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“If the system exhibits a structure which can be represented

by a mathematical equivalent, called a mathematical model,

and if the objective can be also so quantified, then some

computational method may be evolved for choosing the best

schedule of actions among alternatives.”

George Dantzig
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Abstract

Providing maximum performance at minimum cost is a major challenge in the design

of mechanical systems. One of the key problems is determining the optimal schedule of a

set of units operating in parallel (such as chillers or turbines) that minimizes the overall

energy consumption. This is a widely studied problem in the literature known as “eco-

nomic dispatch” (in power systems) or as “optimal loading problem” (in air-conditioning

systems). However, the loading problem requires the units to be previously selected. This

work proposes a procedure to solve the selection problem and the loading problem at the

same time. The proposal is a novel procedure that allows determining, in a rigorous man-

ner, the units that have to be purchased and the corresponding operation schedule. It was

applied to two case studies: i) selection of chillers in cooling plants, and ii) selection of the

utility plant in oil and gas offshore platforms. Both cases are analyzed using two alterna-

tive optimization approaches. First, a mono-objective optimization of a single cost-based

function and, second, a multi-objective optimization of capital cost and energy consump-

tion. The results in all cases showed that the total nominal capacity of the selected units

is not necessarily closed to the peak load, which is a common rule-of-thumb guideline for

equipment selection. In the case of the cooling plant, the nominal capacity of the chillers

selected was up to 1.6 times the peak load demand. Likewise, the best solutions in the

case of the utility plant consisted of very different-sized models. These counter-intuitive

results demonstrate the importance of using a systematic selection procedure.

Keywords: Chilled water systems, FPSO, Mono-objective optimization, Multi-objective

optimization, Optimal equipment selection, Optimal loading problem.



Resumo

Proporcionar o máximo desempenho com o custo mı́nimo é um desafio importante

no desenho de instalações mecânicas. Um dos principais problemas é determinar a con-

figuração ótima de um conjunto de unidades funcionando em paralelo (como chillers ou

turbinas) que minimize o consumo total de energia. Este problema é amplamente estu-

dado na literatura e é conhecido como “despacho econômico” (em sistemas de geração de

potência) ou como “problema da carga ótima” (em sistemas de climatização). No entanto,

este problema precisa que as unidades sejam selecionadas previamente. O procedimento

proposto neste trabalho objetiva resolver o problema da seleção e o problema da carga

simultaneamente. Esta é uma proposta que permite determinar, de maneira rigorosa,

as unidades que devem ser compradas e a correspondente configuração de operação. O

procedimento foi aplicado a dois estudos de caso: i) seleção de chillers em sistemas de

água gelada, e ii) seleção de turbinas a gas e motores em plataformas offshore de petróleo

e gas. Ambos os casos foram analisados utilizando duas abordagens alternativas. Em

primeiro lugar, uma otimização monobjetivo de uma função combinada baseada no custo

e, em segundo lugar, uma otimização multiobjetivo do custo de capital e do consumo de

energia. Os resultados em todos os casos mostraram que a capacidade nominal total das

unidades selecionadas não é necessariamente próxima da carga pico, que é uma regra geral

habitualmente utilizada na seleção de equipamentos. No caso do sistema de água gelada,

a capacidade nominal total dos chillers selecionados alcançou até 1.6 vezes a demanda

máxima requerida. No caso da planta de utilidades na plataforma FPSO, as melhores

soluções consistiram na seleção de equipamentos de diferente porte. Estes resultados con-

traintuitivos demonstram a necessidade da utilização de um procedimento sistemático de

seleção.

Palavras-chave: FPSO, Otimização monobjetivo, Otimização multiobjetivo, Problema

da carga ótima, Seleção ótima de equipamentos, Sistemas de água gelada.
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Nomenclature

Subscripts

i = Unit model

j = Level of demand

k = Unit in the system

Decision variables

Pij = Power status variable (On: Pij = 1 / Off: Pij = 0)

Rij = Partial load ratio of unit i at level j

Si = Selection variable

Parameters

α1i, α2i,... = Capacity function regression parameters of model i

β0i, β1i, β2i,... = Consumption (or performance) function regression parameters of model

i

C = Number of models available

ci = Capital cost of unit i

dj = Load demand at level j

G = Number of generations

mi = Lower partial load limit of unit i

N = Number of units in the system

P = Number of levels of demand

qi = Nominal capacity of unit i

r = Interest rate
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Tj = Outdoor temperature at level j

tj = Time at level j

w1 = Energy price

w2 = Depreciation rate

Other symbols

φij = Capacity of unit i at level j when Pij = 1

ψij = Energy consumption of unit i at level j when Pij = 1

gij = Actual consumption of unit i at level j

hij = Actual capacity of unit i at level j

IH = Hypervolume indicator

v = Volume enclosed by a solution

W = Set of solutions

Acronyms

COP = Coefficient of performance

FPSO = Floating, production, storage and offloading

PLR = Partial load ratio
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Chapter 1

Introduction

Selecting equipments in mechanical systems is not an easy task, especially in an in-

creasingly competitive market with a wide variety of manufacturers, models and tech-

nologies available. An appropriate selection is one that meets the load demand with low

energy consumption and an affordable cost. Another aspect that has to be taken into

consideration in the equipment selection is the demand profile of the system. Analyzing

the load fluctuation during the system lifetime is critical for making decisions based on

the whole load profile instead of the peak load, which is normally an atypical condition.

Decisions based on exclusively the peak load do not take advantage of variable-capacity

units that operate more efficiently at partial load.

Once both the performance functions of the units (such as chillers or turbines) and the

demand profile are estimated, it is possible to formulate an optimization problem whose

objective is minimizing the overall energy consumption of the units operating in the system

while meeting the demand constraints. This optimization problem is known as “economic

dispatch” (in power systems) or as “optimal loading problem” (in air-conditioning sys-

tems). Addressing this problem requires the units to be previously selected. However, the

selection of the units in the system usually dismisses the load profile and it is based upon

arbitrary criteria such as dividing the peak load by a certain number of identical units.

The procedure proposed in this work integrates the optimal selection problem with

the optimal loading problem. Solving these problems simultaneously is a novelty in the

field of mechanical systems. It is evident that selecting the units from a set of models at

disposal instead of having the units previously selected, increases the complexity of the

problem, but this is a relatively minor issue considering the potential reduction in energy

consumption and capital cost. In practical terms, a single formulation allows to determine

the most suitable schedule for the best selection possible given the models available in the

market.

There are a few rules of thumb for equipment selection in heating, ventilation and air-

conditioning (HVAC) systems. For instance, it is a common practice to distribute the peak

load evenly into the chillers in a cooling plant. Another usual strategy is breaking the load

12



profile down into time-based discrete groups to which the chillers are arbitrarily assigned.

In both cases, the possibility of having a total installed capacity greater than the peak load

is ignored because chiller redundancy is only considered when there is an actual need for

high reliability. The chiller selection remains in the domain of engineering judgement and

there is no formal procedure for selecting chillers in cooling plants. Nevertheless, there is

a vast literature on the optimal chiller loading problem. Most of the authors approach

this problem using bio-inspired algorithms, such as: improved invasive weed optimization

(ZHENG; LI, 2018), improved artificial fish swarm algorithm (ZHENG; LI; DUAN, 2019),

improved grasshopper optimization algorithm (WENHAN et al., 2019), quantum emperor

penguin optimization algorithm (MIN; TANG; ROUYENDEGH, 2020), improved particle

swarm optimization (TIAN et al., 2019b) and camel traveling behavior algorithm (CHEN

et al., 2020).

Similarly, there is a gap in the state of the art in equipment selection for utility plants

in floating, production, storage and offloading (FPSO) platforms. Flórez-Orrego et al.

(2021) introduced a systematic framework to determine the most appropriate operating

conditions and load distribution of a group of power units. In order to include the capital

cost and the financial feasibility in the analysis, Flórez-Orrego et al. (2022) performed a

techno-economic assessment to determine the optimal configuration of centralized power

stations designed for supplying the electricity required by various identical FPSO. How-

ever, apart from a few exceptions, such as the works of Koch, Cziesla & Tsatsaronis

(2007) and Cao et al. (2017), most of the literature focused on minimizing the total power

consumption of an arrangement of units that have been previously selected. The most

preferred optimization techniques in this field are genetic algorithms considering energy,

economic and environmental variables. Some examples are offered by Mohagheghi &

Shayegan (2009), Ahmadi, Dincer & Rosen (2011), Ahmadi & Dincer (2011a), Ahmadi

& Dincer (2011b), Rovira et al. (2011), Sayyaadi & Mehrabipour (2012), Shamoushaki

Farrokh Ghanatir & Ahmadi (2017) and Rezaie, Tsatsaronis & Hellwig (2019). It is

also a common practice to combine different approaches. For instance, in Allahyarzadeh-

Bidgoli et al. (2021) both non-dominated sorting genetic algorithm II (NSGA-II) and a

gradient-based method were used to minimize the total power consumption in a FPSO

platform.

1.1 Justification

Energy efficiency is a major concern in the design of HVAC systems because they

normally demand more energy than any other system in commercial and office buildings.

According to Thangavelu, Myat & Khambadkone (2017) the cooling load accounts for 45-

60% of the total energy consumption. In a similar manner, the development of solutions for

reducing energy consumption and CO2-emissions in offshore plants has gained increasing

13



interest in recent years. Some solutions are assessed by Nguyen et al. (2016). In both

cases, equipment selection plays a major role in reducing the energy consumption. Even

a system operating at its optimal loading is restricted to the performance of the units

selected.

Two main strategies have been commonly used for equipment selection in the design

of mechanical systems. The first strategy consists in distributing the peak load evenly

over a number of units determined by experience. On the other hand, the second strategy

consists in sizing each unit according to a discretionary distribution of the load profile

and the corresponding operating time at each level of demand. Certainly, this strategy

acknowledges that the peak load may be demanded only during a tiny fraction of the

operating time and, therefore, any decision on the selection of the units should be taken

after a careful analysis of the load profile, but it is also based upon arbitrary criteria.

The selection problem is not tackled very differently even by sophisticated engineers.

In contrast, there is a vast literature on the optimal loading problem and the use of

multiple algorithms to solve it. Determining the load share of the units at each level of

demand is critical to design appropriate control strategies in existing systems, but solving

this problem does not provide any insight on the models that have to be purchased. The

selection problem has been overlooked in academic papers as well as in technical papers

and guidelines. The selection procedure presented here is a novelty that constitutes a

solid starting point for further research on the topic.

1.2 Objectives

1.2.1 General objective

Develop a procedure to solve the selection problem and the loading problem simulta-

neously.

1.2.2 Specific objectives

� Apply the developed procedure to the problem of selecting chillers in chilled water

systems.

� Apply the developed procedure to the problem of selecting the utility plant in oil

and gas offshore platforms.

� Compare the results of the mono-objective and multi-objective approaches in the

cases analyzed.

14



1.3 Contributions and ineditism

The optimal selection problem is dismissed in academic research, which is mainly

focused on testing multiple algorithms for solving the optimal loading problem. For

instance, the case studies introduced by Chang, Lin & Chuang (2005), Chang (2004)

and Chang (2005) on the optimal chiller loading have been extensively analyzed in the

literature. Some of the algorithms used to tackle these problems are shown in Table 1.1.

A systematic selection procedure fills the gap in the literature, and its practical benefits

are illustrated through applications in chilled water systems as well as in FPSO platforms.

The first application is the selection of air-cooled screw chillers in a cooling plant for an

air-conditioning system in a commercial building operating 24 hours a day throughout the

year. The second application is the selection of a utility plant for a FPSO platform with

a forecasted electrical demand over 22 years and a set of reciprocating engines and gas

turbines available for selection. In both cases, the performance functions were estimated

using the data provided by the manufacturers.

The applications are presented in the form of scientific articles:

� Article 1: An optimization scheme for chiller selection in cooling plants.

Status: Published in the Journal of Building Engineering - ISSN: 2352-7102 -

(PARGAS-CARMONA et al., 2022).

� Article 2: Optimal selection of utility plants in oil and gas offshore platforms.

Status: Published in the Journal of the Brazilian Society of Mechanical Sciences

and Engineering - ISSN: 1806-3691 - (PARGAS-CARMONA et al., 2023).

Although there is a vast literature on the optimal loading of units that have been

previously selected, the selection procedure itself is a topic that has been neglected in

these fields. Besides the contribution to the current state of knowledge, the procedure

may also be extended to other applications. This way of addressing the issue opens up

a research field for exploring the use of different optimization algorithms in the selection

problem.

1.4 Structure of the thesis

Chapter 1 presents the context of the problem as well as the justification and objectives

of the study. This is followed by the description of the structure of the thesis.

Chapter 2 presents the technical underpinnings of the proposed procedure. The math-

ematical formulation is outlined and two alternative approaches to solve the problem are

discussed.

Chapter 3 presents the problem of selecting chillers in a cooling plant.
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Table 1.1: Optimization algorithms used to solve the chiller loading problems introduced
by Chang, Lin & Chuang (2005), Chang (2004) and Chang (2005)
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Chapter 4 presents the problem of selecting utility plants in an oil and gas offshore

platform.

Chapter 5 presents the final considerations and the overall findings. It is also discussed

how the procedure proposed may be applied in other contexts.

Figure 1.1: Structure of the thesis
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Chapter 2

Methodology

In order to formulate the selection problem in mathematical terms, it is necessary to

forecast the load demand over the lifespan of the system, as well as to estimate the per-

formance functions of the units available for selection. Using convenient approximations

may reduce the computational cost of the problem without significant prejudice. In any

case, two approaches to the optimal selection problem are presented: a mono-objective

optimization with a single cost-based function, and a multi-objective optimization with

two objective functions each based on either capital cost or energy consumption. The

second approach is intended to produce a set of nondominated solutions that would al-

low the engineers to conduct a subsequent trade-off analysis. The selection procedure is

summarized in Figure 2.1.

Figure 2.1: Selection procedure
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2.1 Load profile

Historical data records provide useful information for estimating the load demand

throughout the lifespan of the system. Since the load demand changes over time, analyzing

the load profile is a better strategy than using the peak load as the design condition. A

method that account for the load fluctuations is sorting the load forecast into equally

sized bins, which are discrete groups that represent the time within a certain range of

demand. Thus, instead of using a single peak-load condition for an entire period, the

analysis can be made for all bin conditions. The selection procedure proposed in this

chapter requires the load profile over the period under analysis; however, discussing the

methods for estimating the load demand is out of the scope of this thesis.

2.2 Performance functions

The performance data provided by the manufacturer, for example, the chiller perfor-

mance data of the screw chillers that can be seen in Appendix A, is a crucial for building

the models that will be utilized in the optimal selection problem. The performance mod-

els may be approached either as the capacity and power consumption functions or as the

efficiency functions depending on the data available.

2.2.1 Capacity functions

The actual capacity φij of a unit i at certain level of demand j is a proportion Rij

(partial load ratio) of the full capacity ki (Equation 2.1).

φij = kiRij (2.1)

In some cases, other variables may affect the capacity of a unit. For instance, the

capacity curves of a chiller (Appendix B) show that the capacity model should include

slope changes according to the outdoor temperature Tj (Equation 2.2).

φij = (α1i + α2iTj)Rij (2.2)

The parameters α1i and α2i may be estimated by using Ordinary Least Squares.

2.2.2 Power functions

The power ψij required by a unit i at certain level of demand j may be estimated as

a quadratic function of the partial load ratio as can be seen in the performance curves

(Appendix B). It may be modeled as shown in Equation 2.3.
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ψij = β0i + β1iRij + β2iR
2
ij (2.3)

The outdoor temperature Tj may be included in the model by a complete second

degree polynomial function (Equation 2.4).

ψij = β0i + β1iTj + β2iT
2
j + β3iRij + β4iR

2
ij + β5iRijTj (2.4)

A simplified version of a power model that is useful for reducing complexity in the

optimization problem is shown in Equation 2.5.

ψij = β0i + β1iTj + β2iRij + β3iRijTj (2.5)

The parameters β0i, β1i, β3i, β4i and β5i may be estimated by using Ordinary Least

Squares.

2.2.3 Efficiency functions

An ordinary practice in some contexts for measuring the performance of a unit i at

certain level of demand j is estimating the efficiency ηij. It may be modeled as shown in

Equation 2.6

ηij = β1i ·Rij
2 + β2i ·Rij + β3i (2.6)

The parameters β0i, β1i and β3i may be estimated by using Ordinary Least Squares.

2.2.4 Goodness of fit of the performance models

The goodness of fit of a performance model may be evaluated by the the coefficient of

determination or R-squared (Equation 2.7), which is the proportion of the total variance

(
∑n

i=1(Yt−Ȳ )2) that is explained by the variance of the linear regression model (
∑n

i=1(Ŷi−
Ȳ )2).

R-squared =

n∑
i=1

(Ŷi − Ȳ )2

n∑
i=1

(Yt − Ȳ )2
(2.7)

Comparing the goodness of fit of performance models with different number of indepen-

dent variables may be misleading because the R-squared increases when a new predictor

is added to the model. In order to avoid this problem, it is used the adjusted R-squared

(Equation 2.8), that takes into account both the number of predictors (k) in the model

and the sample size (n).
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Adjusted R-squared = 1− (1− R-squared)(n− 1)

n− k − 1
(2.8)

2.3 Mono-objective optimization approach

2.3.1 Objective function

Given a system designed to operate with N units at P levels of demand, the goal

is to minimize both the operating cost and the capital cost. The former is obtained by

multiplying the total consumption at each level of demand by the energy price (w1); the

latter is obtained by multiplying the sum of the acquisition cost (ci) of the units selected

(Sik = 1) by the depreciation rate (w2). The total power required at each level of demand

(gj) is the sum of the power required from each unit i operating at the level of demand j

(ψij). This has to be multiplied by the corresponding operating time (tj) in order to obtain

the energy consumption. The objective function may be formulated as the minimization

of Equation 2.9.

f(S,R) = w1

P∑
j=1

gjtj + w2

C∑
i=1

N∑
k=1

Sikci (2.9)

The objective function also may be formulated taking into account the time value of

money by computing the net present value of the operating cost at each level of demand

j with an interest rate r. In this case, the first term of the objective function is expressed

as shown in Equation 2.10.

Operating cost = w1

P∑
j=1

gjtj
(1 + r)j

(2.10)

2.3.2 Constraints

The total capacity at each level of demand (hj) is the sum of the capacity of each unit

i operating at the level of demand j (φij). A fundamental constraint is that this capacity

has to be greater or equal than the load demand (dj) at each level (Equation 2.11).

hj ≥ dj (2.11)

Another important constraint is that the partial load ratio (Rij) has to be greater or

equal than the minimum value m specified by the manufacturer. The operating range of

unit i is defined by Equation 2.12.

Operating range = {0}
⋃

[mi; 1] (2.12)
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Besides the constraints of capacity and operating range, other constraints either related

to the specific application or required by the syntax of the computer code might emerge.

2.3.3 Optimization method

The optimal selection problem formulated as described in this section constitutes a

mixed integer nonlinear problem (MINLP) that can be coded in AMPL format (FOURER,

1996) and submitted to NEOS Server (Czyzyk; Mesnier; Moré, 1998; Dolan, 2001; Gropp;

Moré, 1997) to be solved using BARON (TAWARMALANI; SAHINIDIS, 2005; SAHINI-

DIS, 2017). This is the solver used in the MINLP applications presented in Chapters 3

and 4, but the choice of the software will depend on the specific needs.

2.4 Multi-objective optimization approach

2.4.1 Objective functions

The optimal selection problem may be formulated with two objectives to be minimized:

capital cost and energy consumption. Dealing with the energy consumption in its original

units instead of monetary units may be a better decision under highly-variable prices.

It may be also convenient when the capital cost and the operating cost are assumed by

different agents.

Objective function 1: Energy consumption

Given the operating time at each level of demand (tj), the objective function for energy

consumption is formulated as the sum of the individual consumptions (Equation 2.13).

The actual power consumption (gij) of unit i at level j is the product of the estimated

consumption (ψij) and the power status binary variable (Pij). By doing so, the result will

be zero when the unit is turned off. Otherwise, the result will be given by the consumption

function.

f1(S,R) =

p∑
j=1

q∑
i=1

gijtj (2.13)

The actual power consumption (gij) is obtained from Equation 2.14.

gij = Pijψij (2.14)

Objective function 2: Capital cost

The total capital cost is obtained from the sum of each cost (ci) of the N units selected

for the system (Equation 2.15).
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f2(S,R) =
N∑
i=1

ci (2.15)

It is worth pointing out the difference between the power status variable and the

selection variable. The former is a binary variable that is equal to 0 when the unit is

turned off and it is equal to 1 when the unit is turned on. It is useful when a discontinuous

operating range, such as Eq. 2.12, is not allowed by the optimization software. The latter

indicates the model that has been selected. It may be either a binary variable (selected/not

selected) or an nominal variable that indicates the model selected.

2.4.2 Constraints

The feasible region is determined by Equation 2.16. This set of constraints ensures

that the demand dj at each level j will be satisfied by the total capacity, which is the sum

of the actual capacity of each unit operating at that level.

N∑
i=1

hij ≥ dj (2.16)

As well as in the case of power consumption functions, Equation 2.17 establishes that

the actual capacity hij of unit i at level of demand j is given by the estimated capacity

φij multiplied by de power status binary variable Pij.

hij = Pijφij (2.17)

2.4.3 Optimization method

A broad variety of algorithms can be used to solve the optimal selection problem

proposed in this section. Although other alternatives can be explored, the algorithm used

in the applications presented in Chapters 3 and 4 is NSGA-II (Nondominated Sorting

Genetic Algorithm II) with single point crossover and integer flip mutation operators. This

is a well-known algorithm that suits the optimal selection problem and its advantages are

acknowledged in the literature ((KHARE; YAO; DEB, 2003), (HIDALGO et al., 2008),

(MONSEF et al., 2019)).

There are two important goals expected from a multiobjective optimization algorithm:

convergence to the optimal set of solutions and good diversity of solutions. In this regard,

Deb et al. (2002) concluded that NSGA-II was able to maintain a better spread of solu-

tions and converge better in the obtained nondominated front when compared to other

multiobjective optimization algorithms. Additionally, Sayyad & Ammar (2013) found

that NSGA-II was the algorithm of choice in 53% of the papers analyzed in a literature

survey of studies that used multiobjective optimization.
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Algorithm parameters

The chromosome is expressed as a string of N + 2Np decision variables as follows:

N selection variables (Si), Np power status variables (Pij) and Np partial load ratio

variables (Rij).

Even though it is not made any formal attempt to find the best parameter setting

in the seminal paper of Deb et al. (2002), the parameters recommended are a crossover

probability of pc = 0.9 and a mutation probability of pm = 1/(N+2Np) (1 divided by the

number of decision variables). The population size and the number of generations may

be established after experimentation.

In general, it has been given little attention to constrained multiobjective optimization

in evolutionary algorithms. One useful constraint-handling strategy consists of including

a penalty factor in order to worsen the fitness values when the constraints are not satisfied.

This penalty factor has to be large enough to prevent infeasible solutions from being in the

set of solutions, but not too large so the algorithm is forced to converge without sufficiently

exploring the search space. This issue is particularly critical under strong parameter

interactions. Experiments have to be performed to analyze the effects of different settings.

2.4.4 Pareto dominance

A general optimization problem may be defined by the following elements: a search

space X; an objective space Z; and a function f : X → Z that assigns an objective vector

z ∈ Z to each decision vector x ∈ X. The goal is to find a solution x∗ ∈ X mapped

to a minimum z∗ ∈ Z. In the case of a mono-objective optimization, the “less or equal

than” operator (≤) is a total order in the objective space because Z = R and any to

elements zi and zj are comparable. On the other hand, in the case of a multi-objective

optimization problem it is used the operator � as an extension of ≤ in Rn since multiple

minimum solutions may be found with different trade-off between the individual functions

in f = (f1, f2, ..., fn).

Some preference relations on the objective vectors are:

� The relation z1 � z2 represents a weak Pareto dominance, i.e. z1 weakly dominates

z2 because z1 is not worse than z2 in all objectives.

� The relation z1 ≺ z2 represents a Pareto dominance, i.e. z1 dominates z2 because

z1 is not worse than z2 in all objectives and better in at least one objective.

� The relation z1 ≺≺ z2 means that z1 strictly dominates z2 because z1 is better than

z2 in all objectives.

� The relation z1 ‖ z2 means that z1 and z2 are incomparable because neither z1 � z2

nor z2 � z1.
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� The relation z1 ∼ z2 means that z1 and z2 are indifferent because z1 and z2 have

the same values in the objectives.

Quality metrics

Comparing solutions under a mono-objective approach is straightforward, but a multi-

objective requires a quality metric. A useful alternative to measure de quality of a set of

nondominated solutions of a multi-objective optimization is the hypervolume indicator,

which is the volume covered by the elements of a nondominated set W (DEB, 2009). Let

vi be the volume enclosed by wi ∈ W relative to a reference point, then the hypervolume

IH is calculated as follows:

IH(W ) =

|W |⋃
1

vi (2.18)

In order to assess the quality of a set of nondominated solutions, a reference set R

may be used as follows:

I−H(W ) = IH(R)− IH(W ) (2.19)

Smaller values of I−H(W ) indicates better quality. When the reference set is not given,

then IH(R) may be considered to be zero.
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Chapter 3

Application 1

3.1 Article 1: An optimization scheme for chiller se-

lection in cooling plants

Authors

Luis A. Pargas-Carmonaa, Júlio A. M. Da Silvab, Ângelo M. O. Sant’Annab, José L.

Risco-Mart́ınc.

(a) Department of Production Engineering, Federal University of Western Bahia, R/Itabuna

1278, Santa Cruz, Lúıs Eduardo Magalhães (Bahia) 47850-000, Brazil.

(b) Department of Mechanical Engineering, Federal University of Bahia - Polytechnic School,

R/Prof. Aristides Novis 2, Federação, Salvador (Bahia) 40210-630, Brazil.

(c) Department of Computer Architecture and Automation, Complutense University of

Madrid, C/Prof. José Garćıa Santesmases 9, Madrid 28040, Spain.

Abstract

Providing effective cooling for buildings and industrial facilities at minimum cost is

one of the main challenges in the HVAC industry. Considerable effort has been put into

the optimization of existing cooling plants, but the chiller selection procedure has been

relegated to a second place. This paper introduces two alternative formulations to add the

chiller selection into the overall optimization problem: i) a mathematical programming

approach with a single cost-based objective function and ii) a multi-objective optimization

of capital cost and energy consumption. It was analyzed the case of a cooling plant with

a known load profile and 13 air-cooled screw chiller models ranging from 140 to 500 TR

available for purchase. The minimum objective value in the mathematical programming
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approach is obtained by selecting three 500 TR chillers. On the other hand, the multi-

objective optimization approach produced a set of nine nondominated solutions (including

the three 500 TR chiller selection). Under the second approach it is not necessary to

translate the energy consumption into monetary terms. The results of both alternatives

are considerable different from the straightforward approach of selecting chillers with total

nominal capacity closer to the peak load (900 TR). This reveals the importance of a formal

selection procedure.

Keywords: Mathematical programming; Multi-chiller systems; Multi-objective opti-

mization; Optimal chiller selection.

3.1.1 Introduction

Air-conditioning systems generally demand more energy than any other system in

commercial and office buildings. According to Thangavelu, Myat & Khambadkone (2017)

the cooling load accounts for 45-60% of the total energy consumption. In many tropical

countries this percentage may be even higher. The cooling demand in buildings may

vary according to several factors, such as: outdoor temperature, occupancy level, activity

type, etc. Multi-chiller systems provide flexibility to operate under conditions of high

variability because they enable the switching on and off of the chillers when required.

They also have lower energy consumption under partial load conditions compared to

single-chiller systems. The examination of the thermal load variations throughout the

year allows engineers to make design decisions based on the whole load profile instead of

exclusively on the peak load, which is usually an exceptional condition.

Providing effective cooling for buildings and industrial facilities at minimum cost is one

of the main challenges in the HVAC industry. It is known that the chiller performance

varies substantially according to the outdoor temperature and the Partial Load Ratio

(PLR), i.e. the actual cooling capacity of the chiller divided by its maximum capacity at

the same conditions. Consequently, the chiller selection and the operating conditions are

essential aspects that have to be considered in the design of cooling plants.

Much of the literature focused on finding the Optimal Chiller Loading (OCL), i.e. the

load share of each chiller that minimizes the overall energy consumption for previously

selected chillers. As a matter of fact, many authors refer to this problem as “economic

dispatch of chiller plants” (CHANG; CHAN; LEE, 2010; LO; TSAI; LIN, 2016; SOHRABI

et al., 2018; TEIMOURZADEH; JABARI; MOHAMMADI-IVATLOO, 2020; JABARI;

MOHAMMADPOURFARD; MOHAMMADI-IVATLOO, 2020). It is necessary to take a

step back and acknowledge that once the cooling needs are understood and a preliminary

design of the plant is outlined, the next move is the chiller selection. There are a few rules

of thumb for selecting chillers, such as distributing the peak load evenly into the units of

the system, or breaking the load profile down into time-based discrete groups to which
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the units are arbitrarily assigned according to their nominal capacities. Both approaches

disregard the performance functions and the operating conditions.

The literature is concentrated mainly on testing different optimization algorithms on

the same OCL problems: the case presented by Chang (2004), consisting of two 450 TR

chillers and two 1000 TR chillers; the case presented by Chang, Lin & Chuang (2005),

consisting of three 800 TR chillers; and the case presented by Chang (2005), consisting of

four 1280 TR chillers and two 1250 TR chillers. Some authors addressed this problem with

bio-inspired algorithms. Recent examples in this category are Improved Invasive Weed

Optimization (ZHENG; LI, 2018), Improved Artificial Fish Swarm Algorithm (ZHENG;

LI; DUAN, 2019), Improved Grasshopper Optimization Algorithm (WENHAN et al.,

2019), Quantum Emperor Penguin Optimization Algorithm (MIN; TANG; ROUYEN-

DEGH, 2020), Improved Particle Swarm Optimization (TIAN et al., 2019b) and Camel

Traveling Behavior Algorithm (CHEN et al., 2020). Besides the algorithms based on

biological mechanisms, other alternatives have been explored, such as Imperialistic Com-

petitive Algorithm (JABARI; MOHAMMADPOURFARD; MOHAMMADI-IVATLOO,

2020), Teaching-Learning-Based Optimization (DUAN et al., 2018), Exchange Market

Algorithm (SOHRABI et al., 2018) and Distributed Chaotic Estimation of Distribution

Algorithm (YU et al., 2020).

The design and the scheduling may be simultaneously addressed. This way of tackling

these problems is found in other fields. For instance, in Fumero, Corsano & Montagna

(2013) an optimization model is proposed for the simultaneous design and scheduling of

flowshop plants, and in Pruitt et al. (2014) it is presented a model for determining the

configuration, capacity and operational schedule of a distributed generation system at the

globally minimum total cost. However, the chiller selection has been overlooked in the

literature on the OCL problem. This paper presents two different optimization approaches

to deal with the chiller selection problem and the OCL problem at the same time: i) a

mathematical programming approach with a single cost-based objective function and ii)

a multi-objective optimization of capital cost and energy consumption.

The procedure outlined in this paper seeks to find the best equipment selection by

weighing up the trade-off between capital costs and operational costs. This is a problem

that has to be managed in many engineering contexts. Nevertheless, selecting the units

and designing the operation plan are commonly addressed as if they were separated prob-

lems. The main novelty of this work is integrating the chiller selection into the optimal

chiller loading problem. This optimization scheme is a formal alternative to less effective

rules of thumb commonly used in the HVAC industry, and it may also be applied to

other engineering systems as long as the performance functions and the demand profile

are known.
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3.1.2 Methodology

Given a list of C chiller models available for purchase and their corresponding perfor-

mance functions (capacity and consumption), a selection of a set of N chillers has to be

made in order to guarantee that the cooling load demand will be satisfied at minimum

cost. The PLR is included in the analysis as a decision variable. As a result, the optimal

chiller selection and the OCL are obtained simultaneously.

Chiller performance functions

The performance functions presented in this section may be useful for both air-cooled

chillers and water-cooled chillers with cooling towers. In the first case, the outdoor tem-

perature to be considered is the dry-bulb temperature. In the latter case, the outdoor

temperature to be considered is the wet-bulb temperature.

Capacity functions. The capacity (φij) of a chiller i at certain level of demand j is

determined by the outdoor temperature (Tj) and the PLR (Rij). Estimating the capacity

of a chiller as its nominal capacity multiplied by the PLR is a poor solution. The capacity

may be modeled as a linear function of the PLR with slope changes according to the

outdoor temperature. In fact, this model has a perfect fit (as can be seen in Table 3.3).

The parameters α1i and α2i in Equation 4.3 may be estimated by using Ordinary Least

Squares (OLS).

φij = (α1i + α2iTj)Rij (3.1)

Consumption functions. The power consumption (ψi) of a chiller i at certain level

of demand j is also determined by the outdoor temperature (Tj) and the PLR (Rij). The

consumption curves of a typical screw chiller may be modeled as complete second degree

polynomial functions. The parameters β0i, β1i, β2i, β3i, β4i and β5i in Equation 3.2 may

be estimated by using OLS.

ψij = β0i + β1iTj + β2iT
2
j + β3iRij + β4iR

2
ij + β5iRijTj (3.2)

The linear function shown in Equation 3.3, which is a linear model with one interaction

term, is also considered for the sake of comparison. The parameters β0i, β1i, β2i and β3i

in Equation 3.3 may be estimated by using OLS.

ψij = β0i + β1iTj + β2iRij + β3iRijTj (3.3)

Modeling the performance functions requires empirical data to analyze the variables

involved and their functional relationship. Some authors estimate the chiller consumption
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as a quadratic function of the PLR (CHANG, 2005), and others use a third degree poly-

nomial model (CHANG, 2004; CHANG; LIN; CHUANG, 2005). However, the outdoor

temperature is an important variable that is usually left out of these models. In this

paper, the outdoor temperature is included in the analysis because, as will be discussed

later, it is a refinement that increases significantly the explanatory power of the model.

Mathematical programming approach

Objective function. The sum of the total consumptions at each level of demand

(gj) may be expressed in monetary terms by multiplying it by the electricity price (w1).

Likewise, the total capital cost, which is the sum of the capital cost (ci) of each chiller

selected (Sik = 1), is multiplied by the annual depreciation rate (w2), that is the proportion

at which the chiller is depreciated based on its estimated useful life. In this way both

functions are formulated in a year time span as in Equation 3.4.

Objective value = w1

P∑
j=1

gj + w2

C∑
i=1

N∑
k=1

Sikci (3.4)

Constraints. The binary variable Sik assumes the value of 1 when the model i was

selected for chiller k, and assumes the value of 0 otherwise. Equation 3.5 establishes that

there is one chiller model for each chiller selected. This does not prevent the chillers

selected from having the same model.

C∑
i=1

Sik = 1 (3.5)

Equation 3.6 guarantees that the PLR (Rijk) will be zero when the chiller is not

selected.

Rijk ≤ Sik (3.6)

The actual power consumption is equal to the estimated power consumption when

the chiller is turned on, and is equal to 0 when the chiller is turned off. Eq. 3.5 and

Eq. 3.6 are fundamental constraints for the selection problem. The auxiliary variables θijk

(continuous) and γijk (binary) in Equations 3.7 and 3.8 guarantee that the consumption

is zero when the chiller is turned off. The PLR lower limit is represented by r.

Rijk ≤ γijk ≤ Rijk + 1− r (3.7)

θijk = (β1i + β2iTj + β3iTj
2)γijk (3.8)

The total consumption at level of demand j is obtained from Equation 3.9.
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gj =
C∑
i=1

N∑
k=1

(θijk + β4iRijk + β5iRijk
2 + β6iRijkTj)tj (3.9)

The total capacity at level of demand j (hj) is obtained from Equation 3.10.

hj =
C∑
i=1

N∑
k=1

(α1i + α2iTj)Rijk (3.10)

Equation 3.11 guarantees that the cooling demand (dj) will be satisfied by the cooling

capacity at all levels of demand.

hj ≥ dj (3.11)

Multi-objective optimization approach

Multi-objective optimization is a useful alternative for problems that involve more than

one objective. When these objectives are conflicting it is desirable to obtain a solution

that provides the best compromise between them. Under this approach, the objectives

may have different units and it is not necessary to translate the energy consumption into

monetary terms.

First objective: energy consumption. Given the time at each level of demand

(tj), the objective function for energy consumption (Equation 3.12) is formulated as the

time-weighted sum of the chiller consumptions. The actual consumption (gij) of chiller i

at level of demand j is obtained by multiplying the estimated consumption function by

the chiller power status binary variable (Pij). This ensures that the results will be zero

when the chiller is turned off.

Objective value 1 =

p∑
j=1

q∑
i=1

gijtj (3.12)

Second objective: capital cost. The capital cost (Equation 3.13) is calculated as

the sum of the costs of the N chillers selected (Si = 1).

Objective value 2 =
N∑
i=1

ci (3.13)

Constraints. The feasible region is determined by a set of constraints (Equation 3.14)

that ensure that the cooling demand (dj) will always be satisfied by the cooling capacity

(hij). Just as is the case for the consumption, the actual cooling capacity of chiller i at
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Table 3.1: Cooling load profile

Level Duration Cooling demand Outdoor temperature

1 2190 h 200 TR 82°F (27.8°C)
2 730 h 300 TR 82°F (27.8°C)
3 365 h 600 TR 82°F (27.8°C)
4 1095 h 700 TR 82°F (27.8°C)
5 1460 h 700 TR 86°F (30.0°C)
6 365 h 800 TR 86°F (30.0°C)
7 1460 h 800 TR 90°F (32.2°C)
8 1095 h 900 TR 90°F (32.2°C)

Table 3.2: Cost of the chiller models available for purchase

Nominal capacity (TR) Cost (USD)

140 117676.40
160 124725.20
180 129795.20
200 137354.40
225 144197.20
250 154227.60
275 161888.40
300 173463.60
325 186584.40
350 217310.80
400 239306.40
450 258177.20
500 281070.80

level of demand j is given by the capacity function (φij) multiplied by the chiller power

status variable (Pij).

N∑
i=1

hij ≥ dj (3.14)

3.1.3 Case study

The selection scheme is tested on a cooling plant with the load profile summarized

in Table 3.1. It corresponds to an air-conditioning system for a commercial building

operating 24 hours a day throughout the year.

The number of chillers must be between 2 and 6 in order not to exceed the space

allowed. There are 13 air-cooled screw chiller models ranging from 140 to 500 TR available

for purchase. According to the manufacturer, these chillers can take on any PLR value

from 15% to 100%. The chiller models and their costs are indicated in Table 3.2.

The performance data and the cost of the chillers were provided by the manufacturer

for research purposes under the condition of anonymity. The performance curves for
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Figure 3.1: Performance curves for Model 140

Table 3.3: Goodness of fit (Adjusted R-squared) of the performance models

Nominal capacity (TR)
Capacity Consumption

Quadratic Linear

140 1.000 0.999 0.991
160 1.000 0.999 0.990
180 1.000 0.999 0.987
200 1.000 0.999 0.983
225 1.000 0.999 0.988
250 1.000 0.999 0.991
275 1.000 0.999 0.990
300 1.000 0.999 0.988
325 1.000 0.999 0.985
350 1.000 0.999 0.987
400 1.000 0.998 0.989
450 1.000 0.999 0.987
500 1.000 0.999 0.984

Model 140 are shown in Figure 3.1.

The importance of having a set of curves specifying the chiller performance under

various operating conditions is discussed in Yu & Chan (2006). Developing regression-

based models for the actual operating conditions is a common practice in this field, e.g.

Aravelli & Rao (2013). The outdoor temperature (Tj) is disregarded in the performance

models found in most of the literature, e.g. in Chang (2004), Chang, Lin & Chuang (2005),

Chang (2005) and the subsequent papers. In this case study, the performance functions

were estimated using the manufacturer’s data over the operating range including the

outdoor temperature. The goodness of fit of Equations 4.3, 3.2 and 3.3 for each of the

13 chiller models available for purchase is shown in Table 3.3. The regression parameters

can be seen in Table 3.4.

The electricity cost (w1) in the single cost-based objective function (Equation 3.4) was

set as 0.10 USD/kWh, which is close to the median of the standard variable rate tariff

for the Brazilian electricity suppliers (ANEEL, 2021). The annual depreciation rate (w2)

is assumed to be 10%, considering a life expectancy of 10 years and a null salvage value.
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Table 3.4: Regression parameters of the performance functions
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Table 3.5: Chiller selection for the MINLP

Number of chillers Chiller selection Objective value (USD)

2 2 x 500 TR 510011.46
3 3 x 500 TR 485221.37
4 3 x 500 TR and 1 x 200 TR 487735.69
5 1 x 500 TR, 2 x 325 TR and 2 x 200 TR 491134.61
6 1 x 500 TR, 1 x 325 TR and 4 x 200 TR 495576.49

The reference service life for air-cooled chillers is 15 years according to (STANFORD,

2010), but a reduction factor was applied because of the exposition to rapid oxidation in

coastal areas.

3.1.4 Results

Mathematical programming approach

Mixed integer nonlinear optimization problem (MINLP). The problem was

submitted to NEOS Server (Czyzyk; Mesnier; Moré, 1998; Dolan, 2001; Gropp; Moré,

1997) in AMPL format (FOURER, 1996) and it was solved using BARON, which is a

solver for mixed integer nonlinearly constrained optimization problems (TAWARMALANI;

SAHINIDIS, 2005; SAHINIDIS, 2017). The total number of chillers composing the cool-

ing plant was restricted to: 2, 3, 4, 5 and 6. The chiller selection is shown in Table 3.5,

and the OCL results can be seen in Table 3.6.

The operating cost surpasses the capital cost for the plant with 2 chillers, and its

optimum turned out to be more expensive than the optimum for the plants with 3, 4,

5 and even 6 chillers. The optimum for 3 chillers is the best alternative. This selection

consists of three 500 TR units.

Linear approximation. The size of the MINLP increases exponentially with the

number of chillers, but if the original consumption functions (Equation 3.2) are replaced

by the linear consumption functions (Equation 3.3), the optimization problem may be

solved as a linear problem. It is important to bear in mind that the objective value in

the new problem has to be corrected afterwards by the original functions. The chiller

selection for the linear approximation is shown in Table 3.7, and the corresponding OCL

can be seen in Table 3.8.

Even though the linear approximation was not able to find the best solution, the error

of this approximation is relatively small (Figure 3.2).

Since the NEOS Server has a time limit of 8 hours, which is less than the time required

to solve the MINLP for N ≥ 3, the best fitting exponential function was used to estimate

the execution time. The speedup, i.e. the performance of the linear approximation in
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Table 3.6: Optimization results for the MINLP
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Table 3.7: Chiller selection for the linear approximation

Number of chillers Chiller selection
Objective value (USD)
Original Corrected

2 1 x 500 TR and 1 x 450 TR 523393.61 526817.55
3 2 x 500 TR and 1 x 450 TR 518972.92 544776.48
4 2 x 500 TR, 1 x 450 TR and 1 x 160 TR 516905.97 548556.71
5 2 x 500 TR and 3 x 160 TR 516982.41 541245.24
6 2 x 500 TR, 1 x 325 TR and 3 x 160 TR 517766.97 559159.93

Figure 3.2: Linear approximation error (%)

terms of execution time relative to the original MINLP, is shown in Figure 3.3.

In the MINLP, as well as in the linear approximation, 5 out of the 13 models available

can be observed in the results: 160 TR, 200 TR, 325 TR, 450 TR and 500 TR. However,

only 2 models are found in the results of both formulations: 325 TR and 500 TR. The

optimal selection for 3 chillers using the linear approximation is similar to the selection

obtained using the MINLP formulation. In this case, it consists of two 500 TR units and

one 450 TR unit instead of three 500 TR units.

Figure 3.3: Relative performance of the linear approximation in terms of execution time
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Table 3.8: Optimization results for the linear approximation
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Figure 3.4: Chromosome specification

Table 3.9: NSGA-II algorithm parameters

Number of generations G
Population size 100
Chromosome length 51
Probability of crossover 0.9
Probability of mutation 1/51

Multi-objective optimization approach

Optimization algorithm. The Nondominated Sorting Genetic Algorithm II (NSGA-

II) with single point crossover and integer flip mutation operators is used. This is one

of the most popular multi-objective optimization algorithms and it is suitable for the

procedure proposed.

Parameters tuning. The chromosome length is given by N+2Np (see Figure 3.4).

Following the parameter values recommended in Deb et al. (2002), the crossover prob-

ability is pc = 0.9 and the mutation probability is pm = 1/(N + 2Np) (1 divided by

the number of decision variables). The number of generations (G) was determined by

experimentation.

The NSGA-II algorithm parameters are shown in Table 3.9, and the objective functions

are those defined in Section 3.1.2. These functions have to be minimized while satisfying

the capacity constraints. A customary way of dealing with constraints in genetic algo-

rithms is penalizing the fitness values when the constraints are not satisfied. When the

difference between the capacity of the system and the cooling demand is negative, it is

multiplied by a negative factor. This product is added to each objective function in order

to worsen the fitness values. The penalty factor should be carefully chosen because larger

values may force the algorithm to converge without sufficiently exploring the search space;

on the other hand, smaller values may require a greater number of generations.

After preliminary trials, combinations of different levels of “Penalty” and “Genera-

tions” were tested. In order to capture the variability of the settings, 10 replicates of

each combination were run. The performance measure used to compare the alternatives

is the hypervolume indicator which is the volume covered by the elements of a nondomi-

nated set, and it is measured relative to a worst possible point in the objective space (see
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Figure 3.5: Illustration of the hypervolume indicator

Figure 3.5). Let vi be the volume enclosed by solution wi ∈ W . Then, a union of all

hypercubes is found and its hypervolume (IH) is calculated (Equation 3.15).

IH(W ) =

|W |⋃
1

vi (3.15)

If a set Wi has a greater hypervolume than a set Wj, then Wi is taken to be a better

set of solutions than Wj. In this work, it is considered the hypervolume difference to a

reference set R, defined as in Equation 3.16, where smaller values correspond to higher

quality. If the reference set is not given, it is considered IH(R) = 0.

I−H(W ) = IH(R)− IH(W ) (3.16)

The results of the experiment are shown in Figure 3.6. The number of generations

was set at 50000 because it can be seen that the hypervolume indicator remains relatively
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Figure 3.6: Hypervolume results for different values of “Penalty” and “Generations”

stagnant from this point on. The most convenient choice of penalty factor is -1000, since

the hypervolume indicator is smaller and shows less variation in comparison with the

values obtained when bigger penalties are applied.

Optimization results. In order to compare the procedures, it was considered the

case of 3 chillers in the system (N = 3). The approximate Pareto fronts obtained in the 10

runs are condensed in the nondominated solutions shown in Figure 3.7. The chiller models

and the energy consumption of each nondominated solution are shown in Table 3.10. The

corresponding OCL can be seen in Table 3.11. We may observe that initial cost and

energy consumption are conflicting objectives. Solution “I” is the most expensive one

(843212.4 USD), but it has the lowest energy consumption (4046.3 MWh per year). On

the other hand, Solution “A” is the cheapest one (629543.6 USD), but it has the highest

energy consumption (4515.2 MWh per year).

The algorithm also produced seven additional solutions to be considered. Solutions

“C”, “D”, “F”, “H” and “I” have at least two units of the same model, which means com-

monality of spare parts. Another well appreciated feature in chiller plants is redundancy.

In this case, all the solutions have redundant capacity, and the lowest cost per installed
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Figure 3.7: Nondominated solutions (Generations: 50000; Penalty: -1000)

Table 3.10: Chiller selection for the nondominated solutions (Generations: 50000; Penalty:
-1000)

Solution Chiller selection Capital cost(USD) Energy consumption(kWh per year)

A 1 x 500 TR, 1 x 325 TR and 1 x 275 TR 629543.6 4515196
B 1 x 500 TR, 1 x 325 TR and 1 x 300 TR 641118.8 4458404
C 1 x 500 TR and 2 x 325 TR 654239.6 4403033
D 2 x 500 TR and 1 x 160 TR 686866.8 4378619
E 1 x 500 TR, 1 x 450 TR and 1 x 250 TR 693475.6 4354556
F 2 x 500 TR and 1 x 200 TR 699496 4269284
G 1 x 500 TR, 1 x 450 TR and 1 x 325 TR 725832.4 4257838
H 2 x 500 TR and 1 x 325 TR 748726 4169865
I 3 x 500 TR 843212.4 4046262
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Table 3.11: Nondominated solutions (Generations: 50000; Penalty: -1000)
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capacity is offered by Solution “I”. In tight spaces one important decision parameter is

the system footprint. This would be a disadvantage of Solution “I” because it is formed

by the biggest units. It can be observed in the OCL results (Table 3.11) that the solutions

are well balanced in terms of operating time, which means that the units will wear out

evenly.

3.1.5 Conclusions

This paper extends current research by incorporating the chiller selection into the typ-

ical OCL problem. The results provide the chiller selection and the operation schedule.

The outdoor temperature was included as an independent variable in both the capacity

functions and the consumption functions. This inclusion caused an increase in the ex-

planatory power of 3% for the capacity functions and of 23% for the consumption functions

on average.

In the air-cooled screw chillers analyzed, the consumption is a quadratic function of

the PLR, which makes it possible to use an exact algorithm for selecting chillers based

on the cost of both the plant and the energy consumption. Moreover, taking advantage

of the fact that these functions may also be modeled as linear functions with a difference

in explanatory power of only 1% on average, a linear approximation for the MINLP is

proposed when the problem is excessively large. It is advantageous because the problem

grows exponentially as the number of chillers in the system increases. Problems that take

hours or even days to be solved may be solved in a few seconds using this approximation

with a relative error of between 3% and 11%.

The mathematical programming approach proposed in this paper provides an exact

solution to the chiller selection problem. It uses a single objective function that is a linear

combination of the two objectives. The terms of this linear combination are weighted by

the depreciation rate and the electricity price, but the latter is not necessarily fixed, which

makes this approach less convenient under high variability. Moreover, in the cases where

the capital costs and the operating costs are assumed by different agents, combining the

two objectives may not be the best alternative. In those situations, the multi-objective

optimization of the capital costs and the energy consumption measured in their original

units is a better option. This approach produces a set of nondominated solutions that

would allow the engineers to conduct a subsequent trade-off analysis. A major takeaway

from the case study is that all the solutions have a large installed capacity in relation to

the peak load demand, which is far from intuitive solutions and confirms the necessity of

a systematic procedure. Finally, it is important to note that this selection scheme may

be used with other types of chillers as well as with a vast variety of engineering problems

related to equipment selection when the performance functions and the demand profiles

are known.
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Chapter 4

Application 2

4.1 Article 2: Optimal selection of utility plants in

oil and gas offshore platforms
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Abstract

The utility plants in oil and gas platforms should be designed to meet the electrical

demand during the lifetime at minimum cost. A great deal of effort has been devoted to

determining the optimal load share of each reciprocating engine/gas turbine operating in

parallel that minimizes the overall fuel consumption. However, the selection of the models

and the number of units in the system is normally left out of the problem formulation. This

paper introduces a procedure to make the optimal selection of utility plants in floating,

production, storage and offloading (FPSO) platforms. It is analyzed a case study by

using the following two alternative approaches: i) a mono-objective optimization of a

single cost-based function and ii) a multi-objective optimization of capital cost and fuel

consumption. Under the first approach the fuel consumption is translated into monetary
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terms. On the other hand, the multi-objective approach produces a set of nondominated

solutions that enables a subsequent engineering analysis. A major takeaway from the

case study is that all the solutions obtained are better than the standard solution of three

aeroderivative gas turbines model GE LM2500+RD (G4) (with a capital cost of 40.05

Millions of USD and a fuel consumption of 9.999× 104 TJ at the optimal setting during

the lifetime of the system). The results confirm the necessity of a systematic selection

procedure.

Keywords: Equipment selection; Floating, Production, Storage and Offloading; Mono-

objective optimization; Multi-objective optimization; Oil and gas platforms.

4.1.1 Introduction

The universal demand for processes with lower CO2 emissions has increased the num-

ber of papers in the literature on power plant configurations for floating, production,

storage and offloading (FPSO) platforms aiming high efficiencies/low emissions. Barbosa

et al. (2018) studied the performance of various cogeneration plants on an offshore plat-

form over the lifetime of the field. The cogeneration unit equipped with reciprocating

engine showed the lowest variation under time-changing operating conditions and the

composition of the well. The steam turbine cycle showed the lowest exergy efficiency over

the lifespan. da Silva & de Oliveira Junior (2018) calculated the unit exergetic costs and

CO2 emissions of the products of an offshore platform over its lifetime. Three different

types of cogeneration plants and two modes of operation of the primary processing plant

(total injection or partial gas export) were considered. The reciprocating engine proved

to be the most efficient, showing lower unit exergy costs and CO2 emission rates. Nord

& Bolland (2013) compared the off-design performance of gas turbine systems and com-

bined cycles intended to operate on offshore platforms. Combined cycles offered 13 p.p.

higher energy efficiencies, 60% higher power-to-weight ratios and 25% lower CO2 emis-

sions. These analyses were extended by Riboldi & Nord (2017) to incorporate the effect of

variable energy demands over the lifetime, especially during peak production and end-of-

life. Also, depending on the heat-to-power ratio demanded by the oil processing, the CO2

emissions could be reduced between 9 and 22%. Nascimento Silva, Flórez-Orrego & de

Oliveira Junior (2019) and Nascimento Silva et al. (2020) compared the thermodynamic

and environmental performance of various cogeneration systems aimed to operate on FP-

SOs, ranging from simple cycle gas turbine systems with amine flue gas purification units

to complex oxy-combustion cycles. Oxycombustion power cycles allowed a simultaneous

increase in power generation efficiency and facilitated the carbon capture process. Flórez-

Orrego et al. (2021) developed a systematic method to synthesize the best configuration

of floating power generation systems in offshore application using an optimization routine

based on the concept of sawtooth plot. The best configuration strongly depended on the
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profile of energy demands, the minimum generation capacity and the characteristics of the

power generation systems. Later, Flórez-Orrego et al. (2022) performed an optimization

process of the dispatch and load distribution among a set of modular power generation

systems equipped with carbon capture units to be implemented in the offshore petroleum

sector. The integration of carbon capture technologies reportedly required carbon taxes

higher than 40 USD/tCO2 to supersede the existing cogeneration systems in offshore plat-

forms. Carranza Sánchez & de Oliveira (2015) concluded that simple cycle gas turbines

equipped with carbon capture systems have potential to reduce the CO2 emissions by 77%

at the expense of a reduction of only 2.8 p.p on the platform efficiency. Cuchivague (2015)

studied the performance of the cogeneration system of an offshore platform operating un-

der three conditions of oil production, considered as representative of the useful life of the

field. A combined cycle reportedly allowed to increase the efficiency by 24%, compared to

the conventional system, despite the integration of a post-combustion carbon capture unit.

Nguyen et al. (2016) presented several alternatives for the mitigation of CO2 emissions

in the offshore oil production sector. According to the authors, the improvement of heat

recovery systems, carbon capture and, eventually, the electrification of platforms could

reduce CO2 emissions by 15%. Some authors studied the low-temperature waste heat

recovery from the exhaust gases of gas turbines using organic Rankine cycles in FPSOs.

According to Barrera & Sahlit (2013), the use of an ORC cycle would allow a reduction

of up to 15% in fuel consumption per barrel of oil. According to Veloso (2015), different

fluids can be used depending on the power generation range (1.5 and 6.3 MW) and the

total area of the ORC cycle. Pierobon et al. (2013) developed a multi-objective optimiza-

tion considering efficiency, volume and investment of ORC cycles for its application in

offshore platforms. Their results suggest acetone (27% efficiency, NPV 17.7 MUSD) and

cyclopentane (28.1% efficiency, NPV 20.1 MUSD) as optimal working fluids. The com-

bined use of ORCs and absorption chillers were also proposed as potential improvements

in the cogeneration plants of the platforms (BARRERA; SAHLIT, 2013). Reis & Gallo

(2018) and Reis, Guillen & Gallo (2019) optimized the over-time performance of an ORC

coupled to a conventional gas turbine system on an offshore platform. The ORC cycle

contributed up to 20% of the total electricity generated by the utility system, increased

the efficiency of the cogeneration system by 11 p.p (up to 55.8%) and reduced total CO2

emissions by up to 22%.

Among the most common optimization techniques applied to thermal plants are the ge-

netic and evolutionary algorithms. These algorithms are usually used with multi-objective

energy, economic or environmental functions. Some works aimed to obtain design param-

eters such as temperatures, pressures, and efficiencies for combined cycle power plants

by genetic algorithm (AHMADI; DINCER; ROSEN, 2011; AHMADI; DINCER, 2011a)

or NSGA-II (AHMADI; DINCER, 2011b). Shamoushaki Farrokh Ghanatir & Ahmadi

(2017) found that NSGA-II achieves more optimized results than MOPSO and MOEA-
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D for a gas turbine cycle study case. Other works aimed to define the design variables

and layout of combined cycle heat recovery steam generator, applying genetic algorithm

(MOHAGHEGHI; SHAYEGAN, 2009; REZAIE; TSATSARONIS; HELLWIG, 2019) or

NSGA-II (SAYYAADI; MEHRABIPOUR, 2012). Rovira et al. (2011) determined the

combined cycle design parameters including the choice of one to three turbines with dif-

ferent powers using a genetic algorithm. Considering the availability of 4 gas turbine

models from different manufacturers, Cao et al. (2017) analyzed a gas turbine and cas-

cate CO2 combined cycle, also with genetic algorithm optimization. Some works included

the choice between several pre-defined plants in their optimization, as Njoku et al. (2020),

who considered 19 configurations of combined power plants using multicriteria decision

analysis, and Wilding, Murray & Memmott (2020), who tested 22 configurations of nu-

clear power plants with NSGA. To not depend on a predetermined configuration, Koch,

Cziesla & Tsatsaronis (2007) proposed the solution of a generic superstructure for power

plant combined cycles with a database of gas turbines available in the market. They

applied the model to optimize the configuration of a case study with an evolutionary

algorithm. The superstructure concept was also used by Wang et al. (2015) to find the

multi-stage configuration of steam cycle power plants with an evolutionary algorithm.

Using different approaches in the optimization procedure is also a common practice in

this field. For instance, Allahyarzadeh-Bidgoli et al. (2021) used both NSGA-II and a

gradient-based method to minimize the total fuel consumption in a FPSO platform.

Even though there is a vast literature on adjusting the load distribution of existing

reciprocating engines and gas turbines in FPSO applications, the equipment selection is

not conceived as an optimization problem. This paper introduces a procedure to make

the optimal selection of utility plants in FPSO platforms by using the following two

alternative approaches: i) a mono-objective optimization of a single cost-based function

and ii) a multi-objective optimization of capital cost and power consumption. The novelty

of this work is to combine the loading problem and the selection problem into a single

formulation.

4.1.2 FPSO utility plants

A typical utility plant for FPSO platforms operating in pre-salt fields (Figure 4.1) is

composed of four gas turbines (GT) of about 25 MWe each and a waste heat recovery unit

(WHRU). One of the gas turbines is kept in stand-by mode while the others are started

according to the demand. The WHRU is used to heat water from approximately 110ºC

to 130ºC using a fraction of the energy present in the exhausting gases. While the main

consumer of power are the compression trains used for natural gas compression, injection

and transportation, the main consumer of heat is the petroleum primary separation into

oil, gas and water which uses heat to warm-up the petroleum and the dilution water used
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Figure 4.1: Typical utility plant for FPSO platforms operating in pre-salt fields

in the separation.

Since the variation in exhausting gases temperature (about 550ºC) and power (about

150 MWt) by different selections of GT/ reciprocating engines is not enough to jeopar-

dize the supply of energy required by the WHRU (25 MWt at project point), the hot

water demand will be disregarded during selection and operation optimization of power

generating equipment.

4.1.3 Optimization procedure

The main processes present in an FPSO platform are: the primary separation of oil,

gas and water; gas compression; gas separation using membranes; and water and oil

pumping. A utility plant composed of four aeroderivative gas turbines (3 + 1 in standby)

is the standard selection to supply the required electricity and the heat (from exhausting

gases) for the processes.

The problem considers C engine/turbine models available for purchase and N units to

be selected. Both the electrical demand and the efficiency functions of the models available

are known, and the system is required to operate in a span of P years to satisfy the

electrical demand (dj) of each year j at minimum cost. In the selection procedure depicted

in Figure 4.2, the engine/turbine selection and the corresponding load distribution for all

the years are obtained when the optimization algorithm produce a feasible solution.

The efficiency of an engine/turbine i (ηi) is a function of the partial load (R), which is

the actual power generated by the unit divided by its full power. Modeling this function

requires empirical data, and it can be estimated by a quadratic model (Equation 4.1)
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Figure 4.2: General flowchart of the optimization procedure
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when the local temperature variation is small, which is the case of the Brazilian pre-salt

region.

ηi = β1i ·R2 + β2i ·R + β3i (4.1)

Given the full power of each engine/turbine k selected with the model i (qi), the power

required by the units selected operating at the configuration scheduled for year j (gj) is

obtained from Equation 4.2.

gj =
C∑
i=1

N∑
k=1

qi ·Rijk

β1i ·R2
ijk + β2i ·Rijk + β3i

(4.2)

The total power generated at year j (hj) is calculated by Equation 4.3.

hj =
C∑
i=1

N∑
k=1

qi ·Rijk (4.3)

In this section are presented two alternative formulations for the selection problem.

The first alternative is a mono-objective optimization of a single cost-based function, and

the other is a multi-objective optimization of capital costs and fuel consumption.

Mono-objective optimization approach

It is possible to obtain a combined objective function (Equation 4.4) by summing up

the operating cost and the capital cost. The first term of Equation 4.4 is the operating

cost, which is calculated as the present value (at a discount rate r) of the power required

at each year (gj) multiplied by both the fuel price (w) and the operating hours per year

(tj). The second term of Equation 4.4 is the capital cost, which is the sum of the cost

(ci) of each engine/turbine selected. The selection binary variable Sik assumes the value

of 1 when the model i is selected for engine/turbine k, and 0 otherwise.

Objective value =
P∑

j=1

w · tj · gj
(1 + r)j

+
C∑
i=1

N∑
k=1

Sik · ci (4.4)

The feasible region is defined by a set of constraints. Equation 4.5 establishes that

there is one engine/turbine model for each unit selected. This does not prevent the units

selected from having the same model.

C∑
i=1

Sik = 1 (4.5)

The load ratio (Rijk) can take on any value from a minimum specified by the manu-

facturer (mi) to 1 (Equation 4.6).
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mi ≤ Rijk ≤ 1 (4.6)

Equation 4.7 guarantees that the load ratio will be zero when the unit is not selected.

Rijk ≤ Sik (4.7)

Equation 4.8 guarantees that the electrical demand (dj) will be satisfied by the capacity

at each year (hj).

hj ≥ dj (4.8)

Multi-objective optimization approach

Combining the capital costs and the power consumption in a single objective function is

not always the best choice because it requires both objectives to be expressed in monetary

terms, and the operating costs depend on highly variable prices. On the other hand,

under a multi-objective optimization approach the fuel consumption is not required to be

measured in monetary terms. The first objective is the sum of the total fuel consumption

of the engines/turbines selected. The second objective is the capital cost measured as the

sum of the cost of the engines/turbines selected.

The load ratio (Rijk) can take on any value from a minimum specified by the manu-

facturer (mi) to 100%, i.e. the operating range of unit i is {0}
⋃

[mi; 1]. Since this is not

a valid variable range in many multi-objective optimization algorithms, a power status

variable (Pijk) was included. Thus, in a multi-objective genetic algorithm the chromo-

some length would be CN + 2CNP (Table 4.1). The population size may be 100, the

mutation probability may be 1/(CN + 2CNP ) (1 divided by the number of variables),

and the number of generations may be determined by preliminary trials for each specific

configuration.

Table 4.1: Chromosome specification

Selection binary variables Power status binary variables Partial load variables

S11 ... Sik ... SCN P111 ... Pijk ... PCPN R111 ... Rijk ... RCPN

4.1.4 Results

The problem analyzed is the case study presented by Barbosa et al. (2018). The

forecasted electrical demand for a period of 22 years is shown in Figure 4.3(a). The

corresponding histogram of the electrical demand with a probability density estimation

is plotted in Figure 4.3(b).
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Figure 4.3: Electrical demand profile

The cost and power data of both the reciprocating engine models and the gas tur-

bine models available were obtained from THERMOFLOW Inc. (2021) (Table 4.2). The

efficiency curves that can be seen in Figure 4.4 were plotted using the data obtained

from Thermoflow Inc. (THERMOFLOW Inc., 2021). The corresponding Ordinary Least

Square (OLS) regression parameters β1i, β2i and β3i are shown in Table 4.3.

Table 4.2: Nominal power and cost of the reciprocating engine and gas turbine models
available

Unit model Unit type Nominal power (kW) Cost (Millions of USD)

WAR 18V34SGA2 Reciprocating engine 5732 2.83
WAR 20V34SG Reciprocating engine 9341 3.71
WAR 18V50SG Reciprocating engine 18759 8.64

GE LM2500+RD (G4) Gas turbine 33578 13.35
GE LM6000PG Gas turbine 51678 18.47

Solar Mars 100-T16000S Gas turbine 11350 6.49
Sol Titan 130-T20500 Gas turbine 10226 7.98
Sol Titan 250-30000S Gas turbine 21750 9.92

GE LMS100PA Gas turbine 106300 37.57

The analysis was made for different configurations: i) 3 units (all models), ii) 4 units

(all models), iii) 5 units (all models), iv) 3 units (only turbines), and v) 3 units (turbine

model GE LM2500+RD (G4)), which is the standard selection for this sort of application.
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Figure 4.4: Efficiency curves of the reciprocating engine and gas turbine models available

The discount rate used in the optimization problem was 13.05%, which is the mean value in

the period 2016-2020 for capital cost in the oil/gas (production and exploration) industry

for emerging markets according to Damodaran, Aswath (2021). The fuel (natural gas)

cost considered was 2.77 USD per Million BTU (2.63 USD per GJ), which is the mean

value for the Henry Hub Natural Gas Spot Price in the period 2016-2020 (U.S. Energy

Information Administration (EIA), 2021).

Since several engineering and economic constraints are not explicitly taken into con-

sideration, the problem was formulated for different combinations of models available

(e.g. turbines only or all engines/turbines) and different number of units in the sys-

tem. The mono-objective problems were submitted to NEOS Server (Czyzyk; Mesnier;

Moré, 1998; Dolan, 2001; Gropp; Moré, 1997) in AMPL format (FOURER, 1996) and

they were solved using BARON, which is a mathematical optimization software for mixed

integer nonlinearly constrained problems (TAWARMALANI; SAHINIDIS, 2005; SAHINI-

DIS, 2017). On the other hand, the multi-objective optimization problems were solved

with the Nondominated Sorting Genetic Algorithm (NSGA-II) using jMetalPy, which is

an object-oriented Python-based framework for multi-objective optimization with meta-

heuristic techniques (BENı́TEZ-HIDALGO et al., 2019).
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Table 4.3: Regression parameters of the efficiency functions

Unit model
OLS Parameters
β1i β2i β3i

WAR 18V34SGA2 -0.3812 0.6797 0.1326
WAR 20V34SG -0.2248 0.4187 0.2541
WAR 18V50SG -0.1692 0.3419 0.2845

GE LM2500+RD (G4) -0.1588 0.4190 0.1210
GE LM6000PG -0.2508 0.5419 0.1148

Solar Mars 100-T16000S -0.1128 0.3814 0.0525
Sol Titan 130-T20500 -0.1592 0.3990 0.1020
Sol Titan 250-30000S -0.3384 0.7206 -0.0059

GE LMS100PA -0.2180 0.4797 0.1678

Mono-objective optimization results

The results for the mono-objective problems are summarized in Table 4.4. The capital

cost of the optimal selections ranges from 24.49 Millions of USD to 31.45 Millions of USD,

and the fuel consumption ranges from 7.76×104 TJ to 9.25×104 TJ. The standard selection

of three GE LM2500+RD (G4) units was included in the analysis in order to determine

the optimal loading and the corresponding fuel consumption. All the results obtained

are superior to the standard selection at its optimal setting in both capital cost and fuel

consumption.

Table 4.4: Optimal selection for different configurations (mono-objective optimization
approach)

Number of units Models available Optimal selection Capital cost (Millions of USD) Fuel consumption (TJ)

3 All Engines/Turbines
1 x Sol Titan 250-30000S

27.21 8.36× 104
2 x WAR 18V50SG

4 All Engines/Turbines
3 x WAR 20V34SG

24.49 8.78× 104
1 x GE LM2500+RD (G4)

5 All Engines/Turbines

1 x WAR 20V34SG

26.67 7.76× 1042 x WAR 18V34SGA2
2 x WAR 18V50SG

3 All Turbines
1 x GE LM6000PG

31.45 9.25× 104
2 x Solar Mars 100-T16000S

3 Standard selection 3 x GE LM2500+RD (G4) 40.05 9.999× 104

In order to assess the effect of the variations of both the discount rate (mean: 13.05%;

standard deviation: 2.29%) and the fuel (natural gas) price (mean: 2.77 USD per Million

BTU; standard deviation: 0.28 USD per Million BTU), the objective value was recal-

culated for each combination of r and w plus or minus two standard deviations. The

objective value and its corresponding variation range for each configuration at the opti-

mal loading is shown in Figure 4.5.

The partial ratios for the optimal selections under the mono-objective approach are

shown in Table 4.5. There is no indication that the units have to start sequentially after
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Figure 4.5: Objective value variation range (mono-objective optimization approach)

other units operate at full capacity. On the contrary, it can be seen that the units in the

standard selection seldom operate at a load of 100%.

Multi-objective optimization results

After preliminary trials it was noticed that, beyond a certain extent, increasing the

number of generations in the NSGA-II does not lead to better solutions. Based on that,

one problem was formulated for turbines only and 30000 generations. Likewise, a second

problem was formulated for all the engines/turbines models available and 50000 genera-

tions. The approximate Pareto fronts of these problems are shown in Figure 4.6. There

is one point of the turbines front not dominated by the solutions of the engines/turbines

front. Notwithstanding, the nondominated solutions were integrated in a single front.

The selections for the nondominated solutions are shown in Table 4.6. The multi-

objective approach enables the possibility of producing nondominated solutions with the

same number of units. For instance, solutions B, C and D are different selections with 4

engines/turbines.

It is important to note that the standard selection of three GE LM2500+RD (G4)

units (with a capital cost of 40.05 Millions of USD and a fuel consumption of 9.999× 104

TJ at its optimal setting) is dominated by Solutions A, B, C and D. Even Solution E is

better than the standard selection in terms of fuel consumption (Figure 4.7).
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Table 4.5: Optimal load ratios for the mono-objective optimization problem
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Figure 4.6: Approximate fronts and nondominated solutions (multi-objective approach)

Figure 4.7: Standard selection and optimization results
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Table 4.6: Standard selection and nondominated solutions (multi-objective optimization
approach)

Solution Selection Cost (Millions of USD) Fuel consumption (TJ)

A
1 x GE LM6000PG

28.39 9.72× 104
1 x Sol Titan 250-30000S

B

1 x WAR 18V34SGA2

34.75 9.49× 104
1 x WAR 18V50SG
1 x GE LM2500+RD (G4)
1 x Sol Titan 250-30000S

C

1 x WAR 20V34SG

37.32 9.36× 104
1 x WAR 18V50SG
1 x GE LM6000PG
1 x Solar Mars 100-T16000S

D

1 x WAR 20V34SG

38.15 9.25× 1041 x GE LM6000PG
2 x Sol Titan 130-T20500

E

1 x WAR 18V34SGA2

47.01 8.99× 104

1 x WAR 20V34SG
1 x WAR 18V50SG
1 x GE LM2500+RD (G4)
1 x GE LM6000PG

Standard selection 3 x GE LM2500+RD (G4) 40.05 9.999× 104

The optimal load ratios for the nondominated solutions are shown in Table 4.7. It

can be seen that some of the units selected are turned off most of the time. This implies

redundant capacity, which is desirable but not always affordable.

4.1.5 Conclusions

This paper presented a formal procedure for designing and optimizing utility plants

in offshore platforms. The formulation proposed incorporates the equipment selection

into the optimal loading problem, which consists of determining the load share of each

reciprocating engine/gas turbine operating in parallel that minimizes the overall fuel con-

sumption in the system. Thus, the results provide the selection of the units as well as

the corresponding operation schedule. Two alternative formulations of the optimization

problem were considered. First, a mono-objective optimization of a single cost-based

function. Second, a multi-objective optimization of capital cost and fuel consumption.

An important advantage of the latter approach is that it is not necessary to translate the

fuel consumption into monetary terms. Instead, it is produced a set of nondominated

solutions that can be used in a subsequent trade-off analysis.

The case study consisted of a FPSO platform with a forecasted electrical demand over

22 years. Different technologies such as reciprocating engines and gas turbines were taken

into account, and the performance functions of the models available were estimated using

the data provided by the manufacturer. The standard selection in FPSO platforms is a

utility plant composed of three identical aeroderivative gas turbines plus one standby unit.
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Table 4.7: Optimal load ratios for the nondominated solutions
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In this case, the selection would be a set of three gas turbines model GE LM2500+RD

(G4) with a capital cost of 40.05 Millions of USD and a fuel consumption of 9.999× 104

TJ. The results of the mono-objective optimization approach showed that this is not the

optimal selection even considering gas turbines only (Table 4.4). Likewise, the standard

selection is not better than the nondominated solutions produced by the multi-objective

approach (Table 4.6). In fact, it is worse than all of them in terms of fuel consumption,

which is remarkable considering that the comparison is made with the standard selection

at its optimal setting.

Using an evolutionary algorithm is a practical alternative to solve heavily complex

problems, but running the same model may yield different solutions and there is no

guarantee of finding a global optimum. As it is shown in Figure 4.7, the optimal selections

produced by the mixed integer nonlinear program solver in the mono-objective approach

for 4 engines/turbines are better than the selections for 4 engines/turbines produced by

the NSGA-II algorithm (solutions B, C and D). However, it would be unfair to proclaim

the superiority of the mono-objective approach because these solutions were obtained

from a smaller search space.

A counterintuitive fact about the results is that some of the units selected are turned

off most of the time. Actually, the nondominated solution with the lowest fuel consump-

tion (Solution E) is composed of five units with high percentage of idle time (Appendix

4.7). Having a large installed capacity entails an increase in capital cost, but it may elim-

inate the necessity of standby units. There are other design criteria such as redundancy,

commonality of spare parts, maintenance strategy, and others that are not considered in

the problem formulation. The results of the procedure proposed in this paper constitute

a solid starting point for further technical analysis. Finally, it is important to note that

this selection procedure may also be applied in other engineering contexts as long as both

the performance functions and demand profiles are known.

Notation

Subscripts

i: engine/turbine model

j: year

k: engine/turbine in the system

Parameters

β1i, β2i and β3i: efficiency function parameters for engine/turbine model i

C: number of engine/turbine models available
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ci: initial cost of engine/turbine model i

dj: electrical demand at year j

tj: operating hours at year j

N : number of engine/turbine in the system

P : number of years

r: interest rate

qi: full capacity of engine/turbine model i

w: fuel cost

mi: lower partial load limit of engine/turbine model i

Variables

gj: power required by the system at year j

hj: capacity at year j

Rijk: partial load

Sik: selection binary variable (1:“Selected”, 0: “Not selected”)

Pijk: power status binary variable (1:“On”, 0: “Off”)
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Chapter 5

Final considerations

The selection procedure proposed in this thesis combines the optimal selection problem

and the optimal loading problem into a single formulation. Thus, the results provide the

selection of the units as well as the corresponding operation schedule. Selecting the units

from a set of models available instead of having the units previously selected increases the

complexity of the problem, but enables to consider alternatives that would be unexplored

otherwise. In fact, the applications presented here produced unexpected results in terms

of installed capacity and operating time.

The optimization problem was formulated under two alternative approaches: a mono-

objective optimization with a single cost-based objective function, and a multi-objective

optimization of capital cost and energy consumption. The main advantage of the second

approach is that it produces a set of nondominated solutions. This is very useful when

the capital cost and the operating cost are assumed by different agents. Additionally,

there are some design criteria that are not explicitly included in the problem formulation,

such as: redundancy, commonality of spare parts, maintenance strategy, and others.

The approximate Pareto fronts obtained in the case studies provided a wide range of

nondominated solutions that constitutes a starting point for a subsequent engineering

analysis.

Modeling the performance functions is a critical point in formulating the optimal selec-

tion problem. This involves the necessity of including appropriate explanatory variables

and establishing suitable functional forms. For instance, it can be seen in the chiller

selection problem that, on average, including the outdoor temperature as an indepen-

dent variable in both the capacity functions and the consumption functions increases the

explanatory power in 3% and 23%, respectively. Additionally, these functions may be

modeled as linear functions with a difference in explanatory power of only 1% on average.

This linear approximation turned out to be very useful because problems that take hours

or even days to be solved could be solved in a few seconds with a relative error of between

3% and 11%.

The results of the applications presented showed some counterintuitive facts. For

63



instance, the results in the chiller selection problem proved the benefits of having an

installed capacity that exceeds by far the peak load. The chiller compressor performance

is a function of the rotor rotation, but it also depends on certain geometrical features

that may explain the unusual shapes of the COP curves at some points. It is also an

unexpected result that some of the units selected for the FPSO platform are turned off

most of the time. Another example revealing that the usual approach is not as reliable

as it is thought to be is that the standard selection in the FPSO platforms is worse than

all the nondominated solutions in terms of fuel consumption. The results are even more

significant considering that the comparison is made with the standard selection at its

optimal setting. This comparison was not made for the chiller plant because there is no

standard selection for this application.

The NSGA-II, as well as other evolutionary algorithms, creates a random initial pop-

ulation. It may be interesting to explore alternative starting solutions based on prior

knowledge. None of the cases studied in this work used an alternative initial guess. How-

ever, it might be an option worthy of consideration. Another important detail is the

nature of the selection variable. In the first application this variable was treated as a

nominal variable, but in the second application it was treated as a binary variable. Even

though the optimization algorithm is not the core of this thesis, it is important to delve

into these and other details that might improve the efficiency of the optimization process.

5.1 Future research

Applications. Besides the proven benefits in the contexts of chiller plants and FPSO

platforms, the selection procedure may be applied in other engineering contexts as long as

both the performance functions and the demand profiles are known. For instance, another

potential application in the HVAC field is the selection of variable-speed pumps in hy-

dronic cooling systems. This is a challenging problem because modeling the performance

functions involves complex interrelated variables and parameters such as flow rate, head,

efficiency and others.

Parameters. As well as depreciation rate and time value of money, additional im-

portant parameters might be considered in the analysis, such as equipment reliability and

maintenance costs.

Optimization algorithms. Some problems have a complexity that makes it diffi-

cult to find optimal solutions. Many authors approach the optimal loading problem by

using bio-inspired algorithms. There is an increasing number of algorithms to solve these

optimization problems, and choosing the appropriate algorithm is an important issue. As

a matter of fact, a wide range of scientific papers are devoted to comparing different al-
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gorithms. The optimal selection problem also opens up a research field for benchmarking

algorithms.
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Table A.1: Performance data - Model 140
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

140 115 1.00 131.9 197.2
140 115 0.90 118.7 171.4
140 115 0.80 105.5 151.3
140 115 0.70 92.35 129
140 115 0.60 79.16 108.6
140 115 0.50 65.96 90.33
140 115 0.40 52.77 73.4
140 115 0.30 39.58 55.01
140 115 0.20 26.39 36.98
140 115 0.13 16.49 24.05
140 95 1.00 143.8 157.4
140 95 0.90 129.4 136.3
140 95 0.80 115 116.7
140 95 0.70 100.7 98.94
140 95 0.60 86.27 82.23
140 95 0.50 71.89 67.66
140 95 0.40 57.52 54.21
140 95 0.30 43.14 41.79
140 95 0.20 28.76 27.38
140 95 0.13 17.97 17.54
140 80 1.00 150.3 131.1
140 80 0.90 135.2 113.5
140 80 0.80 120.2 96.98
140 80 0.70 105.2 81.88
140 80 0.60 90.16 68.4
140 80 0.50 75.13 55.21
140 80 0.40 60.11 44.4
140 80 0.30 45.08 34.88
140 80 0.20 30.05 22.58
140 80 0.13 18.78 14.05
140 65 1.00 155.6 109.1
140 65 0.90 140 92.96
140 65 0.80 124.5 78.39
140 65 0.70 108.9 65.6
140 65 0.60 93.36 53.58
140 65 0.50 77.8 43.1
140 65 0.40 62.24 33.28
140 65 0.30 46.68 27.32
140 65 0.20 31.12 16.93
140 65 0.13 19.45 10.35
140 55 1.00 157.9 94.49
140 55 0.90 142.1 80.18
140 55 0.80 126.3 67.54
140 55 0.70 110.5 55.96
140 55 0.60 94.75 44.77
140 55 0.50 78.96 35.38
140 55 0.40 63.17 27.27
140 55 0.30 47.38 22.96
140 55 0.20 31.58 13.88
140 55 0.13 19.74 8.585
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Table A.2: Performance data - Model 160
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

160 115 1.00 150.5 219.9
160 115 0.90 135.4 192
160 115 0.80 120.4 165.7
160 115 0.70 105.3 141.6
160 115 0.60 90.29 118.9
160 115 0.50 75.24 98.46
160 115 0.40 60.19 79.47
160 115 0.30 45.14 61.8
160 115 0.20 30.1 40.05
160 115 0.13 18.81 26.44
160 95 1.00 162.7 175
160 95 0.90 146.4 150.4
160 95 0.80 130.2 128.7
160 95 0.70 113.9 108.8
160 95 0.60 97.62 90.63
160 95 0.50 81.35 74.26
160 95 0.40 65.08 59.13
160 95 0.30 48.81 45.51
160 95 0.20 32.54 29.86
160 95 0.13 20.34 19.29
160 80 1.00 170.4 146.9
160 80 0.90 153.4 127
160 80 0.80 136.3 108.5
160 80 0.70 119.3 90.9
160 80 0.60 102.3 74.9
160 80 0.50 85.22 61.1
160 80 0.40 68.17 47.27
160 80 0.30 51.13 36.14
160 80 0.20 34.09 23.88
160 80 0.13 21.3 15.19
160 65 1.00 175.5 122.9
160 65 0.90 158 103.8
160 65 0.80 140.4 87.35
160 65 0.70 122.9 72.66
160 65 0.60 105.3 59.55
160 65 0.50 87.77 47.65
160 65 0.40 70.21 36.84
160 65 0.30 52.66 26.96
160 65 0.20 35.11 18.72
160 65 0.13 21.94 11.36
160 55 1.00 178.8 107
160 55 0.90 160.9 90.43
160 55 0.80 143 75.82
160 55 0.70 125.1 62.77
160 55 0.60 107.3 50.58
160 55 0.50 89.39 39.75
160 55 0.40 71.51 30.49
160 55 0.30 53.63 23.03
160 55 0.20 35.75 15.42
160 55 0.13 22.35 9.652
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Table A.3: Performance data - Model 180
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

180 115 1.00 166.2 249.7
180 115 0.90 149.6 215.5
180 115 0.80 133 184.7
180 115 0.70 116.3 156.5
180 115 0.60 99.73 130.9
180 115 0.50 83.11 107.6
180 115 0.40 66.48 86.08
180 115 0.30 49.86 66.31
180 115 0.20 33.24 43.38
180 115 0.13 20.78 28.7
180 95 1.00 180.7 201.2
180 95 0.90 162.7 171.5
180 95 0.80 144.6 145.3
180 95 0.70 126.5 122
180 95 0.60 108.4 101.1
180 95 0.50 90.37 82.05
180 95 0.40 72.29 64.85
180 95 0.30 54.22 49.27
180 95 0.20 36.15 32.74
180 95 0.13 22.59 21.15
180 80 1.00 188.6 170.1
180 80 0.90 169.7 143.5
180 80 0.80 150.9 122
180 80 0.70 132 102.3
180 80 0.60 113.2 83.58
180 80 0.50 94.3 67.65
180 80 0.40 75.44 52.17
180 80 0.30 56.58 39.66
180 80 0.20 37.72 26.44
180 80 0.13 23.58 16.58
180 65 1.00 195.4 143.4
180 65 0.90 175.8 120.6
180 65 0.80 156.3 100.2
180 65 0.70 136.7 82.71
180 65 0.60 117.2 67.23
180 65 0.50 97.68 53.43
180 65 0.40 78.14 41.1
180 65 0.30 58.61 29.7
180 65 0.20 39.07 20.83
180 65 0.13 24.42 12.46
180 55 1.00 198.7 126.5
180 55 0.90 178.8 104.9
180 55 0.80 158.9 87.1
180 55 0.70 139.1 71.51
180 55 0.60 119.2 57.76
180 55 0.50 99.33 44.77
180 55 0.40 79.46 33.92
180 55 0.30 59.6 25.68
180 55 0.20 39.73 17.25
180 55 0.13 24.83 10.57
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Table A.4: Performance data - Model 200
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

200 115 1.00 183.5 276.9
200 115 0.90 165.1 236.9
200 115 0.80 146.8 200.7
200 115 0.70 128.4 169.2
200 115 0.60 110.1 140.1
200 115 0.50 91.74 115
200 115 0.40 73.39 92.14
200 115 0.30 55.05 70.93
200 115 0.20 36.7 46.46
200 115 0.13 22.94 30.53
200 95 1.00 198.5 222.2
200 95 0.90 178.6 187.9
200 95 0.80 158.8 158.6
200 95 0.70 138.9 132.2
200 95 0.60 119.1 108.6
200 95 0.50 99.23 88.11
200 95 0.40 79.38 69.64
200 95 0.30 59.54 52.95
200 95 0.20 39.69 35.17
200 95 0.13 24.81 22.68
200 80 1.00 207.6 189.5
200 80 0.90 186.8 160.5
200 80 0.80 166.1 134.3
200 80 0.70 145.3 112.2
200 80 0.60 124.5 90.55
200 80 0.50 103.8 72.33
200 80 0.40 83.03 56.43
200 80 0.30 62.27 42.38
200 80 0.20 41.52 28.58
200 80 0.13 25.95 18.06
200 65 1.00 214.2 160.5
200 65 0.90 192.8 133.3
200 65 0.80 171.4 110.6
200 65 0.70 150 90.64
200 65 0.60 128.5 73.22
200 65 0.50 107.1 57.69
200 65 0.40 85.69 44.4
200 65 0.30 64.26 32.34
200 65 0.20 42.84 22.48
200 65 0.13 26.78 13.59
200 55 1.00 219 141.7
200 55 0.90 197.1 117.8
200 55 0.80 175.2 97.1
200 55 0.70 153.3 79.29
200 55 0.60 131.4 63.5
200 55 0.50 109.5 49.21
200 55 0.40 87.59 36.86
200 55 0.30 65.69 27.09
200 55 0.20 43.79 18.75
200 55 0.13 27.37 11.81
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Table A.5: Performance data - Model 225
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

225 115 1.00 199.8 309.6
225 115 0.90 179.8 270.7
225 115 0.80 159.9 233.9
225 115 0.70 139.9 199.3
225 115 0.60 119.9 167.7
225 115 0.50 99.92 139.9
225 115 0.40 79.93 113.6
225 115 0.30 59.95 88.03
225 115 0.20 39.97 59.99
225 115 0.13 24.98 38.65
225 95 1.00 219.4 247.6
225 95 0.90 197.5 213.9
225 95 0.80 175.5 182.8
225 95 0.70 153.6 153.2
225 95 0.60 131.6 126.5
225 95 0.50 109.7 102.4
225 95 0.40 87.76 81.21
225 95 0.30 65.82 61.48
225 95 0.20 43.88 40.89
225 95 0.13 27.42 25.24
225 80 1.00 231.3 206.5
225 80 0.90 208.2 178
225 80 0.80 185.1 152.5
225 80 0.70 161.9 127.2
225 80 0.60 138.8 105
225 80 0.50 115.7 84.79
225 80 0.40 92.53 66.43
225 80 0.30 69.4 50.78
225 80 0.20 46.27 34.04
225 80 0.13 28.92 21.69
225 65 1.00 240.1 176
225 65 0.90 216.1 150
225 65 0.80 192.1 126.2
225 65 0.70 168.1 104.1
225 65 0.60 144.1 84.24
225 65 0.50 120 66.53
225 65 0.40 96.04 51.59
225 65 0.30 72.03 38.25
225 65 0.20 48.02 25.92
225 65 0.13 30.01 15.55
225 55 1.00 245.5 154.7
225 55 0.90 220.9 131.3
225 55 0.80 196.4 110.2
225 55 0.70 171.8 90.59
225 55 0.60 147.3 72.68
225 55 0.50 122.7 56.14
225 55 0.40 98.2 43.23
225 55 0.30 73.65 32.29
225 55 0.20 49.1 21.84
225 55 0.13 30.69 13.45
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Table A.6: Performance data - Model 250
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

250 115 1.00 235.3 362.6
250 115 0.90 211.8 321.9
250 115 0.80 188.2 282
250 115 0.70 164.7 245.7
250 115 0.60 141.2 211.2
250 115 0.50 117.6 175.6
250 115 0.40 94.11 142.2
250 115 0.30 70.58 111.2
250 115 0.20 47.06 71.76
250 115 0.13 29.41 47.08
250 95 1.00 260 288.2
250 95 0.90 234 252
250 95 0.80 208 218.1
250 95 0.70 182 185.2
250 95 0.60 156 154.4
250 95 0.50 130 125.5
250 95 0.40 104 98.74
250 95 0.30 78.01 73.86
250 95 0.20 52.01 49.93
250 95 0.13 32.5 30.44
250 80 1.00 274.7 238.5
250 80 0.90 247.2 208.5
250 80 0.80 219.7 180.2
250 80 0.70 192.3 151.8
250 80 0.60 164.8 126.4
250 80 0.50 137.3 102.5
250 80 0.40 109.9 80.81
250 80 0.30 82.4 61.22
250 80 0.20 54.94 40.9
250 80 0.13 34.33 26.07
250 65 1.00 285.4 203.9
250 65 0.90 256.9 176.5
250 65 0.80 228.3 149.6
250 65 0.70 199.8 125.6
250 65 0.60 171.3 102
250 65 0.50 142.7 81.08
250 65 0.40 114.2 62.98
250 65 0.30 85.63 46.86
250 65 0.20 57.09 31.9
250 65 0.13 35.68 19.32
250 55 1.00 292.6 180.4
250 55 0.90 263.3 154.7
250 55 0.80 234 131.5
250 55 0.70 204.8 108.6
250 55 0.60 175.5 87.79
250 55 0.50 146.3 68.54
250 55 0.40 117 53.19
250 55 0.30 87.77 39.31
250 55 0.20 58.51 27.03
250 55 0.13 36.57 16.15
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Table A.7: Performance data - Model 275
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

275 115 1.00 250.1 390.9
275 115 0.90 225.1 344.1
275 115 0.80 200.1 301.6
275 115 0.70 175.1 260.7
275 115 0.60 150.1 223.6
275 115 0.50 125 186.5
275 115 0.40 100 150.3
275 115 0.30 75.03 116.8
275 115 0.20 50.02 75.82
275 115 0.13 31.26 49.84
275 95 1.00 275.7 310.2
275 95 0.90 248.1 271.3
275 95 0.80 220.5 233.6
275 95 0.70 193 198.9
275 95 0.60 165.4 164.9
275 95 0.50 137.8 134
275 95 0.40 110.3 104.9
275 95 0.30 82.7 78.55
275 95 0.20 55.13 52.99
275 95 0.13 34.46 32.47
275 80 1.00 291.8 260.2
275 80 0.90 262.6 224.5
275 80 0.80 233.4 194.2
275 80 0.70 204.2 163.1
275 80 0.60 175.1 136
275 80 0.50 145.9 109.4
275 80 0.40 116.7 85.59
275 80 0.30 87.53 64.79
275 80 0.20 58.35 43.3
275 80 0.13 36.47 27.54
275 65 1.00 302.4 220.9
275 65 0.90 272.1 190.3
275 65 0.80 241.9 161.7
275 65 0.70 211.7 135.2
275 65 0.60 181.4 109.7
275 65 0.50 151.2 86.98
275 65 0.40 120.9 66.94
275 65 0.30 90.71 49.65
275 65 0.20 60.47 33.89
275 65 0.13 37.8 20.59
275 55 1.00 310.1 195.8
275 55 0.90 279.1 168.5
275 55 0.80 248.1 141.9
275 55 0.70 217.1 117.8
275 55 0.60 186 94.6
275 55 0.50 155 74.01
275 55 0.40 124 56.69
275 55 0.30 93.02 41.86
275 55 0.20 62.01 28.79
275 55 0.13 38.76 17.25
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Table A.8: Performance data - Model 300
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

300 115 1.00 263 400.3
300 115 0.90 236.7 350.9
300 115 0.80 210.4 307
300 115 0.70 184.1 264.1
300 115 0.60 157.8 223.2
300 115 0.50 131.5 183.7
300 115 0.40 105.2 147.4
300 115 0.30 78.91 112.7
300 115 0.20 52.61 74.36
300 115 0.13 32.88 48.24
300 95 1.00 289.3 322.6
300 95 0.90 260.4 276.5
300 95 0.80 231.4 236.8
300 95 0.70 202.5 199.9
300 95 0.60 173.6 166.4
300 95 0.50 144.7 133.9
300 95 0.40 115.7 104.7
300 95 0.30 86.79 77.94
300 95 0.20 57.86 52.93
300 95 0.13 36.16 32.68
300 80 1.00 304.5 270.1
300 80 0.90 274.1 231.4
300 80 0.80 243.6 197.5
300 80 0.70 213.2 166.9
300 80 0.60 182.7 137.5
300 80 0.50 152.3 110.7
300 80 0.40 121.8 85.54
300 80 0.30 91.36 64.55
300 80 0.20 60.91 43.39
300 80 0.13 38.07 27.21
300 65 1.00 315.6 231.4
300 65 0.90 284 196
300 65 0.80 252.4 164.6
300 65 0.70 220.9 136.7
300 65 0.60 189.3 111.3
300 65 0.50 157.8 87.65
300 65 0.40 126.2 67.08
300 65 0.30 94.67 49.48
300 65 0.20 63.11 34.03
300 65 0.13 39.44 20.77
300 55 1.00 323.4 206.2
300 55 0.90 291.1 173.9
300 55 0.80 258.7 146.4
300 55 0.70 226.4 119.6
300 55 0.60 194.1 96.34
300 55 0.50 161.7 75.24
300 55 0.40 129.4 56.77
300 55 0.30 97.03 41.97
300 55 0.20 64.69 28.85
300 55 0.13 40.43 17.55
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Table A.9: Performance data - Model 325
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

325 115 1.00 287.3 433.9
325 115 0.90 258.5 384.8
325 115 0.80 229.8 336
325 115 0.70 201.1 280.6
325 115 0.60 172.4 228.7
325 115 0.50 143.6 187.8
325 115 0.40 114.9 151.4
325 115 0.30 86.18 117.5
325 115 0.20 57.45 76.42
325 115 0.13 35.91 50.17
325 95 1.00 315.1 351.6
325 95 0.90 283.6 312.6
325 95 0.80 252.1 264.6
325 95 0.70 220.6 216.2
325 95 0.60 189.1 174.8
325 95 0.50 157.6 139.3
325 95 0.40 126 109.6
325 95 0.30 94.53 82.3
325 95 0.20 63.02 55.39
325 95 0.13 39.39 34.99
325 80 1.00 329.3 303.2
325 80 0.90 296.4 259
325 80 0.80 263.4 219
325 80 0.70 230.5 182.6
325 80 0.60 197.6 145.2
325 80 0.50 164.7 115.2
325 80 0.40 131.7 88.7
325 80 0.30 98.79 67.67
325 80 0.20 65.86 44.98
325 80 0.13 41.16 28.57
325 65 1.00 340.6 259.5
325 65 0.90 306.6 219.3
325 65 0.80 272.5 183.2
325 65 0.70 238.5 149.1
325 65 0.60 204.4 118.2
325 65 0.50 170.3 91.02
325 65 0.40 136.3 69.52
325 65 0.30 102.2 51.19
325 65 0.20 68.13 35.26
325 65 0.13 42.58 21.64
325 55 1.00 348.5 229.9
325 55 0.90 313.6 193.6
325 55 0.80 278.8 161.9
325 55 0.70 243.9 131
325 55 0.60 209.1 102.3
325 55 0.50 174.2 77.58
325 55 0.40 139.4 58.46
325 55 0.30 104.5 44.46
325 55 0.20 69.69 29.69
325 55 0.13 43.56 18.75
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Table A.10: Performance data - Model 350
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

350 115 1.00 319.8 486.2
350 115 0.90 287.8 421.8
350 115 0.80 255.9 369
350 115 0.70 223.9 315.5
350 115 0.60 191.9 265.1
350 115 0.50 159.9 218.2
350 115 0.40 127.9 174.7
350 115 0.30 95.94 132.4
350 115 0.20 63.96 92.68
350 115 0.13 39.98 60.95
350 95 1.00 350.6 394.9
350 95 0.90 315.5 339.6
350 95 0.80 280.5 289.9
350 95 0.70 245.4 244.1
350 95 0.60 210.3 202
350 95 0.50 175.3 163.6
350 95 0.40 140.2 127.6
350 95 0.30 105.2 94.09
350 95 0.20 70.11 66.75
350 95 0.13 43.82 41.32
350 80 1.00 369.6 335.7
350 80 0.90 332.7 286.7
350 80 0.80 295.7 243.9
350 80 0.70 258.7 204.5
350 80 0.60 221.8 169.1
350 80 0.50 184.8 135.3
350 80 0.40 147.8 104.6
350 80 0.30 110.9 76.67
350 80 0.20 73.92 55.25
350 80 0.13 46.2 34.43
350 65 1.00 384.9 288.6
350 65 0.90 346.4 243.4
350 65 0.80 307.9 203.9
350 65 0.70 269.5 167.9
350 65 0.60 231 135.2
350 65 0.50 192.5 106.7
350 65 0.40 154 81.04
350 65 0.30 115.5 58.12
350 65 0.20 76.99 44.09
350 65 0.13 48.12 26.53
350 55 1.00 394.8 255.4
350 55 0.90 355.4 214.7
350 55 0.80 315.9 178.8
350 55 0.70 276.4 145.4
350 55 0.60 236.9 116.9
350 55 0.50 197.4 91.95
350 55 0.40 157.9 69.7
350 55 0.30 118.5 50.38
350 55 0.20 78.97 37.8
350 55 0.13 49.36 22.34
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Table A.11: Performance data - Model 400
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

400 115 1.00 369.6 552.4
400 115 0.90 332.7 478
400 115 0.80 295.7 421.2
400 115 0.70 258.7 362.3
400 115 0.60 221.8 308.6
400 115 0.50 184.8 255.8
400 115 0.40 147.9 205.9
400 115 0.30 110.9 156.4
400 115 0.20 73.93 103.9
400 115 0.13 46.2 64.81
400 95 1.00 403.9 456.5
400 95 0.90 363.5 392.8
400 95 0.80 323.1 334.1
400 95 0.70 282.7 284.4
400 95 0.60 242.3 237
400 95 0.50 202 193.3
400 95 0.40 161.6 151.8
400 95 0.30 121.2 120.1
400 95 0.20 80.78 76.65
400 95 0.13 50.49 46.52
400 80 1.00 426.8 391.1
400 80 0.90 384.1 333.7
400 80 0.80 341.4 282.9
400 80 0.70 298.7 237.6
400 80 0.60 256.1 197.9
400 80 0.50 213.4 159.6
400 80 0.40 170.7 125.4
400 80 0.30 128 100.4
400 80 0.20 85.35 63.33
400 80 0.13 53.35 38.3
400 65 1.00 445.4 337.5
400 65 0.90 400.9 282.6
400 65 0.80 356.3 235.3
400 65 0.70 311.8 193.5
400 65 0.60 267.3 156.9
400 65 0.50 222.7 124.4
400 65 0.40 178.2 93.77
400 65 0.30 133.6 79.89
400 65 0.20 89.09 47.6
400 65 0.13 55.68 27.53
400 55 1.00 457.1 296
400 55 0.90 411.4 247.7
400 55 0.80 365.7 204.8
400 55 0.70 320 167.7
400 55 0.60 274.3 135.9
400 55 0.50 228.6 107.5
400 55 0.40 182.9 81.18
400 55 0.30 137.1 69.29
400 55 0.20 91.43 41.24
400 55 0.13 57.14 23.95
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Table A.12: Performance data - Model 450
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

450 115 1.00 416.8 615.9
450 115 0.90 375.1 537.1
450 115 0.80 333.4 461.6
450 115 0.70 291.7 394.4
450 115 0.60 250.1 334.9
450 115 0.50 208.4 277.6
450 115 0.40 166.7 224
450 115 0.30 125 170.6
450 115 0.20 83.35 112.9
450 115 0.13 52.09 71.64
450 95 1.00 454.6 514.2
450 95 0.90 409.1 438
450 95 0.80 363.7 369.8
450 95 0.70 318.2 311.7
450 95 0.60 272.8 260
450 95 0.50 227.3 211.6
450 95 0.40 181.8 167.1
450 95 0.30 136.4 122.4
450 95 0.20 90.92 84.36
450 95 0.13 56.82 51.25
450 80 1.00 480.4 444.1
450 80 0.90 432.3 375.3
450 80 0.80 384.3 315.6
450 80 0.70 336.3 262.9
450 80 0.60 288.2 218
450 80 0.50 240.2 176.3
450 80 0.40 192.1 137.4
450 80 0.30 144.1 101
450 80 0.20 96.07 69.34
450 80 0.13 60.05 42.23
450 65 1.00 502 385.5
450 65 0.90 451.8 323.1
450 65 0.80 401.6 266.3
450 65 0.70 351.4 217.5
450 65 0.60 301.2 175.5
450 65 0.50 251 138.8
450 65 0.40 200.8 105.4
450 65 0.30 150.6 72.41
450 65 0.20 100.4 53.41
450 65 0.13 62.76 30.36
450 55 1.00 514.8 343.3
450 55 0.90 463.3 284
450 55 0.80 411.8 233.1
450 55 0.70 360.3 189.4
450 55 0.60 308.9 152.4
450 55 0.50 257.4 119.9
450 55 0.40 205.9 91.07
450 55 0.30 154.4 63.1
450 55 0.20 103 46.14
450 55 0.13 64.34 26.21

84



Table A.13: Performance data - Model 500
Nom. cap. (TR) Outdoor temp. (°F) Load ratio Capacity (TR) Power (kW)

500 115 1.00 459.8 691.7
500 115 0.90 413.8 599.6
500 115 0.80 367.8 510.4
500 115 0.70 321.9 428.8
500 115 0.60 275.9 356.3
500 115 0.50 229.9 291.5
500 115 0.40 183.9 231.9
500 115 0.30 137.9 175.4
500 115 0.20 91.96 116.8
500 115 0.13 57.47 73.27
500 95 1.00 501.9 577.8
500 95 0.90 451.7 495.1
500 95 0.80 401.5 415.5
500 95 0.70 351.3 345.4
500 95 0.60 301.1 282.5
500 95 0.50 250.9 226.4
500 95 0.40 200.8 176.4
500 95 0.30 150.6 129.6
500 95 0.20 100.4 88.91
500 95 0.13 62.74 53.38
500 80 1.00 528.9 497.7
500 80 0.90 476 426.6
500 80 0.80 423.1 356.2
500 80 0.70 370.2 293.2
500 80 0.60 317.4 239.1
500 80 0.50 264.5 190.5
500 80 0.40 211.6 145.1
500 80 0.30 158.7 105.9
500 80 0.20 105.8 73.42
500 80 0.13 66.12 43.18
500 65 1.00 552.5 437.4
500 65 0.90 497.3 369
500 65 0.80 442 304.5
500 65 0.70 386.8 246.9
500 65 0.60 331.5 196.3
500 65 0.50 276.3 152.4
500 65 0.40 221 114.4
500 65 0.30 165.8 78.55
500 65 0.20 110.5 57.85
500 65 0.13 69.07 31.53
500 55 1.00 567.5 389.4
500 55 0.90 510.7 329.3
500 55 0.80 454 269.2
500 55 0.70 397.2 217.1
500 55 0.60 340.5 171.4
500 55 0.50 283.7 132.4
500 55 0.40 227 99.42
500 55 0.30 170.2 68.65
500 55 0.20 113.5 50.31
500 55 0.13 70.94 27.5
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Appendix B

Chillers performance curves
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Figure B.1: Performance curves - Model 160

Figure B.2: Performance curves - Model 180

Figure B.3: Performance curves - Model 200
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Figure B.4: Performance curves - Model 225

Figure B.5: Performance curves - Model 250

Figure B.6: Performance curves - Model 275
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Figure B.7: Performance curves - Model 300

Figure B.8: Performance curves - Model 325

Figure B.9: Performance curves - Model 350
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Figure B.10: Performance curves - Model 400

Figure B.11: Performance curves - Model 450

Figure B.12: Performance curves - Model 500
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