mainly

dedicated to specific controller strategies, performance/robustness criteria, and im-

plementation. In addition, online implementation methods are based on simple

mathematical expressions, heuristic rules, or simplifications of the optimization pro-

blem, and economic tuning requirements are not implemented in an explicit online

form.

Consequently, there needs to be more research concerning MPC auto-tuning

methods that prioritize economic objectives while remaining adaptable to various

control formulations. In light of this gap, this study introduces the development of

an online auto-tuning approach that o↵ers flexibility for di↵erent MPC formulations,

14



performance criteria, and economic targets.
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Chapter 3

Tracking MPC performance goals

by an auto-tuning framework

The auto-tuning method proposed in this chapter is a layer of receding horizon

optimization problem whose objective function is able to consider the performan-

ce/robustness through a trade-o↵ representation combining the responses of the

process variables and the control actions. The tuning parameters are evaluated ba-

sed on a closed-loop simulation in the presence of model-plant mismatch, which is

compared to the desired tunnel response in the time domain. The method is tested

for two types of model predictive control, and its flexibility and suitability for di↵e-

rent scenarios of fit criteria are presented. The results point to the feasibility of the

applications of the method, keeping the system close to the ideal setting and high-

lighting the importance of evaluating the behavior of control actions in the tuning

problem.

The text included here is part of the published paper in the Industrial & Engi-

neering Chemistry Research

• FONTES, R. M.; MARTINS, M. A. F.; ODLOAK, D. An Automatic Tuning

Method for Model Predictive Control Strategies. Industrial & Engineering

Chemistry Research, vol. 58, no. 47, p. 21602–21613, 27 Nov. 2019. DOI

10.1021/acs.iecr.9b03502.

3.1 Proposed MPC auto-tuning framework

MPC auto-tuning methods have the disadvantage of high computational cost due to

the formulation being based on two simultaneous optimization problems, parameter
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adjustments and the MPC itself (Garriga & Soroush 2010). As a result, some

authors propose the use of auto-tuning methods in an o✏ine way or the use of MPC

algorithm simplifications for online applications, as seen in Chapter 2 (Table 2.1).

This section presents a method based on optimization with the capacity for online

applications which is flexible for di↵erent MPC and without any simplification of the

MPC algorithms. The main feature is in the formulation of a receding optimization

problem responsible for the tuning of the MPC parameters.

The idea behind the proposed method follows the philosophy of the MPC scheme

itself. In MPC, the following elements can be highlighted: the model, used to predict

the open-loop plant behavior; control actions, decision variables of the optimiza-

tion problem representing the manipulated variable increments; prediction horizon,

which determines the time instants of model predictions; control horizon, which de-

termines the size of sequence of control actions; constraints, limits for the evaluation

of control actions; optimizer, responsible for evaluating the optimal control actions

sequence from the prediction model, horizons and constraints.

Like MPC, the proposed automatic tuning formulation is based on a receding

horizon optimization scheme, whose decision variables (tuning parameters) are eva-

luated from the prediction of the closed-loop system behavior. Compared to MPC,

the following elements of the proposed method are highlighted: Closed-Loop Simula-

tion (CLS), used to predict the closed-loop process behavior (ŷ, û); tuning actions,

which are the decision variables of the optimization problem that represent relative

parameter increments (�✓); simulation horizon, which determines the time instants

of closed-loop prediction; tuning horizon, which determines the size of tuning actions

sequence; constraints, limitations for the evaluation of the tuning actions; optimizer,

which is responsible for evaluating the optimal tuning actions sequence, given the

closed-loop simulation, horizons and constraints. Table 3.1 summarizes the elements

and their respective functions.

Within this paradigm, we propose an auto-tuning method capable of receiving

plant measurements (y,u), reference signals (ysp), performance criterion to optimally

adjust the tuning parameters (✓) of an existing MPC in order to meet specified

requirements. From the multilevel control structure point of view, this proposed

layer integrates with the lower MPC layer, and its execution is split into two steps,
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Table 3.1: Comparison between elements and functions of the MPC with the proposed auto-tuning

method

Function MPC Element Proposed Tuning Element

System prediction Open-loop Model Closed-loop Simulation

Decision variables Manipulated Variables Increments Tuning Parameters Increments

Time instants of predictions Prediction Horizon Simulation Horizon

Size of Sequence Increments Control Horizon Tuning Horizon

as can be seen in Figure 3.1.

(a)

(b)

Figure 3.1: Representation of the MPC online automatic tuning layer.

First step - Monitoring: The first step is to monitor the process through the
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simulation of the closed-loop system, which is responsible for providing the

simulated values of the controlled (ŷ(k)) and manipulated variables (û(k)),

using a set of MPC tuning parameters (✓(k � 1)). If the predicted values

of the closed-loop system simulation do not meet the predefined criteria the

second step is activated so as to compute new tuning parameters.

Second step - Tuning: The second step evaluates the new parameters in order

to meet the desired performance criteria when they are violated through the

closed-loop system simulation.

The implementation structure helps to adjust only at the desired moment, i.e.,

the optimization problem is only activated when it is detected that the control

system will not remain within the expected criteria, which avoids unnecessary com-

puting, contributing to the feasibility of online implementation. For the implemen-

tation of the proposed method, it is important to highlight some points:

Note 1: For better numerical conditioning of the optimization problem, it is re-

commended normalizing all variables.

Note 2: Simulation and tuning horizons (hsim, hT ) can be configured on the basis

of the desired closed-loop trajectory. These specifications can be made based

on the prior knowledge of the designer or with the aid of a rigorous o✏ine

simulation. In order to comply computational issues, the following guideline

can be used:

• hsim  highest settling time

• hT  hsim/2

Note 3: The set of parameter constraints must be defined in order to avoid unwan-

ted scenarios, such as open-loop and higher control e↵ort (importance and

suppression matrix are zeroed).

Note 4: The constraints applied to tuning actions (�✓min,�✓max) play a significant

role in determining the behavior of the proposed automatic tuning approach.

These constraints directly influence how the system adjusts its parameters in
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response to changing conditions. It is worth noting that the magnitude of

these constraints directly impacts the characteristics of the tuning actions.

When small values are assigned to the constraints, the adjustment actions

become smoother and more gradual, which can be beneficial in scenarios where

stability and gradual convergence toward optimal performance are desired.

The smaller constraints limit the magnitude of parameter changes, preventing

sudden and drastic adjustments that could destabilize the system.

On the other hand, when large constraint values are employed, the tuning

actions can become more aggressive and pronounced, which means that the

auto-tuning framework has the freedom to make larger parameter adjustments

in a shorter period. While aggressive actions can lead to faster convergence

toward optimal performance, they also introduce a higher risk of instability.

Therefore, it is crucial to carefully consider the potential trade-o↵ between

rapid convergence and system stability when selecting larger constraint values.

Note 5: The simulated results were evaluated on a computer with an octa-core

processor with 3.2 GHz and 16 Gb of RAM, with MAC operational system.

As for the optimization algorithms used, the controllers were implemented

in quadratic programming, while the tuning problem was solved through the

Active-sets algorithm, using quadprog and fmincon of the MATLAB software

(version 2021b)

The ordinary di↵erential equations system was solved by a variable-steps and

variable-orders method based on numerical di↵erentiation formulas of orders

1 to 5.

It is important to emphasize that the choice of the numerical method can de-

grade the solution’s quality and computational time. In this regard, attention

to this point is recommended before implementation in a real-time system.

3.2 Presenting the main elements

To help illustrate the auto-tuning framework design, details on each element, func-

tion, and the implementation of the proposed tuning technique will be presented in
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the following subsections.

3.2.1 Closed-Loop Simulation (CLS)

The closed-loop simulation is performed to forecast the system’s future behavior

based on current conditions, in which the time interval considered in these predicti-

ons is called the simulation horizon (hsim). As can be seen in Figure 3.2, the same

formulation of MPC implemented in the plant (GP ), including the same constraints,

is considered together with a representation of the plant model (GM) in the Closed-

Loop Simulation. To obtain an o↵set-free CLS, a bias term (e(k|k)), defined by

the di↵erence between the current measured value (y(k)) and the simulated value

of the closed-loop ŷ(k|k), is added at each simulation time step to provide the CLS

prediction ŷk = [ŷ(k + 1|k), . . . ,ŷ(k + hsim|k)]>.

Under these circumstances, from the current measurement (y(k), u(k� 1)), the

closed-loop simulation generates controlled and manipulated variables values in or-

der to accommodate a more realistic scenario of practical implementation purposes,

i.e., the plant-model mismatch case. In this case, the parameters are evaluated

under the model uncertainty scenarios, which contributes to the proposed method

robustness feature. Figure 3.2 shows the schematic representation of the proposed

method. It is important to highlight in Figure 3.2 that the state estimator is only

applied if the MPC formulation requires state feedback. In these cases, the bias

term is not necessary.

To simplify the representation, Eq. (3.1) provides the mathematical represen-

tation of the concept Closed Loop Simulation (CLS) as a function of the tuning

actions, reference values and current measurements.

[ŷk,�ûk] = CLS
�
✓(k � 1),�✓k,yspk ,y(k),u(k � 1)

�
(3.1)

in which, ŷk = [ ŷ(k + 1|k),. . . ,ŷ(k + hsim|k) ]>, �ûk = [�û(k|k), . . . , �û(k +

hsim � 1|k) ]>, are the simulated values of the controlled and manipulated variables,

respectively; yspk=[ysp(k+1|k), . . . , ysp(k+hsim|k) ]> are the references values along

the simulation horizon, y(k) and u(k � 1) are the current measurements and �✓k

= [�✓(k|k), . . . , �✓(k+ hsim � 1|k) ]> are the sequence of tuning actions; ✓(k� 1)

are current MPC parameters.
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Figure 3.2: The proposed performance tracker auto-tuning layer.

This CLS construction allows the engineer to choose the MPC + Model com-

bination that best represents the goals to be achieved by the tuning method. The

proposed system therefore facilitates the use of di↵erent MPC formulations and

adjustment objectives.

3.2.2 Tuning Action (�✓)

As seen previously (Figure 3.2), the Closed-Loop Simulation configuration allows the

inclusion of di↵erent MPC structures. As well as this, the structure called tuning

actions is proposed, where ✓ represents the set of tunable parameters.

Since the parameters are evaluated from an optimization problem as main charac-

teristic of auto-tuning approach (Garriga & Soroush 2010), in this work, we propose
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updating tuning parameters in a similar way to the MPC scheme. The proposed

algorithm estimates a sequence of relative parameter increments, denoted here as

tuning actions,

�✓k = [�✓(k|k), . . . ,�✓(k + hsim � 1|k)]> . (3.2)

Like in MPC, in which the control horizon limits the size of the control action

sequence, the tuning horizon (hT ) defines the size of the tuning action sequence

in the proposed method. As a result, �✓(k + hT ) = �✓(k + hT + 1) = ... =

�✓(k + hsim � 1) = 0 reducing the size of the tuning actions to

�✓k = [�✓(k|k), . . . ,�✓(k + hT � 1|k)]> . (3.3)

Although the optimal sequence of the tuning actions is computed, only the first

relative increment is used to obtain the current set of tuning parameters according

to the following expression:

✓(k) = [1 +�✓(k|k)] · ✓(k � 1). (3.4)

Eq. (3.4) facilitates comprehending the tuning action constraints, since they are

relative values, and improves the numerical behavior. However, this constraint in-

troduces a significant nonlinearity to the problem, as described as follows.

The constraints defined for the parameters delimit the search region and avoid

values that can cause damage to the control system, such as when the importance

matrix or suppression matrix are zeroed. As a result, because the parameters should

be limited over the simulation horizon,

2

6666664

✓min(k)

✓min(k + 1)
...

✓min(k + hsim � 1)

3

7777775

| {z }
✓min



2

6666664

✓(k|k)

✓(k + 1|k)
...

✓(k + hsim � 1|k)

3

7777775

| {z }
✓k



2

6666664

✓max(k)

✓max(k + 1)
...

✓max(k + hsim � 1)

3

7777775

| {z }
✓max

. (3.5)

Expanding Eq. (3.4)

✓(k|k) = (1 +�✓(k|k)) · ✓(k � 1)

✓(k + 1|k) = (1 +�✓(k + 1|k)) · ✓(k|k),
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= (1 +�✓(k + 1|k)) · (1 +�✓(k|k)) · ✓(k � 1)

✓(k + 2|k) = (1 +�✓(k + 2|k)) · ✓(k + 1|k)

= (1 +�✓(k + 2|k)) · (1 +�✓(k + 1|k)) · (1 +�✓(k|k)) · ✓(k � 1),

✓(k + hT � 1|k) =
hT�1Y

i=0

(1 +�✓(k + i|k)) · ✓(k � 1)

✓(k + hT|k) = ✓(k + hT + 1|k) = · · · = ✓(k + hsim � 1|k),

generalizing to an instant j, we have

✓(k + j|k) =
jY

i=0

(1 +�✓(k + i|k)) · ✓(k � 1), j = 0, 1, . . . , hT � 1. (3.6)

Thus, the set of tunable parameters, ✓, is subject to a set of constraints,⇥, defined

as

⇥ ⌘

8
>>>>>>><

>>>>>>>:

�✓min  �✓k  �✓max,

�✓ (k + j|k) = 0, 8j � hT ,

✓min 
jY

i=0

(1 +�✓(k + i|k)) · ✓(k � 1)  ✓max,

, j = 0, 1, . . . , hsim � 1

(3.7)

The use of the closed-loop simulation structure with the tuning actions, together

with the simulation and tuning horizons, contribute to make it a flexible method

for online implementation. These combined structures allow the construction of a

receding horizon optimization problem, that is, at every instant, from the process

measurements, a new simulation is evaluated, keeping the system closer to the rea-

listic scenario and consequently, a new sequence of optimal parameters is computed.

3.2.3 Optimizer

The proposed auto-tuning consists of a Closed-Loop Simulation connected to an

optimizer (Figure 3.2) responsible for calculating a sequence of optimal tuning rela-

tive parameter increments from the simulated values (Eq. (3.1)) and performance

requirements.

Generally, there are di↵erent criteria that can be adopted to improve a control

system, among them are overshoot, decay ratio, rise time, settling time, response
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time, Integral of the Square Errors (ISE) and Integral of the Absolute Errors (IAE).

In performance tracking, it is always interesting to accomplish a combination of

criteria in an optimal sense. Here, the proposed tuning method is flexible in ac-

commodating di↵erent criteria, particularly in a time domain tunnel form (Ali &

Zafiriou 1993), as shown in Figure 3.3, which is a systematic method for a tuning

formulation based on optimization problem.

Figure 3.3: Example of tunnel performance for set-point tracking (dashed line) based on the desired

closed-loop response (solid line).

For example, Figure 3.3 shows the construction of a performance tunnel from a

desired closed-loop response in the tracking set-point case. It can be seen that the

tunnel can contain information inherent to the desired response, such as overshoot,

peak and settling time. The tunnel also has information about the steady state tole-

rance (Monitoring Performance) used for process monitoring. Thus, a performance

tunnel can be built for each controlled variable. As the prediction is made under

a moving horizon algorithm, the tunnels move to the right every time step until

reaching the monitoring part. If any violation is detected, the tuning layer holds in

the parameters adjusting stage. Otherwise, the system changes to the monitoring

stage.

In the auto-tuning proposed in this work, the performance requirements tunnel

is combined into an objective function form described by

min
�✓k

hsimX

j=1

kŷ(k + j|k)� ysp(k + j|k)k2� +
hsim�1X

j=0

k�û(k + j|k)k2⌦ (3.8)
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in which � represents a diagonal penalty matrix related to the performance tun-

nel limits, i.e. if the simulated CLS values exceed the tunnel limits, the objective

function is penalized proportionally for the resulting violation; and ⌦ is weighting

matrix of the manipulated variables.

The main di↵erence between the Al-Ghazzawi et al. (2001) proposal and Eq.

(3.8) lies in the variations in the manipulated variables and the penalty matrix. In

Al-Ghazzawi et al. (2001), in addition to using a simplified closed-loop simulation for

a specific controller, only the highest tunnel violation, provided by the PV simulated

values, is used. Furthermore, the MV simulated values are ignored in the objective

function and consequently, in the evaluation of the controller parameters.

In Eq. (3.8), all the values of all the variables simulated by CLS are used to

evaluate the objective function. In addition, the suggested penalty matrix can be

constructed to fit the criteria desired by the specialist, providing more flexibility to

implement the method. The diagonal elements (�i,i) of the weighting matrix � can

be evaluated using the following expression:

�i,i(k + j) =

8
>>>>>><

>>>>>>:

ŷi(k + j)

yi,max(k + j)
, ŷi(k + j) � yi,max(k + j)

2yi,min(k + j)� ŷi(k + j)

yi,min(k + j)
, ŷi(k + j)  yi,min(k + j)

�, otherwise

, (3.9)

in which, i = 1, . . . , ny, j = 1, . . . , hsim, ny is the number of controlled variables,

ŷi(k + j) is the simulated value of the “i-th” controlled variable at instant k + j,

yi,min(k+ j) and yi,max(k+ j) are the tunnel limits of the i-th controlled variable at

instant k + j, and � is a binary weighting, i. e., � 2 {0, 1}.

Although incorporating tunnel performance as a penalty matrix rather than a

constraint simplifies the calculation of the optimizer solution, it also introduces a

non-quadratic objective function. This can challenge the algorithm to converge

e↵ectively and potentially increase computation time.

The binary weighting � defines two di↵erent criteria for the tuning parameters.

The value should be chosen by the specialist based on the desired performance cri-

teria. If � = 1, this means that for the simulated CLS values within the tunnel

boundaries, the resulting performance criterion is reduced to the target ISE. On the

other hand, if the simulated values of CLS exceed the tunnel, ISE will be penalized,
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resulting in the objective so-called Tunnel sum of the Squared Error (TISE). Con-

sequently, the optimizer will converge to a closed-loop response with smaller tunnel

violations and closer to the reference value.

If � = 0, the simulated CLS values within the tunnel boundaries will not be

considered in the objective function, which implies a response with fewer tunnel

violations, with the MPC tracking the set-point. This requirement is referred to

here as tunnel performance objective (T).

Furthermore, the behavior of the manipulated variables can be considered in the

performance objectives of the proposed tuning method. The evaluation of tuning

parameters based only on the response of the controlled variables can generate an

increase in control e↵ort, and consequently, a degradation in the final control ele-

ment and even loss of system stability/robustness. In this work, the term added to

incorporate the actions of the manipulated variables (MV) is denoted as the sum of

Manipulated Variable Increments (IMVI) and the weighting matrix (⌦) represents

the importance of the control actions according to the desired requirements by the

engineers, as for example economic weights.

The distinct and full performance requirements desired for the control system,

T+IMVI and TISE+IMVI, can be performed by the proposed tuning formula th-

rough the solution of

Problem 1:

min
�✓k

hsimX

j=1

kŷ(k + j|k)� ysp(k + j|k)k2� +
hsim�1X

j=0

k�û(k + j|k)k2⌦

subject to:
8
>>>>>>><

>>>>>>>:

�✓min  �✓k  �✓max,

�✓ (k + j|k) = 0, 8j � hT , j = 0, 1, . . . , hsim � 1

✓min 
jY

i=0

(1 +�✓(k + i|k)) · ✓(k � 1)  ✓max,

[ŷk,�ûk] = CLS
�
�✓k,yspk

,y(k),u(k � 1)
�

The proposed optimization problem results in a flexible tuning method for di↵e-

rent performance and robustness criteria. Although it is a non-linear optimization

problem (Problem 1), it can be characterized as a soft optimization, since the tunnel

is not a constraint but a penalty. Thus, in addition to the sequence of parameter
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increments, the tuning method has a degree of freedom to seek the solution provided

by tuning actions to keep the system close to the desired criterion.

Finally, Figure 3.4 summarizes the steps to design the proposed method.

Figure 3.4: Summary of the steps to design the proposed method.

3.3 Applying the auto-tuning framework

The proposed auto-tuning method is a layer of receding horizon optimization pro-

blem whose objective function is able to tuning requirements through trade-o↵ repre-

sentation combining the responses of the process variables and the control actions.

The tuning parameters are evaluated based on a closed-loop simulation in the pre-

sence of model-plant mismatch, which is compared to the desired tunnel response in

the time domain. In this section, the method is tested for two types of model pre-

dictive control, and its flexibility and suitability for di↵erent scenarios of fit criteria

are presented.

3.3.1 MPC formulations

This section presents the context of two distinct formulations of MPC controllers,

Dynamic Matrix Controller (DMC) and Infinite Horizon MPC (IHMPC). In this

work, the chosen formulations, DMC and IHMPC, evaluate the flexibility of the
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method against two distinct forms of control laws, which represent the evolution of

the predictive controllers, the classic DMC and a recent formulation of controllers

with nominal stability guarantee.

The first one considered is the DMC (Dynamic Matrix Controller), described by

the following control law:

Problem 2:

min
�uk

pX

j=1

ky(k + j|k)� yspk2Qy
+

m�1X

j=0

k�u(k + j|k)k2R

subject to:
8
>>>>><

>>>>>:

umin  u (k � 1) +
P

j

i=0 �u (k + i|k)  umax

��umax  �u (k + j|k)  �umax j = 0, . . . ,m� 1

�u (k + j|k) = 0, 8j � m,

(3.10)

y(k + j|k) = y(k + j � 1) +
jX

i

si�u(k + j � 1|k) + d(k + j) (3.11)

in which p andm are the prediction and control horizons, respectively; Qy (weighting

matrix) and R (suppression matrix) are diagonal positive definite; ysp is the set-

point vector; �u (k) = u (k)�u (k � 1) is the Manipulated Variable (MV) increment

vector. y (k + j) is the prediction vector of the controlled variables based on the

step response of the system; si is the coe�cient of the step response; d(k+ j) is the

constant bias along the prediction and it equals the di↵erence between the measured

output the model output; umin and umax are the bounds of the manipulated variables;

�umin and �umax are the limits of the control actions;

The second formulation deals with an infinite horizon MPC (IHMPC) presented

by Odloak (2004). This particular prediction model is based on the analytical ex-

pression of the step response of the system composed of distinct stable poles. The

discrete-time state space model is described as follows:

8
>>>>>>>>><

>>>>>>>>>:

2

64
xs (k + 1)

xd (k + 1)

3

75 = A ·

2

64
xs (k)

xd (k)

3

75+B ·�u (k)

y (k) = C ·

2

64
xs (k)

xd (k)

3

75

(3.12)
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xd and xs are the system states, the first one stands for the stable modes of sys-

tem while the second represents the artificial integrating states obtained from the

incremental form of inputs and corresponds to the predicted output steady-state.

Further details about the matrices A, B and C are provided by Odloak (2004).

Considering the previous prediction model (Eq. (3.12)), the IHMPC control law

is described by the optimization problem:

Problem 3:

min
�uk,�y,k

mX

j=1

ky(k + j|k)� ysp � �y,kk2Qy

+
m�1X

j=0

k�u(k + j|k)k2R +
��xd (k +m|k)

��2
Q̄
+ k�y,kk2Sy

,

subject to Eq. (3.10), Eq. (3.12) and

xs (k +m|k)� ysp � �y,k = 0 (3.13)

where �y,k is a vector of slack variables, introduced in the control problem in order

to enlarge the feasible region of the controller; Sy is assumed to be a diagonal

positive definite weighting matrix associated with the slack vector; Q̄ is the terminal

weighting matrix obtained for the solution of the Lyapunov equation of the system,

F> Q̄F = ( F)> Q ( F) , (3.14)

where the details about the matrices  and F are described in Appendix A

Given the controller formulation, its use requires a state observer to estimate

the artificial states of the prediction model. In this work, for the mismatch scena-

rios, the Kalman Filter (KF) is used with the covariance matrices associated with

measurement and process model noises tuned by simulation tests.

Considering the MPC formulations presented by Problems 2 and 3, the decision

variables for the auto-tuning method (Problem 1) consist of relative increments on

the matrix elements of output weights (Q) and move suppression (R). Thus, Eq.

(3.3) and Eq. (3.4) can be rewritten as

�✓k = [�q(k|k),�r1(k|k), . . . ,�rnu(k|k), . . . ,�q(k + hT � 1|k),

�r1(k + hT � 1|k), . . . ,�rnu(k + hT � 1|k)]> (3.15)
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8
><

>:

qi(k) = [1 +�q(k|k)] qi(k � 1), i = 1, . . . , ny

rl(k) = [1 +�rl(k|k)] rl(k � 1), l = 1, . . . , nu

(3.16)

in which, ny is the number of controlled variables, nu is the number of manipulated

variables, qi is the “i-th” diagonal element of the weighting matrix (Qy) and rl is

the “l-th” diagonal element of the suppression matrix (R).

The choice of these matrices, with emphasis on the suppression matrix, is be-

cause they represent the relationship between the variables, i.e. their manipulation

and implementation are more intuitive, which is observed directly in the controller

response. However, despite this, setting it manually will not guarantee the desired

performance (Exadaktylos & Taylor 2010). In contrast, horizons represent time sam-

ples, integer variables, related to model prediction and control actions time samples.

As a result, they interfere directly in the processing time of the MPC optimization,

and therefore the majority of works has preferred the adjustments of them in o✏ine

method (Han et al. 2006, van der Lee et al. 2008, Nery et al. 2014, Klopot et al.

2018), with the exception of the work of Ali (2001).

In the case of the weighting matrix (Qy), the elements reflect the importance

of the relationship existing among the controlled variables. In this sense, the incre-

ments evaluated by the tuning algorithm will vary only along the tuning horizon,

thus maintaining the relationship required by the specialist, i.e. the importance

among the controlled variables. On the other hand, the tuning actions correspon-

ding to the suppression matrix can freely be varied along the tuning horizon and

also the values among the manipulated variables.

3.3.2 Tuning DMC - Binary Column

The first case study is a binary distillation column (Wood & Berry 1973) represented

by the following transfer function model in which the controlled variables are the top

(y1) and bottom (y2) concentration, and the manipulated variables are the reflux

(u1) and steam (u2) flow rates. To represent the model uncertainties, the gains

are assumed at ±20%, time constants ±10% and time delay ±10. Thus, there is a
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constant plant-model phase mismatch, resulting in the following models

GM(s) ⌘

2

4y1(s)

y2(s)

3

5 =

2

64

12.8

18.4s+ 1
e
�1.1s �18.9

18.9s+ 1
e
�2.7s

6.6

9.81s+ 1
e
�6.3s �19.4

15.8s+ 1
e
�3.3s

3

75

2

4u1(s)

u2(s)

3

5 , (3.17)

GP (s) ⌘

2

4y1(s)

y2(s)

3

5 =

2

64

15.4

16.7s+ 1
e
�1s �15.1

21s+ 1
e
�3s

5.3

10.9s+ 1
e
�7s �23.3

14.4s+ 1
e
�3s

3

75

2

4u1(s)

u2(s)

3

5 . (3.18)

Based on Figure 3.2, Eq. (3.18) represents the Process (GP ) and Eq. (3.17) was

applied as a model (GM) in CLS and used to design the DMC controller, which

dispenses the use of a state estimator.

As a performance criterion chosen for this control system, the method proposed

by Shridhar & Cooper (1998) was adopted , in which the robustness of the system is

prioritized through a smooth response. Table 3.2 presents the parameters evaluated

by the heuristic tuning method proposed by Shridhar & Cooper (1998) and the

remaining configurations for DMC.

Table 3.2: Table containing the settings used in the DMC controller.

Variables Values Variables Values

umax [0.5; 0.05] p 73

umin [-0.5; -0.5] N 73

�umax [0.3; 0.03] m 17

q(0) [1;1] Ts 1.5 min

r(0) [346;1157] ⌦ I2
N - Model horizon; Ts - Sample Time; In - n-by-n identity matrix

In this way, a desired closed-loop response can be performed from a nominal

Closed-loop Simulation of this particular system. Thus, the performance tunnel,

which would represent the desired dynamic behavior for the tuning parameters set

(Table 3.2), evaluated by the heuristic adjustment method by Shridhar & Cooper

(1998), can be designed as shown in Figure 3.5.

However, the application of these same parameters does not guarantee the same

e↵ectiveness when applied to the plant-model mismatch scenario (Figure 3.5). The-
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Figure 3.5: Behavior of the binary column for nominal and model-plant mismatch cases, with the

tuning parameters obtained from Shridhar & Cooper (1998).

refore, the application of the proposed method aims to keep the plant as close as

possible to the desired performance tunnel, by the nominal response.

To work around this, the setting adopted for the auto-tuning method is described

in Table 3.3.

Table 3.3: Table containing the settings used in the performance tracking method.

Variables Values Variables Values

hT 3 hsim 7

qmax [1;1] qmin [0.01; 0.01]

�qmax 1 �qmin -1

rmax [1;1] rmin [0.01; 0.01]

�rmax [1; 1] �rmin [-1; -1]

Based on the response of CLS for the nominal case (Figure 3.5), the simulation

horizon was chosen as half of the settling time, and the tuning horizon as a quarter

of the settling time.

Figures 3.6, 3.7 and 3.8 show the auto-tuning performance in a scenario of set-

point tracking (from k = 5). Figures 3.6 and 3.7 show the closed-loop simulation of

the process variables at the set-point changes (k = 5).

It can be observed (Figure 3.6) that the CLS dynamics obtained for the initial va-
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Figure 3.6: Performance of the auto-tuning layer for the case of set point tracking - simulated

values for PV.

Figure 3.7: Performance of the auto-tuning layer for the case of set point tracking - simulated

values for MV.

lues of the parameters, black dashed line - ✓0 = ✓(k�1) = ✓(4) = [q(4),r1(4),r2(4)]
>,

have a greater error than the CLS dynamics obtained by optimal parameters, dashed

blue line - ✓⇤ = ✓(k) = ✓(5) = [q(5),r1(5),r2(5)]
>.

If the initial parameters were maintained, i.e. the optimal relative increments

�✓5,⇤ = [�q,�r1,�r2] = [0, 0, 0], it would result in a slower response and conse-
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quently a higher value of the objective function (TISE+IMVI). The tuning action

predominantly increases the PV weighting matrix and reduces the MV suppression

matrix, as shown in Figure 3.8, Eq. (3.19) and Eq. (3.20).

�✓5,⇤ = [�q(5|5),�r1(5|5),�r2(5|5),�q(6|5),�r1(6|5),�r2(6|5)

�q(7|5),�r1(7|5),�r2(7|5)]> (3.19)

�✓5,⇤ = [1,� 1,� 0.4967,1,0.776,� 0.785, 0.5584,� 0.3295,� 0.4516] . (3.20)

Figure 3.8: Performance of the auto-tuning layer for the case of set point tracking - tuning actions

From Eq. (3.16), the optimal values q1(5) = 2, q2(5) = 2, r1(5) = 0.01 and r2(5) =

582 are implemented, and the steps are repeated from k = 6 until the simulation

horizon finishes.

Figures 3.9 and 3.10 present the complete scenario of set-point tracking (from

k = 5) and disturbance rejection (from k = 40. A systematic disturbance of -5%

and 2.5% were added to u1 and u2, respectively). The performance tracking layer

adjusts the parameters in order to obtain the minimum of the objective function

(Problem 1) in each detection of non-compliance.

Figures 3.9 and 3.10 demonstrate how the choice of the objective function for-

mulation a↵ects the resulting dynamics.

Considering the objective T+IMVI, penalty matrix with � = 0 (Eq. (3.9)), the

variation in the manipulated variables becomes more important. Since the PVs
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Figure 3.9: Outputs of the binary column system for di↵erent configurations of the performance

tracking method with DMC.

Figure 3.10: Inputs of the binary column system for di↵erent configurations of the performance

tracking method with DMC.

simulation lies in the tunnel, the proposed algorithm attempts to keep the PVs

closer to the tunnel, with the least control e↵ort possible, resulting in a smoother

response. On the other hand, when TISE+IMVI is considered (penalty matrix with

� = 1 in Eq. (3.9)), a di↵erent control performance is observed. The response

obtained address to, not only approximate the simulated response to the tunnel,

but also a smaller distance from the set point. Thus, even when the simulated

values satisfy the tunnel limits, the method will provide new parameters considering

the error between the PVs and their set-points and the MVs movements. The result

is a more aggressive response to controlled variables, which proportionally increases
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the control e↵ort in comparison to the criterion T+IMVI.

Table 3.4 shows the traditional indexes of calculated performance, ISE and IMVI,

for the presented scenario. In Table 3.4, it can be seen that there is a better global

index when it is used TISE+IMVI objective function. However, it is noted an incre-

ase in the IMVI index due to the more aggressive response. This comparison shows

that in this case, where a robust response is desired through smooth control actions

and consequently a slower response as proposed by Shridhar & Cooper (1998), the

choice of the T+IMVI objective function is the most adequate.

Table 3.4: Performance indexes evaluated for di↵erent configurations of the performance tracking

method applied to the binary column with DMC.

Index T+IMVI TISE+IMVI

ISE(y1) 0.8897 0.4982

ISE(y2) 4.6054 4.6529

IMVI(u1) 0.0093 0.2848

IMVI(u2) 0.0042 0.0204

ISE + IMVI 5.5086 5.4563

A further point to highlight about the algorithms is the behavior of the parame-

ters, as shown in Figures 3.11 and 3.12.

Figure 3.11: Responses of the weighting elements Qy of DMC for di↵erent configurations of the

performance tracking method, applied to the binary column system.
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Figure 3.12: Responses of the weighting elements R of DMC for di↵erent configurations of the

performance tracking method, applied to the binary column system.

In Figure 3.11 it can be seen that the proportionality among the weights of the

controlled variables (tuning action for each qi) is maintained. Furthermore, in Fi-

gures 3.11 and 3.12 it can be seen that for the TISE+IMVI index, the elements

qi are rapidly increased, while the elements ri are abruptly reduced as soon as the

change in the set-point is detected, when compared to the parameters evaluated by

the T+IMVI approach. This occurs because, in this case, the sum of ISEs contribu-

tes more to the objective function, which implies that using TISE+IMVI provides

tuning actions that prioritize the PV performance improvement. However, after the

disturbance, the values qi are reduced as the controlled outputs are already close to

the reference values, thus prioritizing the control e↵ort through a slight increase in

the move suppression matrix elements. In contrast, the T+IMVI approach firstly

reduces the elements qi and increases the elements ri by virtue of the performance

criterion adopted.

From the results shown, it can be a�rmed that the most suitable criterion for

the auto-tuning implementation in this system is T+IMVI, because the desired

requirement, obtained by Shridhar & Cooper (1998), imposes a more conservative

behavior of the system. The use of the T+IMVI is able to approximate the curve

of the system to the tunnel, keeping a smooth response for both controlled and

manipulated variables.

The online practicability of the proposed auto-tuning framework in an online

setting is evaluated by examining the ratio between the computational time and
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auto-tuning sample time, as illustrated in Figures 3.13 and 3.14. The computational

time is determined when the method is initiated and includes the duration of the

monitoring step, the optimization solver, and the updating of MPC parameters.

Figure 3.13: Ratio of the computational and auto-tuning sample time for T+IMVI computed when

the framework is triggered (On - gray zone), in which tauto = Ts.

Figure 3.14: Ratio of the computational and auto-tuning sample time for TISE+IMVI computed

when the framework is triggered (On - gray zone), in which tauto = Ts.

Figures 3.13 and 3.14 reveal that the maximum ratio value is approximately 15%

of the sample time, which serves as a validation for the successful online implemen-
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tation of the proposed framework. These figures also highlight the occurrences of

auto-tuning triggers, indicated by the gray rectangles. It is noteworthy that the

auto-tuning is only triggered when deemed necessary.

To investigate the sensitivity of the auto-tuning system to its hyperparameters,

Figures 3.15, 3.16, 3.17 and 3.18 show the behavior of the process for di↵erent

tuning horizon values based on the objective described by TISE+IMVI. Note that

Figure 3.15: Behavior of PV for di↵erent tuning horizons.

the response obtained for the tuning horizon equal to 1 stands out compared to the

others, remaining viable even with a reduced horizon.

3.3.3 Tuning IHMPC - Continuous Stirred Tank Reactor

(CSTR)

The second case study deals with a CSTR (Continuous Stirred Tank Reactor), which

assumes a constant level. The reagent concentration (CA) and reactor temperature

(T ) are controlled by IHMPC (Odloak (2004)), considering the inlet flow rate (Fin)

and the cooler temperature (Tc) as manipulated variables. The plant is represen-

ted by the following set of nonlinear ordinary di↵erential equations (Martins et al.
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Figure 3.16: Behavior of MV for di↵erent tuning horizons.

Figure 3.17: Behavior of Q for di↵erent tuning horizons.

(2013)):

8
>><

>>:

dcA(t)

dt
=

[cA,in � cA(t)]Fin(t)

⇡r2h
� k0cA(t) exp


� E

RT (t)

�
,

dT (t)

dt
=

[Tin � T (t)]Fin(t)

⇡r2h
� k0cA(t) exp


� E

RT (t)

�
�H

⇢Cp

+
2U

⇢rCp

[Tc(t)� T (t)]

(3.21)
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Figure 3.18: Behavior of R for di↵erent tuning horizons.

in which the steady-state values are CA = 0.9267 kmol/m3, T = 317.92 K, Fin = 0.05

m3/min and Tc = 295 K. The constant values used in Eq. (3.21) and the controller

settings are summarized in Table 3.5.

Table 3.5: Constant values and IHMPC parameters applied to CSTR.

Variables Description Values

CA,in Reactant concentration in feed system 1.0 kmol/m3

k0 Pre-exponetial factor 7.2⇥1010 min�1

Tin Temperature in feed stream 350 K

h Liquid level in the reactor 0.327 m

r Radius of the reactor 0.197 m

Cp Heat capacity of the reaction mixture 239 J/(kg K)

⇢ Density of the reaction mixture 1000 kg/m3

U Overral heat transfer coe�cient 915.6 W/(m2 K)

E/R Activation energy/universal gas constant 8750 K

�H Enthalpy of reaction -5⇥107J/kmol

Tc,max Maximum cooler temperature 442.5 K

Tc,min Minimum cooler temperature 277.3 K
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Continuation of Table 4.1

Variables Description Values

�Tc,max Maximum increment of cooler temperature 147.5 K

Fin,max Maximum inlet flow rate 0.10 m3/min

Fin,min Minimum inlet flow rate 0 m3/min

�Fin,max Maximum increment of inlet flow rate 0.025 m3/min

Ts Sample time 30s

q(0) Initial weighting values [0.02; 1]

r(0) Initial suppression values [0.01; 1]

W Measurement covariance 0.5 · I10

V Process model covariance 0.05 · I2

For this controller, a state estimator is required as mentioned in Section 3.3.1.

In this work, it was implemented a Kalman filter, whose measurement covariance,

V, and process model covariance, W, obtained by simulation tests, are presented in

Table 3.5. Based on Figure 3.2, the Process (GP (k)) is represented by the nonlinear

system of ordinary di↵erential equations (Eq. (3.21)), the Model (GM(k)) is the

respective discrete space-state (Eq. (3.12)) linearized at a steady-state (Appendix

A).

The performance tunnel for the set-point tracking is assumed by the prior kno-

wledge of the process specialist as a step response for a second-order transfer function

with time peak equal to 5 minutes and overshoot equal to 40% and 5% for the re-

actor concentration and temperature, respectively. With regard to the disturbance

rejection case, the equivalent impulse response is adopted. Other configurations of

the proposed method can be found in Table 3.6.

Two scenarios are tested and compared in order to present the flexibility of

the proposed method in choosing the performance criteria and their impact on

the tuned parameters. The first scenario considers the total performance objec-

tive TISE+IMVI, while in the second scenario the objective is to consider only the

performance of controlled variables (TISE).

Figure 3.19 demonstrates that tracking the objective TISE results in a better

performance of the controlled variables by quickly stabilizing them within the spe-
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Table 3.6: Setting of the performance tracking method for the CSTR system.

Variables Values Variables Values

hT 8 hsim 33

qmax [1;1] qmin [0.002; 0.1]

�qmax 1 �qmin -1

rmax [1;1] rmin [0; 0]

�rmax [1; 1] �rmin [-1; -1]

cified tunnel. Nevertheless, the manipulated variables Fin and Tc are subject to

much more variation during the simulation period (cf. Figure 3.20). On the other

hand, tracking the objective TISE+IMVI, which also considers the control e↵ort in

the evaluation of the tuning parameters, leads to smoother modifications, i.e. as

expected, the method yields tuning actions in order to decrease variation in the

manipulated variables.

Figure 3.19: Outputs of the CSTR system for di↵erent configurations of the performance tracking

method with IHMPC.

The behaviors addressed above can be quantitatively re-evaluated through con-

trol performance indices, as shown in Table 3.7.

By not explicitly considering the control e↵ort in its formulation, the results

reveal that the suppression matrix is almost zeroed (see Figure 3.21), which generates
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Figure 3.20: Inputs of the CSTR system for di↵erent configurations of the performance tracking

method with IHMPC.

Table 3.7: Performance indices evaluated for di↵erent configurations of the performance tracking

method applied to the CSTR system with IHMPC.

Index TISE+IMVI TISE

ISE(y1) 0.0333 0.0232

ISE(y2) 0.0016 0.0015

IMVI(u1) 0.1334 0.2960

IMVI(u2) 0.0007 0.0011

ISE + IMVI 0.1690 0.3218

a more aggressive response, worsening the overall performance. On the other hand,

the tuning actions obtained from the objective TISE+IMVI resulted in a better

overall performance, in particular a significant improvement in the inlet flow rate

variations.

Another feature of adopting the objectives TISE and TISE+IMVI is shown in

Figure 3.22. The TISE-based performance calculates the tuning actions to minimize

only the objective TISE, which results in an increase in the importance matrix

(Qy) and a decrease in the suppression matrix (R). Although this tuning method

configuration improves the performance of all the controlled variables, the system

results in a worse global performance, caused by the increase in variation of both
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Figure 3.21: Responses of the weighting elements R of IHMPC for di↵erent configurations of the

performance tracking method applied to the CSTR system.

manipulated variables. However, when considering the contribution of the control

e↵orts (TISE+IMVI), a reduction in the values of qi and r2 combined with an

increase in r1 can be observed, which results in a better performance of the inlet

flow rate, reagent concentration, and the process as a whole.

Figure 3.22: Responses of the weighting elements Q of IHMPC for di↵erent configurations of the

performance tracking method applied to the CSTR system.

In this scenario, TISE+IMVI can be more appropriate for implementing auto-
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tuning if a smooth response is desired. The process remains close to the tunnel

established by the specialist with less control e↵ort, contributing to the overall

process improvement. On the other hand, if a fast response is required, TISE results

in a quicker dynamic behavior within the performance tunnel but with a higher

control e↵ort, resulting in worse overall performance.

Regarding online practicability, the ratio between the computational time and

the auto-tuning sample time is depicted in Figures 3.23 and 3.24. It is observed

that the maximum ratio value is close to five times greater than the sample time,

making the online implementation of the proposed framework challenging.

Figure 3.23: Ratio of the computational and auto-tuning sample time for TISE computed when

the framework is triggered (On - gray zone), in which tauto = Ts.

To address this issue, it is essential to investigate features such as the ODE and

optimization solvers, script improvements, or revise auto-tuning horizons. In this

way, Figures 3.25, 3.26, 3.27 and 3.28 present the impact of the tuning horizon

on the system dynamic and the computational time, using the TISE+IMVI as the

objective function. Note that the responses obtained are very similar for all tuning

horizons tested, with di↵erences only in the computational time and sample time

ratio (Figures 3.29 and 3.30). hT = 1 can provide a similar dynamic response with

tc/tauto  0.5, making the online implementation viable.
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Figure 3.24: Ratio of the computational and auto-tuning sample time for TISE+IMVI computed

when the framework is triggered (On - gray zone), in which tauto = Ts.

Figure 3.25: Behavior of CSTR process variables for di↵erent tuning horizons.

3.4 Partial conclusions

The method proposed in this work presented the combination of three main ele-

ments: closed-loop simulation in the presence of model-plant mismatch, tuning ac-

tions sequence and receding horizon optimization. Together, these elements provide
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Figure 3.26: Behavior of CSTR manipulated variables for di↵erent tuning horizons.

Figure 3.27: Behavior of Q for di↵erent tuning horizons in CSTR case.

greater flexibility for applications, regarding MPC type, process type, performance

requirements (represented by time-domain tunnels and objective function) and ro-

bustness requirements (represented by the closed-loop simulation in the presence

of mismatch with receding horizon optimization and Integral of Manipulated Va-

riables Increments associated with time-domain tunnels). In addition, they enable

49



Figure 3.28: Behavior of R for di↵erent tuning horizons in CSTR case.

Figure 3.29: Behavior of tc/tauto for hT = 1 in CSTR case with tauto = Ts.

online implementation, given that they allow a degree of freedom and update the

optimization problem at each instant.

The results show that the closed-loop simulation in the presence of model-plant

mismatch structure accepts di↵erent processes and MPC, which is demonstrated

and justified by the tests in a DMC and an IHMPC. Moreover, the insertion of the

penalty matrix in the performance tunnel has been demonstrated to promotes a

better adaptation to the criteria desired by the expert and the addition of the MV

increments lead to a smoother tuning, improving performance of the the system

with less control e↵ort.
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Figure 3.30: Behavior of tc/tauto for hT = 4 in CSTR case with tauto = Ts.

The sensitivity analysis of the tuning horizon indicated that the optimization

problem stayed practicable, even for small values, which may result from the pro-

posed structure for the optimizer. Since the tunnel performance is inserted as a

penalty matrix and not as constraints, the calculation of the solution was facilita-

ted. However, this same penalty matrix creates a non-quadratic objective function,

making it di�cult for the algorithm to converge and may increase the computation

time.

In this scenario, the next chapter presents modifications to auto-tuning problems

to provide a smoother optimization problem, improving its feasibility and online

implementation—additionally, a new perspective on MPC tuning problems. The

optimal parameter values are computed to reach economic goals, highlighting the

trade-o↵ between performance and economic criteria.
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Chapter 4

Tracking economic goals of an

ESP-lifted oil well by an

auto-tuning method

This chapter proposes a novel economic requirements-oriented online tuning strategy

for MPC, the design of which encompasses the well-known operational particularities

of oil production wells with ESP installations, e.g. operational envelope, maximiza-

tion of oil production, minimization of power consumption, and profit maximization.

The proposed tuning strategy is based on an online receding horizon optimization

framework that can interact with RTO layers and di↵erent MPC techniques in a

computation time appropriate for real- time implementations. The benefits of the

proposed method are demonstrated by a case study that investigates di↵erent tu-

ning requirements applied to provide an optimal ESP-lifted operation. It shows

that using economic goals for MPC tuning problems is an e↵ective way to achieve

improved ESP-lifted oil operation.

The text included here is part of the published paper in the Journal of Petroleum

Science and Engineering:

• FONTES, R. M.; SANTANA, D. D.; MARTINS, M. A. F. An MPC auto-

tuning framework for tracking economic goals of an ESP-lifted oil well. Journal

of Petroleum Science and Engineering, vol. 217, no. July, p. 110867, 2022.

DOI 10.1016/j.petrol.2022.110867.
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4.1 An implementable zone MPC approach

Several works present ESP validated and reliable models applicable to conceive

controllers and optimizers structures (Mohammadzaheri et al. 2020, Costa et al.

2021). Costa et al. (2021) present a review of first principles-based ESP mode-

ling methods, which are obtained from mass and momentum balances considering

single-phase flow. Furthermore, Costa et al. (2021) developed a single-phase dyna-

mic phenomenological model that accurately describes an ESP-lifted oil well pilot

plant. The model parameters are estimated by Bayesian inference and validated

with experimental data collected from an ESP apparatus installed at the CTAI La-

boratory located at the Federal University of Bahia. On the other hand, some oil

reservoirs present some gas concentration, characterizing a, at least, two-phase flow

(Mohammadzaheri et al. 2020). Mohammadzaheri et al. (2020) present a review of

multi-phase ESP empirical modeling, whose use is justified when the gas-oil ratio be-

comes significant to change the flow dynamics and consequently the ESP operation.

The same authors also contribute to this modeling issue, developing an artificial

neural network-based two-phase flow-type model validated with experimental data

borrowed from literature.

Since the single-phase models can represent ESP-lifted oil well dynamics with

appropriate accuracy, even with low gas concentration, the model presented by Costa

et al. (2021) is used in this paper. The ordinary di↵erential equation system (ODES)

considers an ESP with 15 stages and a mineral lubricant equivalent to API 10 oil

in the liquid phase. Accordingly, ODES is described from mass and momentum

balances as follows
8
>>>>>>><

>>>>>>>:

dLa(t)

dt
=

Kr

p
pr(t)� pbh(t)� qm(t)

A
,

dpwh(t)

dt
=

�2 ·
⇣
qm(t)�Kc · zc(t) ·

p
pwh(t)� pm

⌘

V2
,

dqm(t)

dt
=

Ā · (ppbh(t)� pwh(t) +�pp(t)��ph ��pf (t))

⇢ · L̄
,

(4.1)

where La(t) is the oil level in the annulus in m; zc(t) is the choke valve opening;

pwh(t), pr(t), pbh(t) and pm(t) are the wellhead, reservoir, bottom and manifold

pressures in Pa, respectively; qm(t) is the average flow rate in the production column

in m3/s; �pp(t) is the di↵erential pressure in Pa; �pf (t) is the friction factor in Pa;
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�ph is hydrostatic pressure in Pa; L̄ =
L1 + L2

2
is the average well length.

The friction factor, �pf , hydrostatic pressure, �ph, and di↵erential pressure

(Pa), �pp(t), are described by (Costa et al. 2021):

�pf (t) = ⇡ ·
2X

i=1

fi(t)⇢qm(t)

2⇡r3
i

(4.2)

�ph = g ·
2X

i=1

⇢ · hi (4.3)

fi(t) =

8
>><

>>:

64

Re(qm(t))
, if Re(qm(t)) < 4000

0.3164Re(qm(t))
�0.25

, otherwise

(4.4)

�pp(t) = H(t)g⇢ (4.5)

H(t) =
f(t)

f0

2X

i=0

↵iq
i

m
(t) (4.6)

where fi is the friction factor; Re is the Reynolds number; H(t) is the pump head

which depends on the rotational frequency, f(t), in Hz, and the average flow rate,

qm(t) More details about the constant values of the ESP structure can be consulted

in Table 4.1.

Table 4.1: ESP parameters obtained from Costa et al. (2021)

Parameter Description Value

h2 Height from the reservoir to choke 32.0 m

h1 Height from the pump intake to choke 22.7 m

L1 length from the reservoir to choke 9.3 m

L2 Length from the pump intake to choke 22.7 m

r1 Pipe radius below ESP 0.11 m

r2 Pipe radius above ESP 0.038 m

A Cross-section area of the annulus 0.034 m2

Ā Average cross-section area 0.011 m2

L̄ Average length 16.0 m

V2 Pipe volume above ESP 0.10 m3

g Gravity constant 9.81 m/s2

µ Fluid viscosity 0.01 Pa.s
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Continuation of Table 4.1

Parameter Description Value

⇢ Fluid density 855.0 kg/m3

�2 Bulk modulus 1.8⇥109 Pa

f0 ESP characteristics ref. freq. 60.0 Hz

Kc Choke valve constant 3.8⇥10�6 m3/(sPa0.5)

Kr Reservoir valve constant 3.2⇥10�6 m3/(sPa0.5)

↵0 Head’s polynomial coe�cient 180.79 m

↵1 Head’s polynomial coe�cient 7.90 s/m2

↵2 Head’s polynomial coe�cient -75.40 s2/m5

Furthermore, regarding the control of an ESP-lifted oil well, MPC strategies have

been adopted due to their optimal control law and the way that they can e�ciently

incorporate process constraints. However, some MPC strategies can yield unfeasible

solutions due to conflict among the system constraints, terminal equality constraints

and process disturbances (Fontes et al. 2020). Consequently, MPC-based solutions

with guaranteed feasibility have been presented as a viable alternative to mitigate

issues in ESP-lifted oil well control, as suggested by Fontes et al. (2020) and Santana

et al. (2021). So, an infinite horizon-based stabilizing MPC (IHMPC), proposed by

Fontes et al. (2020), is applied to an ESP-lifted oil pilot plant, simulated by Eq.

(4.1) and Eq. (4.2), where y ⌘ [La, H]> are the controlled variables, u ⌘ [f, zc]
>

are manipulated variables. Problem 4 describes the control law of the proposed

IHMPC.

Problem 4:

min
�uk,ysp,�y,�u

Fk =
1X

j=0

ky(k + j|k)� ysp � �yk2Qy
+

m�1X

j=0

k�u(k + j|k)k2Ru

+
1X

j=0

ku(k + j|k)� utg � �uk2Qu
+ k�yk2Sy

+ k�uk2Su
,

subject to:

8
>>>>><

>>>>>:

umin  u (k � 1) +
P

j

i=0 �u (k + i|k)  umax,

��umax  �u (k + j|k)  �umax j = 0, . . . ,m� 1,

�u (k + j|k) = 0, 8j � m,

(4.7)
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8
><

>:

x(k + j|k) = A · x(k + j � 1|k) +B ·�u(k + j � 1|k),

y(k + j|k) = C · x(k + j|k),
(4.8)

xs(k +m|k)� ysp � �y = 0, (4.9)

u(k +m� 1|k)� utg � �u = 0, (4.10)
2

4 Lamin(k)

Ĥmin(k|k)

3

5

| {z }
ymin



2

4Lasp

Hsp

3

5

| {z }
ysp



2

4 Lamax(k)

Ĥmax(k|k)

3

5

| {z }
ymax

, (4.11)

where m is the control horizon, y(k + j|k) is the output vector at time step k + j

evaluated with information at time step k, ysp is the optimal set-point output esti-

mated by the IHMPC, ymin and ymax are the output bounds where Lamin(k|k) and

Lamax(k|k) are the specified oil level limits, Ĥmin(k|k) and Ĥmax(k|k) are computed

based on the average flow estimate obtained by an Extended Kalman Filter (EKF).

x(k + j|k) is the state vector, xs(k + j) is the integrating states produced by the

incremental form of inputs in the state space, u(k+ j|k) is the input vector with the

respective constraints umin and umax, �u(k + j) is the input increment constrained

by �umin and �umax, utg is the input target defined by an RTO layer, and �y, �u

are slack variables to soften the terminal equality constraints. Su, Sy, Qu, Qy, and

R are weighting matrices. The detailed description of the state-space design and

matrices A, B, C and the numeric values are shown in Appendix A.

Figure 4.1 illustrates the installations of ESP-lifted oil pilot plant with the pro-

posed advanced control structure used in this work and its possible integration with

an RTO layer.

Note that, Figure 4.1 highlights, in gray, the operational envelope for the upth-

rust to avoid violations caused by an external disturbance. The minimum head
⇣
Ĥmin(k|k)

⌘
is evaluated based on the upper limit of the gray zone called the safe

limit. These operational limits
⇣
Ĥmax(k|k),Ĥmin(k|k)

⌘
are computed by the average

flow rate estimate (q̂(k|k)) obtained by an EKF, which uses the measured variables
⇣
y ⌘ [La, H]> and u ⌘ [f, zc]

>
⌘

to estimate the non-measured states. Additio-

nally, an RTO layer or a specialist can also provide a choke valve opening target
�
zctg

�
based on the process measurements. The benefit of using this MPC strategy

for the ESP operation is incorporating the operational envelope explicitly into the

control problem Eq. (4.11) and tracking the optimal targets
�
zctg

�
, allowing to reach
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Figure 4.1: Representation of the ESP-lifted pilot plant with the proposed control structure and a

suggested interaction with an RTO layer.

specified economic requirements while maintaining the process within the operation

zone with a more straightforward numerical optimization problem solution since

it is designed with soft constraints and o↵ers an implementable MPC approach in

practice.

The benefit of using this MPC strategy for the ESP operation is incorporating

the operational envelope explicitly into the control problem Eq. (4.11) and tracking

the optimal targets
�
zctg

�
. This approach allows for reaching specified economic

requirements while maintaining the process within the operation zone. It o↵ers a

more straightforward numerical optimization problem solution since it is designed

with soft constraints and provides an implementable MPC approach.

Furthermore, ESP-lifted control system should be flexible to track economic

gains, such as minimum pump energy consumption, maximum oil production, or

maximum profit. In order to achieve these requirements and keep the oil production

process at its most e�cient point, one is required to choose the appropriate MPC

parameters. However, MPC tuning is an uphill task, and even if the MPC is o✏ine-

tuned, keeping a fixed set of parameters does not ensure the desired goal due to

unmeasured disturbances and process changes (Garriga & Soroush 2010, Fontes

et al. 2019, Alhajeri & Soroush 2020). Therefore, the following section presents
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the major contribution of this work: an MPC auto-tuning framework capable of

encompassing economic and performance criteria.

4.2 The proposed economic tracking MPC auto-

tuning formulation.

MPC performance is associated with its tuning parameters, however, tuning such

parameters is laborious, given the non-intuitive interaction between them (Fontes

et al. 2019, Alhajeri & Soroush 2020).

To address this issue, this thesis contributes with an MPC auto-tuning formula-

tion based on a receding horizon optimization scheme whose MPC parameters (✓)

are evaluated from a nonlinear closed-loop system simulation. Within this para-

digm, the proposed auto-tuning framework can receive plant measurements (y,u),

reference signals, and di↵erent tuning criteria to optimally adjust the tuning para-

meters of an existing MPC to meet specified economic requirements and keep the

process inside the control zone for as long as possible. Based on this paradigm,

Figure 4.2 illustrates the implementation of the proposed framework applied to the

ESP-lifted oil case.

When the IHMPC (Problem 4) is implemented on the ESP-lifted oil pilot plant

model, the chosen tunable parameters are the elements of the weighting matrices,

Qy,R and Qu. The control horizon, m, is not online-tuned because it corresponds

to the number of control actions, impacting the IHMPC computational time. Conse-

quently, it is not recommended to change its value at each sample time. Furthermore,

targets are solely set for the opening choke valve
�
zctg

�
in this work, so the set of

tunable parameters is defined as

✓(k|k) = [qy1(k|k),qy2(k|k),ru1(k|k),ru2(k|k),qu2(k|k)]
>
. (4.12)

The following subsections describe the main elements shown in Figure 4.2 in

more detail, for the proposed MPC auto-tuning framework.
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Figure 4.2: Implementation scheme for the proposed auto-tuning method to track the economic

goals of the ESP-lifted oil well system with IHMPC controller.

4.2.1 Tuning actions

The proposed MPC auto-tuning framework computes the optimal parameter incre-

ments:

�✓⇤
k
= [�✓⇤(k|k), . . . ,�✓⇤(k + hT � 1|k)]> , (4.13)

✓⇤(k|k) = ✓⇤(k � 1) +�✓⇤(k|k), (4.14)

where �✓⇤
k
is the sequence of optimal parameter increments evaluated by the measu-

rements at time step k; �✓⇤(k|k) is the optimal parameter increment implemented

at time step k; and hT is denominated the tuning horizon. The first element of the

optimal movement, �✓⇤(k|k), is added to the current MPC parameters, ✓⇤(k � 1),

to provide the optimal MPC parameters ✓⇤(k|k), as Eq. (4.14).
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Since the tuning actions are the decision variables in this receding horizon opti-

mization, the constraints associated with them are formulated by
8
>>>>>>><

>>>>>>>:

��✓max  �✓k  �✓max,

�✓ (k + j|k) = 0, 8j � hT , j = 0, 1, . . . , hsim � 1

✓min  ✓(k � 1) +
jX

i=0

�✓(k + i|k)  ✓max,

, (4.15)

where, ✓min, ✓max, and �✓max are the bounds related to tuning parameters. Com-

pared to Eq. 3.7, Eq. 4.15 is simpler due to its linear structure, facilitating the

implementation and solution of the optimizer.

Then, based on Eq. (4.12), the tuning actions are defined as

�✓(k|k) = [�qy1(k|k),�qy2(k|k),�ru1(k|k),�ru2(k|k),�qu2(k|k)]
>
. (4.16)

4.2.2 Closed-Loop Simulation (CLS)

The framework uses a dynamic closed-loop simulation (CLS) to provide simulated

values (ŷk,ûk,ŵk) of the process for some time steps ahead, denoted as simulation

horizon - hsim. This CLS must provide reliable process responses and economic

estimates. A nonlinear model is adopted in the auto-tuning CLS layer to provide

a rigorous process simulation and enable e�cient monitoring of the performance of

the MPC in tracking the economic criteria.

It is fundamental to accentuate that this work used an ESP nonlinear model

in the CLS auto-tuning layer because this is known and validated. However, a

nonlinear model will not always be available in some systems. In these cases, other

model structures such as linear, adaptative, and machine learning-based models can

be used, given the flexible CLS structure. Whatever the model structure applied in

the CLS scheme, the values should be updated at each auto-tuning sample time using

an appropriate estimator, like a bias or a state estimator, to be equivalent to the real

closed-loop. As this paper applies a nonlinear model in CLS, the extended Kalman

filter (EKF) is implemented to update and correct the CLS values (Figure 4.2).

Note that (Figure 4.2), the CLS representation is similar to the process control

structure in Figure 4.1. The controller used in the closed-loop simulation has the

same design as the one implemented in the process (Figure 4.2), which in this case
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is the IHMPC (Problem 4). Since the IHMPC is based on the linear state-space

model Eq. (4.8) and the ESP is represented by a nonlinear model, Eq. (4.1) and

Eq. (4.18), it is necessary to correct the mismatch e↵ect. Consequently, a state

estimator is implemented within the IHMPC structure to estimate the linear model

internal states based on the measurement variables. This paper applies the well-

known Kalman filter to handle this subject.

A closer inspection of Figure 4.2 shows that the same operational envelope

bounds are also considered in the CLS and the reservoir pressure (pr) as an un-

measured disturbance that excites the ESP oil lift system. To address this issue, the

reservoir pressure is assumed to be a new state variable with the ordinary di↵erential

equation given by

dpr(t)

dt
= N(0,�), (4.17)

where N(0,�) is a Gaussian white noise with standard deviation �. Then Eq. (4.17)

is included in Eq. (4.1), given a new system of ordinary di↵erential equation descri-

bed as
8
>>>>><

>>>>>:

˙̂xp = g(x̂p,ŷ,û)

ŷ = f(x̂p,û)

ŵ = h(x̂p,û).

(4.18)

where x̂p is the new set of state variables
h
L̂a,p̂wh,q̂m,p̂r

i>
, and w is the output

vector estimated from algebraic equations (ŵ = h(x̂p,û)), e.g. pump power. These

output variables can be applied to compose the economic objective functions, e.g.

minimizing power consumption or maximizing profit, described in section 4.2.3.

The reservoir pressure is estimated by an Extended Kalman Filter (Figure 4.2),

designed to take into account Eq. (4.18). In this case, the EKF provides all state

estimates, including the reservoir pressure (p̂r), used as initial conditions (x̂p(k|k)) to

solve the ordinary di↵erential equations Eq. (4.18). The EKF updates Eq. (4.18) at

each time step, which keeps the CLS as similar as possible to the process closed-loop

system.

The presented structure (Figure 4.2) is equivalent to a closed-loop mismatch

simulation because the equations applied to represent the ESP process (Eq. (4.1)
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and Eq. (4.2)) are di↵erent from Eq. (4.18), which is applied to the CLS in the

auto-tuning layer. To simplify this, the following mathematical representation is

used

[ŷk, ûk, x̂pk
, ŵk] = CLS (✓k,ymin ,max,utg(k),y(k),x̂p(k|k),u(k � 1)) (4.19)

where, ŷk = [ŷ(k + 1|k), . . . , ŷ(k + hsim|k)]>, ûk = [û(k|k), . . . , û(k + hsim � 1|k)]>,

x̂pk
= [x̂p(k + 1|k), . . . , x̂p(k + hsim|k)]> and ŵk = [ŵ(k + 1|k), . . . , ŵ(k + hsim|k)]>,

are the estimated values of controlled, manipulated, state and output variables, res-

pectively; ymin ,max are set-point bounds; ✓k is current tunable parameters sequence.

y(k), u(k�1) are the current measurements of controlled and manipulated variables,

respectively, and x̂p(k|k) are the state estimates at time step k.

4.2.3 Tuning objective function

In order to provide flexibility to the framework and a trade-o↵ between better process

variable response and economic requirements, the following objective function is

applied:

Gk = fecok + k�k2S�
+

hsimX

j=1

kŷ(k + j|k)� ysp(k + j|k)k2 +
hsim�1X

j=0

k�û(k + j|k)k2,

(4.20)

where feco represents the economic objective function; ŷ and û is the simulated

values of the controlled and manipulated variables; � and S� are slack variables and

their weighting matrix. The primary role of the slack variables is to guarantee the

feasibility of the optimization problem even when the simulated values are not within

the control zone. For this, the slack variables are incorporated into the constraints

of the optimization problem:

ŷmin(k + j|k)� �  ŷ(k + j|k)  ŷmax(k + j|k) + �, j = 1, . . . , hsim, (4.21)

where ŷmax(k + j|k) and ŷmax(k + j|k) delimits the control zone. When comparing

Eq. 3.9 with Eq. 4.20 and 4.21, it becomes evident that the latter significantly

enhances the feasibility of auto-tuning while still retaining the tunnel penalty and

quadratic objective characteristics.
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feco is connected to the same economic objective used in the RTO layer. In such

a manner, the auto-tuning layer computes optimal parameters to correct a better

dynamic trajectory between the RTO targets. In the case of ESP-lifted oil wells,

these RTO economic goals include factors such as flow rate, oil price, the energy

cost of booster pumps and ESP, and for multiphase flow cases, gas void ratio, water

cut, and separation cost (Mohammadzaheri et al. 2016). Based on the single-phase

lifting model Eq. (4.1) and the features of the ESP apparatus (Figure 4.1) used

in this work, economic factors based on multiphase flows are not considered, and a

comparison of a few economic objectives functions for tuning the MPC is assessed.

The first one involves steady-state economic targets as follows

fecok = Jk =
hsimX

j=1

kû(k + j|k)� utg(k + j|k)k2, (4.22)

in which utg represents an economic target provided by an RTO layer or specialist.

In summary, Eq. (4.22), in association with Eq. (4.20), aims to achieve a better

economic response by keeping the manipulated variables as close as possible to the

desired target, smooth control e↵ort while maintaining the system within the control

zone.

Additionally, explicit economic goals such as maximizing oil production Eq.

(4.23), minimizing power consumption Eq. (4.24), and maximizing profit Eq. (4.25)

are considered.

fecok = �V̂k = �
hsimX

j=1

q̂m(k + j|k) (4.23)

fecok = P̂k =
hsimX

j=1

p̂(k + j|k) (4.24)

fecok = �$k = �
hsimX

j=1

cq · q̂m(k + j|k)� cp · p̂(k + j|k), (4.25)

where P̂k, V̂k and $k are the estimates of ESP power, oil production and profit,

respectively, obtained by the CLS at time step k; p̂ is the estimated instantaneous

ESP power; cq and cp are oil price and energy cost, respectively.
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4.2.4 Receding horizon optimization

Combining all the elements described in the previous subsections, the receding op-

timization problem is set as

Problem 5:

min
�✓k,�

Gk = fecok + k�k2S�
+

hsimX

j=1

kŷ(k + j|k)� ysp(k + j|k)k2 +
hsim�1X

j=0

k�û(k + j|k)k2

subject to:

[ŷk, ûk, x̂pk
, ŵk] = CLS (✓k,ymin ,max,utg(k),y(k),x̂p(k|k),u(k � 1))

8
>>>>>>><

>>>>>>>:

��✓max  �✓k  �✓max,

�✓ (k + j|k) = 0, 8j � hT , j = 0, 1, . . . , hsim � 1

✓min  ✓(k � 1) +
jX

i=0

�✓(k + i|k)  ✓max,

ŷmin(k + j + 1|k)� �  ŷ(k + j + 1|k)  ŷmax(k + j + 1|k) + �

Problem 5 o↵ers a new perspective about tuning MPC problems as it introduces

economic requirements directly into the cost function. Consequently, the tuning

parameters are calculated to achieve a better economic performance for the process.

Furthermore, it is interesting to note that Problem 5 becomes infeasible only

if the CLS cannot be solved. However, the IHMPC used in CLS guarantees the

feasibility of the optimization problem. Thus the CLS can always be solved, and

the proposed auto-tuning structure is also feasible.

The significant advantage of the proposed economic auto-tuning method for MPC

controllers is that its elements (CLS, tuning actions, objective function, and the

receding horizon optimization) provide a flexible approach suitable for di↵erent MPC

strategies and economic goals, i.e., they can be adapted for various cases.

4.2.5 Implementation

From the multi-level control hierarchy point of view, the proposed framework con-

sists of a layer integrated with the MPC (Figure 4.2) which is executed in two steps:

First step - Monitoring: The first step monitors the process through the CLS,

which provides the simulated values of the controlled, manipulated, state and
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output variables (ŷk, ûk, x̂pk, ŵk) using the previous set of MPC tuning para-

meters (✓(k � 1)). If the simulated values violate the control zone, the second

step is activated to compute the optimal MPC parameters.

Second step - Auto-tuning: The second step evaluates the optimal MPC para-

meters to meet the desired tuning criteria by solving the non-linear receding

horizon optimization, Problem 5.

With this two step implementation structure, Problem 5 is activated if the mo-

nitoring step detects that the control zone will be violated some time steps ahead.

Consequently, the optimization is performed only when necessary, contributing to

the feasibility of online implementation. Figure 4.3 depicts a trigger point in case

of set-point change. The monitoring step detects a zone control violation using

the current measurements and MPC parameters. After that, the auto-tuning step

computes an optimal MPC parameter to keep the response in the control zone.

Figure 4.3: Illustration of the nonconformity detected by the prediction of the monitoring step and

the optimal solution obtained by auto-tuning step.

For the implementation of the proposed method, it is essential to highlight some

points:

Note 1: Normalizing the variables is crucial for better numerical conditioning.

Further, the normalization balances each objective function term in this work,

bringing all the variables to the same scale.
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Regardless, it is essential to highlight that the objective function design ad-

dresses the desired tuning requirements. Thus, each objective function term

can be weighted to emphasize its importance, aiming to represent the desired

tuning criteria if required.

Note 2: The set of parameter constraints must be defined based on the prior kno-

wledge of the specialist or with the aid of a rigorous o✏ine simulation.

Note 3: The values of the slack weighting matrix elements must be higher than the

elements of the other matrices (Sy,Su � Qy,Qu,Ru).

Note 4: The auto-tuning sample time (tauto) should be higher or equal to the MPC

sample time (tmpc) and lower or equal to the RTO sample time (trto) (Fi-

gure 4.4).

Figure 4.4: Illustration of a suggested implementation of the proposed auto-tuning framework.

Note that, Figure 4.2 presents a new hierarchy control structure inputting the

proposed auto-tuning layer between the RTO and MPC layers. This structure

allows the auto-tuning to dynamically evaluate optimal MPC parameters to

lead the system into a better trajectory between the executions of the RTO

layer.

Additionally, the auto-tuning layer is designed based on the same MPC stra-

tegy. Thus, tauto should be defined according to the prediction model of the
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MPC. Moreover, trto encompasses the solver computation time, when the pro-

cess achieves a steady-state, which, this last one, is not required for the auto-

tuning layer, allowing this layer to work in parallel or in series with the RTO

layer to tune the MPC during process dynamic transitions. In summary, tauto

must be large enough to encompass the computation time of the optimization

problem (Problem 5) but avoid the aliasing of the model predictions.

Note 5: The simulated results were evaluated on a computer system equipped with

an octa-core processor running at 3.2 GHz and accompanied by 16 GB of RAM,

operating on the macOS operating system.

Regarding the optimization algorithms employed, the controllers were imple-

mented using the quadprog, and the problem was addressed using the Active-

sets algorithm (fmincon)—both optimization subroutines of MATLAB version

2021b.

The system of ordinary di↵erential equations was solved using a variable-steps

and variable-orders method, employing numerical di↵erentiation formulas ran-

ging from orders 1 to 5.

It is crucial to emphasize that the choice of the numerical method can impact

both the quality of the solution and the computational time required. There-

fore, it is advisable to carefully consider this aspect before implementing the

solution in a real-time system.

The next section presents results of the proposed MPC auto-tuning framework.

It is capable of driving the ESP-lifted oil well to its desired operating point regarding

the economic performance criteria.

4.3 Economic tracking results from an ESP-lifted

oil well

As mentioned, the proposed auto-tuning method computes a sequence of optimal

MPC parameters increments if nonconformities are detected. Violations of the con-

trol zone are therefore defined as a nonconformity criterion in this case study.
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The discretized model of the IHMPC was formulated based on the linearization

of Eq. (4.1) and Eq. (4.2) at the steady-state point (zc = 0.25 and f = 50Hz),

and the sample time (tmpc) of 30 s. The assumed controlled variables are the level

(y1 = La) and the pump head (y2 = H), and the manipulated variables are defined

as the rotational frequency (u1 = f) and the choke opening (u2 = zc). In terms of

control zone, the minimum and maximum values of oil level (Lamin ,Lamax) and the

estimates of (up and down)-thrust
⇣
Ĥmin,Ĥmax

⌘
were adopted. The other settings

of the IHMPC and the auto-tuning layer are summarized in Table 4.2.

Table 4.2: Parameters of the IHMPC and the auto-tuning layer

Parameters Values Parameters Values

m 3 hT 1

tmpc 30s hsim 5

cq 10 R$/l cp 45 R$/kWh

umax [60Hz,0.5]> zctg 0.4

umin [30Hz,0.1]> tauto 60s

Qy(0) [1,1]> ✓min [0.01,0.01,0,0,0.01]>

Ru(0) [1,1]> �✓max [2,2,2,2,2]>

Qu(0) [0,1]> ✓max [1,1,1,1,1]>

�umax [0.5Hz/s,0.003/s]>

Note that the initial parameters (Qy(0),Ru(0),Qu(0)) in Table 4.2 consider that

all process variables have the same importance, except for the rotational frequency

target, which is zero for all simulations (qu1 = 0) since there is no target for this

variable. The qy1 , qy2 and qu2 elements are limited to a minimum equal to 0.01 to

avoid an open-loop system, and all parameter increments (�✓max) are bound by two

to avoid sudden parameter variations.

Regarding the economic target (utg), the process specialist provided a fixed value

for the choke valve opening (zctg). The value was specified as equal to 0.4 to keep

the ESP operation as close as possible to the safety limit.

Finally, as the solution time of the auto-tuning can be longer than the MPC

solution time, the framework is designed based on a sample time (tauto) equal to 60
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s, i.e., the discretized model of the CLS IHMPC and the ODE integration is based

on this time.

Then, the process variable responses obtained by the economic objectives (minJ

Eq. (4.22)), maximizing the oil production (maxV Eq. (4.23)), minimizing pump

energy (minP Eq. (4.24)), and maximizing profit (max$ Eq. (4.25)) are compared

in a scenario with changes in the operational zones, and external disturbances. All

the results of the system using the auto-tuning method with the di↵erent economic

objectives are compared with the system without the auto-tuning layer (O↵). Figu-

res 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10 present the controlled variables response in such

conditions.

Figure 4.5: La(t) response for the di↵erent economic objective functions chosen.

Figures 4.6, 4.7, 4.8, 4.9, and 4.10 make it clear that the operational envelop

has a time-varying behavior when used as zone control (Eq. 4.11). Note that for

each simulation, di↵erent control zones are calculated as a result of the variation in

qm(t), which is estimated by an extended Kalman filter. Additionally, Figures 4.11

and 4.12 present the manipulated variables response for all simulated scenarios.

Note that (Figure 4.12) maxV and max$ keep a higher rotational frequency and

lower oil level for as long as possible, highlighting the instant 20 min where it is ex-

plicit that the oil level slowly returns to the control zone maximizing the production

and consequently profit. This e↵ect is more clear in Figures 4.13 and 4.14.

Figures 4.13 and 4.14 show a gradual reduction in average flow and profit rates

69



Figure 4.6: H(t) response without the auto-tuning method.

Figure 4.7: H(t) response for the maxV objective function.

caused by the rotational frequency response. The auto-tuning layer computes MPC

parameters to suppress the rotational increments and reduce the oil level priority,

aiming for lower oil level and higher frequency for as long as possible, which favors

maximizing the profit and oil production.

In contrast, minP drives the simulation scenario towards lower values of rota-
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Figure 4.8: H(t) response for the minP objective function.

Figure 4.9: H(t) response for the max$ objective function.

tional frequency (Figure 4.12), favoring lower values of pump power (Figure 4.15).

From 110 min, La(t) zone is collapsed to simulate a case of set-point tracking which

becomes a more complex control problem. Figure 4.12 shows a slightly more pro-

nounced oscillation in the f(t), between 160 and 180 minutes, propagating to the

pump power response (Figure 4.15).
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Figure 4.10: H(t) response for the minJ objective function.

This e↵ect is caused since the auto-tuning computes a set of parameters to

decrease the rotational frequency suppression, ru2 close to zero (see Figure 4.19),

keeping the process at the desired point and rejecting process noise and disturbance.

Regarding the external disturbance, the reservoir pressure drops at the instants

20 min, 80 min, and 150 min (Figures 4.5, 4.12 and 4.11). Even though an EKF

was used to estimate this variable, the auto-tuning framework calculated the MPC

parameters to drive the ESP back to the control zones respecting each objective

and keeping zc closer to zctg = 0.4 (Figure 4.11). Even in the presence of unmeasu-

red disturbances, the state estimate provided by the EKF could sync both layers,

IHMPC, and autotuning, bringing the process back to the desired operating point

in all scenarios (Figures 4.5 and 4.11).

Figures 4.16, 4.17, 4.18, 4.19, and 4.20 depict the response of the tuning para-

meters for the scenario presented. Some constant values of the MPC parameters

can be seen for some periods. These intervals correspond to the periods when the

proposed auto-tuning is not activated, so the parameters are maintained constant

until nonconformities are detected. In this way, the framework increases or decreases

the importance of the process variables according to the desired objective. Based
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Figure 4.11: zc(t) response for the di↵erent objective functions chosen.

on these findings, it can be highlighted:

• qy2 (Figure 4.17) increases to minimize the operational envelope violations for

all objectives

• The lower values of ru1 and ru2 (Figures 4.18 and 4.19) obtained from the

minP objective enables the IHMPC to use more zc and decrease f faster,

when necessary.

• The higher values of ru2 and qu2 (Figures 4.19 and 4.20) obtained from the

scenario using maxV and max$ objectives aim to reduce zc variations and keep

the value of zc closer to its target for longer.

• The higher values of ru1 (Fig. 4.18) obtained from the scenario using maxV

and max$ provide a smooth f(t) response and keep it in higher values for

longer

• The intermediate values of the all parameters obtained by minJobjective aim

for an equilibrium between lower control e↵ort and tracking the set-point and

economic target.

To summarize these results, some indices are calculated to present the e�ciency

of the proposed framework. The values are presented in Table 4.3.
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Figure 4.12: f(t) response for the di↵erent objective functions chosen.

Figure 4.13: q̂m(t) response for the di↵erent objective functions chosen.

The Production, Power, and Profit indexes are computed based on the average

flow rate and pump power estimates, and the global performance (GP) index is

calculated as the sum of the square of the tuning actions and the square error of the

set-point and economic target, as follows:

ISEy =
400X

j=1

kŷ(k + j)� ysp(k + j)k2 (4.26)
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Figure 4.14: Profit rate 4.14 response for the di↵erent objective functions chosen.

Table 4.3: Indexes evaluated for all the tuning objectives and without the tuning framework.

Cases ISEy ISE�u ISEu GP Production (m3) Power (kWh) Profit (kR$)

O↵ 1.29 0.51 0.73 2.54 10.5 9.4 104.8

maxV 1.98 0.27 0.49 2.74 11.1 10.4 110.8

minP 1.41 0.66 1.05 3.12 10.4 9.2 103.9

max$ 1.96 0.27 0.47 2.72 11.1 10.4 110.8

minJ 1.31 0.46 0.24 2.01 10.5 9.4 104.8

ISE�u =
400X

j=1

k�û(k + j � 1)k2 (4.27)

ISEu =
400X

j=1

kû(k + j)� utg(k + j)k2 (4.28)

GP = ISEy + ISE�u + ISEu. (4.29)

Compared to the system without the auto-tuning layer, the simulation using

maxV and max$ economic objectives increases the power consumption by 10.6 %,

which is compensated by the 5.7 % increase in oil production, increasing profit by

5.7 %. On the other hand, the minP objective results in 2.1 % less power than

the system without the auto-tuning layer but provides worse production and profit

percentages.
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Figure 4.15: Pump power response for the di↵erent objective functions chosen.

Figure 4.16: Comparison between the qy1 responses obtained by the system without the auto-

tuning layer (O↵) and the di↵erent economic goals.

As shown in Table 4.3, these results indicate the maxV and max$ objectives pro-

viding similar responses of the process variables, corroborating with the behavior

observed in process variable responses (Figures 4.5, 4.12, 4.11, and 4.21). This simi-

larity is explained by the low energy cost and the increase in production associated

with greater power consumption without compromising profit.

Moreover, the maximization of production or profit increases 8 % in the global

performance index compared to the system without the auto-tuning framework (Ta-
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Figure 4.17: Comparison between the qy2 responses obtained by the system without the auto-

tuning layer (O↵) and the di↵erent economic goals.

Figure 4.18: Comparison between the ru1 responses obtained by the system without the auto-

tuning layer (O↵) and the di↵erent economic goals.

ble 4.3). In contrast, an increase of 24 % in the same indicator is observed when

power is minimized (Table 4.3). This is made clear by the slower return of the oil

level to the control zone, resulting in the highest ISEy (Figure 4.5), compensated by

the lower values of ISE�u and ISEu, which represent smooth control actions and

lower economic target error (Figures 4.12 and 4.11). On the other hand, minimi-

zing power provides more significant manipulated variable variations and economic

target error, indicated by the highest values of ISE�u and ISEu, resulting in the
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Figure 4.19: Comparison between the ru2 responses obtained by the system without the auto-

tuning layer (O↵) and the di↵erent economic goals.

Figure 4.20: Comparison between the qu2 responses obtained by the system without the auto-

tuning layer (O↵) and the di↵erent economic goals.

worst case for global performance.

In contrast, minJ objective significantly reduces 25% in the global performance

indices, keeping the economic goals equal to the system without the auto-tuning

framework. Since this objective prioritizes the minimum error of the process vari-

ables, a significant reduction of 67% and 9.8% in the ISEu and ISE�u indexes is

obtained, which can be interpreted as an improvement in the useful life of the final

control elements, providing lower control e↵ort and maintaining the system closer to
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Figure 4.21: Comparison between the H(t) responses obtained by the di↵erent economic goals,

maxV and max$.

the safety limit defined by the target, when compared with the other scenarios. Fi-

gure 4.11 highlights the di↵erences between zc(t) responses, which are more evident

between 20 to 50 minutes and 180 to 200 minutes.

Compared to the other objectives, minJ achieves better profit only when com-

pared to minP , increasing by 0.8 % and decreasing 5.4 % compared to the other

objectives. Figure 4.22 depicts the operational envelope obtained by these two eco-

nomic objectives, where the best response is performed by minJ and the worst by

minP .

Concerning the operational envelope (Figures 4.21 and 4.22), the auto-tuning

framework can bring the process back to the operational zone, especially in the

presence of external disturbances. Since the auto-tuning is triggered and the ob-

jective functions are penalized when the process violates the bounds, the proposed

framework computes MPC parameters to force the head to go back to the specified

zone.

These results explain the trade-o↵ between performance (better process variable

responses) and economic tuning requirements. It is apparent that minJ aims to

minimize control e↵ort and tracks the set point and target, resulting in intermediate

parameter values to provide a smooth response with less error and, consequently.

In contrast, the other objectives prioritize the economic indicator directly, updating
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Figure 4.22: Comparison between the H(t) responses obtained by the di↵erent economic goals,

minJand minP .

the parameters to provide better economic outcomes and then improving variable

behavior.

The online feasibility of the proposed auto-tuning framework is evaluated by

the ratio between the computational and auto-tuning sample time shown in Figures

4.23, 4.24, 4.25, and 4.26. The computational time is assessed when the method is

triggered, and it is composed of the time spent by monitoring step, the optimization

solver, and updating the MPC parameters.

Figure 4.23: Ratio of the computational and auto-tuning sample time for maxV computed when

the framework is triggered (On - gray zone).
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Figure 4.24: Ratio of the computational and auto-tuning sample time for minP computed when

the framework is triggered (On - gray zone).

What is striking about Figures 4.23, 4.24, 4.25, and 4.26 is that the worst ratio

value is close to 30 % of the auto-tuning sample time, which means that the worst

computational time was approximately equal to 18 s, validating the online imple-

mentation of the proposed framework. Another interesting observation about these

figures is the periods where the auto-tuning is triggered (gray rectangles), highligh-

ting the scenarios using maxV and max$. In these cases, the auto-tuning remained

triggered for the initial 60 min approximately, which resulted in the slow response

of the oil level and rotational frequency (Figures 4.5 and 4.12) to reach the desired

objective, in particular, increasing the oil production, and consequently profit.

Additionally, Figures 4.27, and 4.28 corroborate the online implementation fe-

asibility of the auto-tuning framework showing the behavior of the slack variables

associated with the proposed auto-tuning framework. Note that the slack variables

increase when necessary and decrease back to the origin, driving the system back to

the zone control. The optimization problem therefore remains feasible for the whole

period, computing the optimal parameters when triggered.

These findings contribute to a new perspective on hierarchy control and MPC tu-

ning methods presenting process benefits when the auto-tuning layer is implemented.

The results named “O↵” illustrate the case of the traditional RTO+MPC hierarchy

control, i.e., an optimal target is set to an MPC with fixed parameters. Compared

81



Figure 4.25: Ratio of the computational and auto-tuning sample time for max$ computed when

the framework is triggered (On - gray zone).

with the other results, the respective economic indicators are improved since the

auto-tuning layer evaluates optimal MPC parameters, benefiting the process with

the correspondent economic criterion.

Unlike Chapter 3, in this Chapter, the tuning and control layers were imple-

mented with di↵erent sampling times, tauto = 60 s and Ts = tauto/2 = 30 s and, to

approach an industrial application. In this case, the tuning layer was designed for

the longest possible sampling time for the system.

Thus, to evaluate the impact of the mismatch between the sampling times of

the layers, Figures 4.29, 4.30, 4.31 and 4.32 show the implementation of the tuning

method with MPC with sampling times Ts = tauto/6 = 10 s and Ts = tauto/3 = 20 s

using maxV tuning objective.

It is possible to observe very di↵erent responses which impact on economic perfor-

mance indicators in each case as show in Table 4.4. Better indicators were obtained

with Ts = tauto/2, which the lower mismatch between the layers can explain. Since

the tuning layer needs to simulate closed-loop behavior, the more similar it is to the

real closed-loop, the more accurate the predictions will be, favoring better tuning

results.
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Figure 4.26: Ratio of the computational and auto-tuning sample time for minJ computed when

the framework is triggered (On - gray zone).

Figure 4.27: �La associated with the proposed auto-tuning framework activity.

Table 4.4: Indexes evaluated for maxV tuning objective for di↵erent sampling times.

Cases Production (m3) Power (kWh) Profit (kR$)

Ts = tauto/6 10.7 9.58 106.5

Ts = tauto/3 11.0 10.1 109.3

Ts = tauto/2 11.1 10.4 110.8
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Figure 4.28: �H associated with the proposed auto-tuning framework activity.

Figure 4.29: La(t) behavior for maxV tuning objective for di↵erent sampling times.
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Figure 4.30: H(t) vs. qm(t) behavior for maxV tuning objective for di↵erent sampling times.

Figure 4.31: zc(t) behavior for maxV tuning objective for di↵erent sampling times.
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Figure 4.32: f(t) behavior for maxV tuning objective for di↵erent sampling times.
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Chapter 5

Conclusions

In conclusion, this thesis has achieved its objectives of tracking the economic requi-

rements of oil wells lifted by ESP (Electric Submersible Pump) and proposing an

economic-oriented Model Predictive Control (MPC) auto-tuning strategy:

First, the closed-loop simulations with model-plant mismatch structure have shown

that the proposed auto-tuning framework can accommodate di↵erent proces-

ses and MPC implementations, including DMC, IHMPC, and zone IHMPC.

The tuning criterion based on the objective function has facilitated better

adaptation to desired criteria, resulting in smoother tuning, improved system

performance with reduced control e↵ort, and economic gains for the process.

Second, the proposed auto-tuning approach computes MPC parameters in an op-

timal sense, adhering to the defined tuning objectives within a reasonable

computational time. The resulting optimization problem is feasible, ensuring

practical implementation.

Third, the computed optimal parameter values prioritize economic goals, leading

to enhanced economic gains compared to control performance requirements.

The auto-tuning framework has addressed the trade-o↵ between performance

and economic criteria.

Fourth, the case study presented in Chapter 4 has demonstrated the adaptability

of the proposed framework to di↵erent economic goals. The framework has

achieved the desired economic objectives by optimizing the MPC parameters

while ensuring the ESP operates within the operational envelope and maintains

process safety.
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Finally, the research findings validate the applicability of the proposed auto-tuning

method in various scenarios, including those with unmeasured external distur-

bances and measurement noise. The flexibility of the receding optimization

structure allows for the incorporation of distinct features in di↵erent cases,

showcasing the versatility and robustness of the proposed framework.

In summary, this thesis has contributed to MPC auto-tuning and ESP e�ci-

ency research. The research findings demonstrate the e↵ectiveness and flexibility

of the proposed framework, which incorporates economic criteria into the MPC tu-

ning problem and enables online implementation. The proposed economic-oriented

auto-tuning framework has been developed and applied, optimizing ESP-lifted wells’

performance and economic gains. The research findings have practical implications

for the oil industry, providing valuable insights and tools to enhance the e�ciency

and profitability of oil production.

5.1 Thesis limitations and direction of future works

This work has yet to address specific issues, but they could be considered possible

areas for future research. These include:

• Incorporating the steady-state economic target into a one-layer structure along

with the MPC parameters: As shown in Chapter 3, some MPC are designed

to drive the system towards a steady-state economic target. The steady-state

economic target is incorporated into the MPC framework in such cases. Howe-

ver, uncertainties or disturbances may a↵ect the system’s behaviour, and the

given steady state could be unreachable. One approach could be implemen-

ting a steady-state equalize layer between RTO and MPC to recompute a new

reachable economic target. Given the flexible structure of the auto-tuning pro-

posal, the steady-state economic target recomputing could be integrated as a

decision variable of the auto-tuning optimization problem. In this manner, it

would help improve the MPC’s performance by regulating the system towards

the desired steady-state economic target.

• Adapting the MPC model to match the process measurements: MPC relies on

accurate process models to predict the system’s behaviour. However, external
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disturbances and di↵erent operating conditions a↵ect the system’s behaviour,

impacting its model representation. One way to address this issue is to adapt

the MPC and auto-tuning models to match the process measurements using

various techniques, such as machine learning. By incorporating more precise

models into the closed-loop simulation, the auto-tuning can make more accu-

rate predictions, resulting in better process performance.

• Employing a multiphase ESP model: Electrical Submersible Pumps (ESPs)

are widely used in the oil and gas industry for artificial lift. However, many

oil wells produce multiphase fluids, including oil, gas, and water. In such ca-

ses, it is crucial to use a multiphase ESP model to predict the ESP system’s

performance accurately. The multiphase ESP model would consider the di↵e-

rent phases in the fluid and their interactions with the pump system. Using a

multiphase ESP model, the auto-tuning can make more accurate predictions

of the fluid flow rate and pressure, leading to better control performance and

increased e�ciency of the ESP system.

• Implementing the proposed auto-tuning framework in an ESP-lifted oil well:

The proposed framework may have been developed and tested in a simulation

environment. However, implementing the framework in a real-world oil well,

particularly one that uses ESP, could provide valuable insights into the fra-

mework’s performance under practical conditions, which involve installing the

necessary sensors, instrumentation, and computer to enable the auto-tuning to

interact with the MPC and the ESP system. By implementing the framework

in an ESP-lifted oil well, the controller’s performance can be evaluated under

realistic operating conditions, leading to potential improvements in the overall

performance of the ESP system.

• Improving th algorithm: In this thesis, the values of the tuning actions boun-

dary were assumed based on the author’s knowledge. However, choosing these

constraint values in automatic tuning algorithms is a delicate balance between

achieving desired performance improvements and ensuring system stability/-

convergence. Small constraint values provide smoother and more incremental

adjustments, whereas larger values allow aggressive actions. The appropriate
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constraint values ultimately depend on the specific application, system dy-

namics, and performance requirements. In this manner, it must be cautious

before defining the constraint values, which can be evaluated with the help of

simulation tests.

• Noise presence: In this thesis, Chapter 4 shows the implementation of the

proposed auto-tuning method under noise measurement. An Extend Kalman

Filter technique was used to address the noise issue, which filtered the signal

and provided an estimate of an unmeasured disturbance, enabling the auto-

tuning implementation.

The presence of noise can have significant e↵ects on the solution of the tuning

optimization problem. Noisy signals can distort measurements and introduce

errors in the calculations used for parameter adjustments, which can result in

imprecise or ine�cient tuning, negatively impacting the overall performance

of the control system.

It is common to employ filtering and robust control techniques to mitigate the

e↵ects of noise. However, the use of robust control techniques can increase the

computational cost of the controller itself, which could make the implementa-

tion of online tuning unfeasible. In addition, the robust control formulations

are more conservative, harming the closed loop’s performance. Therefore, the

configuration of the auto-tuning layer has to be in sync with the robustness re-

quirements so that the system can evaluate the controller parameters to avoid

conflicting objectives, making the system unfeasible.

• Stability guarantee: Varying controller parameters over time does not auto-

matically guarantee system stability. However, adding a restriction ensuring

stability in the tuning layer can make an online implementation unfeasible,

being more recommended for o✏ine methods. It is therefore recommended

that the controller design consider a region for which the controller will re-

main stable regardless of the tuning parameters, which are responsible only

for improving the behavior of the control system.

Addressing these topics would provide additional insights and improve the overall

e↵ectiveness of the approach.
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Appendix A

Discrete-time state space model

based on analytical expression of

the step response

The IHMPC presented by Odloak (2004) is based on the analytical expression of

the system’s step response composed of distinct stable poles. Assuming a MIMO

stable system with nu inputs and ny outputs with distinct poles, where the transfer

function relating the input uj with output yi is given by

Gi,j(s) =
bi,j,0 + bi,j,1s+ · · ·+ bi,j,nb

s
nb

1 + ai,j,1s+ · · ·+ ai,j,nas
na

(A.1)

where na > nb are the order of the numerator and the denominator. The discrete-

time state space model, based on the analitycal expression of the step response, can

be described as follows:8
>>>>>>>>><

>>>>>>>>>:
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(A.2)

xs=[x1. . . xny ]
> are the stable modes of system; xd=[xny+1. . . xny(nuna+1) ]

> repre-

sents the artificial integrating states obtained from the incremental form of inputs

and corresponds to the predicted output steady-state; na is the order of the system;

Iny is a ny ⇥ ny identity matrix; The auxiliary matrices, Dd, F, D0,  , and N are

given by:

Dd

nd⇥nd
= diag

h
d
d

1,1,1 . . . d
d

1,1,na
. . . d

d

1,nu,1 . . . d
d

1,nu,na
. . . d

d

ny ,nu,1 . . . d
d

ny ,nu,na

i
(A.3)
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Fnd⇥nd
= diag

⇥
e
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Jinuna⇥nu
=
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66666666666666664
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. . .
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...
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. . .
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3
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(A.8)

where nd = nunyna; d
0
i,j
, dd

i,j,l
are the partial fraction coe�cients; rd

i,j,l
are the distinct

poles; Ts is the sampling time

This model structure is used to build the IHMPC present in Subsection 3.3.3

and Section 4.1 of this thesis. For CSTR case study (Subsection 3.3.3), the state
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space model matrices obtained from Eq. 3.21 are given by Eq. A.9, A.10, and A.11.

Acstr =

2

66666666666666666666666664
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Bcstr =

2

66666666666666666666666664

�0.0413 �2.1052

0.0568 1.0439

�0.4600 0

0.5142 0

0 �9.6614

0 11.4280

�0.0846 0

0.0620 0

0 �1.7767

0 1.3770

3

77777777777777777777777775

(A.10)

Ccstr =

2

41 0 1 1 1 1 0 0 0 0

0 1 0 0 0 0 1 1 1 1

3

5 (A.11)

For BCS case study (Section 4.1), the state space model is obtained based on

Eq. 4.1 are represented by Eq. A.12, A.13, and A.14
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