
Comprehensibility of Source
Code with Feature Dependency

in Configurable Systems

Djan Almeida Santos

Conditional compilation is often used to implement variability in configurable systems. This

technique relies on #ifdefs to delimit feature code. Previous studies have shown that #ifdefs

may hinder code comprehensibility. However, those studies did not explicitly take feature

dependencies into account. Feature dependency occurs when different features refer to the

same program element, such as a variable. Comprehensibility may be even more affected in

the presence of feature dependency, as the developer must reason about different scenarios

affecting the same variable. Our goal is to understand how feature dependency affects the

comprehensibility of configurable system source code. We conducted four complementary

empirical studies. In Study 1, forty-six developers responded to an online experiment. They

executed tasks in which they had to analyze programs containing #ifdefs with and without

feature dependency. However, feature dependencies may be of different types depending

on the scope of the shared variable. In Study 1, we were not concerned with different types of

dependency. Thus, in Study 2, we carried out an experiment in which 30 developers

debugged programs with different types of feature dependency. Each program included a

different type of feature dependency: global, intraprocedural, or interprocedural. We used an

eye-tracking device to record developers' gaze movements while they debugged programs.

However, feature dependencies do not differ from each other only in terms of types. They can

also present differences in terms of number of dependent variables and degree of variability,

among others. To address those characteristics, we complemented Study 1 and 2 by means

of Studies 3 and 4. In Study 3, we executed a controlled experiment with 12 participants who

analyzed programs with different numbers of dependent variables and number of uses of

dependent variables. In Study 4, we carried out an experiment in which 12 developers

analyzed programs with different degrees of variability. Our results show that: (i) analyzing

programs containing #ifdefs and feature dependency required more time than programs

containing #ifdefs but without feature dependency, (ii) debugging programs with #ifdefs

and global or interprocedural dependency required more time and higher visual effort than

programs with intraprocedural dependency, (iii) the higher the number of dependent

variables the more difficult it was to understand programs with feature dependency, and (iv)

the degree of variability did not affect the comprehensibility of programs with feature

dependency. In summary, our studies showed that #ifdefs affected comprehensibility of

configurable systems in different degrees depending on the presence or not of feature

dependency, on the type of feature dependency, and on the number of dependent variables.

PGCOMP - Programa de Pós-Graduação em Ciência da Computação

Universidade Federal da Bahia (UFBA)

Av. Milton Santos, s/n - Ondina

Salvador, BA, Brasil, 40170-110

https://pgcomp.ufba.br

pgcomp@ufba.br

U
FB

A

Tese de Doutorado

Universidade Federal da Bahia

Programa de Pós-Graduação em

Ciência da Computação

Março | 2023

D
S
C

 | 0
4
1
 | 2

0
2
3

C
o

m
p

re
h

e
n

sib
ility o

f S
o

u
rce

 C
o

d
e
 w

ith
 Fe

a
tu

re
 D

e
p

e
n

d
e
n

cy in
 C

o
n

fig
u

ra
b

le
 S

yste
m

s
D

ja
n

 A
lm

e
id

a
 S

a
n

to
s

Universidade Federal da Bahia
Instituto de Computação

Programa de Pós-Graduação em Ciência da Computação

COMPREHENSIBILITY OF SOURCE CODE
WITH FEATURE DEPENDENCY IN

CONFIGURABLE SYSTEMS

Djan Almeida Santos

PHD THESIS

Salvador
28 de março de 2023

DJAN ALMEIDA SANTOS

COMPREHENSIBILITY OF SOURCE CODE WITH FEATURE
DEPENDENCY IN CONFIGURABLE SYSTEMS

Esta tese de doutorado foi apresen-
tada ao Programa de Pós-Graduação
em Ciência da Computação da Uni-
versidade Federal da Bahia como
parte do cumprimento parcial dos re-
quisitos para obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Dr. Cláudio Nogueira Sant’Anna
Co-orientador: Dr. Márcio de Medeiros Ribeiro

Salvador
28 de março de 2023

Ficha catalográfica elaborada pela Biblioteca Universitária de
Ciências e Tecnologias Prof. Omar Catunda, SIBI – UFBA.

S237 Santos, Djan Almeida

Comprehensibility of source code with feature dependency
in configurable systems / Djan Almeida Santos. – Salvador,
2023.

114p.: f.

Orientador: Prof. Dr. Cláudio Nogueira Sant’Anna

Coorientador: Prof. Dr. Márcio de Medeiros Ribeiro

Tese (Doutorado) – Universidade Federal da Bahia. Instituto
de Computação, 2023.

1. Systems - Configurable . 2. Computing. 3. Feature
dependency. I. Sant’Anna, Cláudio Nogueira. II. Ribeiro,
Márcio de Medeiros. III. Universidade Federal da Bahia. IV.
Título.

CDU 004.45

Djan Almeida Santos

Comprehensibility of Source Code with Feature Dependency in Configurable
Systems

Esta tese foi julgada adequada à obtenção do
título de Doutor em Ciência da Computação e
aprovada em sua forma final pelo Programa de
Pós-Graduação em Ciência da Computação da
UFBA.

 Salvador, 28 de março de 2023

Prof. Dr. Cláudio Nogueira Sant'Anna (Orientador - UFBA)

 Prof. Dr. Rohit Gheyi (UFCG)

Prof. Dr. Flávio Mota Medeiros (IFAL)

 Prof. Dr. Eduardo Santana de Almeida (UFBA)

Prof. Dr. Ivan do Carmo Machado (UFBA)

Stamp

Stamp

ACKNOWLEDGEMENTS

Consagre ao Senhor tudo o que você faz, e os seus planos serão bem-sucedidos. Provérbios
16:3. Primeiramente agradeço ao meu Senhor, meu Deus, por ter me permitido alcançar
esse objetivo. Por ter me dado forças e por ter me ajudado a nunca pensar em desistir.

Gostaria de agradecer ao meu orientador, o professor Cláudio Sant’Anna. Cláudio
muito obrigado por toda confiança, suporte, atenção, ensinamentos, e paciência dedi-
cados a mim durante esses anos. A forma como você conduziu a sua orientação foi
determinante para que eu chegasse até aqui, e espero poder repassar teus ensinamentos
a meus orientados na minha carreira acadêmica. Gostaria de agradecer também ao meu
coorientador, o professor Márcio Ribeiro. Sempre fui um grande admirador dos seus
trabalhos. Márcio muito obrigado por todas as nossas conversas, ensinamentos, e por
estar sempre disponível. A praticidade com que você conduziu nossos estudos foram
primordiais para que eles fossem exitosos. Muito obrigado de verdade! É um orgulho
tê-los como meus orientadores.

Gostaria de agradecer aos colegas do IFBA, campus Vitória da Conquista, vocês foram
essenciais desde o primeiro momento, quando me permitiram afastar da sala de aula, até
os últimos, quando participaram de todos os meus estudos. A vocês a minha gratidão e
espero retribuir com o mesmo carinho e preocupação que dispensaram a mim.

Gostaria de agradecer aos professores, Cláudio, Manoel, Eduardo, Rafael, temos ex-
celentes professores na UFBA. Foi prazeroso e desafiador os nossos momentos de aulas e
projetos. Também gostaria de citar dois professores da época do Mestrado, o professor
Paulo Bonomo, que sempre me socorreu nos meus problemas estatísticos, e o professor
Ronaldo Thibes, um dos grandes incentivadores da minha carreira científica. Também
gostaria de agradecer aos meus colegas da UFBA. Muitos estiveram presentes durante a
minha passagem pela UFBA, agradeço a todos por isso. Mas poucos compartilharam os
momentos de almoços, de viagens, de conselhos, e de risadas. Muito obrigado Luis Paulo,
Dósea, Crescêncio, Cláudio, Pablo, Tiago Motta, Leandro e Jonatas.

Gostaria de agradecer aos meus amigos Danilo e Maria. Sem eles, minha passagem
por Salvador teria sido muito custosa e solitária. Muito obrigado meus amigos por toda
receptividade e por me acolher tão bem.

Por último, e não menos importante, gostaria de agradecer a minha esposa Jéssica.
Ninguém mais que nossa família sente os efeitos de conviver com um doutorando. E
ela sempre compreensiva e dedicada a família. Aos meus filhos, Martim, Rael e Dimi,
que sempre souberam dosar suas energias no momento que papai estava em reunião ou
estudando. Nossos filhos são nossas alegrias. Aos meus pais, Vavá e Maurisa, meu irmão
Ialy, por estarem sempre ao meu lado e me darem todo incentivo e confiança. Amo todos
vocês.

v

ABSTRACT

Conditional compilation is often used to implement variability in configurable systems.
This technique relies on #ifdefs to delimit feature code. Previous studies have shown that
#ifdefs may hinder code comprehensibility. However, those studies did not explicitly take
feature dependencies into account. Feature dependency occurs when different features
refer to the same program element, such as a variable. Comprehensibility may be even
more affected in the presence of feature dependency, as the developer must reason about
different scenarios affecting the same variable. Our goal is to understand how feature
dependency affects the comprehensibility of configurable system source code. We con-
ducted four complementary empirical studies. In Study 1, forty-six developers responded
to an online experiment. They executed tasks in which they had to analyze programs
containing #ifdefs with and without feature dependency. However, feature dependencies
may be of different types depending on the scope of the shared variable. In Study 1, we
were not concerned with different types of dependency. Thus, in Study 2, we carried out
an experiment in which 30 developers debugged programs with different types of feature
dependency. Each program included a different type of feature dependency: global, in-
traprocedural, or interprocedural. We used an eye-tracking device to record developers’
gaze movements while they debugged programs. However, feature dependencies do not
differ from each other only in terms of types. They can also present differences in terms of
number of dependent variables and degree of variability, among others. To address those
characteristics, we complemented Study 1 and 2 by means of Studies 3 and 4. In Study
3, we executed a controlled experiment with 12 participants who analyzed programs with
different numbers of dependent variables and number of uses of dependent variables. In
Study 4, we carried out an experiment in which 12 developers analyzed programs with
different degrees of variability. Our results show that: (i) analyzing programs containing
#ifdefs and feature dependency required more time than programs containing #ifdefs but
without feature dependency, (ii) debugging programs with #ifdefs and global or inter-
procedural dependency required more time and higher visual effort than programs with
intraprocedural dependency, (iii) the higher the number of dependent variables the more
difficult it was to understand programs with feature dependency, and (iv) the degree
of variability did not affect the comprehensibility of programs with feature dependency.
In summary, our studies showed that #ifdefs affected comprehensibility of configurable
systems in different degrees depending on the presence or not of feature dependency, on
the type of feature dependency, and on the number of dependent variables.

Keywords: Configurable systems, comprehensibility, feature dependency.

vii

CONTENTS

Chapter 1—Introduction 1

1.1 General context . 1
1.2 Problem Statement . 5
1.3 Main goal and research questions . 6
1.4 Contributions . 7
1.5 Publications . 8
1.6 Chapter map . 8

Chapter 2—Background 9

2.1 Configurable Systems . 9
2.2 Conditional Compilation Directives . 9
2.3 Feature dependency . 11
2.4 Variability Bugs . 14
2.5 Comprehensibility of Programs . 15
2.6 Biometric equipments . 16

2.6.1 Eye Tracking device . 16
2.6.2 Smartwatch . 17

2.7 Related Work . 18
2.7.1 Feature Dependencies . 18
2.7.2 Online experiment about variability in Configurable Systems . . . 18
2.7.3 Experiments about Configurable Systems 19
2.7.4 Variability Bugs . 20
2.7.5 #Ifdefs in undisciplined ways . 20

Chapter 3—Study 1 21

3.1 Design . 21
3.2 Participants . 22
3.3 Programs . 23
3.4 Pilot Studies . 30
3.5 Procedure . 30
3.6 Result . 34

3.6.1 Time participant took to finish tasks with correct answer 34
3.6.2 Number of attempts needed until correct answer 35
3.6.3 Discussion . 35

3.7 Threats to Validity . 36

ix

x CONTENTS

3.7.1 Internal validity . 36
3.7.2 External validity . 36
3.7.3 Construct validity . 37

Chapter 4—Study 2 39

4.1 Design . 39
4.2 Participants . 41
4.3 Variability Bugs . 41
4.4 EXPERIMENT PROCEDURES . 45
4.5 Experimental Results . 46

4.5.1 Time to find bugs . 46
4.5.2 Number of correctly found bugs 48
4.5.3 Visual effort . 48
4.5.4 Discussion . 53

4.6 Threats to Validity . 55
4.6.1 Internal validity . 55
4.6.2 External validity . 55
4.6.3 Construct validity . 56

Chapter 5—Study 3 57

5.1 Design . 57
5.2 Participants . 58
5.3 Programs . 59
5.4 Areas Of Interest (AOI) . 65
5.5 Pilot studies . 66
5.6 EXPERIMENT PROCEDURES . 67
5.7 Tasks . 68
5.8 Experimental Results . 68

5.8.1 Time to provide the correct answer 69
5.8.2 Number of attempts needed until correct answer 69
5.8.3 Visual effort . 70
5.8.4 Heart-related biometrics . 73
5.8.5 Discussion . 74

5.9 Threats to Validity . 79
5.9.1 Internal validity . 79
5.9.2 External validity . 81
5.9.3 Construct validity . 81

Chapter 6—Study 4 83

6.1 Design . 83
6.2 Participants . 85
6.3 Programs . 86

CONTENTS xi

6.4 Areas Of Interest (AOI) . 90
6.5 EXPERIMENT PROCEDURES . 90
6.6 Tasks . 90
6.7 Experimental Results . 92

6.7.1 Time to provide the correct answer 92
6.7.2 Number of attempts needed until correct answer 93
6.7.3 Visual effort . 93
6.7.4 Heart-related biometrics . 96
6.7.5 Discussion . 96

6.8 Threats to Validity . 100

Chapter 7—Conclusion and Future Work 103

LIST OF FIGURES

2.1 Implementation of a configurable system with all multiple scenarios . . . 11
2.2 Eye movement during reading (JR; STAUB; RAYNER, 2007). 17

3.1 Latin Square (2x2). 22
3.2 Home page of the online experiment. 31
3.3 Example of how the Web system shows a task to the online experiment

participants. 32

4.1 Gaze transitions between AOIs for different types of feature dependency
in programs with the null pointer dereferenced bug. 51

4.2 Heat map and gaze transition diagram with initial scan 54

5.1 Latin Square design (2x2). 58
5.2 Program 1 and Program 2 highlighting variable definitions (orange) and

variable usages (red). 59
5.3 Program 3 and Program 4 highlighting variable definitions (orange) and

variable usages (red). 59
5.4 Areas of Interest of Program 1 and Program 2. 65
5.5 Areas of Interest of Program 3 and Program 4. 66
5.6 Gaze transitions diagram and attention map of programs 1 and 2. 71
5.7 Gaze transitions diagram and attention map of programs 3 and 4. 72
5.8 HRV and Stress Level collected by smartwatch 74
5.9 Gaze movements of Program 1 in the moment of HRV 75
5.10 Gaze movements of Program 3 in the moment of HRV 76
5.11 Gaze movements of Program 2 in the moment of HRV 77
5.12 gaze movements of Program 4 in the moment of HRV 80

6.1 Latin Square design (2x2). 84
6.2 Program 1 and Program 2 on domain 1 highlighting feature expressions,

feature constants, and dependent variables. 88
6.3 Program 3 and Program 4 on domain 2 highlighting feature expressions,

feature constant and dependent variables. 88
6.4 Areas of Interest of Program 1 and Program 2. 91
6.5 Areas of Interest of Program 3 and Program 4. 91
6.6 Gaze transitions diagram and attention map of programs 3 and 4. 94
6.7 Gaze transitions diagram and attention map of programs 3 and 4. 95
6.8 Individual scan path of participants from program 1 (less variability). . . 97
6.9 Gaze movements diagrams of Program 1 (less variability). 97

xiii

xiv LIST OF FIGURES

6.10 Gaze movements of Program 3 in the moment of HRV 99
6.11 Gaze movements of Program 2 in the moment of HRV 100
6.12 Gaze movements of Program 4 in the moment of HRV 101

LIST OF TABLES

2.1 Command set used in conditional compilation directives 10

3.1 Mean time and number of attempts needed for the all participant until
giving the correct answer for 3 tasks for each program 34

4.1 Latin square design . 40
4.2 Time results . 46
4.3 Mean time and found bugs for each types of dependency 47
4.4 Hits results . 48

5.1 Mean time to provide the correct answer (in seconds) 69
5.2 Total number of attempts needed until correct answer 69
5.3 Number of fixations . 70
5.4 Total number of HRV and Stress Level variations 73

6.1 Mean time to provide the correct answer (in seconds) 92
6.2 Total number of attempts needed until correct answer 93
6.3 Number of fixations . 93
6.4 Total number of HRV and Stress Level variations 96

xv

LISTING OF SOUCE CODE

1.1 Code example with feature implementation using #ifdef 2
1.2 Source code of GLib . 3
1.3 Modified source code of GLib . 4
1.4 Fixed variability bug in GLib . 4
2.1 Example of global dependency . 12
2.2 Example of intraprocedural dependency 13
2.3 Example of interprocedural dependency 13
2.4 Example of variability bug . 14
3.1 Code snippet of control product program with feature dependency 24
3.2 Code snippet of control product program without feature dependency . . 25
3.3 Code snippet of control vaccine program with feature dependency 27
3.4 Code snippet of control vaccine program without feature dependency . . 29
4.1 Code snippet of the null pointer dereference bug with #ifdef 42
4.2 Code snippet of the null pointer dereference bug without #ifdef 43
4.3 Code snippet of the logic error . 44
4.4 Code snippet of the undefined variable bug 44
5.1 Program 1: Sale of property domain with 2 dependent variable 60
5.2 Program 2: Sale of property domain with 4 dependent variables 62
5.3 Program 3: Grade calculation domain with 2 dependent variables 63
5.4 Program 4: Grade calculation domain with 4 dependent variables 64
6.1 Program 1: Sale of products domain with 3 feature expressions and 1

feature constant . 85
6.2 Program 2: Sale of products domain with 6 feature expressions and 3

feature constant . 86
6.3 Program 3: Game of hit the target domain with 3 feature expressions and

1 feature constant . 87
6.4 Program 4: Game of hit the target domain with 6 feature expressions and

3 feature constants . 89

xvii

Chapter

1
INTRODUCTION

1.1 GENERAL CONTEXT

Software development companies search for ways to increase productivity and reduce
production costs. Configurable systems have become a way (CLEMENTS; NORTHROP,
2002; SCHMID; RUMMLER, 2012; CAVALCANTE et al., 2012), as they support the
creation of different systems with adapted configurations, promoting the systematic reuse
of software components and assets (CLEMENTS; NORTHROP, 2003). Configurable sys-
tems are made up of several features that may be enabled or disabled allowing variability
(GARVIN; COHEN, 2011). The features that differ the configurations of a configurable
system are called variability (APEL; BEYER, 2011).

There are large industrial product lines (CLEMENTS; NORTHROP, 2002; BERGER
et al., 2014) and open-source systems, like the Linux kernel, that are examples of config-
urable systems (ABAL; BRABRAND; WASOWSKI, 2014; ABAL et al., 2018). Develop-
ing configurable systems requires developing codes that promote variability, in addition to
traditional implementations of features, structures, processes, interfaces, among others.
One of the techniques most used to allow variability is conditional compilation. By means
of preprocessor directives, like #ifdef, this technique allows developers to include or ex-
clude code fragments that will or will not be compiled (ERNST; BADROS; NOTKIN,
2002; LIEBIG et al., 2010; GARVIN; COHEN, 2011). While programming, developers
use #ifdefs to delimit code fragments related to optional or alternative features. Then,
only features explicitly enabled are compiled.

On the Listing 1.1, we have an example of using conditional compilation in code
snippets limited by #ifdefs. Between lines 8 and 11 we have a piece of code of feature A
and between lines 13 and 15 a piece of code of feature B. Each piece of code delimited
by #ifdefs is part of the scope of each feature and it will only be compiled if the features
are enabled. For a feature to be enabled, it must be previously defined and enabled in
a system configuration file or in the source code header itself. To define features we use
the command #define. Lines 4 and 5 on Listing 1.1 define and enable features A and
B. Therefore, this example illustrates a source code snippet where the source code of
features A and B will be compiled.

1

2 INTRODUCTION

Listing 1.1 Code example with feature implementation using #ifdef

1 # include <stdio .h>
2 # include <conio .h>
3 ...
4 # define A
5 # define B
6 ...
7 int main (){
8 #ifdef A
9 int x;

10 x = 1;
11 #endif
12 ...
13 #ifdef B
14 x++;
15 #endif
16 }

(BANIASSAD; MURPHY, 1998; RIBEIRO et al., 2010; MEDEIROS; RIBEIRO;
GHEYI, 2013a; RIBEIRO; BORBA; KÄSTNER, 2014; MEDEIROS et al., 2015; RO-
DRIGUES et al., 2016). Spencer and Collyer (SPENCER; COLLYER, 1992) presented,
in an initial study, some activities that are impaired by #ifdef during a maintenance task
and highlighted localizing feature dependencies as one of those activities. Medeiros et al.
(MEDEIROS et al., 2015; MEDEIROS et al., 2017a) focused their studies on evaluating
the number of possibilities for applying refactorings in configurable systems. They con-
cluded that the use of #ifdef generates several problems that harm refactorings, including
the fact that, #ifdefs tend to generate a high number of dependencies between features.
They also mentioned the importance of disciplining the use of #ifdef to facilitate the task
of maintenance (MALAQUIAS et al., 2017).

In Listing 1.1 we have an example of feature dependency. The variable x is defined
inside feature A and has its value incremented inside feature B. In this case, feature
B depends on feature A, because of variable x, which is, thus, called dependent vari-
able. Maintainability problems involving feature dependencies happen when a developer
changes the behavior of a dependent variable in a feature and does not consider all the
effects of this change on other dependent features. In Listing 1.1, a developer could, for
example, change the type or name of the variable x and this change would reflect on
feature B and all other features dependent on feature A.

Previous studies have stated that the use of code with #ifdef is prone to introducing
defects in source code and increasing the complexity of configurable systems (LIEBIG
et al., 2010; GARVIN; COHEN, 2011). For example, on in Listing 1.1 the developer
needs to mentally simulate the execution of the source code in Listing 1.1 considering
four possible configuration scenarios: (i) only feature A enabled, (ii) only feature B
enabled, (iii) both features enabled and (iv) both features disabled. These possibilities
for various configuration combinations make configurable systems complex and difficult
to understand. Comprehensibility is hinder because the multiple scenarios obfuscate the
source code, making maintenance defect-prone and costly (CAFEO et al., 2012). As a

1.1 GENERAL CONTEXT 3

consequence, the so-called variability bugs are likely to be introduced.
A variability bug is a defect that occurs only in some scenarios of a configurable

system, but not in all, when features are enabled or not (ERNST; BADROS; NOTKIN,
2002; MEDEIROS; RIBEIRO; GHEYI, 2013a; ABAL; BRABRAND; WASOWSKI, 2014;
MEDEIROS et al., 2015; BRAZ et al., 2016). Listing 1.1 shows an example of a variability
bug involving feature dependency. If a developer chooses a configuration with feature A
disabled and feature B enabled, we will have a variability bug, as the piece of code where
variable x is defined (feature A) will not be compiled and the piece of code of feature B uses
x variable on line 7. In this case, the compiler will not warn the programmer that there
is an undefined variable bug, since the compiler still does not know which features will be
compiled. The developer will only realize this when compiling a configuration in which
this defect appears. Some studies show that variability defects occur frequently (ERNST;
BADROS; NOTKIN, 2002; GARVIN; COHEN, 2011; MEDEIROS; RIBEIRO; GHEYI,
2013a; ABAL; BRABRAND; WASOWSKI, 2014; MEDEIROS et al., 2015; BRAZ et al.,
2016; ABAL et al., 2018).

Listing 1.2 Source code of GLib

1 GInetAddress * g_inet_address_new_from_string (...) {
2 #ifdef G_OS_WIN32
3 struct sockaddr_storage sa;
4 ...
5 gint len;
6 #else /* NOT G_OS_WIN32 */
7 ...
8 #endif
9 (void) g_inet_address_get_type ();

10 ...
11 }

Listing 1.2 displays a code snippet from GLib1, a real configurable system avail-
able in the Git repository2. GLib is a general purpose library for applications written
in C. Line 1 of Listing 1.2 presents the g_inet_address_new_from_string function
that parses a string containing an IP address. Inside this function, there is a call to
g_inet_address_get_type() (line 9). To ensure that the compiler did not optimize the
return value of this function, the developer had to modify this code. For this, She or he
added a variable to the source code to receive the return value of the function. Listing
1.3 shows these modifications. The developer added a type variable on line 5 in blue
and on line 10 in yellow she or he assigns the return value of the function to the type
variable.

Observing Listing 1.3 we noticed that these changes generated a variability defect.
The defect happens because the type variable (line 5) was defined inside a #ifdef block
and, therefore, is only accessible when the G_OS_WIN32 feature is enabled. If we do not
enable G_OS_WIN32, that is, in a non-Windows system, we will get an “undefined variable”

1https://developer.gnome.org/glib/
2https://git.gnome.org/browse/glib/

4 INTRODUCTION

variability bug because the variable type will be used without having been defined and
we will not be able to compile the code. Note that this case is simple, but it happens
frequently in real configurable systems because of the different features of the system
(ABAL; BRABRAND; WASOWSKI, 2014). This type of bug, as well as the one in the
Listing 1.1 are not accused by compilers or identified during code development, sometimes
they are only identified at compile time or runtime if the feature containing the defect is
enabled in that configuration.

Listing 1.3 Modified source code of GLib

1 GInetAddress * g_inet_address_new_from_string (...) {
2 #ifdef G_OS_WIN32
3 struct sockaddr_storage sa;
4 ...
5 volatile GType type;
6 gint len;
7 #else /* NOT G_OS_WIN32 */
8 ...
9 #endif

10 type = g_inet_address_get_type ();
11 ...
12 }

Listing 1.4 Fixed variability bug in GLib

1 GInetAddress * g_inet_address_new_from_string (...) {
2 volatile GType type;
3 #ifdef G_OS_WIN32
4 struct sockaddr_storage sa;
5 ...
6 gint len;
7 #else /* NOT G_OS_WIN32 */
8 ...
9 #endif

10 type = g_inet_address_get_type ();
11 ...
12 }

Listing 1.4 shows a code modification to fix the variability bug. The developer moved
the definition of the variable type to a mandatory part of the code, moving it from line 5
to line 2. The result of this modification is the code in the Listing 1.4. This modification
guarantees the presence of the code that defines the variable type (in blue) ceasing this
dependency and correcting the problem.

Many researchers suggest that scenarios like GLib, which need modification in source
code with #ifdefs, increase problems and maintenance effort, as they harm the compre-
hensibility by forcing the developer to think about different scenarios affecting the same
variable (CATALDO et al., 2009; RIBEIRO et al., 2010; RIBEIRO et al., 2012; QUEIROZ
et al., 2012; SCHULZE et al., 2013; RIBEIRO; BORBA; KÄSTNER, 2014; RODRIGUES

1.2 PROBLEM STATEMENT 5

et al., 2016; CAFEO et al., 2016; MELO; BRABRAND; WASOWSKI, 2016; MELO et
al., 2017; MALAQUIAS et al., 2017; OLIVEIRA; CAFEO; HORA, 2019).

1.2 PROBLEM STATEMENT

This section provides an overview of the research problems that motivate thesis.
Problem 1: Feature dependency can affect the comprehensibility of con-

figurable systems.
Configurable systems usually include a high number of features implemented with

#ifdefs. Thus, it is likely that two or more features share program elements and obfuscate
the source code, causing difficulty for understanding it.

The developer when debugging codes with #ifdef needs to reason about different pos-
sible scenarios to understand a configurable system. Schulze et al. (SCHULZE et al.,
2013) showed that #ifdefs make program debugging more difficult and time-consuming.
Melo et al. (MELO et al., 2017) compared source code snippets with and without #ifdefs
and confirmed that #ifdefs increased debugging time and developer visual effort. How-
ever, these studies do not explicitly consider feature dependencies when investigating the
comprehensibility of source code with #ifdef. The effort to understand source code that
contains feature dependencies can be even higher than code without dependencies, as
developers need to reason about different scenarios that affect the same variable.

Problem 2: Influence of feature dependency types on source code compre-
hensibility of configurable systems.

Feature dependencies are common in practice (RIBEIRO; BORBA; KÄSTNER, 2014).
Source code with feature dependency have different characteristics that depend on the
definition scope of the shared variable. Rodrigues et al. defined three types of features
dependencies: global, intraprocedural, and interprocedural (RODRIGUES et al., 2016).
Rodrigues et al. (RODRIGUES et al., 2016) stated that interprocedural dependencies
occur more frequently and that they can be more difficult to detect and correct. However,
it is necessary to understand more clearly and with other perspectives how #ifdefs affect
comprehensibility when their use causes different types of feature dependency.

Problem 3: Influence of the number of dependent variables on the com-
prehensibility of source code of configurable systems.

#ifdefs affect comprehensibility when their use implies different types of feature de-
pendencies (SANTOS; SANT’ANNA, 2019). However, feature dependencies do not differ
from each other only in terms of types, they can also present differences in terms of the
number of dependent variables, the number of uses of each of these variables, variability,
functions, data flow, control-flow, among others.

The dependency between two features may include just one dependent variable or
more than one. It is reasonable to suspect that a high number of dependent variables
and their uses makes the analysis of variability scenarios more complex. In this sense, it is
also important investigating whether the comprehensibility of configurable systems varies
not only based on the types of feature dependencies but also according to the number of
dependent variables present in the source code.

Problem 4: Influence of degree of variability on the comprehensibility of

6 INTRODUCTION

source code of configurable systems.
A study by Melo et al. (MELO; BRABRAND; WASOWSKI, 2016) indicates that

the time to find defects in configurable systems increases linearly with the increase of
variability. Their study also reveals that increasing the variability does not affect the
effectiveness of finding defects. Despite an important contribution, their study did not
control the number of dependent variables either the number of uses of dependent vari-
ables.

It is necessary to understand more clearly how degrees of variability affect program
comprehension controlling factors that influence in the comprehensibility of source code
of configurable systems like feature expressions, feature constant and dependent variables.

1.3 MAIN GOAL AND RESEARCH QUESTIONS

This work addresses the following overall research question:

How does feature dependency affect the comprehensibility of configurable
systems source code?

In this context, our general objective is to investigate the influence of feature depen-
dency on the comprehensibility of source code of configurable systems implemented with
#ifdefs. Besides the presence of feature dependency, we investigate some characteris-
tics of feature dependencies we suppose that can impact source code comprehensibility,
namely: (i) types of dependency, (ii) number of dependent variables, and (iii) number
of feature expressions and feature constants involved in the dependencies. For this, we
undertake empirical analyses that take into account the cognitive and behavioral factors
of developers, supported by eye tracker and heart rate monitor (smartwatch).

We expected that our findings with this work can inspire, as future work, the cre-
ation of tools to support programmers for the challenges of reasoning about dependencies
between features, contributing to more effective debugging and, ultimately, decreasing
defects in configurable systems.

RQ1: Does feature dependency affect the comprehensibility of configurable systems?

Our first research question deals with problem 1 (Section 1.2). We investigated
whether or not code containing feature dependency affected the comprehensibility of
configurable systems.

For that we carried out our Study 1, an online experiment with forty-six developers.
A online experiment is a research method for collecting information that describes, com-
pares or explains knowledge, attitudes, and behaviors (PFLEEGER; KITCHENHAM,
2001; KOHAVI et al., 2009; BAKSHY; ECKLES; BERNSTEIN, 2014). Participants per-
formed tasks in which they had to analyze programs containing #ifdef with and without
feature dependency. We quantified comprehensibility by means of the time and number
of tentative participants took to answer each task correctly.

RQ2: How do different types of feature dependency affect source code comprehensibility
of configurable systems?

1.4 CONTRIBUTIONS 7

This research question refers to problem 2. Therefore, we investigated how different
types of feature dependencies affect the comprehensibility of configurable systems.

We performed Study 2, a controlled experiment with 30 participants who debugged
programs with different types of feature dependencies while their eye movements were
recorded. We quantified comprehensibility using metrics based on participants’ visual
effort, time spent on each task, and number of tasks performed correctly.

RQ3: How do different numbers of dependent variables affect the comprehensibility of
configurable system source code?

This research question answered Problem 3. Thus, we analyzed how the compre-
hensibility of configurable systems were affected by feature dependencies with different
characteristics in terms of number of dependent variables.

For that, we executed Study 3, a controlled experiment with 12 participants who
analyzed programs trying to specify the output. We quantified comprehensibility using
metrics based on time and tentative to answer tasks correctly, participants visual effort
and participants’ heart rate.

RQ4: How do degrees of variability affect the comprehensibility of configurable system?

This research question answered Problem 4. Thus, we investigated how the com-
prehensibility of configurable systems were affected by degrees of variability taking into
account dependent variables, feature expressions and feature constant.

For that, we executed Study 4, a controlled experiment with 12 participants who
analyzed programs trying to specify the output. We also quantified comprehensibility
using metrics based on time and tentative to answer tasks correctly, participants visual
effort and participants’ heart rate.

1.4 CONTRIBUTIONS

The contributions of this thesis are:

• Feature dependency state-of-the-art since we contributed to updating the knowledge
of feature dependency in configurable systems;

• Understanding how feature dependencies affect comprehensibility in terms of the
time and attempt to specify the output in configurable systems (Chapter 3).

• Understanding how different types of feature dependency affect the comprehensi-
bility in terms of the time, attempt, and visual effort of bug-finding in configurable
systems (Chapter 4).

• Understanding how different numbers of dependent variables affect the comprehen-
sibility in terms of the time, tentative, visual effort, and heart rate variability of
specify the output in configurable systems (Chapter 5).

8 INTRODUCTION

• Understanding how different degrees of variability affect comprehensibility in terms
of the time, tentative, visual effort, and heart rate variability of specify the output
in configurable systems (Chapter 6).

• Providing the first studies of feature dependency using smartwatch (Chapter 5 and
Chapter 6).

• All material from the empirical studies was made publicly available on the web so
that the studies can be replicated or extended in further investigations;

1.5 PUBLICATIONS

We published the papers listed below in chronological order.
1. SANTOS, D.; SANTANNA, C. Influência da Dependência entre features na Com-

preensibilidade do Código Fonte de Sistemas Altamente Configuráveis In: Anais do Work-
shop de Teses e Dissertações do CBSOFT. São Carlos - SP - Brazil, 2018. p. 62-70.

2. SANTOS, D.; SANTANNA, C. How does feature dependency affect configurable
system comprehensibility?. IEEE/ACM 27th International Conference on Program Com-
prehension (ICPC), 2019, Montreal - Quebec - Canadá, pp. 1929. doi:10.1109/ICPC.2019.
00016.

We submit for publication the journal:
3. SANTOS, D.; SANTANNA, C; RIBEIRO, M. Comprehensibility of feature depen-

dency in configurable system using #ifdef: Two empirical studies. Submitted to Journal
of Systems and Software.

1.6 CHAPTER MAP

We divided this document as follows:

• Chapter 2 provides an overview of the background of this research. In particular,
we present the notion of conditional compilation, feature dependency and compre-
hensibility evaluation using eye tracking and smartwatch.

• Chapter 3 aims to answer RQ1 showing the results of an online experiment con-
ducted with software developers that investigated if feature dependency affect com-
prehensibility of configurable systems.

• Chapter 4 aims to answer RQ2 showing the results of a controlled experiment,
with which we analyzed how different types of feature dependency affect the com-
prehensibility of configurable systems.

• Chapter 5 aims to answer RQ3 showing the results of a controlled experiment,
with which we investigated how dependent variables affect the comprehensibility of
configurable systems.

• Chapter 6 summarizes our work by describing what we have done in the context of
this research. In addition, we point out perspectives on future research directions.

Chapter

2
BACKGROUND

2.1 CONFIGURABLE SYSTEMS

Configurable systems consist of features (functionalities) that can be enabled or disabled
allowing a great variability in the instantiation of different configurations of a system
(GARVIN; COHEN, 2011). Configurable systems create configurations by combining a
reusable set of features to instantiate products to meet the requirements of industry seg-
ments and extend portability across different hardware platforms. Configurable systems
include industrial product lines (CLEMENTS; NORTHROP, 2002; POHL; BÖCKLE;
LINDEN, 2005; BERGER et al., 2014) and open-source systems. In some cases, such as
in the Linux kernel, thousands of feature configuration options are used to control the
compilation process (BERGER et al., 2013b).

Software variability supports the development of configurable systems. Variability is
the concept that allows deriving software systems (program variants) from a common
source code by setting configuration options as enabled or disabled.(MELO et al., 2017).
In other words, variability means that the developer can control whether to include or
exclude certain features from a program variant. Configuration options range from small
pieces of code to entire modules (APEL et al., 2013).

It can be said that the main purpose of developing configurable systems is to man-
age variability, support the automated generation of products and facilitate the reuse
and adaptation of systems to different contexts (APEL et al., 2013). To implement
configurable systems, various technologies can be used: object-oriented patterns, aspect-
oriented programming, domain-specific languages and code generation, plug-in mecha-
nisms, and so on. Among these, C preprocessor (cpp) conditional compilation directives
are one of the oldest, simplest, and most popular mechanisms in use (ERNST; BADROS;
NOTKIN, 2002; KÄSTNER; APEL; KUHLEMANN, 2008; LIEBIG et al., 2010).

2.2 CONDITIONAL COMPILATION DIRECTIVES

Programmers often use conditional compilation directives to implement variability (LE;
WALKINGSHAW; ERWIG, 2011). In the C language, pre-processing directives can be

9

10 BACKGROUND

recognized by the # symbol in the first column of the line in which they occur, and instruct
the pre-processor whether a given piece of code should be compiled or not, according to
the evaluation of a conditional expression. Every decision structure must be terminated
by #endif (FOROUZAN; GILBERG, 2000).

In Table 2.1, adapted from Forouzan and Gilbert, we show the set of commands for
conditional compilation that can be used for implementing variabilities (FOROUZAN;
GILBERG, 2000).

Table 2.1 Command set used in conditional compilation directives
Command Meaning
#if expression Enables the inclusion of the code, if the expression is true.
#endif Delimits the end of conditional compilation.
#else Specifies the alternative code in a decision of two optional features.
#elif Specifies the alternate code in a decision of several features.
#ifdef feature Abbreviation of command #if associated with the expression defined.
#ifndef feature Abbreviation of command #if associated with the expression !defined.

The #if directive controls compilation of parts of a source file. If the expression we
write (after the #if) has a non-zero value, the group of lines immediately following the
#if directive will be compiled. However, on configurable systems, the most common way
to define features is using the #ifdef command which is the #if command including the
abbreviation of expression defined. All conditional compilation directives such as #if
and #ifdef must match a closing #endif directive before the end of the file. Otherwise,
an error message will be generated.

The preprocessor will include code from features, evaluating each #ifdef or #elif until
it finds an expression with a feature enabled. If all occurrences of #ifdef are disabled
features or if no #elif appears, the preprocessor will include the code associated with
the #else clause. The #if, #elif, #else, and #endif directives can nest within the text
parts of other #if directives. Each nested #else, #elif, or #endif directive belongs to the
closest previous #ifdef directive.

To exemplify how configurable systems are implemented using conditional compilation
directives, we present Figure 2.1 adapted from Oliveira et al. (OLIVEIRA; CAFEO;
HORA, 2019). On the left side we have the base code of the configurable system without
going through the preprocessor. We have two features (A and B) delimited by #ifdef and
#endif commands. Between lines 4 and 6 of the base code we have the code for feature A
and between lines 7 and 9 the code for feature B. Pieces of code delimited by #ifdefs are
part of the scope of each feature and will only be present in the final build of the product
if features are enabled during pre-processing. This process is illustrated on the right side
of Figure 2.1, in the four possible configurations after pre-processing the base code. The
pre-processing process of this base code resulted in four programs with different source
codes.

Figure 2.1 presents four configurations which we can obtain from the base code. Con-
figuration 1 presents the possibility that features A and B are enabled, in this case when
executing such code, the output value is number 11. In configuration 2, feature A is

2.3 FEATURE DEPENDENCY 11

enabled and feature B disabled, so the code referring to feature B was not included in
this configuration, and the system output is value 10. In configuration 3, where feature
A and B are disabled, the output value is 0. Configuration 4, where only feature B is
enabled, the system output is the value 1.

Figure 2.1 Implementation of a configurable system with all multiple scenarios

Using conditional compilation for variability. In this case, variability means that
specific features may or may not compile (ERNST; BADROS; NOTKIN, 2002; LIEBIG
et al., 2010). The base code can originate different configurations, according to the
amount of features present in it.

2.3 FEATURE DEPENDENCY

In Section 2.2, we discuss conditional compilation and see how this technique allows for
variability in configurable systems. Despite its ease of use and the advantages of allowing
variability, the use of conditional compilation can imply in feature dependencies.

Feature dependencies happen whenever a developer defines a variable in a feature and
uses the same variable in another feature i.e. when two or more features use the same
variable (BANIASSAD; MURPHY, 1998; RIBEIRO et al., 2010; RIBEIRO; BORBA;
KÄSTNER, 2014; RODRIGUES et al., 2016).

For example, in Listing 2.1, the variable final_grade is defined in the feature CALCULA-
TE_GRADE. Furthermore, final_grade is used on features APPLY_PENALTY (line 10) and
RESULT (lines 16 and 18). Therefore, there is features dependency between: (i) features
CALCULATE_GRADE and APPLY_PENALTY, (ii) features CALCULATE_GRADE and RESULT and
(iii) features APPLY_PENALTY and RESULT. In this example, the variable final_grade is
called dependent variable because it is the code element that causes the dependency.

12 BACKGROUND

In Listing 2.1, the developer needs to consider the following scenarios to understand
the behavior of the variable final_grade: (i) both features APPLY_PENALTY and RESULT
enabled; (ii) both features APPLY_PENALTY and RESULT disabled; (iii) APPLY_PENALTY
enabled and RESULT disabled, and (iv) vice versa. The developer does not need to simulate
scenarios with and without the feature CALCULATE_GRADE, because it encompasses all the
code in the file. Mental simulation of all these scenarios can increase the comprehension
effort.

Listing 2.1 Example of global dependency

1 #ifdef CALCULATE_GRADE
2 float final_grade = 0;
3 #ifdef APPLY_PENALTY
4 const float penalty = 1.5;
5 int exceeded_time = 0;
6 #endif
7 int main () {
8 printf ("Enter the student grade :");
9 scanf ("%f", & final_grade);

10 #ifdef APPLY_PENALTY
11 printf ("Enter the exceeded time in minutes :");
12 scanf ("%f", & exceeded_time);
13 final_grade = final_grade - (exceeded_time * penalty);
14 #endif
15 #ifdef RESULT
16 if (final_grade >= 0 && final_grade < 5)
17 printf (" disapproved ");
18 else if(final_grade >=5 && final_grade <7)
19 printf (" approved to MS.C.");
20 else
21 printf (" approved to Ph.D.");
22 #else
23 printf ("Final Grade = %f", final_grade);
24 #endif
25 ...
26 #endif

Based on the scope of definition and use of the dependent variable, Rodrigues et al.
(RODRIGUES et al., 2016) defined three types of dependency between features: global,
intraprocedural and interprocedural.

A Global Dependency occurs when different features refer to the same global vari-
able. Listing 2.1 is an example of a global dependency. The variable final_grade (line
2) is a global variable defined in CALCULATE_GRADE and used by features RESULT and
APPLY_PENALTY. As previously explained final_grade is a dependent variable on this
example.

An Intraprocedural Dependency occurs when different features within a function refer
to the same local variable. Listing 2.2 illustrates an intraprocedural dependency. In
this case, the dependent variable is days_delay, which is defined inside the function
return_book(). Still inside the function return_book(), the variable days_delay is

2.3 FEATURE DEPENDENCY 13

used by features FINE_IN_CASH (line 11) and PUNISHMENT_IN_DAYS (line 13).

Listing 2.2 Example of intraprocedural dependency

1 void return_book () {
2 #ifdef FINE_IN_CASH
3 const float fine_rate_day = 1.5, fine_amount = 0;
4 #endif
5 #ifdef PUNISHMENT_IN_DAYS
6 const int days_of_punishment =1, days_punished = 0;
7 #endif
8 int days_delay = 2;
9 if(days_delay >0){

10 #ifdef FINE_IN_CASH
11 fine_amount = days_delay * fine_rate_day ;
12 #ifdef PUNISHMENT_IN_DAYS
13 days_punished = days_delay * days_of_punishment ;
14 #endif
15 #endif
16 }
17
18 int main () {
19 return_book ();
20 ...

Listing 2.3 Example of interprocedural dependency

1 float calc_points (float total_points){
2 ...
3 #ifdef CONSIDER_SPECIALIZATION
4 bool isSpecialist = true;
5 #endif
6 #ifdef CONSIDER_SPECIALIZATION
7 if(isSpecialist)
8 total_points += 1;
9 #endif

10 ...
11 return total_points ;
12 }
13 int main () {
14 float total_points = 0;
15 total_points = calc_points (total_points);
16 printf ("Total points = %.2f", total_points);
17 ...

An Interprocedural Dependency occurs when a variable is defined or used in a function
and the content of that variable is passed as an argument to another function. In the
first function, the variable is manipulated by a feature and, in the second function,
the argument is used by another feature. Listing 2.3 exemplifies an interprocedural
dependency. The variable total_points is defined in the function main() (line 14). Its
content is passed to function calc_points(), where the corresponding parameter is used

14 BACKGROUND

by feature CONSIDER_SPECIALIZATION (line 10). Despite not being inside an #ifdef, the
main() function is also considered part of a feature, in this case, a mandatory feature. A
feature is called mandatory when its presence is mandatory in all system configurations
(CZARNECKI; HELSEN; EISENECKER, 2005). The other classifications for features
are: (i) optional when a feature may or may not be necessary; (ii) inclusive alternative,
when one or more features must be chosen; (iii) exclusive alternative, when only one of
the features is needed; (iv) mutually inclusive alternative when two or more features are
always needed together (CZARNECKI; HELSEN; EISENECKER, 2005).

2.4 VARIABILITY BUGS

Listing 2.4 Example of variability bug

1 #ifdef CALCULATE_GRADE
2 float final_grade = 0;
3 #ifdef APPLY_PENALTY
4 const float penalty = 1.5;
5 int exceeded_time = 0;
6 #endif
7 int main () {
8 printf ("Enter the student grade :");
9 scanf ("%f", & final_grade);

10 #ifdef APPLY_PENALTY
11 printf ("Enter the exceeded time in minutes :");
12 scanf ("%f", & exceeded_time);
13 final_grade = final_grade - (exceeded_time * penalty);
14 #endif
15 #ifdef RESULT
16 if (final_grade >= 0 && final_grade < 5)
17 printf (" disapproved ");
18 else if(final_grade >=5 && final_grade <7)
19 printf (" approved to MS.C.");
20 else
21 printf (" approved to Ph.D.");
22 #else
23 printf ("Final Grade = %f", final_grade);
24 #endif
25 ...
26 #endif

Features in a configurable system interact with and influence the functionality of
other features. When these interactions induce errors that manifest themselves in certain
configurations but not in others, or that manifest themselves differently in different con-
figurations, we call it variability bug (ABAL; BRABRAND; WASOWSKI, 2014). As the
number of configurations is exponential in the number of features, it is not always trivial
to analyze each configuration separately. As a result, variability bugs occur frequently
(ABAL; BRABRAND; WASOWSKI, 2014; ABAL et al., 2018). We use the term bug to
refer to faults or defects in the program. A bug is an incorrect instruction in software,

2.5 COMPREHENSIBILITY OF PROGRAMS 15

introduced into code as a result of human error. Bugs lead software to fail, such as a
pointer being null when it should not be (IEEE, 1990).

Listing 2.4 shows an example of a variability bug involving dependency between fea-
tures. In this code snippet we have two features. Feature RESULT (lines 15 to 24) and
feature APPLY_PENALTY (lines 3 to 6 and 10 to 14). Feature RESULT prints the result
obtained by a student in a language proficiency test. In this case, the result depends on
the value of the variable final_grade. Feature APPLY_PENALTY imposes a penalty on
the student if she or he exceeds the duration of the test. In this case, the student’s result
(variable final-grade) is decremented. The dependency between features is established
when both use the same variable (final_grade) to calculate the student’s grade. A
change in the value of the variable in one of the features may compromise the behavior
of the other feature.

Still in the Listing 2.4, we can see that the feature APPLY_PENALTY gives rise to two
programs with different configurations. One configuration with feature APPLY_PENALTY
enabled and another with feature APPLY_PENALTY disabled. Feature APPLY_PENALTY is
optional, it may or may not be enabled when instantiating a product. A variability bug
occurs when feature APPLY_PENALTY is enabled and the value of time exceeded by the
student (variable exceeded_time) is large enough for the variable final_grade to have
a negative value. In this case the program will fail because feature RESULT will print a
wrong result. It is important to point out that variability bugs occur only in specific
configurations and not in others.

2.5 COMPREHENSIBILITY OF PROGRAMS

Program comprehension is the activity of understanding how a software system or part
of it works. Previous studies have found that program comprehension is an important
cognitive process in software development, because developers spend most of their time
trying to understand source code (MAYRHAUSER; VANS; HOWE, 1997; TIARKS,
2011). According to Singer et al. (SINGER et al., 2010), program comprehension occurs
primarily before code changes, because developers need to explore source code and other
artifacts to identify and understand the relevant code subset for the intended change.
The strategies followed to understand software may vary between developers, depending
on their personality, experience, skills, task at hand or used technology (MAALEJ et
al., 2014). Program comprehension is a knowledge-intensive activity in which developers
consume and produce a significant amount of knowledge about the software in question.
Comprehension can be seen as the product of the development and coordination of various
skills, such as reading (including word recognition), reading fluency, syntactic processing
and knowledge of the meanings of words (RAYNER et al., 2006). It is difficult to identify
which elements contribute to a high or low comprehension rate. Thus, identifying the
factors that contribute to comprehension continues to challenge researchers.

Research on program comprehension began more than 50 years (SACKMAN; ERIK-
SON; GRANT, 1966). During that time, numerous studies were conducted to investigate
how developers understand source code. In the past, to measure program comprehensi-
bility, researchers used different techniques, such as: think-aloud protocols, memorization

16 BACKGROUND

and comprehension tasks.
Think-aloud protocols can be seen as protocols when people speak loudly what they

are thinking, or introspection. This technique has been used to observe cognitive pro-
cesses where participants verbalize their thoughts, which are usually recorded in audio or
video (SHAFT; VESSEY, 1995). The think-aloud protocol is a common technique, even
today, for observing the comprehension process. Memorization tasks were another way
to measure comprehensibility. This technique tested whether developers remembered a
piece of source code they had seen earlier. They had to memorize and then reproduce the
learned code. Although it seems strange today, since to understand a code the developer
does not need to memorize and reproduce it, this was one of the most used techniques
in the first studies on comprehensibility (SAMMET, 1983). Comprehension tasks were a
technique known as “fill in the blanks”. Developers were only able to fill in the blanks
in code if they first understood it (SOLOWAY; EHRLICH, 1984). As we will see be-
low, most of these approaches to measuring comprehensibility have evolved to include
biometric equipment to capture human factors.

Software systems are everywhere these days, and there are hundreds of programming
languages, design patterns, IDEs and other tools and techniques that are designed to
support program comprehension. However, it is difficult to understand the cognitive
processes of developers when they work with these tools. Thus, one of the challenges of
software engineering is to measure comprehensibility considering the human factor.

Traditionally, comprehensibility studies mainly use metrics based on the program-
mer’s ability and time to perform a task (HOFMEISTER et al., 2017; MELO et al.,
2017). In addition to these conventional techniques, researchers are also embracing new
measurement techniques to gain new perspectives on program comprehension. Recent
works indicate that evaluating the comprehensibility of programs is a challenge for soft-
ware engineering since it is necessary to consider cognitive aspects of the developers, which
can only be measured by means of biometric equipment (SIEGMUND, 2016; SHARIF;
FALCONE; MALETIC, 2012).

2.6 BIOMETRIC EQUIPMENTS

2.6.1 Eye Tracking device

Some studies (RAYNER, 1998; RAYNER et al., 2006; RAYNER, 2009) indicate that
monitoring eye movements during reading can provide valuable information about moment-
to-moment comprehension processes. In this sense, the inclusion of eye tracking and other
biometric equipment (such as heart rate monitor, blood flow meter, magnetic resonance
image) in scientific research involving the capture of individual’s cognitive aspects is in-
creasing (SIEGMUND, 2016; SHARIF; FALCONE; MALETIC, 2012). An eye tracker
lets you capture data on where participants are looking. Figure 2.2 show three main com-
ponents of eye movements during reading: saccades, fixations, and regressions. Studies
indicate that these components are related to comprehensibility (RAYNER et al., 2006;
JR; STAUB; RAYNER, 2007; RAYNER, 2009; HOFMEISTER et al., 2017).

While it usually appears that our eyes are gliding smoothly across the page of text as

2.6 BIOMETRIC EQUIPMENTS 17

Figure 2.2 Eye movement during reading (JR; STAUB; RAYNER, 2007).

we read, in reality, they make a series of rapid movements (saccades) separated by pauses
(fixations) that usually last approximately 200-250 ms (JR; STAUB; RAYNER, 2007;
RAYNER et al., 2006). An eye fixation is a type of movement in which the gaze stops
on an object of interest to obtain information (RAYNER et al., 2006; HOFMEISTER et
al., 2017). Saccade movements are very quick voluntary movements between fixations.
Among the saccade movements, the regressions are performed in the opposite direction
to the reading direction (RAYNER, 2009). Return-sweeps are an essential eye movement
that takes the readers’ eyes from the end of one line of text to the start of the next.
While return-sweeps are common during normal reading, the eye-movement literature is
dominated by single-line reading studies where no return-sweeps are needed (JR; STAUB;
RAYNER, 2007; RAYNER et al., 2006).

When readers encounter words that are more difficult to identify (eg, low-frequency
words) or syntactically complex sentences, fixations become longer (RAYNER et al.,
2006). It is generally assumed that as the text gets more difficult, readers make longer
and more fixations, shorter saccades, and more regressions (RAYNER, 1998; RAYNER
et al., 2006; JR; STAUB; RAYNER, 2007; RAYNER, 2009).

When the empirical questions focus on text or source code comprehensibility, some
measures can be calculated, for example, the time of the first fixation, the time of all
fixations in a region, the number of fixations in a region since the first entry into a
region, the number of regressions, the amplitude of the regressions, however, the most
useful measure in data analysis may vary with the specific study (SHARIF; FALCONE;
MALETIC, 2012; SHARIF et al., 2013).

2.6.2 Smartwatch

Changes in the cognitive load influence the way the Autonomic Nervous System regulates
the cardiovascular system and causes detectable variations of the heart rate known as
heart rate variability (WALTER; PORGES, 1976; FRITZ et al., 2014; HIJAZI et al.,
2021). One of the most important non-invasive markers used to access the regulation
mechanisms of the Autonomic Nervous System over the cardiovascular system is heart
rate variability, which is based on the evaluation of changes of time periods between
consecutive cardiac cycles. (NAKAGAWA et al., 2014; COUCEIRO et al., 2019).

Heart rate variability (HRV) refers to the variation in time between successive heart-
beats, also known as beat-to-beat intervals. The idea of using HRV to detect changes in

18 BACKGROUND

the cognitive load is not new (WALTER; PORGES, 1976; TARVAINEN; RANTA-AHO;
KARJALAINEN, 2002). However, the within-subject measurements of HRV are still un-
certain because each subject exhibits distinct heart rate rhythms. To mitigate this risk,
it is needed to capture a baseline of each subject and normalize the data with it.

Previous research has shown that certain biometric measures, such as heart rate vari-
ability can be linked to task difficulty or difficulty in comprehending small code snippets
(FRITZ et al., 2014; MÜLLER; FRITZ, 2015; HIJAZI et al., 2021).

Stress level is the result of analysis of heart rate variability. Where the smartwatch
device analyzes heart rate variability to determine your overall stress. The stress level
range is from 1 to 100, where 1 is a very low-stress state and 100 is a very high-stress
state (GARMIN, 2017).

2.7 RELATED WORK

In this section, we discuss related work. Studies related to feature dependencies are
presented in subsection 2.7.1, while studies related to empirical studies about configurable
systems are discussed in subsections 2.7.2 and 2.7.3.

2.7.1 Feature Dependencies

A variety of studies focused on feature dependencies. Liebig et al. defined structural
metrics that measure the complexity of feature dependency (LIEBIG et al., 2010). They
introduce, for example, several metrics that reflects the occurrences of #ifdef, number
lines of feature code and the average nesting depth of #ifdefs. They applied the metrics
in forty configurable systems. The study pointed out that code snippets with feature
dependency imply a propensity for errors and a decrease in the abstraction of the feature
code, which may be linked to low understanding. Rodrigues et al. classified the types of
feature dependency (RODRIGUES et al., 2016). They also established a set of metrics
that measure the occurrence of each type of dependency. Ribeiro et al. showed that
feature dependency occurs in 65% of the methods of the systems they studied (RIBEIRO
et al., 2012). Thus, feature dependency often occurs in practice.

It seems reasonable that more lines of feature code or the more feature expressions
in a program, more difficult it will be to understand. However, software measurements
cannot fully capture the complex process of understanding source code (SIEGMUND,
2016). Thus, we should not rely solely on measures based on code properties to quantify
program comprehension. It is necessary to evolve to a scenario that includes the human
factor in the process. In this context, we included the human factor in our studies.

2.7.2 Online experiment about variability in Configurable Systems

Some online experiments were conducted with developers to evaluate different aspects
of variability. Berger et al. conducted an online experiment with industrial practition-
ers to investigate what they perceived as benefits and challenges of variability modeling
(BERGER et al., 2013a). Their results show that industrial product line developers in-
dicate a much wider applicability of variability modeling, exceeding simple configuration

2.7 RELATED WORK 19

modeling with variability management, requirements specification, design and architec-
ture planning. Villela et al. conducted an online experiment with practitioners from
organizations developing systems with much variability in order to identify the variabil-
ity management approaches currently used by companies (VILLELA et al., 2014). Muniz
et al. evaluated the perception of developers in variability bugs on configurable systems
with #ifdefs, and the tools and strategies used for developers to identify and remove
them. Their results show that developers care about variability bugs, they may not de-
tect some variability bugs reported in the bug trackers, and do not use proper tools to
deal with them. Some variability bugs occur due to two feature interactions (MUNIZ et
al., 2018).

Due to some limitations for online experiment executions, for example, a limited
set of pre-defined questions, and inaccurate or incomplete answers, it is complicated for
researchers to conduct online experiments on program comprehension. Our challenge
was to conduct an online experiment where participants answered tasks while analyzing
programs. online experiments can reach a large number of people from different countries
in a short amount of time.

2.7.3 Experiments about Configurable Systems

Previous studies performed controlled experiments with developers to evaluate different
aspects of configurable system source code. Schulze et al. observed that finding and
correcting errors is a time-consuming and tedious task in the presence of preprocessor
annotations (SCHULZE et al., 2013). Santos et al. carried out a quasi-experiment
focused on understanding how variability affects bug-finding tasks using feature-oriented
programming and conditional compilation. Their results show no significant statistical
differences regarding the evaluated measures (correctness, understanding, or response
time) in the tasks (SANTOS et al., 2019). In addition, some controlled experiments used
biometric devices to evaluate humans’ behavior while debugging programs. Siegmund
et al. used images captured from a functional magnetic resonance imaging (fMRI) to
identify patterns of brain activation for small comprehension tasks (SIEGMUND et al.,
2014). However, due to the high cost of these types of equipment, researchers focuses
more on using eye trackers and smartwatch to measure aspects of human cognition and
attention.

Couceiro et al. show that mental effort of programmers in code understanding tasks
can be monitored through heart rate variability (COUCEIRO et al., 2019), Müller et al.
carried out an experiment to identify code quality concerns while a developer is making
a change to the code (MüLLER; FRITZ, 2016). In the same way, Hijazi et al. used a
smartwatch device to identify regions of source code that cause developerss comprehension
difficulty to provide real-time comprehension support (HIJAZI et al., 2021). We carried
out the first studies on configurable systems using heart rate metrics.

Kevic et al. used eye tracing device to identify the navigational behavior of the
developer when performing a source code change activity (KEVIC et al., 2015). Costa
et al. evaluated whether disciplined #ifdef annotations correlate with improvements in
code comprehension and visual effort using an eye tracker (COSTA et al., 2021a). Melo et

20 BACKGROUND

al. used an eye-tracking device to evaluate the comprehensibility of configurable systems
(MELO et al., 2017). However, they compared programs with and without #ifdef of only
two domains. Moreover, they did not analyzed their data taking feature dependency into
account. This is the main difference from our work, which explicitly analyzed in details
how feature dependency affect the comprehensibility of configurable systems and how
feature dependency affect the comprehensibility of source codes containing #ifdefs.

Medeiros et al. performed an empirical study to evaluate a technique of detect-
ing configuration-related weaknesses in configurable systems (MEDEIROS et al., 2020).
Fenske et al. showed that functions with #ifdefs generally changed more frequently and
more profoundly than other functions (FENSKE; SCHULZE; SAAKE, 2017a).

2.7.4 Variability Bugs

A group of researchers investigated the types of errors and bugs in source code of con-
figurable systems. Medeiros et al. found and identified syntax errors in releases and
commits of configurable systems (MEDEIROS; RIBEIRO; GHEYI, 2013b). In another
study, Medeiros et al. performed an empirical study with 15 systems and identified some
types of errors that developers have made in source code containing #ifdefs (MEDEIROS
et al., 2015). Abal et al. performed a qualitative study about 42 bugs collected from
bug-fixing commits of the Linux kernel repository, a large configurable system. They
provided insights into the nature and occurrence of what they call as variability bugs, i.e.
bugs caused by the use of #ifdefs (ABAL; BRABRAND; WASOWSKI, 2014).

2.7.5 #Ifdefs in undisciplined ways

A variety of studies have focused on investigating problems when developers use the
#ifdefs in undisciplined ways. Malaquias et al. analyzed the importance of disciplined
use of #ifdefs to facilitate the maintenance of configurable systems (MALAQUIAS et al.,
2017). Medeiros et al. proposed a catalog of refactorings to convert undisciplined #ifdef
usages into disciplined ones (MEDEIROS et al., 2017b). Da Costa et al. conducted
a controlled experiment with the use of eye tracker to compare comprehensibility of
programs with disciplined and undisciplined use of #ifdefs. (COSTA et al., 2021b).

Chapter

3
STUDY 1 - AN ONLINE EXPERIMENT ON HOW

FEATURE DEPENDENCY AFFECTS PROGRAM
COMPREHENSIBILITY

In this chapter, we describe the online experiment that aims at evaluating the impact
of feature dependency on the comprehensibility of configurable systems. Configurable
systems usually include a high number of features implemented with #ifdefs. But not
all #ifdefs cause feature dependency. A feature dependency occurs in a configurable
system when source code snippets of different features share code elements, like a variable.
Several studies criticize #ifdef because their use obfuscates the source code, causing
difficulty for understanding it. In this context, the following research question guided our
study:
– How does feature dependency affect the comprehensibility of configurable
system?

3.1 DESIGN

As the COVID-19 pandemic was still ongoing in many parts of the world we performed
an online experiment with 46 developers, who analyzed programs trying to specify the
output. They analyzed different programs with and without feature dependency. We
compared the comprehension effort they spent to analyze each program. We quantified
comprehension effort based on two perspective: (i) the time the developers took to analyze
each program and (ii) the number of attempts until the developers provide the correct
answer. More details about these metrics are given in Section 3.6.

In order to avoid the learning effect, we used programs in two different domains. One
domain was the simulation of control of products for sale (Domain 1). The other domain
was the simulation of vaccination management for covid 19 (Domain 2). Each domain was
implemented in two versions: with and without feature dependency. So we implemented
four programs. Each participant realized tasks in both domains, yet some participants
answered tasks about Domain 1 (Product control program) with feature dependency and

21

22 STUDY 1

Developer 1

Developer 2

Developer 1

Domain 1 Domain 2

Without Feature
Dependency

Without Feature
Dependency

With Feature
Dependency

With Feature
Dependency

Figure 3.1 Latin Square (2x2).

the others answered tasks about the same Domain 1 (Product control program), but
without feature dependency.

We designed our study 1 as a standard Latin Square. The 2x2 Latin Square we
adopted can be explained by means of Figure 3.1. Its columns are labeled with Domain 1
and Domain 2. Its rows are labeled with Developer 1 and Developer 2. The four squares
in the center contains four programs with two treatments: programs with and without
feature dependency. Therefore, according to his or her row, each developer performed
tasks by analyzing two different programs in two different domains, one with feature
dependency and the other without.

The Latin Square design controls one factor and its variations, ensuring that no row
or column contains the same treatment twice. Our factor is the presence of feature
dependency. Each line of our Latin Square has two programs in two different domains
arranged in different orders to avoid learning effects. We developed a web system for
the participants to answer the tasks. The system randomizes the programs for each
participant, balancing, therefore, the Latin Square with the same number of data points
for all programs. As we had 46 participants, we obtained 92 data points, 23 data points
for each of the four programs.

3.2 PARTICIPANTS

In total, we counted with four undergraduates, three postgraduate students, six master
students, seven doctoral students, nine have master degree, nine have doctoral degree,
and eight professors. Twenty-one of the participants are developers from industry. Re-
garding the experience with programming languages, thirty participants reported having
an experience with C for over than ten years. In addition, seven reported having it for
five to ten years, five for two to five years. Regarding their #ifdef background knowledge,
six participants are researchers working on topics related to #ifdef, thirteen frequently
work with source code containing #ifdef, seventeen worked with source code containing
#ifdef a few times, four have never worked with source code containing #ifdef but were
able to understand the logic during the online experiment.

3.3 PROGRAMS 23

3.3 PROGRAMS

Feature dependency are common in configurable systems. More than half of functions
with preprocessor directives have intraprocedural dependencies, while over a quarter of
all functions have interprocedural dependencies (RODRIGUES et al., 2016). However,
we could not use real system source code in our study 1 due to the following restrictions:
Domain. Our programs had to be on domains which our participants would be able to
easily understand it. So, we avoided programs from configurable systems in complex
domains, such as Linux.
Language. In order to simplify the understanding and to widen the audience of potential
participants, we had versions of the programs with identifier names in English and versions
in Portuguese, so that the participants could choose the language they were more familiar
with.
Small programs. To avoid fatigue on the participants.

Keeping those restrictions in mind, we have created small programs, based on real
systems, in two popular domain and written in C. We had variable names, feature names,
function names and messages in English or in Portuguese for each program. The four
programs are similar to each other in terms of number of lines of code (LOC) (LANZA;
MARINESCU, 2007), number of features (APEL et al., 2013) and McCabe cyclomatic
complexity (CC) (MCCABE, 1976). Following, we describe each program that we imple-
mented.

Program 1 - Product control program with feature dependency. Listing 3.1
shows a code snippet of Program 1, which implements features of Domain 1 with feature
dependency. It is about products that can be discard or returned. If the product is adul-
terated it will be discarded and if the product is expired it will be returned. It has three
features: CONTROL_EXPIRATION, CONTROL_STORE and CONTROL_RETURN. CONTROL_EXPIRA-
TION sorts products by expiration date. CONTROL_STORE checks if a product is adulterated
and CONTROL_RETURN checks if a product can be returned.

Listing 3.1 shows the version of Domain 1 with feature dependency. Listing 3.1 has
the following dependent variables: (i) numberOfProduct, defined in line 4 (mandatory
feature) and used on feature CONTROL_RETURN in line 40. It is a global dependency. (ii)
numberOfDicardedProducts, defined in line 26 (mandatory feature) and used on feature
CONTROL_RETURN in line 41. This variable was defined and used within of discardProduct()
function. It is a intraprocedural dependency. (iii) p defined in line 21 (mandatory feature)
within of discardProduct() function. It is also parameter on feature CONTROL_EXPIRATION
in line 23. This dependency is an interprodecural dependency.

Program 2 - Product control program without feature dependency. Listing
3.2 shows a code snippet of Program 2, which implements features of Domain 1 without
feature dependency. This program implements the same product control domain of Pro-
gram 1. The difference that exists between both versions is the use of dependent variables.
It is about dispatching products based on their purchase date. The program has three fea-
tures: CONTROL_WEIGHT, ORDER_DELIVERY_QUEUE and CONTROL_FRAGILE_PRODUCT. The
feature CONTROL_WEIGHT verifies if the product is heavier than the limit. The feature
ORDER_DELIVERY_QUEUE sorts the products by purchase date and the feature CONTROL_FRA-

24 STUDY 1

GILE_PRODUCT checks if the product is fragile.

Listing 3.1 Code snippet of control product program with feature dependency

1 ...
2 struct Product {
3 char productName [50];
4 int numberOfProduct = 0;
5 #ifdef CONTROL_EXPIRATION
6 char expiry_date [9];
7 #endif
8 #ifdef CONTROL_STORE
9 bool adulterated ;

10 #endif
11 #ifdef CONTROL_RETURN
12 bool can_return ;
13 #endif
14 };
15 #ifdef CONTROL_EXPIRATION
16 bool checkExpiration (char expiry_date [9]) {
17 ...}
18 void orderByExpiration (Product p[4]) {
19 ...}
20 #endif
21 void discardProduct (Product p[4]) {
22 #ifdef CONTROL_EXPIRATION
23 orderByExpiration (p);
24 #endif
25 int i, n = 4;
26 int numberOfDiscardedProducts = 0;
27 int numberOfReturnedProducts = 0;
28 for (i = 0; i < n; i ++) {
29 printf ("\n Product name: %s " , p[i]. productName);
30 printf ("\n Number of product : %d " , p[i]. numberOfProduct);
31 #ifdef CONTROL_STORE
32 if (p[i]. adulterated) {
33 #endif
34 numberOfDiscardedProducts += p[i]. numberOfProduct ;
35 # ifdef CONTROL_EXPIRATION
36 if (checkExpiration (p[i]. expiry_date)) {
37 # endif
38 #ifdef CONTROL_RETURN
39 if (p[i]. can_return) {
40 numberOfReturnedProducts += p[i]. numberOfProduct ;
41 numberOfDiscardedProducts -= p[i]. numberOfProduct

;
42 printf ("\n Product returned ");
43 } else
44 #endif
45 printf ("\n Product discarded ");
46 # ifdef CONTROL_EXPIRATION
47 }
48 # endif

3.3 PROGRAMS 25

49 #ifdef CONTROL_STORE
50 }
51 #endif
52 }
53 printf ("\n Number of Discarded Products : %d " ,

numberOfDiscardedProducts);
54 printf ("\n Number of returned products : %d " ,

numberOfReturnedProducts);
55 }
56 int main (){
57 Product p[4] ;
58 ...
59 discardProduct (p);
60 return 0;
61 }

Listing 3.2 Code snippet of control product program without feature dependency

1 ...
2 struct Product {
3 char productName [50];
4 char purchaseDate [9];
5 bool dispatched ;
6 #ifdef CONTROL_WEIGHT
7 float weight ;
8 #endif
9 #ifdef CONTROL_FRAGILE_PRODUCT

10 bool fragileProduct ;
11 #endif
12 } p[4];
13 ...
14 #ifdef ORDER_DELIVERY_QUEUE
15 void orderDelivery () {
16 ...}
17 #endif
18 void dispatchedProduct () {
19 # ifdef ORDER_DELIVERY_QUEUE
20 orderDelivery ();
21 # endif
22 # ifdef CONTROL_WEIGHT
23 float limitWeightDelivery = 300;
24 # endif
25 #ifdef CONTROL_FRAGILE_PRODUCT
26 int fragileProductTotal = 0;
27 #endif
28 int i, n = 4;
29 for (i = 0; i < n; i ++) {
30 if (!p[i]. dispatched) {
31 #ifdef CONTROL_FRAGILE_PRODUCT
32 if (!p[i]. fragileProduct) {
33 #endif
34 #ifdef CONTROL_WEIGHT

26 STUDY 1

35 if (p[i]. weight < limitWeightDelivery) {
36 #endif
37 printf ("\n Product name: %s", p[i]. productName);
38 printf ("\n Product purchase date: %s", p[i].

purchaseDate);
39 #ifdef CONTROL_WEIGHT
40 printf ("\n Weight : %.2f", p[i]. weight);
41 #endif
42 #ifdef CONTROL_FRAGILE_PRODUCT
43 if (!p[i]. fragileProduct) {
44 printf ("\n fragile product : No");
45 }
46 #endif
47 p[i]. dispatched = true;
48 break ;
49 #ifdef CONTROL_WEIGHT
50 } else
51 printf ("\n Overweight delivery product ! The

customer must come to pick the product !");
52 #endif
53 # ifdef CONTROL_FRAGILE_PRODUCT
54 } else {
55 printf ("\n Fragile product ! The customer must come to

pick the product !");
56 fragileProductTotal ++ ;
57 }
58 # endif
59 }
60 if (i == n - 1)
61 printf ("\n There are no products to be dispatched !!!");
62 }
63 }
64 int main (){
65 ...
66 dispatchedProduct ();
67 return 0;
68 }

Listing 3.2 shows the version of Domain 1 without feature dependency. Program 2
is similar to Program 1 in terms of number of lines of code (LOC), number of features
and McCabe cyclomatic complexity (CC). The global variable weight is defined in line 7
and used in line 35. The intraprocedural variable limitWeightDelivery is defined in line
23 and used in line 35.

Program 3 - Vaccine control program with feature dependency. Listing
3.3 shows a code snippet of Program 3, which implements Domain 2 with feature de-
pendency. It is about vaccines available for use. If a vaccine is expired or is reserved
for use in second dose application it will be unavailable for use. It has three features:
CONTROL_EXPIRATION, CONTROL_SECOND_DOSE and CONTROL_TEMPERATURE. The feature
CONTROL_EXPIRATION sorts vaccines by expiration date. CONTROL_SECOND_DOSE checks if
a vaccine is reserved for use in second dose application and the feature CONTROL_TEMPERATU-

3.3 PROGRAMS 27

RE sorts vaccine by the lowest storage temperature.

Listing 3.3 Code snippet of control vaccine program with feature dependency

1 ...
2 struct Vaccine {
3 char vaccineBrand [50];
4 int numberOfAvailableVaccines ;
5 # ifdef CONTROL_SECOND_DOSE
6 int numberOfRequireDoses ;
7 # endif
8 # ifdef CONTROL_EXPIRATION
9 char expiry_date [9];

10 # endif
11 # ifdef CONTROL_TEMPERATURE
12 int temperatureOfStorage ;
13 # endif
14 };
15 #ifdef CONTROL_TEMPERATURE
16 void orderTemperatureQueue (Vaccine v[4]) {
17 ...}
18 #endif
19 #ifdef CONTROL_EXPIRATION
20 bool checkExpiration (char expiry_date [9]) {
21 ...}
22 #endif
23 void provideVaccineBatch (Vaccine v[4]) {
24 # ifdef CONTROL_TEMPERATURE
25 orderTemperatureQueue (v);
26 # endif
27 int i, n = 4;
28 int generalNumberOfVaccinesForUse = 0;
29 int generalNumberOfVaccinesBlocked = 0;
30 for (i = 0; i < n; i ++) {
31 #ifdef CONTROL_EXPIRATION
32 if (! checkExpiration (v[i]. expiry_date)) {
33 #endif
34 #ifdef CONTROL_SECOND_DOSE
35 if (v[i]. numberOfAvailableVaccines > v[i].

numberOfRequireDoses) {
36 #endif
37 printf ("\n Vaccine ’s Brand : %s " , v[i].

vaccineBrand);
38 #ifdef CONTROL_SECOND_DOSE
39 v[i]. numberOfAvailableVaccines = v[i].

numberOfAvailableVaccines - v[i].
numberOfRequireDoses ;

40 #endif
41 generalNumberOfVaccinesForUse += v[i].

numberOfAvailableVaccines ;
42 v[i]. numberOfAvailableVaccines = 0;
43 #ifdef CONTROL_SECOND_DOSE
44 v[i]. numberOfAvailableVaccines = v[i].

28 STUDY 1

numberOfRequireDoses ;
45 printf ("\n Number of available vaccines : %d " , v[i

]. numberOfAvailableVaccines);
46 printf (" \n Number of vaccines reservedr to second

dose: %d doses " , v[i]. numberOfRequireDoses);
47 #endif
48 # ifdef CONTROL_SECOND_DOSE
49 } else {
50 printf ("\n Number of vaccines below the limit for

second dose.");
51 generalNumberOfVaccinesBlocked += v[i].

numberOfAvailableVaccines ;
52 }
53 # endif
54 #ifdef CONTROL_EXPIRATION
55 } else {
56 printf (" \n Expired vaccine . It will not be allowed .");
57 generalNumberOfVaccinesBlocked += v[i].

numberOfAvailableVaccines ;
58 }
59 #endif
60 }
61 printf (" \n Number of vaccine to use: %d " ,

generalNumberOfVaccinesForUse);
62 }
63 int main (){
64 Vaccine v[4];
65 ...
66 provideVaccineBatch (v);
67 return 0;
68 }

Listing 3.3 shows the version of Domain 2 with feature dependency. The program
has the following dependent variables:(i) numberOfAvailableVaccines defined in line 4
(mandatory feature) and used on feature CONTROL_SECOND_DOSE in line 35, 39 and 44. It is
a global dependency. (ii) generalNumberOfVaccinesBlocked defined in line 29 (mandatory
feature) and used on feature CONTROL_SECOND_DOSE in line 51. The variable were defined
and used within of provideVaccineBatch() function. It is a intraprocedural dependency.
(iii) v defined in line 23 (mandatory feature) within of provideVaccineBatch() function
and is parameter on feature CONTROL_EXPIRATION in line 25. This dependency is an
interprodecural dependency.

Program 4 - Vaccine control program without feature dependency. Listing
3.4 shows a code snippet of the program four implemented without feature dependency.
This program implements the same Domain 2. It is about how can be vaccinated. The
program has three features: CONTROL_AGE, ORDER_PREGNANT and CONTROL_ORDER_QUEUE.
CONTROL_AGE verifies if the patient age is greater than the limit. ORDER_ORDER_QUEUE
sorts the patients by age and CONTROL_PREGNANT checks if the patient is pregnant.

Listing 3.2 shows the version of Domain 2 without feature dependency. Program 4
is similar to program 3 in terms of number of lines of code (LOC), number of features

3.3 PROGRAMS 29

and McCabe cyclomatic complexity (CC). The global variable age is defined in line 5 and
used in line 39. The intraprocedural variable vaccinateAgeLimit is defined in line 23 and
used in line 32.

Listing 3.4 Code snippet of control vaccine program without feature dependency

1 ...
2 struct Patient {
3 char name [40];
4 #ifdef CONTROL_AGE
5 int age;
6 #endif
7 char gender ;
8 #ifdef CONTROL_PREGNANT
9 bool pregnant ;

10 #endif
11 bool vaccinated ;
12 } p;
13 ...
14 #ifdef ORDER_QUEUE
15 void orderPatientQueue () {
16 ...}
17 #endif
18 void vaccinate () {
19 # ifdef ORDER_QUEUE
20 orderPatientQueue ();
21 # endif
22 # ifdef CONTROL_AGE
23 int vaccinateAgeLimit = 40;
24 # endif
25 # ifdef CONTROL_PREGNANT
26 int pregnantTotal = 0;
27 # endif
28 int i, n = 4;
29 for (i = 0; i < n; i ++) {
30 if (!p[i]. vaccinated) {
31 #ifdef CONTROL_AGE
32 if (p[i]. age > vaccinateAgeLimit) {
33 #endif
34 #ifdef CONTROL_PREGNANT
35 if (!p[i]. pregnant) {
36 #endif
37 printf (" patient ’s name: %s \n", p[i]. name);
38 #ifdef CONTROL_AGE
39 printf ("Age: %d \n", p[i]. age);
40 #endif
41 printf (" Gender : %c \n", p[i]. gender);
42 #ifdef CONTROL_PREGNANT
43 if (tolower (p[i]. gender) == ’f’ && p[i].

pregnant)
44 printf (" Pregnant : Yes \n");
45 #endif

30 STUDY 1

46 p[i]. vaccinated = true;
47 break ;
48 #ifdef CONTROL_PREGNANT
49 } else {
50 printf (" Pregnant pacients cannot be vaccinated !

\n");
51 pregnantTotal ++;
52 }
53 #endif
54 # ifdef CONTROL_AGE
55 } else
56 printf (" Insufficient age to vaccinate : %d \n", p[i].

name);
57 # endif
58 }
59 }
60 }
61 int main (){
62 ...
63 vaccinate ();
64 return 0;
65 }

3.4 PILOT STUDIES

We carried out two pilot studies to adjust the online experiment procedure and artifacts.
In the first one, Brazilians, which are Portuguese speakers, answered the online experi-
ment using the Portuguese version of the website. The first run was pretty close to the
final of the online experiment. The only difference was that initially, we showed array
values in the task statement only. We performed the first pilot study with four program-
ming students. Participants requested the array values to be also showed in the source
code so that they were able to check them easier. Thus we adjusted that for the second
pilot study.

The participants of the second pilot study were Brazilians who have English as their
second language. They answered the online experiment using the English version of the
website. We have added an English version to increase the audience attendance. We
performed the second pilot study with two programming professors. We did not consider
the data collected in the pilot studies for our analysis.

3.5 PROCEDURE

After the pilot studies, we sent the online experiment invitation to two different groups.
The first group comprised developers from our relationship group: (i) friends, (ii) profes-
sors, (iii) research group, and (iv) postgraduate students. We sent them an email message
with a personalized salutation, an explanation about this study, and the link for the on-
line experiment. Ten days later, we sent them a reminder. The second group consisted of

3.5 PROCEDURE 31

developers recruited via social media: we published the online experiment on facebook1,
twitter2, C programming language community in reddit3, software engineering research
groups and student groups in whatsapp4 and asked developers to answer it. We left the
online experiment open until we received no more responses for two weeks. This online
experiment was open from August 22 to October 30, 2021.

The participants responded to the online experiment by means of a Web system we
developed. Figure 3.2 shows the home page of the Web system. The home page presents
the online experiment contents in English and in Portuguese. The participants choose the
language she or he prefers. In the first page of the online experiment, we explained the
goal of the online experiment and our research goals. We also informed the participants
about the time estimated to finish the online experiment, and then, asked the respondents
for their informed consent. Informed consent is a process of consenting to participation
in research. Finally, the participants were requested to choose whether they wanted the
online experiment in English or in Portuguese.

In the instructions page, the participant was informed about how to procedure to
each task. Each participant had to understand and realize the mental execution of two
programs. Each participant also had to execute three tasks concerning each program. The
participants were not allowed to proceed to the next task until they correctly answered
the task in progress. We explain that the number of attempts would be counted, so we
recommended them to avoid random answers. Furthermore, the time to answer each one
of the tasks would be recorded, so we recommended the participants to avoid losing focus
during the task. For each new task, the web system would reset the timer.

Figure 3.2 Home page of the online experiment.

For each task, participants had to read the question carefully and mentally execute
1http://www.facebook.com
2http://www.twitter.com
3http://www.reddit.com
4http://www.whatsapp.com

32 STUDY 1

the code according to the proposed scenarios. Each scenario involves a configuration of
enabled and disabled features.

Figure 3.3 Example of how the Web system shows a task to the online experiment participants.

3.5 PROCEDURE 33

Different scenarios were chosen to force the participant to mentally simulate different
configurations involving features and dependent variables. To ensure same difficulty level
in all set of tasks, we defined the same three feature configuration scenarios for all four
programs:

• Task 01: all features disabled.

• Task 02: all features enabled.

• Task 03: one feature disabled and two features enabled.

For example, the first task of each program (with and without feature dependency)
should be answered considering all features disabled.

Figure 3.3 shows how the Web system shows the first task about Program 4. First,
it informs the scenario of features the participant should consider:

Task 1: Consider the features:
Disabled: CONTROL_PREGNANT, ORDER_QUEUE and CONTROL_AGE
Then, it informs the data the participants should consider when analysing the pro-

gram:
Consider the vector p previously filled in as follows:
p[0] : name = Alice, gender = f, vaccinated = false
p[1] : name = Maria, gender = f, vaccinated = false
p[2] : name = Jessica, gender = f, vaccinated = false
p[3] : name = Vivian, gender = f, vaccinated = false
Then, the system asks the question for the participant to answer:
"What will be the first name printed on line 37 (p[i].name) when the vaccinate()

function on line 34 is executed?"
After the question, there is a field and a button for the participant to enter his or her

answer. To answer the question, the participant has to mentally simulate the execution
of the program to figure out the value of the variable, according to the configuration of
the feature.

Finally, the system presents the entire source code of the Program (Figure 3.3 only
shows part of the program due to space restrictions). Note that the first three lines of the
program set the feature configuration scenario for that task. In the source code shown
in Figure 3.3, the first three lines are commented, meaning that the three features are
disabled, as defined in the description of the task.

After answering the three tasks of one of the programs in Domain 1, participants
were redirected to one of the two programs in Domain 2, for them to answering another
three tasks. The system randomized it for each participant based on Latin Square design
described in Section 3.1.

We have presented each program to the participants as shown in Figure 3.3. We
colored the source code to simulate the use of an IDE. Participants were instructed not
to use tools or IDEs. We also hide parts of the code to avoid participants copying the
source code and compiling it in an IDE.

34 STUDY 1

Table 3.1 Mean time and number of attempts needed for the all participant until giving the
correct answer for 3 tasks for each program

Program Mean time Total number of attempts
for 3 tasks for 3 tasks

without dependency - Domain 1 135.84 106
without dependency - Domain 2 133.61 94

without dependency - all programs 134.78 200

with dependency - Domain 1 191.25 116
with dependency - Domain 2 228.21 86

with dependency - all programs 201.03 202

Finally, when a participant finished all the tasks, the online experiment asked her or
him some questions to obtain qualitative feedback on how she or he performed the tasks.
We have also asked participants about their profiles.

3.6 RESULT

We have measured comprehensibility according to: (i) time the participant took to finish
the task with the correct answer, (ii) number of attempts needed for the participant
until giving the correct answer. We ran ANOVA tests for hypothesis about time. We
used p-value < 0.05 as the probability about rejecting null hypothesis. For the number
of attempts, we used inferential statistics. We ran our tests with the support of R5. All
artifacts used in our study 1 are available at our website6 and our research share website.7.

Ninety three participants started to respond the online experiment, but only 53 an-
swered all the questions. In total, seven participants took too long to answer the questions
and were considered as outliers by R analysis. Thus, we did not take their data into ac-
count. Therefore, our analysis was based on data from 46 participants.

3.6.1 Time participant took to finish tasks with correct answer

We measured the time that each participant spent (in seconds) to answer each task. Our
null hypothesis about this metric is:

H0time: There is no significant difference in the time participants took to finish
the tasks with the correct answer when comparing programs with and without feature
dependency.

We had 46 participants organized according our Latin square design. Consequently,
we had 23 observations for each program on a specific domain, which summed up as a
total of 92 observations. Shapiro test confirmed that the data about time to find bugs
was normally distributed.

5http://www.r-project.org
6http://www.djansantos.com.br/projects/survey
7https://doi.org/10.5281/zenodo.7982409

3.6 RESULT 35

Rows in Table 3.1 shows the mean time (column mean time) spent by participants
for programs on each domain and for all programs with and without feature dependency.
For example, they spent a mean time of 133.61 seconds to answer the questions without
feature dependency in Domain 2. For programs with feature dependency in Domain 2, the
mean time was 228.21 seconds. Our data revealed that there was a significant difference
in time for the developers to analyze different types of source code. Considering all
programs p-value = 5.9837-05. We, thus, reject our null hypothesis (H0time).

Result 1: Programs containing feature dependencies required more time
for the participant to answer the tasks correctly than programs without fea-
ture dependency.

3.6.2 Number of attempts needed until correct answer

The number of attempts to answer the tasks refers to how difficult it was for the partici-
pant to answer the tasks correctly. We counted all attempts each participant made until
correctly answering each task. Our null hypothesis about this metric is:

H0attempt: There is no significant difference in number of attempts needed for cor-
rectly answering tasks related to programs with feature dependency and programs without
it.

Table 3.1 shows the number of attempts needed the participants for programs on each
domain and for all programs with and without feature dependency. (column number of
attempts). For example, participants made 106 attempts to give the correct answer for
tasks of programs without feature dependency on Domain 1. For tasks about programs
with feature dependency on Domain 1, the number of attempts of the all participants
was 116 times.

Comparing programs with and without feature dependency, our data reveal that 23
participants made 200 attempts to finish tasks in programs without feature dependency.
For programs with feature dependency, participants made 202 attempts. The χ2 test
(Pearson’s Chi-squared test) (CAMILLI; HOPKINS, 1978) revealed no significant differ-
ence between programs with and without feature dependency. The value χ2 is less than
5.53, and the p-values are greater than 0.35. Based on this, we cannot reject our null
hypothesis H0attempt.

Result 2: There was no significant difference on the number of attempts
needed for the participants until giving the correct answer when comparing
programs with and without feature dependency.

3.6.3 Discussion

Here we answer our research question How does feature dependency affect the comprehen-
sibility of configurable system?

Feature dependency affects comprehensibility in programs with #ifdef.
Result 1 shows that programs with feature dependency demanded more time the

participant took to finish the task with the correct answer. Developers spent more time
when compared with programs without feature dependency. We hypothesize that this
would occur because feature dependency forces developers to worry more with dependent

36 STUDY 1

variables and makes it difficult to simulate different configurations of enabled/disabled
features.

The use of #ifdef hinders comprehensibility while debugging dependent variables.
Multiple researches also indicate that #ifdef hinder comprehensibility (SPENCER; COL-
LYER, 1992),(LE; WALKINGSHAW; ERWIG, 2011). However, our results indicate that
feature dependency increases the problem.

Feature dependency did not affect the number of attempts needed for the
participant until giving the correct answer.

Result 2 revealed that the number of correct specifications on the output was not
affected by features dependency. This means that feature dependency may increase time
to specify the output, but do not decrease developers ability to specify the output. This
result confirms previous studies that showed that most participants correctly performed
tasks in programs with #ifdef (MELO et al., 2017; SANTOS; SANT’ANNA, 2019).

3.7 THREATS TO VALIDITY

3.7.1 Internal validity

Programming language. We wrote our programs in C, because conditional compi-
lation directives in C are native and are one of the most popular mechanisms in use.
The knowledge in C could influence our results. To minimize that, we only admitted
participants with previous experience on C.

Participants’ experience. We only had two sets of tasks. Some participants were
experts in #ifdefs, and they were randomly distributed according to our Latin square. We
distributed participants into the Latin square sets. The order of tasks was randomized
according to our Latin square design. The web system distributed the tasks according to
the order in which participants accessed the site. So, we controlled confounding factors
via the Latin square design and randomization.

Code access. The programs were displayed in a web page. All participants accessed
the programs through the browser of their choice. Some pieces of source codes have been
omitted to inhibit participants from copying the source code into an IDE. If any of them
tried to do that, it would certainly have taken a considerable amount of time leading it
to be considerad as an outlier.

3.7.2 External validity

Real systems and features. Due to our limitations we have made the use of small
programs. But, our programs were inspired on real configurable systems. For this reason,
our results may hold to other programs. However, for programs over 70 lines of code and
more than 3 features, there may be additional effects that we have not observed.

Meaningful variables names. The maintenance and comprehensibility of source
code can be hindered by choosing variables with non-meaningful names. Choosing mean-
ingful variable names is also important for domain comprehension. To minimize this
threat, we select relevant and meaningful variable names.

Mental simulation of scenarios. In practice, programmers encounter codes con-

3.7 THREATS TO VALIDITY 37

taining many features, and they don’t always test or compile all possible configurations.
Our results are limited to programs with a few features where the developer mentally
simulates all possible configurations. Additionally, we utilize functional features, which
are easier to analyze than architectural features, for example.

Lab settings. Our results are also limited to the environment we have adopted.
A more realistic environment, with IDEs and source code with multiple files, would be
ideal. However, this design would not be attractive for many participants, since it would
require more time for execution.

Volunteer bias. We recruit participants both by personal invitations and via social
media to avoid volunteers different from the target population. Furthermore, we ensured
anonymity and confidentiality of volunteers in order to try to increase participation, and
thus, decrease volunteer bias.

3.7.3 Construct validity

Comprehensibility measurement. Measuring comprehensibility is not trivial because
it involves human factors. Therefore, it is always a threat to construct validity. To
minimize this threat, we quantified comprehensibility by means of time, frequently used
in previous studies (MELO et al., 2017).

Misinterpret task Respondents can misinterpret the tasks. To reduce this risk we
included an instruction page with details of how execute the tasks.

Chapter

4
STUDY 2 - AN EXPERIMENT ON HOW FEATURE

DEPENDENCY TYPES AFFECTS PROGRAM
COMPREHENSIBILITY

In this chapter, we present the experiment that aims at evaluating the impact of different
types of feature dependency on the comprehensibility of configurable systems. If a specific
type of dependency makes it more difficult to understand the source code, configurable
system developers should take care when either maintaining or testing code fragments
with such type of dependency. In this context, the following research question guided our
study:
-- How do different types of feature dependency affect the comprehensibility of configurable
system source code?

4.1 DESIGN

To answer our research question, we carried out a controlled experiment with 30 develop-
ers, who analyzed programs trying to find bugs. They analyzed different programs each
with a different type of feature dependency (global, intraprocedural and interprocedural).
We compared the comprehension effort they spent to analyze each program. We quanti-
fied comprehension effort from different perspectives: (i) time to analyze each program,
(ii) number of correctly found bugs, and (iii) visual effort. We quantified visual effort by
means of different metrics collected by the use of an eye-tracking device. We give more
details about these metrics in Section 4.5.

We also aimed to confirm whether the differences on comprehension effort were due
to the different feature dependency types (implemented with #ifdefs) or were only due to
differences related to variable scope, such as the use of global variables or local variables,
regardless of the use of #ifdefs. To achieve this, we also asked the developers to analyze
programs without #ifdefs, but equivalent to the ones with #ifdefs. For each program
with #ifdef, we have an equivalent one without #ifdef. They are equivalent mainly in
two aspects. First, in the programs without #ifdef, we replaced the #ifdefs with regular
if statements. Second, the program without #ifdef follow the same structure in terms of

39

40 STUDY 2

variable use of its equivalent with #ifdef. For instance, a program with intraprocedural
dependency has an equivalent with the same function and local variable, but with ifs
as replacements of #ifdefs. In Section 4.3, when describing the bugs we used in our
experiment, we give an example of two equivalent programs with and without #ifdefs.

In order to avoid learning effect, we selected six different variability bugs to compose
each program: (i) null pointer dereference, (ii) assertion error, (iii) variable overlap, (iv)
nested feature, (v) undefined variable, and (vi) uninitialized variable. Related literature
has reported these bugs as recurring in configurable systems (ABAL; BRABRAND; WA-
SOWSKI, 2014; MEDEIROS et al., 2015; BRAZ et al., 2016). Section 4.3 describes each
of them. Also to avoid learning effect, we had programs on six different domains, each
domain for a variability bug. For example, we implemented the null pointer dereference
variability bug in a program on the “sales authorization message” domain.

In summary, for each variability bug, we implemented six similar programs on the
same domain, each one with the following characteristics: (i) global dependency with
#ifdef (GI), (ii) equivalent to global dependency without #ifdef (GW), (iii) intrapro-
cedural dependency with #ifdef (IAI), (iv) equivalent to intraprocedural dependency
without #ifdef (IAW), (v) interprocedural dependency with #ifdef (IEI) and (vi) equiv-
alent to interprocedural dependency without #ifdef (IEW). Therefore, we implemented
36 programs.

Table 4.1 Latin square design
Variability Bugs

Group Null Assertion Logic Nested Undefined Uninitialized
pointer error error feature variable variable

G1 GI GW IAI IAW IEI IEW
G2 GW IAI IAW IEI IEW GI
G3 IAI IAW IEI IEW GI GW
G4 IAW IEI IEW GI GW IAI
G5 IEI IEW GI GW IAI IAW
G6 IEW GI GW IAI IAW IEI

We designed our experiment as a standard Latin square, which is a common solution
for this kind of experiment (BOX; HUNTER; HUNTER, 2005; BAILEY, 2008; MELO et
al., 2017). We can explain the 6x6 Latin square we adopted by means of Table 4.1. In its
columns, we have the variability bugs. The lines represent the groups of developers. We
divided the developers in six groups (G1 to G6). The acronyms in the cells represent the
program characteristics, as listed in the previous paragraph. For instance, developers in
group G1 analyzed the program with global dependency with #ifdef (GI) that has the null
pointer dereference bug (first column of G1 line). Developers in group G2 also analyzed
the program with global dependency with #ifdef (GI), but the one with the uninitialized
variable bug (VI) (three last columns of G2 line).

The Latin square design controls one factor and its variations, ensuring that no row
or column contains the same treatment twice. Our factor was the program characteristic

4.2 PARTICIPANTS 41

(type of dependency + with/without #ifdef). Each line of our Latin square has six pro-
grams with different characteristics arranged in different orders. However, there might
still be learning effects due to repetition of variability bugs. We avoided this by distribut-
ing the variability bugs along our Latin square columns. Each column has a different type
of variability bug (without repetition). Therefore, according to his/her designated group,
each developer debugged six different programs, each with a different variability bug (and
its respective domain) and each with a different type of feature dependency (with and
without #ifdef). The result is the same number of data points for all debugging tasks.
As we had 30 participants, we obtained 180 data points, five data points for each of the
36 programs.

4.2 PARTICIPANTS

We counted on 30 participants to run our experiment: six undergraduate students, six
MSc students, six PhD students, six professors, and six developers from industry. We put
them in six groups with five participants each. Randomly, we formed each group with
one participant of each category, i.e., one undergraduate student, one Msc student and
so forth.

We selected the students from three universities located at three different cities of
Brazil and the developers from two companies located at two different cities of Brazil.
No compensation was provided for the participants.

Out of these 30 participants, one participant’s eye tracking data were discarded due to
poor quality. This was due to technical issues with the eye tracker. Eighteen participants
have normal vision and 12 have vision corrected by glasses. Seven participants are females
and 23 are males. All of them have similar experience in C programming language.
Sixteen participants declared themselves as expert developers and only three claimed
that had not worked at the industry yet.

4.3 VARIABILITY BUGS

When a fault or error happens in a configurable system due to variability implementation,
it is called as variability bug (ABAL; BRABRAND; WASOWSKI, 2014). Previous stud-
ies related variability bugs to feature dependencies (ABAL; BRABRAND; WASOWSKI,
2014; RIBEIRO; BORBA; KÄSTNER, 2014; MEDEIROS et al., 2015; BRAZ et al.,
2016). We implemented the programs used in our experiment inspired in concrete variabil-
ity bugs, which occurred in real large-scale configurable systems (ABAL; BRABRAND;
WASOWSKI, 2014; MELO et al., 2017; ABAL et al., 2018): Linux (ABAL; BRABRAND;
WASOWSKI, 2014; ABAL et al., 2018), BusyBox (MELO; BRABRAND; WASOWSKI,
2016; MELO et al., 2017), BestLap (RIBEIRO; BORBA; KÄSTNER, 2014), GLib (RO-
DRIGUES et al., 2016) and Libxml (RODRIGUES et al., 2016). However, we could not
use source code of large-scale systems in our study due to the following restrictions:
Domain. Our programs should be on domains which participants could easily understand.
We avoided programs (like the ones from Linux) which could affect comprehensibility.
Native language. To facilitate the understanding and to widen the audience of poten-

42 STUDY 2

tial participants, the programs should be written in the participants’ native language
(Portuguese).
Small programs. The programs should fit on a 39-line display window so that the eye-
tracking device would record all gaze movements of participants.

Having these restrictions in mind, we took an example of each selected variability bug
from a real configurable system or from previous studies. Then, we reproduced that bug
in a small program, on a popular domain, written in C with variable and feature names
in the participants’ native language.

The 36 programs are similar in terms of number of lines of code (LOC) (LANZA;
MARINESCU, 2007), number of features (NOFC) (LIEBIG et al., 2010) and McCabe
cyclomatic complexity (CC) (MCCABE, 1976). In the following, we describe each vari-
ability bug we implemented.

Listing 4.1 Code snippet of the null pointer dereference bug with #ifdef

1 char *p = NULL;
2 char message [25];
3 ...
4 int main () {
5 char msg [25];
6 ...
7 #ifdef CUSTOMIZE_MESSAGE
8 strcpy (message ,"Store XYZ - ");
9 p = message ;

10 #endif
11 if (*p =="")
12 strcpy (message , msg);
13 ...

Null pointer deference. This bug happens when a program attempts to read a
value from a null pointer. Listing 4.1 shows a code snippet of the program we wrote
with a null pointer dereference bug. It is about “printing a sales authorization mes-
sage”. It has two features: CUSTOMIZE_MESSAGE and the feature SETUP_COMMUNICATION.
CUSTOMIZE_MESSAGE personalizes the message with the name of the store and SETUP_CO-
MMUNICATION checks communication errors. An exception occurs when CUSTOMIZE_MESSA-
GE is disabled. It happens because p is updated within CUSTOMIZE_MESSAGE. The expres-
sion if(*p =="") (line 12) causes a null-pointer exception because p has null value and
cannot be compared with empty. We wrote this program taking as example a bug found
in BusyBox (MELO; BRABRAND; WASOWSKI, 2016; MELO et al., 2017), an open
source system that provides essential Unix tools.

Listing 4.2 shows the version of the program with null pointer dereference bug now
without #ifdefs. We rewrote the program showed in Listing 4.1 by replacing #ifdefs with
if clauses. The bug remains the same in Listing 4.2, as line 12 executes the expression
if(*p ==""), which causes a null-pointer exception. However, in this case, the bug is
caused by a variable whose value is false, and not by disabling a feature. It is impor-
tant to recall that Listing 4.1 shows the program with global dependency with #ifdef
and Listing 4.2 shows its equivalent without #ifdef. Besides them, we also had in our

4.3 VARIABILITY BUGS 43

experiment other four programs with the null pointer dereference bug, which implement
intraprocedural and interprocedural dependencies and its equivalent without #ifdefs. For
the bugs we describe next, we only show one of the programs, the one with #ifdef.

In some of the programs, there are #ifdefs surrounding variable definitions (for in-
stance, Listing 2.2, lines 2 to 4), or #ifdefs surrounding else clauses (for instance, Listing
4.3, lines 11 to 13). In this cases, we just deleted the #ifdefs and did not replace them
with if clauses. We did this because, in fact, converting those #ifdefs into ifs does not
make sense.

Listing 4.2 Code snippet of the null pointer dereference bug without #ifdef

1 char *p = NULL;
2 char message [25];
3 bool customize_message = false;
4 int main () {
5 char msg [25];
6 ...
7 if (customize_message){
8 strcpy (message ,"Store XYZ - ");
9 p = message ;

10 }
11 if (*p =="")
12 strcpy (message , msg);
13 ...

Assertion-Error. An Assertion-Error occurs when something that should never hap-
pen happens. This bug was found in BestLap, which is a commercial highly configurable
race game, investigated by previous research (RIBEIRO et al., 2012; RIBEIRO; BORBA;
KÄSTNER, 2014; MELO; BRABRAND; WASOWSKI, 2016; MELO et al., 2017). The
car racing game calculates score of players and adds a penalty when their cars crash. As
the score should not be negative, the assertion error occurs when the score stores negative
values. Based on BestLap, we wrote a program that “calculates scores in language profi-
ciency tests”. We apply penalties in case the exam time is exceeded. Listing 2.1 (Section
2.3) shows a code snippet of one of the programs with this bug. It has two features:
APPLY_PENALTY and RESULT. APPLY_PENALTY applies penalties in case the exam time is
exceeded, and RESULT prints the final result. The bug occurs when both APPLY_PENALTY
and RESULT are enabled and final_grade is negative. In this case, instead of generating
an error, the program prints a wrong message (line 17).

Logic error: Logic error occurs when a program produces unintended or undesired
output. Logic errors are often the most general errors and hardest to identify (HRISTOVA
et al., 2003). Listing 4.3 shows an excerpt of our program that “calculates the value of
payments if the customer decides to purchase in 3 installments”. The customer can use
credit card or checks to split a sale. If he or she chooses checks, the program adds an
interest of 5% to the purchase value. If the sale is paid on a credit card, the program
does not add any interest. The customer also may choose not to split the purchase. The
CREDIT_CARD and CHECK features calculate instalment values without and with interest,
respectively. Note that both features enable the program to split the purchase in three

44 STUDY 2

installments, but the purchase will be split whether the value of use_card (line 5) or
use_checks (line 9) is true. The logic error occurs when CREDIT_CARD and CHECK are
enabled. When the two features are enabled, the clause else (line 13) is associated
with the scope of clause if of use_checks only. Thus, if use_card (line 5) is true and
use_checks (line 9) is false, the value of instalments is overlapped.

Listing 4.3 Code snippet of the logic error

1 int main () {
2 ...
3 #ifdef CREDIT_CARD
4 if (use_card)
5 instalments = purchase /3;
6 #endif
7 #ifdef CHECK
8 if (use_checks)
9 instalments =(purchase + (purchase * 0.05))/3;

10 #endif
11 #ifdef CREDIT_CARD || CHECK
12 else
13 #endif
14 instalments = purchase ;
15 ...

Listing 4.4 Code snippet of the undefined variable bug

1 ...
2 float calculateRegistrationFee () {
3 #ifdef STUDENT_DISCOUNT
4 bool apply_discount_student = true;
5 #endif
6 ...
7 #ifdef STUDENT_DISCOUNT || MEMBERSHIP_ASSOCIATION
8 float discount =0;
9 #endif

10 #ifdef STUDENT_DISCOUNT
11 if (apply_discount_student)
12 discount += 0.1;
13 #endif
14 ...
15 registration = registration - (registration * discount);
16 ...

Nested features. Previous studies (LIEBIG et al., 2010) reported that nesting
features make the source code prone to errors (SINGH; GIBBS; COADY, 2007; LIEBIG
et al., 2010). Listing 2.2 (Section 2.3) shows an excerpt of our program where nested
features cause a variability bug. The program processes the “return of books to a library”.
If a book is returned after the due date, the system applies either a fine or a penalty in
days during which the user will be unable to make new loans. FINE_IN_CASH calculates
the fine (line 11) and PUNISHMENT_IN_DAYS calculates the penalty in days. Note that

4.4 EXPERIMENT PROCEDURES 45

PUNISHMENT_IN_DAYS (line 12) is inside FINE_IN_CASH (line 10). The bug happens when
FINE_IN_CASH is disabled, because doing this also disables PUNISHMENT_IN_DAYS.

Undefined variable. This bug happens when a variable is not previously declared
but it is accessed later on. To write our program we took as example a bug found in
Libxml1, a configurable system for parsing XML files (RODRIGUES et al., 2016). Listing
4.4 presents a code snippet of our program with this variability bug. It “calculates the
registration fee of an event”. The program applies discounts for students or attendees with
membership association. The program has two features called STUDENT_DISCOUNT and
MEMBERSHIP_ASSOCIATION. STUDENT_DISCOUNT applies a discount for students (lines 3, 7
and 10). MEMBERSHIP_ASSOCIATION applies a discount for attendees with a membership
association (line 7). The bug happens because the discount variable is defined only
if either STUDENT_DISCOUNT or MEMBERSHIP_ASSOCIATION is enabled (line 8). If both
features are disabled, discount is undefined and the program runs into an undefined
variable error, because discount is used ahead (in line 15).

Uninitialized variable. This bug happens when a variable its value is declared
but is not set before its use. Abal et al. show this is a frequent bug in Linux kernel
(ABAL; BRABRAND; WASOWSKI, 2014; ABAL et al., 2018). Our program with this
bug “calculates points based on a students’ curriculum” (Listing 2.3 (Section 2.3)). The
number of points of a student increases with the number of courses he or she accomplished.
When CONSIDER_SPECIALIZATION is enabled, total_points receives one extra point
(line 8), if isSpecialist is true. The variability bug occurs because total_points is
not initialized before (line 14).

4.4 EXPERIMENT PROCEDURES

Before executing the actual experiment, we carried out three pilot studies. In the first
one, in addition to find bugs, we asked participants to fix them. However, they took so
long to do that. Moreover, we had problems to record their gaze movements as our eye-
tracking device does not work well on non-static screens. So, we changed our experiment
procedures for the second and third pilot studies: the participants only had to find bugs
analyzing a small program showed in a static image, which they could not manipulate.
The second and third pilot studies were mainly useful for us to correct problems with the
programs. We performed the pilot studies with four PhD students. We did not consider
their results in our analysis.

Before starting the experiment tasks, we briefly trained every developer on conditional
compilation, variability, features and system configuration. Then, we calibrated the eye-
tracking device and performed a small warm-up task. All the participants signed a consent
form.

The participants debugged the programs as we planned in our Latin square design.
When the participant indicated he or she finished analyzing a program, we registered the
time. The time was paused at the moment the participant reported to have found the
error. We did not consider the time the participant took to respond in our analyses. The
time was paused and recorded in the tool that records the gaze data. Finally, to check

1http://xmlsoft.org/

46 STUDY 2

whether he or she correctly found the bug, we asked each developer: “how would you fix
the bug you found?”. For the purpose of analyzing the results, we considered only the
times of the participants who correctly answered the task.

We presented each program to the participants as static images displayed on a single
screen. Participants did not have access to tools, IDEs or browsers. For each participant,
we recorded x and y coordinates (fixations) via an eye tracker.

We performed each experiment trial individually. All participants used the same
personal computer to avoid unintended effects from different software and hardware en-
vironments. The computer has the following configuration: a 64-bit windows 10 home
single language with Intel core i5. The screen resolution was set to 1920 by 1080 pixels
into a 15 inch LCD screen. All experiment trials were conducted in similar classrooms.
We recorded all of the eye tracking data using the open-source tool OGAMA (VOSSKÜH-
LER et al., 2008). We used the Tobii EyeX Device.

4.5 EXPERIMENTAL RESULTS

In this section, we test our hypotheses and discuss results. We measured comprehensi-
bility according to: (i) time to find a bug, and (ii) number of correctly found bugs. We
also measured developers’ visual effort: (i) number of fixations, and (ii) gaze transitions.
We also analyzed attention maps generated by means of the eye tracker.

We ran ANOVA tests for hypothesis testing. We used p-value < 0.05 as the probability
about rejecting null hypotheses. The only exception, was the number of found bugs
variable. ANOVA does not apply for it as it holds binary values. Thus, we used inferential
statistics to evaluate it. We ran our tests with the support of R2. All artifacts used in
our experiment are available at our website3 and our research share website.4 In the
following, we present the results regarding each metric.

4.5.1 Time to find bugs

Table 4.2 Time results
Variability Bugs

Null Assertion Logic Nested Undefined Uninitialized
pointer error error feature variable variable

Group Char. time Char. time Char. time Char. time Char. time Char. time
G1 GI 338 GW 287 IAI 292 IAW 216 IEI 252 IEW 203
G2 GW 418 IAI 366 IAW 258 IEI 267 IEW 212 GI 182
G3 IAI 315 IAW 262 IEI 224 IEW 281 GI 123 GW 101
G4 IAW 383 IEI 339 IEW 224 GI 412 GW 362 IAI 234
G5 IEI 414 IEW 225 GI 194 GW 206 IAI 324 IAW 148
G6 IEW 461 GI 353 GW 390 IAI 287 IAW 288 IEI 168

We measured the time (in seconds) each participant took to analyze each program,
2http://www.r-project.org/
3http://www.djansantos.com.br/projects/FeatureDependency/
4https://doi.org/10.5281/zenodo.7982409

4.5 EXPERIMENTAL RESULTS 47

Table 4.3 Mean time and found bugs for each types of dependency
Dependencies GI GW IAI IAW IEI IEW

Mean time 323.10 228.70 255.10 235.00 322.50 287.20
#found bugs 21 24 23 24 17 23

similarly as Sharif et al. (SHARIF et al., 2013) did. Our null hypothesis about this
metric is:

H0t: There is no significant difference in the time to find bugs when comparing pro-
grams with different types of feature dependency.

Rows in Table 4.2 show the mean time (column time) spent by each group of partic-
ipants (G1 to G6) for each characteristic of program and for each variability bug. Each
group was compose by 5 participants. Consequently, we had 5 observations for each
group, 30 observations for each row, which summed up as a total of 180 observations.
Shapiro test confirmed that the data about time to find bugs was normally distributed.

Table 4.3 shows the mean time spent by all participants for each type of dependency.
For example, they spent a mean time of 323.10 seconds to analyze programs of global
dependency with #ifdefs (GI). For global dependency without #ifdefs (GW), the mean
time was 228.70 seconds. Our data revealed that there was a significant difference in time
for the developers to analyze different types of dependency (p-value = 5.613e-05). We,
thus, reject our null hypothesis (H0t).

We, then, used Tukey HSD (honestly significant difference) test to find means of time
that are significantly different. Tukey HSD test compares all possible pairs of means of
time. First, we compared the mean time related to programs with #ifdefs (GI, IAI and
IEI) (Table 4.3). The difference of time between GI and IEI is negligible (p-value = 1.00).
In contrast, when comparing IAI with GI and IEI, the difference is significant (p-value =
0.045 and 0.049, respectively). This leads to our first result.

Result 1: Global dependencies and interprocedural dependencies required
more time for finding bugs than intraprocedural dependency.

We also compared the time spent for analyzing the three types of programs without
#ifdefs (GW, IAW and IEW) (Table 4.3). According Tukey HSD test, the time to
analyze each of them is not significantly different (all p-values are larger than 0.126).
This, somehow, reinforces that the differences stated in Result 1 are due to the use of
#ifdefs.

Curiously, our data also revealed that the mean time is not significantly different
when we compare programs with intraprocedural dependency with and without #ifdefs
(IAI vs. IAW) (p-value = 0.961). This leads to our second result, which, regarding a
specific context, contradicts previous study that says that #ifdefs increase debugging
time (MELO et al., 2017).

Result 2: The use of #ifdef did not increase bug detection time in programs
with intraprocedural dependency characteristic.

We also compared programs with interprocedural characteristic with and without
#ifdefs (IEI vs. IEW). Similarly to intraprocedural programs, our results showed negli-
gible difference in time for bug detection (p-value = 0.657).

48 STUDY 2

We also compared global dependency with and without #ifdefs (GI vs. GW) (Table
4.3). In this case, the difference in bug detection time is significant (p-value = 0.001).
Based on this, we state our third result.

Result 3: The use of #ifdefs increases bug detection time for programs
with global dependency characteristic.

4.5.2 Number of correctly found bugs

Table 4.4 Hits results
Variability Bugs

Null Assertion Logic Nested Undefined Uninitialized
pointer error error feature variable variable

Group Char. hits Char. hits Char. hits Char. hits Char. hits Char. hits
G1 GI 3 GW 3 IAI 5 IAW 4 IEI 3 IEW 3
G2 GW 3 IAI 5 IAW 5 IEI 1 IEW 4 GI 5
G3 IAI 1 IAW 5 IEI 3 IEW 5 GI 5 GW 5
G4 IAW 1 IEI 4 IEW 4 GI 2 GW 5 IAI 5
G5 IEI 1 IEW 4 GI 2 GW 5 IAI 3 IAW 4
G6 IEW 3 GI 4 GW 3 IAI 4 IAW 5 IEI 5

The number of correctly found bugs metric refers to whether a participant answered
each task correctly. It is about correctness (SHARIF et al., 2013). If a participant finds a
bug correctly, he or she scores one for that program. For this, we registered the answers
provided by participants. Our null hypothesis about this metric is:

H0a: There is no significant difference in number of correctly found bugs when com-
paring programs with different types of feature dependency.

Table 4.4 shows the number of bugs correctly found (column hits) by each group of
participants (G1 to G6) for each characteristic of program and for each variability bug.
Table 4.3 shows the number of correctly found bugs by all participants for each type of
dependency.

Comparing programs with #ifdefs, from a total of 30 tasks, 21 participants answered
correctly the tasks about global dependency (GI), 23 answered correctly for intrapro-
cedural dependency (IAI) and 17 for interprocedural dependency (IEI). Interprocedural
dependency, therefore, seems to make bug detection more difficult. However, the χ2 test
(Pearson’s Chi-squared test) (CAMILLI; HOPKINS, 1978) revealed no significant differ-
ence between the three types of feature dependency. The value χ2 is less than 5.53, and
the p-values are greater than 0.35. Based on this, we cannot reject our null hypothesis
H0a.

Result 4: There was no significant difference on the number of correctly
found bugs for different types of feature dependency.

4.5.3 Visual effort

Visual effort is directly linked to the cognitive effort (RAYNER, 2009; SIEGMUND et
al., 2014; SHARIF et al., 2013). A set of eye-tracking measures representing visual effort

4.5 EXPERIMENTAL RESULTS 49

are derived from eye gaze data. A fixation is a type of eye movement in which the eye
stops on some object of interest to obtain information. Saccades are very fast voluntary
movements between fixings. Regression is a saccade performed in the opposite direction
to the reading direction (RAYNER, 2009).

The number of fixations is thought to be negatively correlated with search efficiency
(GOLDBERG; KOTVAL, 1998). Also, the proportion of time looking at a particular
display element could reflect the importance of that element (KOLERS; DUCHNICKY;
FERGUSON, 1981; JACOB; KARN, 2003). The literature sets a duration of 60 mi-
croseconds as the minimum threshold for having a fixation. Also, it sets a space of seven
to nine letters for characterizing saccades (RAYNER et al., 2006). We followed these
thresholds and discarded anything below them (KOLERS; DUCHNICKY; FERGUSON,
1981; RAYNER, 1998; DUCHOWSKI, 2017).

Number of fixations

The number of fixations increases when a text is difficult to comprehend (RAYNER
et al., 2006). We counted the number of fixations per program. Our null hypothesis
about this metric is:

H0f : There is no significant difference in number of fixations when developers try to
find bugs in programs with different types of feature dependency.

Considering programs with #ifdef, our data revealed that the number of fixations
were significantly different between programs with different types of feature dependency
(p-value = 5.613e-05). Analyzing programs with global dependency (GI) required from
all participants a mean of 1011.93 fixations. For intraprocedural dependency (IAI), it
required a mean of 741.56 fixations, and for interprocedural dependency (IEI), the mean
was 1016.67 fixations.

Tukey HSD showed that the difference between global dependency (GI) and inter-
procedural dependency (IEI) is negligible (p-value = 0.99). In contrast, the number of
fixations in programs with global and interprocedural dependencies is significantly higher
than the number of fixations in programs with intraprocedural dependency (IAI) (p-value
= 0.008 and 0.006 respectively).

Result 5: Developers made more fixations to understand programs with
global and interprocedural dependencies than programs with intraprocedural
dependencies.

In addition, when considering programs without #ifdefs (GW vs. IAW vs. IEW),
our data shows that there is no significant difference among them in terms of number
of fixation (all p values are larger than 0.9127183). This somehow reinforces that the
differences stated in Result 5 are due to the use of #ifdefs and not due to the characteristic
of the programs in terms of use of variables and functions.

Our study also revealed that the number of fixations is not significantly different
when comparing data obtained for programs with intraprocedural characteristic with
and without #ifdefs (IAI vs. IAW) (p-value = 0.86). This leads to the following result,
which reinforces Result 2.

50 STUDY 2

Result 6: The use of #ifdefs did not increase the number of fixation when
developers try to find bugs in programs with intraprocedural dependency
characteristic.

Finally, our results indicate that, regarding global and interprocedural characteristics,
programs with #ifdefs required more number of fixations than the ones without #ifdefs
(p-value = 2.1e-06 and 1.93e-04, respectively).

Result 7: The use of #ifdefs increased the number of fixations in programs
with global and interprocedural characteristics.

Gaze transitions

Gaze transitions (a.k.a. saccades) are rapid eye movements from one place to another
separated by pauses (RAYNER et al., 2006). A larger number of saccades in both direc-
tions indicates difficulty associated with understanding (RAYNER, 1998; RAYNER et
al., 2006; RAYNER, 2009).

We compute gaze transitions based in areas of interest (AOI) of each program. An
AOI is a region of interest in a study. We defined the AOIs with OGAMA’s AOI editor.
Our AOIs comprised regions of source code that showed variable definitions, feature code
and bug regions. For example, in Listing 4.1, we define variables in lines 1 and 2. Thus, we
defined this region as the AOI “variable definition”. Lines 7 to 10 comprise source code of
CUSTOMIZE_MESSAGE feature. We defined this AOI as “customize message feature”. The
same happens with the SETUP_COMMUNICATION feature (not shown in Listing 4.1). We
defined its source code as AOI “setup communication feature”. Finally, the AOI “Bug”
is limited by lines 11 and 13, because it is where the bug occurs. The definitions of AOIs
for each of our programs are detailed in our website.

Figure 4.1 shows our gaze transitions diagrams related to programs with the “null
pointer dereferenced” bug. Arrows indicate the percentage of gaze transactions between
different AOIs of the program in both directions. For example, Figure 4.1a depicts that
5% of all gaze transitions performed by participants to find the “null pointer dereferenced”
bug happened from the AOI “bug” to the AOI “customize message feature”. A dashed
arrow indicates that the sum of gaze transactions in both directions corresponds to 10%
or less of the total of gaze transactions. A bold arrow indicates that the sum of gaze
transactions corresponds to 40% or more of the total of gaze transactions. A regular line
indicates intermediate values.

Figure 4.1a shows the diagram for the program with intraprocedural dependency with
#ifdef (IAI), Figure 4.1b shows the diagram for the program with global dependency with
#ifdef (GI) and Figure 4.1c shows the diagram for the program with interprocedural
dependency with #ifdef (IEI). The three are related to the “null point dereferenced”
bug. We took this bug as an example for what similarly happens for other cases.

The gaze transitions diagram reveals that, for programs with global and intraproce-
dural dependencies, participants concentrated the largest number of saccades between
few AOIs. Figure 4.1a shows a concentration of about 48% (24% + 24%) of gaze transi-
tions between the AOIs “variable definition” and “setup communication feature”. Figure
4.1b shows a concentration of about 43% (21% + 22%) of gaze transitions between AOIs

4.5 EXPERIMENTAL RESULTS 51

(a) intraprocedural

(b) global

(c) interprocedural

Figure 4.1 Gaze transitions between AOIs for different types of feature dependency in pro-
grams with the null pointer dereferenced bug.

52 STUDY 2

“customize message feature” and “setup communication feature”. On the other hand,
Figure 4.1c reveals that that participants, when debugging programs with interprocedu-
ral dependency, need to navigate over all source code, and, as a consequence, the gaze
transitions are more distributed between all AOIs. Note in Figure 4.1c that values do not
exceed 30%. Although we only show here the diagrams for the “null pointer dereferenced”
bug, we observed similar results for most of the other bugs.

Result 8: Interprocedural dependency seems to force the developer to
perform more gaze transitions over different parts of the source code.

Attention map
An attention map is a histogram, also known as heat map, that displays an aggregation

of fixations. An attention map shows how attention is distributed among program parts
(ŠPAKOV; MINIOTAS, 2007). It uses colors to represent the fixation time in each
location on the screen. Three examples are shown in Figure 4.2. The lowest value in the
attention map (short fixation time) is shown with the green color and the highest value
in red (long fixation time), with a smooth transition between these extremes.

Figure 4.2 shows the aggregated attention maps for the “assertion error” variability
bug for the three types of feature dependency. We generated the aggregated attention
maps using OGAMA. We superimposed all individual attention maps from each partic-
ipant. Each attention map of the “assertion error” variability bug (Figure 4.2) is, thus,
composed by the overlapping of five individual attention maps.

The red regions indicate where most of participants’ attention was directed to. Com-
paring the red regions of the three attention maps in Fig 4.2, we observe that the atten-
tion distribution is similar for programs with global and intraprocedural dependencies.
In these cases, participants focused most of their attention in the source code of the
APPLY_PENALTY feature. The bug occurs inside RESULTS, when APPLY_PENALTY is enable.
Thus, this area requires more attention from participants. In addition. in both programs,
APPLY_PENALTY is near RESULTS.

On the other hand, in the attention map regarding interprocedural dependency (Fig-
ure 4.2c), there are two distinct red regions. One region encapsulates the source code
of APPLY_PENALTY and the other red region is about RESULTS. In this case, however, the
two regions are far from each other. Participants need, thus, to focus on each region
separately. This leads to the following result.

Result 9: Interprocedural dependencies appear to increase fixation time
in more distinct areas of the source code.

In the right side of Figure 4.2, we also show gaze transition diagrams related to each
attention map. These diagrams depict the first three minutes of an “assertion error vari-
ability” debugging task performed by a participant. The diagram shows the y-coordinate
that the participant was looking at as a function of time. The top of the diagram cor-
responds to the first line of the program and the bottom corresponds to the last line.
We can observe in these diagrams that the initial scan the participant performed on the
program is relatively similar for programs with global and intraprocedural dependencies.
Normally, developers perform a preliminary reading of the source code in a very fast pace
and then start reviewing the source code afterward. Concerning the source codes with
#ifdefs, participant appears to prolong the preliminary reading in programs with global

4.5 EXPERIMENTAL RESULTS 53

and intraprocedural dependencies. Similar behavior was reported in previous studies
(UWANO et al., 2006; MELO et al., 2017).

In contrast, Figure 4.2c shows that, in the program with interprocedural dependency,
the participant performed a very fast preliminary reading and, then, continued with the
mental simulation of the main() function. This reinforces our hypothesis that partici-
pants navigated through more distinct areas of the code in programs with interprocedural
dependency.

4.5.4 Discussion

Here we answer our research question How different types of feature dependency affect the
comprehensibility of configurable systems? by discussing different aspects of our findings.

#ifdefs affect comprehensibility in different degrees according with the
type of feature dependency.

Our results 1, 3, 5 and 7 show that programs with global or interprocedural depen-
dencies demand more comprehension effort for finding bugs. Developers spent more time
and more number of fixations, when compared with programs with intraprocedural de-
pendency. We hypothesize that this occurs because with both global and interprocedural
dependencies, the point of definition of the dependent variable is far from its usage. Our
results also show that the use of #ifdef hinders comprehensibility while debugging. Mul-
tiple researches also indicate that #ifdef might amplify maintenance problems (ERNST;
BADROS; NOTKIN, 2002; GARVIN; COHEN, 2011; RIBEIRO et al., 2012; MEDEIROS
et al., 2015; FENSKE; SCHULZE; SAAKE, 2017b). However, our results indicate that
this only happened for programs with global and interprocedural dependencies. Again,
we hypothesize that this happens because the long distance between the dependent vari-
able definition and its usages makes it difficult to simulate different configurations of
enabled/disabled features.

Intraprocedural dependencies had no influence on program comprehensi-
bility.

Our Results 2 and 6 indicate that #ifdefs may not affect the comprehensibility of
programs with intraprocedural dependency. We hypothesize that this happens because
the point of definition of dependent variable is closer from its usage. This result contra-
dicts a previous study (MELO et al., 2017). Their study showed that #ifdef increases
debugging time. However, it is important to say that, in their study, they did consider
programs including different types of feature dependencies.

Interprocedural dependencies required more visual effort.
Results 8 and 9 show that the interprocedural dependency may increase visual effort.

To find a bug, participants needed to perform more gaze transitions and focused more
time on distinct parts of the source code.

Feature dependency did not affect the number of found bugs.
Result 4 revealed that the number of correctly found bugs was not affected by features

dependency. This means that feature dependency may increase time and visual effort to
find bugs, but do not decrease developers’ ability to find bugs. This result confirms
previous studies that showed that most participants correctly identify bugs in programs

54 STUDY 2

(a) Global

(b) Intraprocedural

(c) Interprocedural

Figure 4.2 Heat map and gaze transition diagram with initial scan

4.6 THREATS TO VALIDITY 55

with #ifdef (MELO; BRABRAND; WASOWSKI, 2016; MELO et al., 2017). However,
programs with interprocedural dependency had fewer hits than other types of feature
dependency.

Other findings

We also compared data in terms of variability bugs. We observed that the “null
pointer dereference” bug was always difficult to find. Participants spent more time and
found a lower number “null pointer dereference” bugs in both with and without #ifdef
versions of the programs. Only 40% of the participants found this bug. In contrast, the
“uninitialized variable” bug was always easy to find. Only 3 developers of 30 did not
find this bug. These results may indicate that these bugs are not induced by variability,
which contradicts previous studies (ABAL; BRABRAND; WASOWSKI, 2014; ABAL et
al., 2018). It is important to recall that these differences did not impact the analysis
about feature dependencies as all participants analyzed programs with all types of bugs.

4.6 THREATS TO VALIDITY

4.6.1 Internal validity

Programming language. We wrote our programs in C, because conditional compilation
directives in C are native and are one of the most popular mechanisms in use. Beside,
most of the studies that report variability bugs are also in C. The knowledge in C could
influence our results. To minimize that, we only admitted participants with previous
experience on C.

Participants’ experience. We selected participants according their level of expe-
rience and distributed them into the Latin square groups. For example, each of the six
PhD students went to a different group (G1 - G6) (Table 4.2). The order of participation
in the experiment determined the group. For example, the first PhD student went to
group one (G1) and so on. So, we controlled confounding factors via the Latin square
design and randomization. No participant was an expert in #ifdef, thus the distribution
of participants in the Latin square was balanced.

Lab settings. All experiment trials were done in similar classrooms and with our
supervision. We observed temperature and brightness conditions. In the moment of the
execution of experiment, the classroom had only the participant and the authors.

4.6.2 External validity

Real bugs and features. Due to limitations we used small programs. But, our programs
were inspired on concrete variability bugs found in real configurable systems. For this
reason, our results may hold to other programs. However, for programs over 39 lines
of code and more than two features, there may be additional effects that we have not
observed.

Meaningful variables names. The maintenance and comprehensibility of source
code can be hindered by choosing variables with non-meaningful names. Choosing mean-

56 STUDY 2

ingful variable names is also important for domain comprehension. To minimize this
threat, we select relevant and meaningful variable names.

Mental simulation of scenarios. In practice, programmers encounter codes con-
taining many features, and they don’t always test or compile all possible configurations.
Our results are limited to programs with a few features where the developer mentally
simulates all possible configurations. Additionally, we utilize functional features, which
are easier to analyze than architectural features, for example.

Lab settings. Our results are also limited to the environment we adopted. A more
realistic environment, with IDEs and source code with multiple files, would be ideal.
However, this design would not be attractive for many participants, since it would require
more time for execution. In addition, we have the limitation that the source code should
fit on the screen due to the eye tracking device.

4.6.3 Construct validity

Comprehensibility measurement. Measuring comprehensibility is not trivial because
it involves human factors. Therefore, it is always a threat to construct validity. To
minimize this threat, we quantified comprehensibility by means of different metrics, all
of them already used in previous studies.

Chapter

5
STUDY 3 - AN EXPERIMENT ON HOW DEPENDENT

VARIABLES AFFECT PROGRAM
COMPREHENSIBILITY

This chapter describes an experiment that aims at evaluating how dependent variables
impact the comprehensibility of configurable systems. Dependent variable is the name
given to every variable that is defined within a feature and used within another feature.
A dependent variable is what imposes a dependency relationship between features. In
this sense, the variation in the amount of variable definition and variable usage can affect
the comprehensibility of configurable systems.

This study aims to answer our third research question:
-- How do different numbers of dependent variables affect the comprehensibility of config-
urable system source code?

5.1 DESIGN

To answer our research question, we carried out a controlled experiment with 12 devel-
opers who analyzed programs trying to specify the output. Developers analyzed four
similar programs in terms of lines of code, cyclomatic complexity and number of feature
dependency. The differences between the programs were the domain, and the number of
definitions of dependent variables.

We compared the comprehension effort the developers spent to analyze each program.
We quantified comprehension effort from different perspectives: (i) time to analyze each
program, (ii) number of attempts until the developers provide the correct answer, (iii)
visual effort and, (iv) heart-related biometrics. We quantified visual effort by means of
different metrics collected by the use of an eye-tracking device and we quantified heart-
related biometrics collected by the use of a smartwatch. We give more details about these
metrics in Section 5.8

In order to avoid learning effect, we selected two different domains. Domain 1 (sale
of property) and Domain 2 (grade calculation) each one with 3 features and 7 feature
dependencies. We implemented two programs for each domain, one program with 2

57

58 STUDY 3

Figure 5.1 Latin Square design (2x2).

dependent variables and the other with 4 dependent variables. We used programs with a
maximum of 4 dependent variables due to display limitations of the code on the screen.
In summary, for each domain, we implemented two programs with different numbers of
dependent variables.

We designed our experiment as a standard Latin Square. Our previous studies discuss
Latin Square design (Chapter 3 and Chapter 4). Figure 5.1 explains our 2x2 Latin Square.
In its columns, we have the treatment, in this case, the number of dependent variables.
The lines represent developers. The acronyms in the cells represent the program char-
acteristics, +DV represents a program with 4 dependent variables, and -DV represents
a program with 2 dependent variables. Developer 1 firstly analyzed the program with 4
dependent variables, and, afterwards, the program with 2 dependent variables. Developer
2 also analyzed programs with 4 and 2 dependent variables but in reverse order.

To avoid learning effects due repetition of domains we distribute the domains along
our Latin square columns. Each column has a different domain. Therefore, each developer
analyzed two different programs, each one with different numbers of dependent variables
and different domains.

5.2 PARTICIPANTS

We counted on 12 participants to run our experiment: six professors, and six developers
from industry. We selected professors from one university in Brazil and developers from
three companies in Brazil. No compensation was provided for the participants.

No data were discarded due to poor quality. Eight participants have normal vision
and four have vision corrected by glasses. Four participants are females. All of them have
experience in C programming language. Nine participants declared themselves as expert

5.3 PROGRAMS 59

developers and all of them knew the syntax of #ifdef.

5.3 PROGRAMS

Figure 5.2 Program 1 and Program 2 highlighting variable definitions (orange) and variable
usages (red).

Figure 5.3 Program 3 and Program 4 highlighting variable definitions (orange) and variable
usages (red).

60 STUDY 3

We implemented the programs used in our experiment inspired by our previous studies
(Chapter 3 and Chapter 4) and common programming tasks. We avoided pieces of code
form real programs (like the ones from Linux) because their complexity could affect
comprehensibility. Furthermore, to facilitate understanding and to widen the audience
of potential participants, our programs were written in the participants’ native language
(Portuguese).

Listing 5.1 Program 1: Sale of property domain with 2 dependent variable

1 struct Properties {
2 float salesPrice = 0;
3 int available = 1;
4 #ifdef COMMISSION
5 float commissionValue = 0;
6 #endif
7 #ifdef TAX
8 float taxes = 0;
9 #endif

10 } property ;
11 float calculatePropertyValue (float costPrice) {
12 float serviceFee = 0;
13 if (property . available == 0) {
14 printf (" Property blocked ! Sale not made!");
15 property . salesPrice = 0;
16 return property . salesPrice ;
17 } else {
18 #ifdef SERVICE_FEE_DISCOUNT
19 if (costPrice > 5000) {
20 serviceFee = 100;
21 } else {
22 serviceFee = 50;
23 }
24 #endif
25 #ifdef TAX
26 property .taxes = costPrice / 10;
27 serviceFee += property .taxes;
28 printf ("Value of Property taxes = %.f", property .taxes);
29 #endif
30 #ifdef COMMISSION
31 property . commissionValue = costPrice / 20;
32 serviceFee += property . commissionValue ;
33 printf (" Commission = %f", property . commissionValue);
34 #endif
35 property . salesPrice = costPrice + serviceFee ;
36 return property . salesPrice ;
37 }
38 }
39 int main () {
40 float costPrice = 0;
41 scanf ("%f", & costPrice);
42 printf ("Sales Price = %f", calculatePropertyValue (costPrice)

);

5.3 PROGRAMS 61

43 }

We used an eye-tracking device on a 32-inch screen to record all gaze movements
of participants. Our programs should fit on a 45-line display window so that the eye-
tracking device could record all gaze movements of participants. The participants were
seated about 60 to 65 cm from the stimuli. A Courier New font of size 14 pt with text color
black and background color white was used for presenting the source code. To make the
code easier to understand, we used the default line spacing size and we highlighted ifdefs
in green, symbols and numbers in red, and output texts in blue color. This color scheme
is the default in most Integrated Development Environments (IDEs), such as Eclipse1,
CodeBlocks2, DevC++3, and Microsoft Visual Studio4. The variables had meaningful
names and were defined using the CamelCase naming convention (MCCONNELL, 2004).

The four programs are similar in terms of number of lines of code (LOC) (LANZA;
MARINESCU, 2007), number of features (NOFC) (LIEBIG et al., 2010) and McCabe
cyclomatic complexity (CC) (MCCABE, 1976). In the following, we describe each pro-
gram.

Program 1: sale of property with 2 dependent variables. Listing 5.1 shows
Program 1 source code. It has three features: COMMISSION, TAX and SERVICE_FEE_DISCOUNT
feature. COMMISSION calculates the value of commission of a property sale. TAX calcu-
lates the value of Government taxes and the feature SERVICE_FEE_DISCOUNT calculates
the service fee.

This program has 2 dependent variables: costPrice and serviceFee. The variable
costPrice defined in a mandatory feature in line 11 and serviceFee is also defined
in a mandatory feature but in line 12. Variable costPrice had 3 uses that generate
dependencies: (i) in line 19 it is used within SERVICE_FEE_DISCOUNT feature, (ii) in line
26 it used within TAX feature and (iii) in line 31 it is used within COMMISSION feature.

The variable serviceFee had 4 uses that generate dependencies: (i) in line 20 within
SERVICE_FEE_DISCOUNT feature, (ii) in line 22 also within SERVICE_FEE_DISCOUNT fea-
ture, (iii) in line 32 within COMMISSION feature and (iv) in line 32 within of COMMISSION
feature.

Program 2: sale of property with 4 dependent variables. Listing 5.2 shows
Program 2. We rewrote the program shown in Listing 5.1 by including 2 dependent
variables: salesPrice, defined in line 2 and extraFee, defined in line 13.

The variable salesPrice is defined within a mandatory feature. It causes a depen-
dency because it is used within TAX feature in line 28. The variable extraFee is also
defined within a mandatory feature. It causes a dependency because it is used within
COMMISSION feature in line 33.

Figure 5.2 shows Program 1 and Program 2 side by side highlighting dependent vari-
ables: variable definition points in orange, and variable usage points in red.

Program 3: grade calculation with 2 dependent variables.. Listing 5.3 shows
1https://www.eclipse.org
2https://www.codeblocks.org/
3https://sourceforge.net/projects/orwelldevcpp
4https://visualstudio.microsoft.com

62 STUDY 3

Program 3. It has three features: FREQUENCY, EXTRA_POINT and SECOND_CHANCE_TEST
feature. FREQUENCY verifies the percentage of student attendance. EXTRA_POINT adds
extra points to students due to some extra class tasks and SECOND_CHANCE_TEST gives
the student the chance for an extra test.

Listing 5.2 Program 2: Sale of property domain with 4 dependent variables

1 struct Properties {
2 float salesPrice = 0;
3 int available = 1;
4 #ifdef COMMISSION
5 float commissionValue = 0;
6 #endif
7 #ifdef TAX
8 float taxes = 0;
9 #endif

10 } property ;
11 float calculatePropertyValue (float costPrice) {
12 float serviceFee = 0;
13 float extraFee = 0;
14 if (property . available == 0){
15 printf (" Property blocked ! Sale not made!");
16 property . salesPrice = 0;
17 return property . salesPrice ;
18 } else {
19 #ifdef SERVICE_FEE_DISCOUNT
20 if (costPrice > 5000){
21 serviceFee = 100;
22 } else {
23 serviceFee = 50;
24 }
25 #endif
26 #ifdef TAX
27 property .taxes = costPrice / 10;
28 property . salesPrice += property .taxes;
29 printf ("Value of property taxes = %f", property .taxes);
30 #endif
31 #ifdef COMMISSION
32 property . commissionValue = costPrice / 20;
33 extraFee += property . commissionValue ;
34 printf (" Comission = %f", property . commissionValue);
35 #endif
36 property . salesPrice += costPrice + serviceFee + extraFee ;
37 return property . salesPrice ;
38 }
39 }
40 int main () {
41 float costPrice = 0;
42 scanf ("%f", & costPrice);
43 printf ("Sales price = %f",calculatePropertyValue (costPrice));
44 }

5.3 PROGRAMS 63

Listing 5.3 Program 3: Grade calculation domain with 2 dependent variables

1 struct Students {
2 # ifdef FREQUENCY
3 int frequency = 90;
4 # endif
5 # ifdef EXTRA_POINT
6 float extraPoint = 1.0;
7 # endif
8 # ifdef SECOND_CHANCE_TEST
9 float secondChanceTest = 8.0;

10 # endif
11 } student ;
12 float CalculateGrade (float unity1 , float unity2) {
13 float finalGrade = 0, selfEvaluation = 0.5;
14 # ifdef FREQUENCY
15 if (student . frequency < 75) {
16 printf (" Failed student by frequency !");
17 return finalGrade ;
18 } else {
19 #endif
20 finalGrade = ((unity1 + unity2) / 2);
21 #ifdef EXTRA_POINT
22 finalGrade += student . extraPoint ;
23 #endif
24 if (finalGrade >= 7) {
25 printf (" Approved student !");
26 } else {
27 #ifdef SECOND_CHANCE_TEST
28 if (finalGrade > 2){
29 finalGrade = (((finalGrade * 2) + student .

secondChanceTest) / 3) + selfEvaluation ;
30 if (finalGrade >= 5){
31 printf (" Approved student !");
32 } else {
33 #endif
34 printf (" Failed student !");
35 #ifdef SECOND_CHANCE_TEST
36 }
37 }
38 #endif
39 }
40 # ifdef FREQUENCY
41 }
42 # endif
43 return finalGrade ;
44 }
45 int main () {
46 float unity1 , unity2 ;
47 scanf ("%f%f", &unity1 , & unity2);
48 printf ("Final grade = %f", CalculateGrade (unity1 , unity2));
49 }

64 STUDY 3

Listing 5.4 Program 4: Grade calculation domain with 4 dependent variables

1 struct Students {
2 #ifdef FREQUENCY
3 int frequency = 90;
4 #endif
5 #ifdef UNIT3
6 float unit3 = 7.0;
7 #endif
8 #ifdef SECOND_CHANCE_TEST
9 float secondChanceTest = 9.0;

10 #endif
11 } student ;
12 float calculateGrade (float unit1 , float unit2) {
13 float finalGrade = 0, selfEvaluation = 0.5;
14 #ifdef FREQUENCY
15 if (student . frequency < 75) {
16 printf (" Failed student by frequency !");
17 } else {
18 #endif
19 finalGrade = ((unit1 + unit2) / 2);
20 #ifdef UNIT3
21 finalGrade = ((unit1 + unit2 + student .unit3) / 3);
22 #endif
23 if (finalGrade >= 7) {
24 printf (" Approved student !");
25 } else {
26 # ifdef SECOND_CHANCE_TEST
27 finalGrade = (((finalGrade * 2) + student .

secondChanceTest) / 3) + selfEvaluation ;
28 if (finalGrade >= 5){
29 printf (" Approved student !");
30 } else {
31 # endif
32 printf (" Failed student !");
33 # ifdef SECOND_CHANCE_TEST
34 }
35 # endif
36 }
37 #ifdef FREQUENCY
38 }
39 #endif
40 return finalGrade ;
41 }
42 int main () {
43 float unit1 , unit2;
44 scanf ("%f%f", &unit1 , &unit2);
45 printf ("Final grade = %f", calculateGrade (unit1 , unit2));
46 }

This program has 2 dependent variables: finalGrade, defined in a mandatory feature
in line 13, and selfEvaluation, also defined in a mandatory feature in line 13. Vari-

5.4 AREAS OF INTEREST (AOI) 65

able finalGrade has 5 uses that generate dependencies: (i) in line 17 it is used within
FREQUENCY feature, (ii) in line 22 it is used within EXTRA_POINT feature, the other uses
occur within SECOND_CHANCE_TEST feature, (iii) in line 28, (iv) in line 29, and (v) in line
30. The variable selfEvaluation has 1 use that generates dependencies in line 29 within
SECOND_CHANCE_TEST feature.

Program 4: grade calculation with 4 dependent variables. Listing 5.4 shows
Program 4. We rewrote the program showed in Listing 5.3. We replaced the feature
EXTRA_POINT with UNIT3 and we included 2 dependencies in 2 variables: unity1 and
unity2. variables unity1 and unity1 are defined in line 12 within a mandatory feature.
They are used in line 21 within UNIT3 feature.

Figure 5.3 shows Program 3 and Program 4 side by side highlighting dependent vari-
ables. Variable definition points are in orange and variable usage points are in red.

5.4 AREAS OF INTEREST (AOI)

An AOI is a region of interest of a displayed stimulus in an eye-tracker-based study. In
those type of studies, we can extract eye movement metrics based on AOIs.(KRAJBICH;
ARMEL; RANGEL, 2010). We defined our AOIs with OGAMA AOI editor (VOSSKÜH-
LER et al., 2008). Our AOIs comprised regions of source code that contained variable
definitions and variable usages.

Figure 5.4 Areas of Interest of Program 1 and Program 2.

Figure 5.4 and Figure 5.5 show our AOIs. We defined two main AOIs: (i) the first
AOI is the region where dependent variables are defined, and (ii) the second AOI is the
region where dependent variables are used. We defined those regions because we want to
analyze the visual effort of developers analyzing source codes with different numbers of
dependent variables. In this case, the regions of variable definitions and variable usages

66 STUDY 3

Figure 5.5 Areas of Interest of Program 3 and Program 4.

can reveal the behavior of developers when analyzing source code with different numbers
of dependent variables.

5.5 PILOT STUDIES

Before executing the actual experiment, we carried out two pilot studies. In the first one,
the participants had to find variability bugs in the programs. The participants of this first
pilot study also participated in our Study 2 (Chapter 4). Because of this they already
known about the types of variability bugs they had to find, which were of the same types
of some of the bugs we used in Study 2. Therefore, we noticed they browsed the program
focusing on find those types of bugs insteady of trying to understand the program. As
we did not have many alternatives, other potential participants of this study could also
have participated in Study 2. Thus, using variability bug searching as task of this study
would threat its internal validity. As a consequence, we decided to change the task.

We, then, performed a second pilot study with a different kind of tasks for the par-
ticipants. They had to correctly specified the program output given a set of input data
and a specific configuration of enabled and disabled features. In this case, the pilot went
well. We performed the pilot studies with two master’s degrees and one doctoral degree.

In the two pilot study runs, participants analyzed codes with 2 and 4 dependent
variables, and the results of time and visual effort already indicated significant differences
between the codes. These initial results allowed us to conclude that it was possible to
compare codes with few and many dependent variables using this design. We did not
consider their results in our analysis.

5.6 EXPERIMENT PROCEDURES 67

5.6 EXPERIMENT PROCEDURES

We performed each trial of the experiment with each participant individually. Before
starting the experiment tasks, we cleaned all materials and equipment with alcohol gel,
as the COVID-19 pandemic was still ongoing in many parts of the world, there were
variations in the intensity and measures taken by different countries. Finally, we asked
the participant to fill out a consent form. All participants signed the consent form.

Then, the participant put on the smartwatch. The participants were instructed not to
make sudden movements to prevent inaccurate measurements by the smartwatch. Before
the participant start analyzing the first program, we asked her or him to watch a two
minute full-screen video of a fish swimming in an aquarium. We did the same before
the participant start analyzing the second program. The video was intended to help
participants relax and allow us to record a baseline of her or his heart rate. In previous
studies, we saw that a persons biometric features drop back to a baseline after about a
minute of watching the video (FRITZ et al., 2014; MÜLLER; FRITZ, 2015). After the
video, we calibrated the eye-tracking device and the smartwatch and we synced the clock
of the smartwatch with the time of the eye-tracking computer.

We asked the participants if they had any cardiac problems. Only one participant
claimed to have cardiac arrhythmia. However, during the experiment, individual results
did not show any type of alteration. Another participant claimed to be experiencing
family-related stress. However, the detected change was that the baseline heart rate was
elevated, which did not compromise the analysis of the results.

The participant analyzed the programs as we planned in our Latin square design
5.1. We observed the participant and monitored the initial and final time that her or
him spent for completing each task. The participant had three tasks per program. We
give more details about the tasks in Section 5.7. We used the tool that record the gaze
data to record the time. For each new task, the tool reseted the timer. We check if the
participant correctly specify the output and then finished the record. The participant
was not allowed to proceed to the next task until she or he correctly answered the task
in progress. We counted and registered the number of attempts the participant needed
to correctly answered each task.

We presented each program to the participants as static images displayed on a screen.
Participants did not have access to tools, IDEs or browsers. For each participant, we
recorded x and y coordinates (fixations) via an eye tracker, and heart-related biometrics
via a smartwatch.

We performed each experiment trial individually in the same lab using the same mon-
itor to avoid unintended effects from different software and hardware environments. The
screen resolution was set to 1920 by 1080 pixels into a 32 inch LCD screen. We recorded
all of the eye tracking data using the open-source tool OGAMA (VOSSKÜHLER et al.,
2008). We used the Tobii Eye tracker 55 Device and the Garmin Fenix 5s6 smartwatch.

5https://gaming.tobii.com/product/eye-tracker-5/
6https://www.garmin.com/en-US/p/552237/

68 STUDY 3

5.7 TASKS

Each participant received a task instruction form that explains the experiment. Each
participant had to understand and realize the mental execution of two programs, one
program with more dependent variables and the other with fewer dependent variables.
The order of programs depends on Latin Square. Each participant also had to answer
three tasks about each program. We motivated the participant not to direct their eyes
off the screen while performing the task.

We explained to the participant the proposed scenarios and initial values of each task
before she or he started. The participant could also find these same instructions in the
instruction form. The three tasks force the participant to mentally simulate different
configurations involving dependent variables. To ensure the same difficulty level in all
sets of tasks, we defined the same three feature configuration scenarios for all programs:
(i) Task 01: all features enabled, (ii) Task 02: one feature disabled and two features
enabled, (iii) Task 03: all features disabled.

For example, the first task about the two programs on domain 1 (one with 2 dependent
variables, the other with 4) should be answered considering all features enabled. The task
was presented to the participants as follows:

TASK 1: Consider:
FEATURE ENABLED: COMISSION, TAX and SERVICE_FEE_DISCOUNT
FEATURES DISABLED: none.
INITIAL VALUES: priceCost = 2000 in line 41.
QUESTION: "What will be printed on line 42 when the int main() function on line

39 is executed?"
The tasks about Program 1 (with 2 dependent variables) and of Program 2 (with 4

dependent variables) were the same. And, according our Latin Square, we allocated half
of the participants to execute the tasks based on Program 1, and the other half to execute
the tasks based on Program 2.

5.8 EXPERIMENTAL RESULTS

In this section, we test our hypotheses and discuss the results. We measured comprehen-
sibility according to: (i) time to provide the correct answer to the tasks, (ii) number of
attempts until the participants provide the correct answer to the tasks, (iii) visual effort
with number of fixations, gaze transitions, and attention maps, and (iv) heart-related
biometrics.

In this study, as in previous studies (Chapter 3 and Chapter 4), we used Analysis
of Variance (ANOVA) tests for hypothesis testing. ANOVA is a statistical test used to
analyze the difference between the means of more than two groups. We used p-value <
0.05 as the probability for rejecting null hypotheses. The only exception, was the number
of attempts until the developers provide the correct answer variable. ANOVA does not
apply for it as it holds binary values. Thus, we used inferential statistics to evaluate it.
We ran our tests with the support of R7. All artifacts used in our experiment are available

7http://www.r-project.org/

5.8 EXPERIMENTAL RESULTS 69

at our website8 and our research share website.9 In the following, we present the results
regarding each metric.

5.8.1 Time to provide the correct answer

Table 5.1 Mean time to provide the correct answer (in seconds)
With 2 dependent variables With 4 dependent variables

Program 1 Program 3 all programs Program 2 Program 4 all programs
66 74 70 81 128 105

Similarly to our previous studies (Chapters 3 and 4), we measured the time (in sec-
onds) each participant took to analyze each program. Our null hypothesis about this
metric is:

H0t: There is no significant difference in the time to provide the correct answer to the
tasks when comparing programs with different numbers of dependent variables.

Rows in Table 5.1 show the mean time spent by participants for each program. We
had 6 participants who answered 3 tasks for each program, which summed up a total
of 18 answers per program. In total of four programs we had 72 observations. Shapiro
test confirmed that the data about time to provide the correct answer was normally
distributed.

Table 5.1 shows the mean time spent by all participants for programs with 2 and 4
dependent variables. They spent a mean time of 70 seconds analyzing programs with
2 dependent variables and 105 seconds for programs with 4 dependent variables. Our
data revealed that there was a significant difference in time for the developers to analyze
programs with different numbers of dependent variables (p-value = 0.04373). We, thus,
reject our null hypothesis (H0t).

Result 1: Programs with more dependent variables required more time
for the participants to answer the tasks correctly than programs with fewer
dependent variables.

5.8.2 Number of attempts needed until correct answer

Table 5.2 Total number of attempts needed until correct answer
With 2 dependent variables With 4 dependent variables

Program 1 Program 3 all programs Program 2 Program 4 all programs
18 19 37 18 20 38

Similarly to our Study 1 (Chapter 4), we measured the total number of attempts
needed for the participants until they specify the correct output of the programs. The
participant scored one for each attempt for each task correctly answered. This metric

8http://www.djansantos.com.br/projects/dependentVariables/
9https://doi.org/10.5281/zenodo.7982409

70 STUDY 3

sum the total of attempts for all participants for each program. Our null hypothesis
about this metric is:

H0a: There is no significant difference in number of attempts needed until correct
answer when comparing programs with different numbers of dependent variables.

Table 5.2 shows the total number of attempts needed to specify the output correctly
by all participants. They needed 37 attempts for programs with 2 dependent variables
and 38 attempts for programs with 4 dependent variables. The χ2 test (Pearson’s Chi-
squared test) (CAMILLI; HOPKINS, 1978) revealed no significant difference between the
number of attempts needed to specify the output correctly for programs with 2 and 4
dependent variables. The value χ2 is 0.69, and the p-values is 0.4034. Based on this, we
cannot reject our null hypothesis H0a.

Result 2: There was no significant difference in the number of attempts
needed for the participants until giving the correct answer when comparing
programs with different numbers of dependent variables.

5.8.3 Visual effort

Total number of fixations

Table 5.3 Number of fixations
With 2 dependent variable With 4 dependent variable

Program 1 Program 3 all programs Program 2 Program 4 all programs
195 151 346 218 219 437

The number of fixations increases when a text is difficult to comprehend (RAYNER
et al., 2006). We counted the number of fixations per program. Our null hypothesis
about this metric is:

H0f : There is no significant difference in the number of fixations to specify the output
when comparing programs with different numbers of dependent variables.

Table 5.3 shows the total number of fixations the participants executed when analyzing
the programs in order to specify their correct output. They executed 346 fixations in
programs with 2 dependent variables and 437 fixations in programs with 4 dependent
variables. Our data revealed that the number of fixations was significantly different
between programs with different numbers of dependent variables (p-value = 0.04479).
We reject our null hypothesis (H0f)

Result 3: Developers made more fixations to analyze programs with more
dependent variable.

Gaze transitions and attention map

We already used and discussed data related to gaze transitions and attention maps
in our Study 2 (Chapter 4). Gaze transitions (saccades) are rapid eye movements from
one place to another separated by pauses (RAYNER et al., 2006). A larger number of
saccades in both directions indicates difficulty associated with understanding (RAYNER,

5.8 EXPERIMENTAL RESULTS 71

1998; RAYNER et al., 2006; RAYNER, 2009). We analyzed gaze transitions based on
areas of interest (AOI) of each program defined in Section 5.4. An attention map is a
heat map that displays an aggregation of fixations.

(a) Program 1 with 2 dependent variables

(b) Program 2 with 4 dependent variables

Figure 5.6 Gaze transitions diagram and attention map of programs 1 and 2.

Figure 5.6a and Figure 5.6b show our gaze transitions diagrams and attention maps
related to programs 1 and 2 respectively. Figure 5.7a and Figure 5.7b show our gaze
transitions diagrams and attention maps related to programs 3 and 4 respectively. We
superimposed all individual gaze transitions and attention maps of each participant. Each
gaze transition diagram and attention map is, thus, composed by the overlapping of six
individual gaze transitions and attention maps.

The gaze transitions diagrams reveal that participants executed more transitions on
Program 2 (Figure 5.6b), which has four dependent variables, than on Program 1 (Figure
5.6a) with fewer dependent variables. Program 1 and Program 2 are programs developed
in the same domain 1. It is possible to observe in Figure 5.6b a high number of transitions
toward the top of the source code than in Figure 5.6a. We hypothesize that this occurs
because programs with more dependent variables force the participant to examine more
parts of the source code because dependencies are distributed to more variables.

The attention map of Program 1 (Figure 5.6a) reveals that participants’ attention was
directed to the usages of finalGrade variable. Participants concentrated their attention

72 STUDY 3

on the dependent variable AOI. We hypothesize that this occurs because finalGrade
variable concentrated the most of dependencies in this program generating more cog-
nitive effort. The attention map of Program 2 (Figure 5.6b) reveals that participants
concentrated their attention in two red regions closed the finalGrade variable. Partic-
ipants’ attention was directed to the usages and definition of finalGrade variable. We
hypothesize that this occurs because, for programs with more dependent variables, the
developer needs to look at more variable definitions.

(a) Program 3 with 2 dependent variables

(b) Program 4 with 4 dependent variables

Figure 5.7 Gaze transitions diagram and attention map of programs 3 and 4.

For programs in domain 2, the gaze transitions diagrams reveal that participants ex-
ecuted more transitions on Program 4 (Figure 5.7b), which has four dependent variables,
than Program 3 (Figure 5.7a), which has two dependent variables. This scenario is the
same as domain 1. We observed in Figure 5.7b a higher number of transitions toward the
top of the source code than in Figure 5.7a. Again, we hipothetize that programs with
more dependent variables force developers to look more times at the region of variable
definitions.

The attention map of Program 3 (Figure 5.7a) reveals that participants’ attention
was directed to the usages of serviceFee variable. The attention maps show the two
red regions in the dependent variable AOI. We hypothesize that this occurs because
serviceFee variable concentrated the most of dependencies in this program generating
more attention in this area. The attention map of Program 4 (Figure 5.7b) reveals that

5.8 EXPERIMENTAL RESULTS 73

participants, when analyzing programs with more dependent variables, needed to navigate
over all source code, and, as a consequence, the attentions are more distributed along the
AOIs. One AOI encapsulates variable usages and the other AOI encapsulates variable
definitions.

In summary, the attention maps and the gaze transitions diagram lead to the following
result.

Result 4: Programs with more dependent variables force the developer to
direct their attention to more regions, causing a more spread distribution of
attention and transitions over distinct parts of source code.

5.8.4 Heart-related biometrics

Previous research has shown that heart-related biometrics can be linked to difficulty in
comprehending small code snippets (WALTER; PORGES, 1976; FRITZ et al., 2014;
NAKAGAWA et al., 2014; MÜLLER; FRITZ, 2015). The general concepts behind these
studies are that heart-related biometrics can be used to determine cognitive or mental
effort required to perform a task. The more difficult a task is, the higher the cognitive
effort, and the higher the Heart Rate Variability (HIJAZI et al., 2021). In this study,
we examine the places in the source code where developers had a variance in Heart Rate
and Stress Level and are therefore more likely to have comprehension problems.

Heart Rate Variability and Stress Level

We used a low-cost smartwatch in our study. The Garmin Fenix 5s smartwatch does
not provide raw data of heart rate and Stress Level. We performed our analyzes based
only on calculating averages, variance, and standard deviation according to the graphs
collected by the smartwatch.

Table 5.4 Total number of HRV and Stress Level variations
With 2 dependent variables With 4 dependent variables

Programs Program 1 Program 3 all programs Program 2 Program 4 all programs
HRV 2 2 4 4 4 8

total of
participants 2 2 4 3 3 6

Figure 5.8 shows an example of data captured by the smartwatch. Visually, in Figure
5.8a we detected a variation in the heart rate of one of the participants. Between 10:22
AM and 10:24 AM the participant registered 103 heartbeats per minute. Then, we check
if this value is above the mean and standard deviation. If confirmed, we check in the
values of Stress Level graphics (Figure 5.8b) if the moment of variation of Stress Level
is the same as the heart rate. If confirmed, we mark that point as a heart rate variation
(HRV).

All HRV and Stress Level measurements were normalized using the baseline measure-
ments that we collected during the second minute of the two-minute swimming fish video.
In summary, the period evaluated for each participant for each program was from the
last minute of the video until the end of the third task of each program.

74 STUDY 3

(a) HRV (b) Stress Level

Figure 5.8 HRV and Stress Level collected by smartwatch

We counted the number of HRV for programs with 2 and 4 dependent variables. Our
null hypothesis about this metric is:

H0h: There is no significant difference in the number of HRV to specify the output of
the programs when comparing programs with different numbers of dependent variables.

Table 5.4 shows the sum of number of HRV of all participants during the tasks and
the total number of different participants accounted for these HRV. Four participants
had 4 HRV for programs with 2 dependent variables and 6 participants had 8 HRV
for programs with 4 dependent variables. The χ2 test revealed no significant difference
between the number of HRV needed to specify the output correctly in programs with 2
and 4 dependent variables. The value χ2 is 0.9, and the p-values are 0.3428. Based on
this, we cannot reject our null hypothesis H0h.

Result 5: There was no significant difference in the number of HRV until
giving the correct answer when comparing programs with different numbers
of dependent variables.

5.8.5 Discussion

Here we answer our research question How do different numbers of dependent variables
affect the comprehensibility of configurable system source code?? by discussing different
aspects of our findings.

Programs with more dependent variables were more difficult to under-
stand.

Our results 1, 3, and 4 show that programs with more dependent variables demanded
more comprehension effort from participants. Developers spent more time and more
fixations when compared with programs with fewer dependent variables. We hypothesize

5.8 EXPERIMENTAL RESULTS 75

(a) Individual scan path of participants analyzing Program 1.

(b) Gaze movements of participants analyzing Program 1.

Figure 5.9 Gaze movements of Program 1 in the moment of HRV

76 STUDY 3

(a) Individual scan path of participants analyzing Program 3.

(b) Gaze movements of participants analyzing Program 3.

Figure 5.10 Gaze movements of Program 3 in the moment of HRV

5.8 EXPERIMENTAL RESULTS 77

(a) Individual scan path of participants from Program 2 with 4 dependent variables.

(b) Gaze movements diagram of Program 2 with 4 dependent variables.

Figure 5.11 Gaze movements of Program 2 in the moment of HRV

that this occurred because, with more dependent variables, the developer needs to look
at more variable definitions. Furthermore, if the local of dependent variables definitions
are far from their usage participant realize longer gaze transitions. This find confirms
our results in Study 2 (Chapter 4).

Programs with more dependent variables required more visual effort.
Results 3 and 4 show that programs with more dependent variables may increase

78 STUDY 3

visual effort. To specify the output of the programs, participants needed to perform
more gaze transitions and focused more time on distinct parts of the source code.

There was no significant difference in the number of HRV when comparing
programs with different numbers of dependent variables.

Result 5 shows that there was no significant difference in terms of HRV while partic-
ipants analyzed programs with different numbers of dependent variables. Despite this,
we decided to investigate what was happening in terms of gaze movements during HRV,
as follows.

Scan paths of HRV

Scan paths are the sequence of all fixations points of a participant as a connect-the-
dots visualization. We generated individual scan paths of all participants when happened
a variation in the heart rate. Figure 5.8 shows an example of HRV of one of the partici-
pants. Based on Figure 5.8, what could have caused a variation in the participant’s heart
rate during source code analysis? We used scan paths to identify where he or she was
looking and why it might have generated cognitive effort.

Table 5.4 shows that 2 participants had 2 HRV analyzing Program 1 (2 dependent
variables). We generated two scan paths at the moments the two HRVs happened. In
both cases, the participants where executing tasks with all features enabled. Figure 5.9a
shows two scan paths of participants analyzing Program 1 (2 dependent variables). The
Participants looked for information about variable definitions at the top of the code.
After that, participants followed the normal flow of reading. In Figure 5.9b we superim-
posed the two individual scan paths corresponding to HRV. We also generated attention
maps corresponding to the HRV of the participants. Figure 5.9b shows the gaze move-
ments of participants were concentrated in the region of variable definitions and variable
usages when an HRV occurred. Three red regions indicate that participants’ attention
was directed to the definition and usages of finalGrade variable. We hypothesize that
this occurs because finalGrade variable concentrated the most of dependencies in this
program generating more cognitive effort.

Figure 5.10a represents scan paths of participants in Program 3, another program
with 2 dependent variables. Two participants register HRV. In the first scan path, the
participant had to consider all features disabled. We observed that the participant reali-
zed long saccades and regressions to the bottom of the screen, exceeding the limits of
the screen. We suppose that the participant did not well understand the task and had
to look to the instructions in the paper sometimes. This may have caused the HRV.
In the second scan path, the participant had to consider the TAX feature disabled. The
participant navigated along the source code trying to resolve the task. Figure 5.10b is
composed by the overlapping of the two individual scan paths and attention maps during
the HRV. The red region on COMISSION feature indicates that participants’ attention was
directed to the definition and usages of variables of the enabled feature. We hypothesize
that HRV occurred because analyzing programs with disabled features is not a trivial
task. Participants concentrated their gaze movements in #ifdef of COMISSION feature
and around serviceFee dependent variable.

5.9 THREATS TO VALIDITY 79

Figure 5.11a shows scan paths participants performed in Program 2 (4 dependent
variables). The participants performed long saccades and regressions between variable
definitions and variable usages. In Figure 5.11b we had the overlapping of four individual
scan paths and attention maps corresponding to participants’ gaze movements during
the four HRV occurrences. Figure 5.11b confirms that gaze movements concentrated in
the region of variable definitions and variable usages when an HRV occurred. The red
region indicates that participants’ attention was directed to the usage of finalGrade
variable. Figure 5.11b shows only one red region in programs with 4 dependent variables,
and Figure 5.9b shows four red regions in programs with 2 dependent variables. We
hypothesize that this occurs because programs with more dependent variables force the
participant to examine more parts of the source code because dependencies are distributed
to more variables. The same happens in Program 4 also with 4 dependent variables.
Participants performed long saccades and regressions causing a higher distribution of
attention over distinct parts of source code as shown in Figures 5.12a and 5.12b.

In summary, participants seem to have performed long saccades and regressions during
HRV. Also, HRV concentrated fixations in the region of variable definitions and variable
usages. However, it is important to highlight that these findings were based on limited
observations and information.

Number of dependent variables did not affect number of attempts to spec-
ify Program outputs.

Result 2 revealed that the number of attempts needed for the participants until giving
the correct answer was not affected by different numbers of dependent variables. This
means that number of dependent variables may increase time and visual effort to specify
the output, but does not decrease developers’ ability to specify the output. This result
confirms previous studies that showed that most participants correctly executed tasks in
programs with #ifdef (MELO; BRABRAND; WASOWSKI, 2016; MELO et al., 2017;
SANTOS; SANT’ANNA, 2019).

5.9 THREATS TO VALIDITY

This experiment design is similar to the experiment design of Study 2 describes in Chapter
4, thus, the threats to validity of this study is similar to the threats to validity described
in Section 4.6.

5.9.1 Internal validity

Programming language. We wrote our programs in C, because most of the studies and
repositories of programs containing #ifdef are in C language. The knowledge of partici-
pants in C could influence our results. To minimize that, we only admitted participants
with previous experience on C.

Participants’ experience. No participant was an expert in #ifdef, thus the dis-
tribution of participants in the Latin square was balanced. We controlled confounding
factors via the Latin square design and randomization. We selected 12 participants ex-
perts in language C. They are programming language professors and developers from

80 STUDY 3

(a) Individual scan path of participants from Program 4 with 4 dependent variables.

(b) Gaze movements diagram of Program 4 with 4 dependent variables.

Figure 5.12 gaze movements of Program 4 in the moment of HRV

industry.
Lab settings. All experiment trials were done in the same lab and with our su-

5.9 THREATS TO VALIDITY 81

pervision. We observed temperature and brightness conditions. At the moment of the
execution of the experiment, the lab had only the participant and the authors.

5.9.2 External validity

Programs. Due to limitations we used small programs. But, our programs were inspired
by real configurable systems. For this reason, our results may hold to other programs.
However, for programs over 45 lines of code and more than three features, there may be
additional effects that we have not observed.

Meaningful variables names. The maintenance and comprehensibility of source
code can be hindered by choosing variables with non-meaningful names. Choosing mean-
ingful variable names is also important for domain comprehension. To minimize this
threat, we select relevant and meaningful variable names.

Mental simulation of scenarios. In practice, programmers encounter codes con-
taining many features, and they don’t always test or compile all possible configurations.
Our results are limited to programs with a few features where the developer mentally
simulates all possible configurations. Additionally, we utilize functional features, which
are easier to analyze than architectural features, for example.

Lab settings. Our results are also limited to the environment we adopted. Partici-
pants did not interact with the source code or use tools or IDEs. However, this design
would not be attractive for many participants, since it would require more time for
execution. In addition, we have the limitation that the source code should fit on the
screen due to the eye-tracking device. We used a default color scheme and font style
in most Integrated Development Environments (IDEs), such as Eclipse, CodeBlocks,
DevC++, and Microsoft Visual Studio.

5.9.3 Construct validity

Comprehensibility measurement. Measuring comprehensibility is not trivial because
it involves human factors. Therefore, it is always a threat to construct validity. To
minimize this threat, we quantified comprehensibility by means of different metrics, all
of them already been used in previous studies.

Chapter

6
STUDY 4 - AN EXPERIMENT ON HOW DEGREES OF

VARIABILITY AFFECT PROGRAM
COMPREHENSIBILITY

Our previous studies showed that feature dependencies affect comprehensibility in dif-
ferent degrees (Chapter 3) depending on the type of feature dependency (Chapter 4) or
number of dependent variables (Chapter 5). These studies focused on dependent vari-
ables. Other aspects also need to be considered when referring to feature dependencies,
like degrees of variability. In this context, we decided to complement our investigation
by answering the following research question:
-- How do degrees of variability affect the comprehensibility of configurable system?

Degrees of variability in configurable systems refer to the number of different program
variants from common source code. In other words, degrees of variability mean programs
with different numbers of features. For programs with less variability, the developer can
control whether to include or exclude a fewer number of features and consequently it has
fewer possible scenarios to be analyzed. For programs with more variability, the developer
needs to analyze more features and consequently a greater number of possible scenarios.
We described variability in Section 2.1.

6.1 DESIGN

To answer our research question, we carried out a controlled experiment with 12 devel-
opers, who analyzed programs trying to specify their output.

We performed this experiment with the same participants of Study 3 (Chapter 5).
We took advantage of the availability of the participants and also executed the tasks of
this experiment just after the tasks of Study 3. So, we controlled confounding factors
using the same experimental design and procedures of Study 3 (Section 5.1).

Developers analyzed 4 similar programs in terms of lines of code, cyclomatic complex-
ity, and number of feature dependencies. The differences between the programs were the
domain and degrees of variability. We implemented different degrees of variability with
variations in the number of feature expressions and feature constants. We considered

83

84 STUDY 4

Figure 6.1 Latin Square design (2x2).

programs with more variability all the programs implemented with 6 feature expressions
and 3 feature constants, and programs with less variability all the programs implemented
with 3 feature expressions and 1 feature constant. This should make any performance
differences manifest themselves clearly. We used programs with a maximum of 6 feature
expressions due to display limitations of the code on the screen.

We compared the comprehension effort participants spent to analyze each program
by (i) time to analyze each program, (ii) number of attempts until developers provide the
correct answer, (iii) visual effort and, (iv) heart-related biometrics. Participants used eye-
tracking and a smartwatch to collect data. In order to avoid learning effect, we selected
two different domains. Domain 1 (sale of products) and Domain 2 (game of hit the
target) each one with 6 dependencies. We fixed the number of feature dependencies and
the number of dependent variables on all programs and varied degrees of variability. Then,
two configurable system programs were implemented with less variability and the other
two programs were implemented with more variability. In summary, for each domain, we
implemented two programs with different degrees of variability.

We designed our experiment as a standard Latin Square. Our previous studies dis-
cuss Latin Square design (Section 3.1 and Section 4.1). Figure 6.1 explains our 2x2 Latin
Square. In its columns, we have the treatment, in this case, the number of feature ex-
pressions and feature constant. The lines represent developers. The acronyms in the cells
represent the program characteristics, +VAR represents a program with more variability,
and -VAR represents a program with less variability. Developer 1 firstly analyzed a pro-
gram with more variability, and, afterward, a program with less variability. Developer 2
also analyzed both programs, but in reverse order.

To avoid learning effects due repetition of domains we distributed the domains along
our Latin square column as in our Study 3 (Section 5.1). Thus, each developer analyzed
two different programs, each one in a domain different to the other.

6.2 PARTICIPANTS 85

Listing 6.1 Program 1: Sale of products domain with 3 feature expressions and 1 feature
constant

1 struct Products {
2 int totalProductsForSale = 10;
3 # ifdef PRODUCT_CONTROL
4 int totalProductsPurchased = 20;
5 int minimumNumberProducts = 5;
6 # endif
7 int totalProductsSold = 0;
8 } product ;
9 float sellProduct (int numberOfProducts) {

10 float unitaryValue = 5.0;
11 #ifdef PRODUCT_CONTROL
12 if (product . totalProductsForSale - numberOfProducts < 0) {
13 printf (" Insufficient number of products !");
14 return 0;
15 } else {
16 if (product . totalProductsForSale < product .

minimumNumberProducts) {
17 printf ("Last units ! Readjusted price ");
18 unitaryValue = unitaryValue + 2.0;
19 product . totalProductsForSale += product .

totalProductsPurchased ;
20 }
21 #endif
22 printf (" Product sold.");
23 product . totalProductsForSale -= numberOfProducts ;
24 product . totalProductsSold += numberOfProducts ;
25 #ifdef PRODUCT_CONTROL
26 }
27 #endif
28 return numberOfProducts * unitaryValue ;
29 }
30 int main () {
31 int numberOfProducts = 0;
32 scanf ("%d", & numberOfProducts);
33 printf ("Sale price = %f", sellProduct (numberOfProducts));
34 }

6.2 PARTICIPANTS

In total 12 participants run our experiment: two graduates, three postgraduate, one
postgraduate student, four with master’s degrees, and two with doctoral degrees. Six
of participants are developers from the industry and six are professors. Regarding the
experience with programming languages, all participants reported having experience with
C for more than six years. Regarding their #ifdef background knowledge, two participants
are researchers working on topics related to #ifdef, and all of them reported having some
experience with source code containing #ifdef.

86 STUDY 4

6.3 PROGRAMS

We implemented the programs for this experiment inspired by our previous studies (Sec-
tion 3.3 and Section 4.3) and common programming tasks. In the following, we describe
each program.

Listing 6.2 Program 2: Sale of products domain with 6 feature expressions and 3 feature
constant

1 struct Products {
2 int totalProductsForSale = 10;
3 #ifdef BUY_PRODUCT
4 int totalProductsPurchased = 20;
5 #endif
6 #ifdef MINIMUN_NUMBER_PRODUCTS
7 int minimumNumberProducts = 5;
8 #endif
9 int totalProductsSold = 0;

10 } product ;
11 float sellProduct (int numberOfProducts) {
12 float unitaryValue = 5.0;
13 #ifdef PRODUCT_CONTROL
14 if (product . totalProductsForSale - numberOfProducts < 0) {
15 printf (" Insufficient number of products !");
16 return 0;
17 } else {
18 #endif
19 product . totalProductsForSale -= numberOfProducts ;
20 #ifdef MINIMUN_NUMBER_PRODUCTS
21 if (product . totalProductsForSale < product .

minimumNumberProducts) {
22 printf ("Last units ! Readjusted price ");
23 unitaryValue = unitaryValue + 2.0;
24 # ifdef BUY_PRODUCT
25 product . totalProductsForSale += product .

totalProductsPurchased ;
26 # endif
27 }
28 #endif
29 printf (" Product sold.");
30 product . totalProductsSold += numberOfProducts ;
31 #ifdef PRODUCT_CONTROL
32 }
33 #endif
34 return numberOfProducts * unitaryValue ;
35 }
36 int main () {
37 int numberOfProducts = 0;
38 scanf ("%d", & numberOfProducts);
39 printf ("Sale Price = %f", sellProduct (numberOfProducts));
40 }

6.3 PROGRAMS 87

Program 1: sale of products with less variability. Listing 6.1 shows the source
code of Program 1. It has only one feature constant labeled PRODUCT_CONTROL. The
feature PRODUCT_CONTROL verifies the minimum number of products available for sale,
controls the number of products available for sale, and increases products for sale. This
program has 3 feature expressions. The first one is in line 3, the second one in line 11,
and the last one in line 25.

Listing 6.3 Program 3: Game of hit the target domain with 3 feature expressions and 1 feature
constant

1 struct Players {
2 int totalPoints = 0;
3 int hits = 0;
4 # ifdef HARD
5 int attempt = 0;
6 int errors = 0;
7 # endif
8 } player ;
9 int calculatePoints (int distance) {

10 int roundPoints = 0;
11 if (distance > 100) {
12 printf ("Hit the target ");
13 player .hits ++;
14 roundPoints += 100;
15 }
16 # ifdef HARD
17 player . attempt ++;
18 if (distance >= 80) {
19 roundPoints += 60;
20 } else
21 if (distance >= 60 && distance < 80) {
22 roundPoints -= 30;
23 player . errors ++;
24 }
25 # endif
26 else {
27 printf (" Missed the target ");
28 roundPoints -= 50;
29 }
30 # ifdef HARD
31 printf ("Hit percentage = %f", player .hits / player . attempt);
32 # endif
33 player . totalPoints += roundPoints ;
34 return roundPoints ;
35 }
36 int main () {
37 int distance = 0;
38 scanf ("%d", & distance);
39 printf ("Total points = %d", calculatePoints (distance));
40 }

88 STUDY 4

Figure 6.2 Program 1 and Program 2 on domain 1 highlighting feature expressions, feature
constants, and dependent variables.

Figure 6.3 Program 3 and Program 4 on domain 2 highlighting feature expressions, feature
constant and dependent variables.

Program 2: sale of products with more variability. Listing 6.2 shows the source
code of Program 2. It has three feature constants: BUY_PRODUCT, PRODUCT_CONTROL, and
MINIMUN_NUMBER_PRODUCTS. The feature BUY_PRODUCT increases products for sale. The

6.3 PROGRAMS 89

feature MINIMUN_NUMBER_PRODUCTS verifies the minimum number of products available
for sale, and the feature PRODUCT_CONTROL controls the number of products available for
sale. This program has 6 feature expressions defined in lines 3, 6, 13, 20, 24, and 31.

Listing 6.4 Program 4: Game of hit the target domain with 6 feature expressions and 3 feature
constants

1 struct Players {
2 int totalPoints = 0;
3 int hits = 0;
4 # ifdef STATISTICS
5 int attempts = 0;
6 # endif
7 # ifdef PENALTIES
8 int errors = 0;
9 # endif

10 } player ;
11 int calculatePoints (int distance) {
12 int roundPoints = 0;
13 # ifdef STATISTICS
14 player . attempts ++;
15 # endif
16 if (distance > 100) {
17 printf ("Hit the target ");
18 player .hits ++;
19 roundPoints += 100;
20 }
21 # ifdef PARTIAL_SCORE
22 if (distance >= 80) {
23 roundPoints += 60;
24 } else
25 # endif
26 # ifdef PENALTIES
27 if (distance >= 60 && distance < 80) {
28 roundPoints -= 30;
29 player . errors ++;
30 } else {
31 # endif
32 printf (" Missed the target ");
33 roundPoints -= 50;
34 }
35 # ifdef STATISTICS
36 printf ("Hit percentage = %f", player .hits / player . attempts);
37 # endif
38 player . totalPoints += roundPoints ;
39 return roundPoints ;
40 }
41 int main () {
42 int distance = 0;
43 scanf ("%d", & distance);
44 printf ("Total points = %d ", calculatePoints (distance));
45 }

90 STUDY 4

Figure 6.2 shows Program 1 and Program 2 side by side highlighting feature expres-
sions, feature constants, and dependent variables. In green are the feature expressions
and in red are the dependent variable usage points.

Program 3: game of hit the target with less variability. Listing 6.3 shows the
source code of Program 3. It has only one feature constant labeled HARD. The feature
HARD calculates the partial points and penalties of players and calculates statistics. This
program has 3 feature expressions. The first one is in line 4, the second one in line 16,
and the last one in line 30.

Program 4: game of hit the target with more variability. Listing 6.4 shows the
source code of Program 4. It has three feature constants: STATISTICS, PENALTIES, and
PARTIAL_SCORE. The feature STATISTICS calculates statistics. The feature PENALTIES
calculates penalties of players, and the feature PARTIAL_SCORE calculates partial points
of players. This program has 6 feature expressions defined in lines 4, 7, 13, 21, 26, and
35.

Figure 6.3 shows Program 3 and Program 4 side by side highlighting feature expres-
sions, feature constants, and dependent variables. In green are the feature expressions
and in red are the dependent variable usage points.

6.4 AREAS OF INTEREST (AOI)

Our AOIs in this study comprise regions of source code that contain feature expressions
and dependent variable usages. We decided to include dependent variable usage in these
AOIs because, as we are studying feature dependency, we want to know how depen-
dent variables attract attention of participants when programs have different degrees of
variability.

Figure 6.4 and Figure 6.5 show our AOIs. We define two main AOIs. The first AOI is
the region of feature expressions, and the second AOI is the region of dependent variable
usages.

6.5 EXPERIMENT PROCEDURES

Before executing the actual experiment, we carried out two pilot studies. They were
described in Section 5.5. The procedures of this study were the of Study 3, described in
Section 5.6.

6.6 TASKS

This experiment was carried out together with the experiment of study 3 (Chapter 5).
Thus, the tasks of both experiments should be similar to avoid confounding factors. For
example, different types of tasks could have generated discomfort or apprehension in par-
ticipants, demanding more time for new tasks and more explanations of new procedures.
Thus, we decided to also have, for this study, three tasks in which participants should
specify the output for each program.

Each participant had to understand and realize the mental execution of two programs,
one program with more variability and the other with less variability. The order of

6.6 TASKS 91

Figure 6.4 Areas of Interest of Program 1 and Program 2.

Figure 6.5 Areas of Interest of Program 3 and Program 4.

programs depended on Latin Square.
The programs with 1 feature constant can have only two scenarios to be analyzed:

(i) with the feature enabled and (ii) with the feature disabled. Thus, to ensure the same
difficulty level in all sets of tasks, we defined three tasks for all programs as follows:

92 STUDY 4

(i) Task 01: all features enabled, (ii) Task 02: all features enabled and new initial
values, (iii) Task 03: all features disabled.

We explained to participants proposed scenarios and initial values of each task be-
fore he or she started. The participant could also find these same instructions in the
instruction form. For example, the first task about the two programs should be answered
considering all features enabled. The task was presented to the participants as follows:

TASK 1: Consider:
FEATURE ENABLED: PRODUCT_CONTROL.
FEATURES DISABLED: none.
INITIAL VALUES: numberOfProducts = 6 in line 32.
QUESTION: "What will be printed on line 33 when the int main() function on line

30 is executed?"
Tasks of Program 1 (with less variability) and of Program 2 (with more variability)

were the same. The difference is only the names of features enabled and disabled. And,
according our Latin Square, we allocated half of the participants to execute the tasks
based on Program 1, and the other half to execute the tasks based on Program 2.

All artifacts used in our experiment are available at our website1 and our research
share website.2 In the following, we present the results regarding each metric.

6.7 EXPERIMENTAL RESULTS

6.7.1 Time to provide the correct answer

Table 6.1 Mean time to provide the correct answer (in seconds)
With less variability With more variability

Program 1 Program 3 all programs Program 2 Program 4 all programs
94 72 83 95 93 94

We measured the time (in seconds) each participant took to analyze each program.
Our null hypothesis about this metric is:

H0t: There is no significant difference in the time to provide the correct answer to the
tasks when comparing programs with different degrees of variability.

Rows in Table 6.1 show the mean time spent by participants for each program. Shapiro
test confirmed that the data about the time to specify output was normally distributed.
Table 6.1 shows the mean time spent by all participants for programs with different
degrees of variability. They spent a mean time of 83 seconds analyzing programs with less
variability and 94 seconds for programs with more variability. Our data revealed that was
no significant difference in time for developers to analyze programs with different degrees
of variability (p-value = 0.3735). We, thus, cannot reject our null hypothesis (H0t).

Result 1: Programs with more variability did not require more time for
participants to answer the tasks correctly than programs with less variability.

1http://www.djansantos.com.br/projects/variability/
2https://doi.org/10.5281/zenodo.7982409

6.7 EXPERIMENTAL RESULTS 93

Table 6.2 Total number of attempts needed until correct answer
With less variability With more variability

Program 1 Program 3 all programs Program 2 Program 4 all programs
19 19 38 19 20 39

6.7.2 Number of attempts needed until correct answer

We counted the total number of attempts participants needed to specify the output of
the programs correctly, he or she scored one for each attempt for each task. Our null
hypothesis about this metric is:

H0a: There is no significant difference in number of attempts needed until correct
answer when comparing programs with different degrees of variability.

Table 6.2 shows the total number of attempts needed to specify the output correctly
by all participants. They needed 38 attempts for programs with less variability and 39
attempts for programs with more variability. The χ2 test (Pearson’s Chi-squared test)
(CAMILLI; HOPKINS, 1978) revealed no significant difference between the number of
attempts needed to specify the output correctly in programs with different degrees of
variability. The p-values is 1. Based on this, we cannot reject our null hypothesis H0a.

Result 2: There was no significant difference in the number of attempts
needed for participants until giving the correct answer when comparing pro-
grams with different degrees of variability.

6.7.3 Visual effort

Total number of fixations

Table 6.3 Number of fixations
With less variability With more variability

Program 1 Program 3 all programs Program 2 Program 4 all programs
195 151 346 218 219 437

We counted the number of fixations per program. Our null hypothesis about this
metric is:

H0f : There is no significant difference in the number of fixations to specify the output
when comparing programs with different degrees of variability.

Table 6.3 shows the total number of fixations the participants executed when analyz-
ing the programs in order to specify their correct output. They executed 171 fixations
for programs with less variability and 213 fixations for programs with more variability.
Our data revealed that the number of fixations was not significantly different between
programs with different degrees of variability (p-value = 0.11485). We cannot reject our
null hypothesis (H0f)

Result 3: Developers did not make more fixations to understand programs
with different degrees of variability.

94 STUDY 4

(a) Program 1 with less variability

(b) Program 2 with more variability

Figure 6.6 Gaze transitions diagram and attention map of programs 3 and 4.

Gaze transitions and attention map

Figure 6.6a and Figure 6.6b show our gaze transitions diagrams and attention maps
related to programs 1 and 2 respectively. Figure 6.7a and Figure 6.7b show our gaze
transitions diagrams and attention maps related to programs 3 and 4 respectively. We
superimposed all individual gaze transitions and attention maps of each participant. Each
gaze transition diagram and attention map are, thus, composed by the overlapping of six
individual gaze transitions and attention maps.

The gaze transitions diagrams reveal that participants executed more transitions on
Program 2 (Figure 6.6b), which has more variability, than Program 1 (Figure 6.6a), which
has more variability. Program 1 and Program 2 are programs developed in the same do-
main 1. It is possible to observe in Figure 6.6b a greater distribution of transitions toward
the top of the source code than in Figure 6.6a. We hypothesize that this occurs because
programs with more variability force the participant to simulate different configurations
of enabled/disabled features.

The attention map of Program 1 (Figure 6.6a) reveals that participants’ attention
was directed to the usages of roundPoints variable. Participants concentrated their
attention on the dependent variable AOI and not on the feature expression AOI. In this
case, participants did not concentrate their attention on #ifdef clauses. We hypothesize

6.7 EXPERIMENTAL RESULTS 95

that this occurs because roundPoints variable concentrated the most of dependencies in
this program generating more cognitive effort. The attention map of Program 2 (Figure
6.6b) reveals that participants, when analyzing programs with more variability, needed to
navigate over all source code, and, as a consequence, the attentions are more distributed
along the AOIs. Programs with more variability force the participant to simulate different
configurations of enabled/disabled features.

(a) Program 3 with less variability

(b) Program 4 with more variability

Figure 6.7 Gaze transitions diagram and attention map of programs 3 and 4.

For programs in domain 2, the gaze transitions diagram reveals that participants ex-
ecuted more transitions on Program 4 (Figure 6.7b), which has more variability, than
Program 3 (Figure 6.7a) which has less variability. This scenario is the same as domain
1. We observed in Figure 6.7b a greater distribution of transitions toward the top of the
source code than transitions in Figure 6.7a. Participants, when analyzing programs with
more variability, navigated between feature expression regions, and, as a consequence,
the gaze transitions are more distributed along the source code. In these cases, partici-
pants needed, thus, to realize long transitions to feature expression regions and variable
definitions regions.

The attention map of Program 3 (Figure 6.7a) reveals that participants’ attention
was directed to the usages of totalProductsForSale variable. The attention maps
show one red regions in the dependent variable AOI. We hypothesize that this oc-
curs because totalProductsForSale variable concentrated most of the dependencies

96 STUDY 4

of this program generating more attention in this area. The attention map of Program
4 (Figure 5.7b), also shows that participants’ attention was directed to the usages of
totalProductsForSale variable. However, the attentions are more distributed along
the AOIs. The attention maps show a more widespread distribution of attention over all
source codes. This leads to the following result.

Result 4: Programs with more variability forced developers to direct their
attention to more regions, causing a more widespread distribution of attention
and transitions over distinct parts of source code.

6.7.4 Heart-related biometrics

Heart Rate Variability (HRV) and Stress Level

Table 6.4 Total number of HRV and Stress Level variations
With less variability With more variability

Programs Program 1 Program 3 all programs Program 2 Program 4 all programs
HRV 1 4 5 3 5 8

total of
participants 1 3 4 3 3 6

We counted the number of HRV for programs with different degrees of variability.
Our null hypothesis about this metric is:

H0h: There is no significant difference in the number of HRV to specify the output of
the programs when comparing programs with different degrees of variability.

Table 6.4 shows the total number of HRV of participants during the tasks. Four
participants had 5 HRV for programs with less variability and six participants had 8
HRV for programs with more variability. The χ2 test revealed no significant difference
between the number of HRV needed to specify the output correctly in programs with
different degrees of variability. The value χ2 is 0.375, and the p-values are 0.54. Based
on this, we cannot reject our null hypothesis H0h.

Result 5: There was no significant difference in the number of HRV until
giving the correct answer when comparing programs with different degrees of
variability.

6.7.5 Discussion

Here we answer our research question How do different degrees of variability affect the
comprehensibility of configurable system? by discussing different aspects of our findings.

Degrees of variability did not affect comprehensibility.
Our results 1, 2, 3, and 5 show that programs with more variability did not demand

more comprehension effort from participants. Developers did not spend more time or
make more fixations when compared with programs with less variability. It is important
to note that, in this study, we fixed the number of dependent variables, i.e. all programs
had the same number of dependent variables and usages of them. Therefore, the result is
somehow aligned with the results of Study 3 (Chapter 5) in which comprehensibility was
hinder when we increased the number of dependent variables. This result contradicts a

6.7 EXPERIMENTAL RESULTS 97

previous study that says that more variability increases debugging time (MELO et al.,
2017). It is important to say that, in their study, Melo et al. did not fix the number of
dependent variables, their tasks was debugging, and the programs was not implemented
with #ifdef.

Programs with more variability required more visual effort.
Results 4 show that programs with more variability may increase visual effort. To

specify the output, participants needed to perform more gaze transitions and focused
more time on distinct parts of the source code.

There was no significant difference in the number of heart variation points
when comparing programs with different degrees of variability.

Result 5 shows that there was no significant difference in terms of HRV while partici-
pants analyzed programs with different degrees of variability. However, we decided to
investigate what was happening in terms of gaze movements during HRV.

Scan paths of HRV

Figure 6.8 Individual scan path of participants from program 1 (less variability).

Figure 6.9 Gaze movements diagrams of Program 1 (less variability).

98 STUDY 4

We generated scan paths of all participants’ HRV to identify what happened when
they had a variance in Heart Rate and Stress Level.

Figure 6.8 shows a scan path of the only participant that had HRV while analyzing
Program 1. We generated a scan path at the moment the HRV happened. This heart
variation happened while he/she answered the third task, which had the program with
all features disabled. In Figure 6.9 we have the scan path image and the attention map
during the HRV, as well as the AOI map, and the source code. Figure 6.9 shows that the
gaze movements were concentrated in the region of CONTROL_PRODUCT feature. We did not
expect the participant’s gaze movements to focus on a disabled feature. We hypothesized
that HRV happened when the participant perceived that he or she was analyzing a piece
of code that contained a disabled feature. Analyzing programs with disabled features is
not a trivial task. The participant concentrated their gaze movements, during the HRV,
in a disabled feature.

Figure 6.10a represents scan paths of participants that analyzed Program 3, another
program with less variability. Four participants registered HRV. Similarly to what we
found in Study 3 (Section 5.8), most of the moments that participants had an HRV they
were executing long gaze transitions. In this case, Figure 6.10a shows participants B, C,
and D executing long gaze transitions. Two of the four participants had HRV while they
were answering the third task, which has all features disabled. Figure 6.10b is composed
of the overlapping of the four individual scan paths and attention maps during the heart
variation of the four participants. The red regions indicate that participants’ attention
was directed to the usages of roundPoints variable. We hypothesize that this occurs
because roundPoints variable concentrated most of the dependencies of this program
generating more cognitive effort.

Figure 6.11a shows scan paths of participants that analyzed Program 2, which has
more variability. Participants performed long gaze transitions with fixations distributed
over distinct parts of the source code. In Figure 6.11b we had the overlapping of the
four individual scan paths and attention maps that occured during HRV. Figure 6.11b
confirms the gaze movements distributed in the feature expressions region and dependent
variables region. The same happens in Program 4 also with more variability. Partici-
pants performed long gaze transitions causing a widespread distribution of attention over
distinct parts of source code as shown in Figures 6.12a and 6.12b. Again, most of par-
ticipants were answering the third task, which has all features disabled while having an
HRV.

In summary, participants seem to have performed long gaze transitions during HRV
and have made fixations distributed over distinct parts of the source code. Also, analyzing
programs with disabled features is not a trivial task. Some participants were analyzing
programs with all features disabled when they had HRV occurrence. However, it is
important to highlight again that these findings were based on limited observations and
information.

Programs with more variability did not affect number of attempts to spec-
ify program outputs.

Result 2 revealed that the number of attempts needed for participants until giving
the correct answer was not affected by different degrees of variability. This result con-

6.7 EXPERIMENTAL RESULTS 99

(a) Individual scan path of participants from program 3 (less variability).

(b) Gaze movements diagram of Program 3 (less variability).

Figure 6.10 Gaze movements of Program 3 in the moment of HRV

100 STUDY 4

(a) Individual scan path of participants from Program 2 (more variability).

(b) Gaze movements diagram of Program 2 (more variability).

Figure 6.11 Gaze movements of Program 2 in the moment of HRV

firms previous studies that showed that most participants answer the tasks correctly in
programs with #ifdef (MELO; BRABRAND; WASOWSKI, 2016; MELO et al., 2017;
SANTOS; SANT’ANNA, 2019).

6.8 THREATS TO VALIDITY

The procedures of this study were the same of Study 3, described in section 5.6. Further-
more, the programs and tasks also were similar to the ones of Study 3. Thus, the threats
to validity of this study are the same of Study 3, already described in Section 5.9, with
the exception of the external validity described below.

Programs. Program 1 has an undisciplined #ifdef. We became aware of this in-
clusion only after completing the studies. Although the literature suggests that such
undisciplined code may hinder comprehensibility, our findings indicate that the presence
of this undisciplined #ifdef did not have a significant impact on comprehension. The
metrics presented in our results demonstrate no significant difference in comprehension
between Program 1 and Program 2.

6.8 THREATS TO VALIDITY 101

(a) Individual scan path of participants from Program 4 (more variability).

(b) Gaze movements diagram of Program 4 (more variability).

Figure 6.12 Gaze movements of Program 4 in the moment of HRV

Chapter

7
CONCLUSION AND FUTURE WORK

The #ifdef is commonly used in configurable systems because it provides useful and
necessary variability. However, variability implemented with #ifdef is criticized because
it obfuscate source code, making it harder to understand. Often pieces of source code
within with #ifdefs share program elements like variables causing feature dependency.
In this work, we describe four empirical studies that we conducted to investigate how
feature dependency affect the comprehensibility of configurable system source code.

First, in Study 1, we conduct an online experiment with developers to investigate
how feature dependencies affect the comprehensibility of configurable systems imple-
mented with #ifdefs. Participants had to analyze programs implemented with #ifdefs
and specify their outputs. We compared programs with and without feature dependency
containing different types of feature dependency in the same source code. We measured
comprehensibility by the time and number of attempts that each developer took to answer
the tasks. Our results showed that feature dependencies affected the comprehensibility
of configurable system. Developers spent more time to analyze source code containing
feature dependency. We hypothesize that this may have happened thanks to how feature
dependency obligates developers to worry more about dependent variables and makes it
harder to simulate different configurations of enabled/disabled features.

Second, in Study 2, we executed a controlled experiment with human subjects to
investigate how different types of feature dependency affect the comprehensibility of con-
figurable systems implemented with #ifdefs. We asked the participants to try to find
different types of bugs in programs with different types of feature dependency. Then, we
measured their performance in terms of spent time, number of found bugs and visual ef-
fort. Our results show that different types of feature dependency affect comprehensibility
in different degrees. We observed that: (i) global and interprocedural dependencies de-
manded more time, (ii) interprocedural dependencies required more visual effort and (iii)
#ifdefs did not impact the comprehensibility of programs with intraprocedural depen-
dencies. These results lead us to hypothesize that comprehensibility is more negatively
affected when a variable which is shared between features is defined in a point far from
the points where it is used.

103

104 CONCLUSION AND FUTURE WORK

Third, in Study 3, we carried out a controlled experiment with developers to analyze
how the number of dependent variables and the number of uses of such variables influences
the comprehensibility of source code of configurable systems. Participants had to analyze
programs and specify output of programs with different number of dependent variables
and variable usages. Then, we measured the time and the number of attempts that each
developer took to specify the output. Furthermore, we recorded gaze movements and
heart rate variations of each participant using a eye-tracking device and a smartwatch.
Our results showed that developers spent more time to analyze source code containing
more dependent variables. Also, they made more fixations to understand source code
with more dependent variables. We hypothesize that this happened because, when a
developer analyze a variable, he or she need to direct their attention to the local where
it is defined. Then, if the source code has more dependent variables developers need
to direct their attention more times. However, there was no significant difference in
the number of participants’ heart rate variations until giving the correct answer when
comparing programs with different numbers of dependent variables.

Finally, in Study 4, we carried out a controlled experiment with 12 participants to
analyze the impact of degrees of variability on the comprehensibility of source code with
#ifdefs. Again, we measured time and number of attempts for participants to specify the
output of programs implemented with #ifdefs. We defined programs with two different
degrees of variability and the same number of feature dependencies. We also measured
visual effort and heart rate variability using an eye-tracking device and a smartwatch.
The results indicate that the time and number of attempts are relatively independent of
the degree of variability when programs had the same number of feature dependencies.
Results indicate that the visual effort appears to increase with the degree of variability.
We hypothesize that this happened because analyze programs with more dependent vari-
ables increases attention and effort. It is important to note that, in this study, we fixed
the number of dependent variables, i.e. all programs had the same number of dependent
variables and usages of them. This result contradicts a previous study carried out by
Melo et al. (MELO et al., 2017). Their study showed that more variability increases
debugging time. However, it is important to say that, in their study, they did not fix the
number of dependent variables, their tasks were debugging, and the programs were not
implemented with #ifdef.

In summary, we concluded that feature dependency may affect the comprehensibility
of configurable system source code, in different ways: (i) when #ifdef contain dependent
variables, (ii) when #ifdef contain intraprocedural and interprocedural dependencies, and
(iii) when the source code contains many dependent variables. We hypothesize that this
happened because if the source code has dependent variables developers need to direct
more attention to them. Also, comprehensibility is more negatively affected when a
dependent variable is defined at a point far from the points where it is used.

The insights obtained with our studies can, in the future, support developers of con-
figurable systems to know the parts of the source code they should take more care about.
These parts would be the ones with dependent variables that cause a certain type of
feature dependency. However, new issues should be investigated as future work:

CONCLUSION AND FUTURE WORK 105

• Programming language. We wrote our programs in C, using #ifdefs. Future
works might investigate dependent variables in other programming languages and
techniques, like using the feature-oriented programming or conventions of Cide
(KäSTNER; APEL; KUHLEMANN, 2008). Also, other comprehension code sce-
narios and tasks should also be explored.

• Real systems. Due to limitations we used small programs. We plan to accomplish
another experiment in order to evaluate comprehensibility of dependent variables
using real systems in a more realistic environment, with IDEs and source code with
multiple files.

• Feature dependency. For the research community, we encourage more empirical
studies investigating the impact of feature dependencies caused by functions, data
flow, control-flow, among others.

• Biometrics. We used the Tobii Eyex device, Tobii tracker 5 device, and the
Garmin Fenix 5s smartwatch. Both are low-cost equipment. We suggest other eye-
tracking and heart rate devices should also be used. Also, other biometrics may be
explored. We plan to include Electrodermal activity (EDA) in future works. EDA
refers to the variation of the electrical conductance of the skin in response to sweat
secretion.

• Tool support. Tool support has been out of the scope of this research. However,
developing a new tool or extending an existing one for code comprehension support
will be an essential contribution to this area.

• More empirical studies. This Thesis presented the design, procedures, programs,
tasks, analyzes of a set of empirical studies. We suggest carrying out new studies
in different contexts, including various participants and other domains.

• Degrees of granularity. We do not discuss degrees of granularity, such as state-
ment and expression extensions or function signature changes. Although the #ifdef
allows a programmer to annotate code even at the finest level of granularity, not
much is known about the necessity to make such fine-grained extensions. A high
number of fine-grained extensions can incur in #ifdef undisciplined. We suggest
carrying out new studies including degrees of granularity.

BIBLIOGRAPHY

ABAL, I.; BRABRAND, C.; WASOWSKI, A. 42 variability bugs in the linux kernel: a
qualitative analysis. In: ACM. Proceedings of the 29th ACM/IEEE international confer-
ence on Automated software engineering. New York, NY, USA: Association for Computing
Machinery, 2014. p. 421–432. Disponível em: <10.1145/2642937.2642990>.

ABAL, I. et al. Variability bugs in highly configurable systems: a qualitative analysis.
ACM Transactions on Software Engineering and Methodology (TOSEM), ACM, v. 26,
n. 3, p. 10, 2018. Disponível em: <10.1145/3149119>.

APEL, S. et al. Feature-oriented software product lines: Concepts and im-
plementation, berlin/heidelberg, 2013, 308 pages. URL http://www. springer.
com/computer/swe/book/978-3-642-37520-0, 2013.

APEL, S.; BEYER, D. Feature cohesion in software product lines: an exploratory study.
In: IEEE. 2011 33rd International Conference on Software Engineering (ICSE). 2011. p.
421–430. Disponível em: <https://doi.org/10.1145/1985793.1985851>.

APEL, S. et al. Exploring feature interactions in the wild: the new feature-interaction
challenge. In: ACM. Proceedings of the 5th International Workshop on Feature-Oriented
Software Development. 2013. p. 1–8. Disponível em: <10.1145/2528265.2528267>.

BAILEY, R. A. Design of comparative experiments. [S.l.]: Cambridge University Press,
2008.

BAKSHY, E.; ECKLES, D.; BERNSTEIN, M. S. Designing and deploying online field
experiments. In: Proceedings of the 23rd international conference on World wide web.
[S.l.: s.n.], 2014. p. 283–292.

BANIASSAD, E.; MURPHY, G. Conceptual module querying for software reengineering.
In: Proceedings of the 20th International Conference on Software Engineering. [S.l.: s.n.],
1998. p. 64–73.

BERGER, T. et al. Three cases of feature-based variability modeling in industry. In:
SPRINGER. International Conference on Model Driven Engineering Languages and Sys-
tems. 2014. p. 302–319. Disponível em: <10.1007/978-3-319-11653-2_19>.

BERGER, T. et al. A survey of variability modeling in industrial practice. In: Proceedings
of the 7th International Workshop on Variability Modelling of Software-Intensive Systems.
New York, NY, USA: Association for Computing Machinery, 2013. (VaMoS ’13). ISBN
9781450315418. Disponível em: <https://doi.org/10.1145/2430502.2430513>.

107

10.1145/2642937.2642990
10.1145/3149119
https://doi.org/10.1145/1985793.1985851
10.1145/2528265.2528267
10.1007/978-3-319-11653-2_19
https://doi.org/10.1145/2430502.2430513

108 BIBLIOGRAPHY

BERGER, T. et al. A study of variability models and languages in the systems software
domain. IEEE Transactions on Software Engineering, IEEE, v. 39, n. 12, p. 1611–1640,
2013.

BOX, G. E.; HUNTER, J. S.; HUNTER, W. G. Statistics for experimenters: design,
innovation, and discovery. [S.l.]: Wiley-Interscience New York, 2005.

BRAZ, L. et al. A change-centric approach to compile configurable systems with #ifdefs.
In: Proceedings of the 2016 ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences. New York, NY, USA: Association for Com-
puting Machinery, 2016. (GPCE 2016), p. 109119. ISBN 9781450344463. Disponível em:
<https://doi.org/10.1145/2993236.2993250>.

CAFEO, B. B. et al. Feature dependencies as change propagators: an exploratory
study of software product lines. Information and Software Technology, Elsevier, v. 69,
p. 37–49, 2016. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0950584915001512>.

CAFEO, B. B. et al. Analysing the impact of feature dependency implementation on
product line stability: An exploratory study. In: IEEE. 2012 26th Brazilian Symposium
on Software Engineering. [S.l.], 2012. p. 141–150.

CAMILLI, G.; HOPKINS, K. D. Applicability of chi-square to 2× 2 contingency ta-
bles with small expected cell frequencies. Psychological Bulletin, American Psychological
Association, v. 85, n. 1, p. 163, 1978. Disponível em: <10.1037/0033-2909.85.1.163>.

CATALDO, M. et al. Software dependencies, work dependencies, and their impact on
failures. IEEE Transactions on Software Engineering, IEEE, v. 35, n. 6, p. 864–878,
2009.

CAVALCANTE, E. et al. Exploiting software product lines to develop cloud comput-
ing applications. In: ACM. Proceedings of the 16th International Software Product Line
Conference-Volume 2. [S.l.], 2012. p. 179–187.

CLEMENTS, P.; NORTHROP, L. Software product lines: practices and patterns. [S.l.]:
Addison-Wesley Reading, 2002.

CLEMENTS, P.; NORTHROP, L. Software product lines. Product Line systems Program,
2003.

COSTA, J. A. S. da et al. Evaluating refactorings for disciplining# ifdef annotations: An
eye tracking study with novices. Empirical Software Engineering, Springer, v. 26, n. 5, p.
1–35, 2021. Disponível em: <10.1007/s10664-021-10002-8>.

COSTA, J. A. S. da et al. Evaluating refactorings for disciplining# ifdef annotations: An
eye tracking study with novices. Empirical Software Engineering, Springer, v. 26, n. 5,
p. 92, 2021.

https://doi.org/10.1145/2993236.2993250
https://www.sciencedirect.com/science/article/pii/S0950584915001512
https://www.sciencedirect.com/science/article/pii/S0950584915001512
10.1037/0033-2909.85.1.163
10.1007/s10664-021-10002-8

BIBLIOGRAPHY 109

COUCEIRO, R. et al. Biofeedback augmented software engineering: Monitoring of pro-
grammers’ mental effort. In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER). [S.l.: s.n.], 2019. p. 37–40.

CZARNECKI, K.; HELSEN, S.; EISENECKER, U. Formalizing cardinality-based fea-
ture models and their specialization. Software process: Improvement and practice, Wiley
Online Library, v. 10, n. 1, p. 7–29, 2005.

DUCHOWSKI, A. T. Eye tracking methodology: Theory and practice. Springer, 2017.
Disponível em: <10.1007/978-3-319-57883-5>.

ERNST, M. D.; BADROS, G. J.; NOTKIN, D. An empirical analysis of c preprocessor
use. IEEE Transactions on Software Engineering, IEEE, v. 28, n. 12, p. 1146–1170, 2002.

FENSKE, W.; SCHULZE, S.; SAAKE, G. How preprocessor annotations (do not) affect
maintainability: a case study on change-proneness. ACM SIGPLAN Notices, ACM New
York, NY, USA, v. 52, n. 12, p. 77–90, 2017.

FENSKE, W.; SCHULZE, S.; SAAKE, G. How preprocessor annotations (do not) affect
maintainability: a case study on change-proneness. In: ACM. ACM SIGPLAN Notices.
New York, NY, USA: Association for Computing Machinery, 2017. p. 77–90. Disponível
em: <10.1145/3170492.3136059>.

FOROUZAN, B. A.; GILBERG, R. F. Computer Science: A structured programming
approach using C. [S.l.]: Brooks/Cole Publishing Company, 2000.

FRITZ, T. et al. Using psycho-physiological measures to assess task difficulty in software
development. In: Proceedings of the 36th International Conference on Software Engineer-
ing. New York, NY, USA: Association for Computing Machinery, 2014. (ICSE 2014),
p. 402413. ISBN 9781450327565. Disponível em: <https://doi.org/10.1145/2568225.
2568266>.

GARMIN. fenix 5s Owners Manual. [S.l.], 2017.

GARVIN, B. J.; COHEN, M. B. Feature interaction faults revisited: An exploratory
study. In: IEEE. Software Reliability Engineering (ISSRE), 2011 IEEE 22nd Interna-
tional Symposium on. [S.l.], 2011. p. 90–99.

GOLDBERG, J. H.; KOTVAL, X. P. Eye movement-based evaluation of the computer
interface. Advances in occupational ergonomics and safety, IOS PRESS, p. 529–532, 1998.

HIJAZI, H. et al. Intelligent biofeedback augmented content comprehension (tellback).
IEEE Access, v. 9, p. 28393–28406, 2021.

HOFMEISTER, J. et al. Comparing novice and expert eye movements during program
comprehension. FACHBEREICH MATHEMATIK UND INFORMATIK SERIE B IN-
FORMATIK, v. 17, 2017.

10.1007/978-3-319-57883-5
10.1145/3170492.3136059
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1145/2568225.2568266

110 BIBLIOGRAPHY

HRISTOVA, M. et al. Identifying and correcting java programming errors for introduc-
tory computer science students. In: ACM. ACM SIGCSE Bulletin. 2003. p. 153–156.
Disponível em: <10.1145/792548.611956>.

IEEE. The institute of electrical and eletronics engineers. ieee standard glossary of soft-
ware engineering terminology. IEEE Std 610.12-1990, p. 1–84, Dec 1990.

JACOB, R. J.; KARN, K. S. Eye tracking in human-computer interaction and usability
research: Ready to deliver the promises. In: The mind’s eye. Elsevier, 2003. p. 573–605.
Disponível em: <10.1016/B978-044451020-4/50031-1>.

JR, C. C.; STAUB, A.; RAYNER, K. Eye movements in reading words and sentences.
Eye movements, Elsevier, p. 341–371, 2007.

KÄSTNER, C.; APEL, S.; KUHLEMANN, M. Granularity in software product lines. In:
ACM. Proceedings of the 30th international conference on Software engineering. 2008. p.
311–320. Disponível em: <https://doi.org/10.1145/1368088.1368131>.

KäSTNER, C.; APEL, S.; KUHLEMANN, M. Granularity in software product lines. In:
Proceedings of the 30th International Conference on Software Engineering. New York,
NY, USA: Association for Computing Machinery, 2008. (ICSE ’08), p. 311320. ISBN
9781605580791. Disponível em: <https://doi.org/10.1145/1368088.1368131>.

KEVIC, K. et al. Tracing software developers’ eyes and interactions for change tasks. In:
ACM. Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing. 2015. p. 202–213. Disponível em: <10.1145/2786805.2786864>.

KOHAVI, R. et al. Controlled experiments on the web: survey and practical guide. Data
mining and knowledge discovery, Springer, v. 18, p. 140–181, 2009.

KOLERS, P. A.; DUCHNICKY, R. L.; FERGUSON, D. C. Eye movement measurement
of readability of crt displays. Human Factors, SAGE Publications Sage CA: Los Angeles,
CA, v. 23, n. 5, p. 517–527, 1981. Disponível em: <10.1177/0018720881023005>.

KRAJBICH, I.; ARMEL, C.; RANGEL, A. Visual fixations and the computation and
comparison of value in simple choice. Nature neuroscience, Nature Publishing Group US
New York, v. 13, n. 10, p. 1292–1298, 2010.

LANZA, M.; MARINESCU, R. Object-oriented metrics in practice: using software met-
rics to characterize, evaluate, and improve the design of object-oriented systems. [S.l.]:
Springer Science & Business Media, 2007.

LE, D.; WALKINGSHAW, E.; ERWIG, M. # ifdef confirmed harmful: Promoting un-
derstandable software variation. In: IEEE. 2011 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). [S.l.], 2011. p. 143–150.

10.1145/792548.611956
10.1016/B978-044451020-4/50031-1
https://doi.org/10.1145/1368088.1368131
https://doi.org/10.1145/1368088.1368131
10.1145/2786805.2786864
10.1177/0018720881023005

BIBLIOGRAPHY 111

LIEBIG, J. et al. An analysis of the variability in forty preprocessor-based software prod-
uct lines. In: ACM. Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. 2010. p. 105–114. Disponível em: <10.1145/1806799.
1806819>.

MAALEJ, W. et al. On the comprehension of program comprehension. ACM Transactions
on Software Engineering and Methodology (TOSEM), ACM New York, NY, USA, v. 23,
n. 4, p. 1–37, 2014. Disponível em: <https://doi.org/10.1145/2622669>.

MALAQUIAS, R. et al. The discipline of preprocessor-based annotations does #ifdef
TAG n’t #endif matter. In: Proceedings of the 25th International Conference on Program
Comprehension, ICPC 2017, Buenos Aires, Argentina, May 22- 23, 2017. [S.l.: s.n.],
2017. p. 297–307.

MAYRHAUSER, A. V.; VANS, A. M.; HOWE, A. E. Program understanding behaviour
during enhancement of large-scale software. Journal of Software Maintenance: Research
and Practice, Wiley Online Library, v. 9, n. 5, p. 299–327, 1997.

MCCABE, T. J. A complexity measure. IEEE Transactions on software Engineering,
IEEE, p. 308–320, 1976.

MCCONNELL, S. Code complete. [S.l.]: Pearson Education, 2004.

MEDEIROS, F. et al. The love/hate relationship with the c preprocessor: An interview
study. In: SCHLOSS DAGSTUHL-LEIBNIZ-ZENTRUM FUER INFORMATIK. LIPIcs-
Leibniz International Proceedings in Informatics. 2015. v. 37, p. 495–518. Disponível em:
<10.4230/LIPIcs.ECOOP.2015.495>.

MEDEIROS, F.; RIBEIRO, M.; GHEYI, R. Investigating preprocessor-based syntax er-
rors. In: Proceedings of the Generative Programming: Concepts and Experiences. [S.l.:
s.n.], 2013. (GPCE ’13), p. 75–84.

MEDEIROS, F.; RIBEIRO, M.; GHEYI, R. Investigating preprocessor-based syntax er-
rors. In: ACM. ACM SIGPLAN Notices. 2013. p. 75–84. Disponível em: <10.1145/
2517208.2517221>.

MEDEIROS, F. et al. Discipline matters: Refactoring of preprocessor directives in the#
ifdef hell. IEEE Transactions on Software Engineering, IEEE, v. 44, n. 5, p. 453–469,
2017.

MEDEIROS, F. et al. Discipline matters: Refactoring of preprocessor directives in the#
ifdef hell. IEEE Transactions on Software Engineering, IEEE, v. 44, n. 5, p. 453–469,
2017.

MEDEIROS, F. et al. An empirical study on configuration-related code weaknesses. In:
Proceedings of the XXXIV Brazilian Symposium on Software Engineering. [S.l.: s.n.],
2020. p. 193–202.

10.1145/1806799.1806819
10.1145/1806799.1806819
https://doi.org/10.1145/2622669
10.4230/LIPIcs.ECOOP.2015.495
10.1145/2517208.2517221
10.1145/2517208.2517221

112 BIBLIOGRAPHY

MEDEIROS, F. et al. An empirical study on configuration-related issues: investigating
undeclared and unused identifiers. In: Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Experiences, GPCE 2015.
[S.l.: s.n.], 2015. p. 35–44.

MELO, J.; BRABRAND, C.; WASOWSKI, A. How does the degree of variability affect
bug finding? In: ACM. Proceedings of the 38th International Conference on Software
Engineering. 2016. p. 679–690. Disponível em: <10.1145/2884781.2884831>.

MELO, J. et al. Variability through the eyes of the programmer. In: 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC). [S.l.: s.n.], 2017. p.
34–44.

MÜLLER, S. C.; FRITZ, T. Stuck and frustrated or in flow and happy: Sensing de-
velopers’ emotions and progress. In: IEEE. 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering. [S.l.], 2015. v. 1, p. 688–699.

MüLLER, S. C.; FRITZ, T. Using (bio)metrics to predict code quality online. In: Proceed-
ings of the 38th International Conference on Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2016. (ICSE ’16), p. 452463. ISBN 9781450339001.
Disponível em: <https://doi.org/10.1145/2884781.2884803>.

MUNIZ, R. et al. A qualitative analysis of variability weaknesses in configurable sys-
tems with #ifdefs. In: Proceedings of the 12th International Workshop on Variability
Modelling of Software-Intensive Systems. New York, NY, USA: Association for Com-
puting Machinery, 2018. (VAMOS ’18), p. 5158. ISBN 9781450353984. Disponível em:
<https://doi.org/10.1145/3168365.3168382>.

NAKAGAWA, T. et al. Quantifying programmers’ mental workload during program
comprehension based on cerebral blood flow measurement: A controlled experiment.
In: Companion Proceedings of the 36th International Conference on Software Engineer-
ing. New York, NY, USA: Association for Computing Machinery, 2014. (ICSE Compan-
ion 2014), p. 448451. ISBN 9781450327688. Disponível em: <https://doi.org/10.1145/
2591062.2591098>.

OLIVEIRA, R.; CAFEO, B.; HORA, A. On the evolution of feature dependencies:
An exploratory study of preprocessor-based systems. In: VaMoS. [s.n.], 2019. p. 14–1.
Disponível em: <https://doi.org/10.1145/3302333.3302342>.

PFLEEGER, S. L.; KITCHENHAM, B. A. Principles of survey research: part 1: turning
lemons into lemonade. ACM SIGSOFT Software Engineering Notes, ACM New York,
NY, USA, v. 26, n. 6, p. 16–18, 2001.

POHL, K.; BÖCKLE, G.; LINDEN, F. J. van D. Software product line engineering:
foundations, principles and techniques. [S.l.]: Springer Science & Business Media, 2005.

10.1145/2884781.2884831
https://doi.org/10.1145/2884781.2884803
https://doi.org/10.1145/3168365.3168382
https://doi.org/10.1145/2591062.2591098
https://doi.org/10.1145/2591062.2591098
https://doi.org/10.1145/3302333.3302342

BIBLIOGRAPHY 113

QUEIROZ, F. et al. Towards a better understanding of feature dependencies in
preprocessor-based systems. In: Proceedings of the 6th Latin American Workshop
on Aspect-Oriented Software Development: Advanced Modularization Techniques (LA-
WASP). [S.l.: s.n.], 2012.

RAYNER, K. Eye movements in reading and information processing: 20 years of research.
Psychological bulletin, American Psychological Association, v. 124, n. 3, p. 372, 1998.
Disponível em: <10.1037/0033-2909.124.3.372>.

RAYNER, K. Eye movements and attention in reading, scene perception, and visual
search. The quarterly journal of experimental psychology, Taylor & Francis, v. 62, n. 8,
p. 1457–1506, 2009.

RAYNER, K. et al. Eye movements as reflections of comprehension processes in reading.
Scientific studies of reading, Taylor & Francis, v. 10, n. 3, p. 241–255, 2006. Disponível
em: <10.1207/s1532799xssr1003_3>.

RIBEIRO, M.; BORBA, P.; KÄSTNER, C. Feature maintenance with emergent inter-
faces. In: ACM. Proceedings of the 36th International Conference on Software Engineer-
ing. 2014. p. 989–1000. Disponível em: <10.1145/2568225.2568289>.

RIBEIRO, M. et al. Emergent feature modularization. In: Proceedings of the ACM inter-
national conference companion on Object oriented programming systems languages and
applications companion. [S.l.: s.n.], 2010. p. 11–18.

RIBEIRO, M. et al. On the impact of feature dependencies when maintaining
preprocessor-based software product lines. ACM SIGPLAN Notices, ACM, New York,
NY, USA, v. 47, n. 3, p. 23–32, 2012. Disponível em: <10.1145/2189751.2047868>.

RODRIGUES, I. et al. Assessing fine-grained feature dependencies. Information and Soft-
ware Technology, Elsevier, v. 78, p. 27–52, 2016. Disponível em: <https://doi.org/10.
1016/j.infsof.2016.05.006>.

SACKMAN, H.; ERIKSON, W. J.; GRANT, E. E. Exploratory experimental studies
comparing online and offline programing performance. [S.l.], 1966.

SAMMET, J. Software psychology: human factors in computer and information systems.
ACM SIGCHI Bulletin, ACM, v. 14, n. 4, p. 19–20, 1983. Disponível em: <https://doi.
org/10.1145/1044188.1044193>.

SANTOS, A. R. et al. Comparing the influence of using feature-oriented programming and
conditional compilation on comprehending feature-oriented software. Empirical Software
Engineering, Springer, v. 24, p. 1226–1258, 2019.

SANTOS, D.; SANT’ANNA, C. How does feature dependency affect configurable sys-
tem comprehensibility? In: 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC). [S.l.: s.n.], 2019. p. 19–29.

10.1037/0033-2909.124.3.372
10.1207/s1532799xssr1003_3
10.1145/2568225.2568289
10.1145/2189751.2047868
https://doi.org/10.1016/j.infsof.2016.05.006
https://doi.org/10.1016/j.infsof.2016.05.006
https://doi.org/10.1145/1044188.1044193
https://doi.org/10.1145/1044188.1044193

114 BIBLIOGRAPHY

SCHMID, K.; RUMMLER, A. Cloud-based software product lines. In: CITESEER.
SPLC (2). [S.l.], 2012. p. 164–170.

SCHULZE, S. et al. Does the discipline of preprocessor annotations matter?: a controlled
experiment. In: ACM. ACM SIGPLAN Notices. 2013. p. 65–74. Disponível em: <10.
1145/2517208.2517215>.

SHAFT, T. M.; VESSEY, I. The relevance of application domain knowledge: The case of
computer program comprehension. Information systems research, INFORMS, v. 6, n. 3,
p. 286–299, 1995.

SHARIF, B.; FALCONE, M.; MALETIC, J. I. An eye-tracking study on the role of
scan time in finding source code defects. In: ACM. Proceedings of the Symposium on
Eye Tracking Research and Applications. 2012. p. 381–384. Disponível em: <10.1145/
2168556.2168642>.

SHARIF, B. et al. An empirical study assessing the effect of seeit 3d on comprehension.
In: IEEE. Software Visualization (VISSOFT), 2013 First IEEE Working Conference on.
[S.l.], 2013. p. 1–10.

SIEGMUND, J. Program comprehension: Past, present, and future. In: IEEE. Soft-
ware Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on. [S.l.], 2016. v. 5, p. 13–20.

SIEGMUND, J. et al. Understanding understanding source code with functional mag-
netic resonance imaging. In: ACM. Proceedings of the 36th International Conference on
Software Engineering. 2014. p. 378–389. Disponível em: <10.1145/2568225.2568252>.

SINGER, J. et al. An examination of software engineering work practices. In: CASCON
First Decade High Impact Papers. [s.n.], 2010. p. 174–188. Disponível em: <https://doi.
org/10.1145/1925805.1925815>.

SINGH, N.; GIBBS, C.; COADY, Y. C-clr: a tool for navigating highly configurable
system software. In: ACM. Proceedings of the 6th workshop on Aspects, components,
and patterns for infrastructure software. 2007. p. 9. Disponível em: <10.1145/1233901.
1233910>.

SOLOWAY, E.; EHRLICH, K. Empirical studies of programming knowledge. IEEE
Transactions on software engineering, IEEE, n. 5, p. 595–609, 1984.

ŠPAKOV, O.; MINIOTAS, D. Visualization of eye gaze data using heat maps. Elektronika
ir elektrotechnika, v. 74, n. 2, p. 55–58, 2007. Disponível em: <https://eejournal.ktu.lt/
index.php/elt/article/view/10372>.

SPENCER, H.; COLLYER, G. # ifdef considered harmful, or portability experience with
c news. Usenix Summer 1992 Technical Conf., Citeseer, p. 185–197, 1992. Disponível em:
<http://usenix.org/publications/library/proceedings/sa92/spencer.pdf>.

10.1145/2517208.2517215
10.1145/2517208.2517215
10.1145/2168556.2168642
10.1145/2168556.2168642
10.1145/2568225.2568252
https://doi.org/10.1145/1925805.1925815
https://doi.org/10.1145/1925805.1925815
10.1145/1233901.1233910
10.1145/1233901.1233910
https://eejournal.ktu.lt/index.php/elt/article/view/10372
https://eejournal.ktu.lt/index.php/elt/article/view/10372
http://usenix.org/publications/library/proceedings/sa92/spencer.pdf

BIBLIOGRAPHY 115

TARVAINEN, M.; RANTA-AHO, P.; KARJALAINEN, P. An advanced detrending
method with application to hrv analysis. IEEE Transactions on Biomedical Engineer-
ing, v. 49, n. 2, p. 172–175, 2002.

TIARKS, R. What maintenance programmers really do: An observational study. In:
CITESEER. Workshop on Software Reengineering. [S.l.], 2011. p. 36–37.

UWANO, H. et al. Analyzing individual performance of source code review using re-
viewers’ eye movement. In: ACM. Proceedings of the 2006 symposium on Eye tracking
research & applications. 2006. p. 133–140. Disponível em: <10.1145/1117309.1117357>.

VILLELA, K. et al. A survey on software variability management approaches. In: Pro-
ceedings of the 18th International Software Product Line Conference - Volume 1. New
York, NY, USA: Association for Computing Machinery, 2014. (SPLC ’14), p. 147156.
ISBN 9781450327404. Disponível em: <https://doi.org/10.1145/2648511.2648527>.

VOSSKÜHLER, A. et al. Ogama (open gaze and mouse analyzer): open-source software
designed to analyze eye and mouse movements in slideshow study designs. Behavior
research methods, Springer, v. 40, n. 4, p. 1150–1162, 2008. Disponível em: <10.3758/
BRM.40.4.1150>.

WALTER, G. F.; PORGES, S. W. Heart rate and respiratory responses as a function
of task difficulty: The use of discriminant analysis in the selection of psychologically
sensitive physiological responses. Psychophysiology, Wiley Online Library, v. 13, n. 6, p.
563–571, 1976. Disponível em: <https://doi.org/10.1111/j.1469-8986.1976.tb00882.x>.

10.1145/1117309.1117357
https://doi.org/10.1145/2648511.2648527
10.3758/BRM.40.4.1150
10.3758/BRM.40.4.1150
https://doi.org/10.1111/j.1469-8986.1976.tb00882.x

	1: Mod 3
	Chapter 1—Introduction
	General context
	Problem Statement
	Main goal and research questions
	Contributions
	Publications
	Chapter map

	Chapter 2—Background
	Configurable Systems
	Conditional Compilation Directives
	Feature dependency
	Variability Bugs
	Comprehensibility of Programs
	Biometric equipments
	Eye Tracking device
	Smartwatch

	Related Work
	Feature Dependencies
	Online experiment about variability in Configurable Systems
	Experiments about Configurable Systems
	Variability Bugs
	#Ifdefs in undisciplined ways

	Chapter 3—Study 1
	Design
	Participants
	Programs
	Pilot Studies
	Procedure
	Result
	Time participant took to finish tasks with correct answer
	Number of attempts needed until correct answer
	Discussion

	Threats to Validity
	Internal validity
	External validity
	Construct validity

	Chapter 4—Study 2
	Design
	Participants
	Variability Bugs
	EXPERIMENT PROCEDURES
	Experimental Results
	Time to find bugs
	Number of correctly found bugs
	Visual effort
	Discussion

	Threats to Validity
	Internal validity
	External validity
	Construct validity

	Chapter 5—Study 3
	Design
	Participants
	Programs
	Areas Of Interest (AOI)
	Pilot studies
	EXPERIMENT PROCEDURES
	Tasks
	Experimental Results
	Time to provide the correct answer
	Number of attempts needed until correct answer
	Visual effort
	Heart-related biometrics
	Discussion

	Threats to Validity
	Internal validity
	External validity
	Construct validity

	Chapter 6—Study 4
	Design
	Participants
	Programs
	Areas Of Interest (AOI)
	EXPERIMENT PROCEDURES
	Tasks
	Experimental Results
	Time to provide the correct answer
	Number of attempts needed until correct answer
	Visual effort
	Heart-related biometrics
	Discussion

	Threats to Validity

	Chapter 7—Conclusion and Future Work

