

Ficha catalográfica elaborada pelo Sistema Universitário de Bibliotecas (SIBI/UFBA),
 com os dados fornecidos pelo(a) autor(a).

Cristiano Barros Viturino, Caio
 GRASPING AND IDENTIFYING OBJECTS IN UNSTRUCTURED
ENVIRONMENTS WITH DEEP LEARNING METHODS / Caio
Cristiano Barros Viturino. -- Salvador, 2023.
 142 f. : il

 Orientadora: Dr. André Gustavo Scolari Conceição.
 Tese (Doutorado - Doutorado) -- Universidade
Federal da Bahia, Programa de Pós-Graduação em
Engenharia Elétrica, 2023.

 1. Preensão Robótica. 2. Redes Neurais
Convolucionais. 3. Manipuladores Robóticos. I. Gustavo
Scolari Conceição, Dr. André. II. Título.

À minha esposa Caroline Viturino e ao meu filho Enzo

Viturino

ACKNOWLEDGMENTS

I would like first to express my deepest appreciation to my adviser Prof. Dr. André
Gustavo Scolari Conceição for the opportunity to grow as a researcher in robotics and
artificial intelligence field. Without his help, cooperation and encouragement, I would
not have made progress in the project.

This study has received funding from SEPIN/MCTI under the 4 th Coordinated Call
BR-EU in CIT and from the European Unions Horizon 2020 research and innovation
programme under the Grant Agreement No 777096. This study also received financial
support from the CNPQ grant term number 311029/2020-5.

I would like to thank FAPESB (Fundação de Amparo à Pesquisa do Estado da Bahia)
for their financial support. This study was also financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

v

RESUMO

Nos últimos anos, os métodos de preensão robótica que se baseiam em aprendizado pro-
fundo têm superado os métodos tradicionais. No entanto, a maioria desses métodos
utiliza preensões planares devido ao alto custo computacional associado às preensões em
6D. As preensões planares, apesar de terem um custo computacional mais baixo, apre-
sentam limitações espaciais que restringem sua aplicabilidade em ambientes complexos,
como a manipulação de objetos produzidos por impressoras 3D. Algumas técnicas de
preensão robótica geram apenas uma preensão viável por objeto. No entanto, é essencial
obter múltiplas preensões posśıveis por objeto, pois nem todas as preensões geradas pos-
suem soluções válidas da cinemática inversa do robô ou evitam colisões com obstáculos
próximos. Para superar essas limitações, propõe-se um método de preensão robótica
que é capaz de gerar múltiplas preensões seletivas 6D por objeto, evitando colisões com
obstáculos adjacentes. Os testes de preensão foram realizados em uma Unidade de Fab-
ricação Aditiva, que apresenta um alto ńıvel de complexidade devido à possibilidade de
colisões entre o efetuador final e a parte interna da impressora. Os resultados experimen-
tais demonstram que é posśıvel alcançar uma taxa de sucesso de 62% na preensão 6D de
peças manufaturadas em ambientes confinados. Além disso, foi alcançada uma taxa de
sucesso de 68% e 177 MPPH (Man Picks Per Hour) na preensão seletiva planar de objetos
posicionados sobre superf́ıcies planas. O braço robótico UR5, a câmera Intel Realsense
D435 e o efetuador final Robotiq 2F-140 foram utilizados para validar o método proposto
em experimentos reais.

Palavras-chave: Preensão Robótica, Redes Neurais Convolucionais, Manipuladores
robóticos

vii

ABSTRACT

In recent years, robotic grasping methods based on deep learning have outperformed tra-
ditional methods. However, most of these methods use planar grasps due to the high
computational cost associated with 6D grasps. Planar grasps, despite having a lower
computational cost, have spatial limitations that restrict their applicability in complex
environments, such as grasping objects inside 3D printers. Some robotic grasping tech-
niques generate only one viable grasp per object. However, it is essential to obtain
multiple possible grasps per object, as not all generated grasps have viable kinematic so-
lution or avoid collisions with nearby obstacles. To overcome these limitations, a robotic
grasping method is proposed that is capable of generating multiple selective 6D grasps
per object, avoiding collisions with adjacent obstacles. Grasping tests were carried out
in an Additive Manufacturing Unit, which presents a high level of complexity due to the
possibility of collisions between the end effector and the inside of the printer. Experi-
mental results indicate that it is possible to achieve a success rate of 62% in the 6D grasp
of manufactured parts in confined environments. In addition, a success rate of 68% and
177 MPPH (Man Picks Per Hour) was achieved in the selective planar grasp of objects
positioned on flat surfaces. The UR5 robotic arm, the Intel Realsense D435 camera,
and the Robotiq 2F-140 end effector were used to validate the proposed method in real
experiments.

Keywords: Robotic grasping, Convolutional Neural Network, Robotic Manipulators

ix

LIST OF PUBLICATIONS

� Viturino, C. C. B. ; Conceição, André G. S. Selective 6D Grasping with a Collision
Avoidance System Based on Point Clouds and RGB+D Images. ROBOTICA, 2023,
1-16. DOI: 10.1017/S0263574723001364

� Viturino, C. C. B. ; Oliveira, D. M. ; Conceição, A. G. S. ; Junior, U. M. P.
6D Robotic Grasping System using Convolutional Neural Networks and Adaptive
Artificial Potential Fields with Orientation Control. In: Latin American Robotics
Symposium, 2021. DOI: 10.1109/LARS/SBR/WRE54079.2021.9605472

� Oliveira, D. M. ; Viturino, C. C. B. ; Conceição, A. G. S. 6D Grasping Based
On Lateral Curvatures and Geometric Primitives. In: Latin American Robotics
Symposium, 2021. DOI: 10.1109/LARS/SBR/WRE54079.2021.9605382

� Viturino, C. C. B. ; Conceição, A. G. S. Preensão robótica seletiva em 6D utilizando
Redes Neurais Convolucionais. In: Simpósio Brasileiro de Automação Inteligente,
2021. DOI: 10.20906/sbai.v1i1.2597

� Viturino, C. C. B. ; Santana, K. L. ; Oliveira, D. M. ; Lemos, C. B. ; Conceição, A.
G. S. Redes Neurais Convolucionais para Identificação e Preensão Robótica de Obje-
tos. In: XXIII Congresso Brasileiro de Automática, 2020. DOI: 10.48011/asba.v2i1.
1163

� Viturino, C. C. B. ; Junior, U. M. P. ; Conceição, A. G. S. ; Schnitman, L. Adaptive
Artificial Potential Fields with Orientation Control Applied to Robotic Manipula-
tors. In: 21st IFAC World Congress, Germany, 2020. DOI: 10.1016/j.ifacol.2020.12.
2706

� Junior, U. M. P. ; Viturino, C. C. B. ; Conceição, A. G. S. ; Schnitman, L. Sistema
Anticolisão Aplicado a Manipuladores Robóticos Baseado em Campos Potenciais
Artificiais. In: 14º Simpósio Brasileiro de Automação Inteligente, 2019. DOI:
10.17648/sbai-2019-111278

xi

LIST OF FIGURES

1.1 Tabletop scenario for 4D grasping testing. 6
1.2 Additive Manufacturing Unit for 6D grasping testing. 6
1.3 Overview of the proposed 4D grasping pipeline (Chapter 3). 8
1.4 Overview of the proposed 6D grasping pipeline (Chapter 4). 8

2.1 Flowchart that describes the commonly adopted processes in several
grasping methods as well as the subsection in which each process is
presented. 11

2.2 (a) Antipodal point of a point on a circle (b) antipodal grasp definition. . 12
2.3 Types of grasp adopted by several authors. The grasping position is

defined as (x, y, z), and the orientation as θ, ψ, ϕ, corresponding to the roll
(θ), pitch (ψ), and yaw (ϕ) angles. 13

2.4 c depicts an observed contact point, b constitute the 3-DOF rotation, ω is
the predicted grasp width, d is the distance from baseline to base frame
(SUNDERMEYER et al., 2021). 14

2.5 Grasp representation in 3D (NI et al., 2020). 14
2.6 The grasp sampling simulation used by Mousavian, Eppner and Fox

(2019) and Murali et al. (2020). The FleX sim (VICENT et al., 2016) was
used to sample the grasps. 21

2.7 Training data pipeline adopted by Sundermeyer et al. (2021). Grasps are
sampled from object’s point cloud. The objects are in stable positions.
Only the grasps that are in contact with the objects are considered. . . . 21

2.8 (a) Pile and (b) Packed object configuration adopted in Breyer et al. (2021). 22
2.9 (Left) Pile and (Right) Packed object configuration adopted in Jiang et

al. (2021). 22
2.10 (a) Grasping model. (b) Best grasp and supplementary grasp (c) Sampled

grasps varying from low to high inferred quality. 23
2.11 Grasping pipeline stages, including grasp synthesis, trajectory planning

(before approaching), and grasp execution (NEWBURY et al., 2023). . . 30
2.12 Objects used by different authors to test grasping algorithms. 34
2.13 Objects used by Morrison, Corke and Leitner (2018) to test the perfor-

mance of the robotic grasping algorithm presented. 35
2.14 (a) Level 1 objects consisting of prismatic and circular solids (b) Level 2

objects including clear plastic and household objects with a lower level of
graspability. (c) Level 3 objects with adversarial geometry and material
properties (d) Level 4 objects with different reflectances and material
properties which affect the ability to form a vacuum seal on the object
surface (MAHLER et al., 2019). 36

2.15 3D-printed objects for grasping evaluation performance. These test objects
varies in terms of complex geometry (left to right), and graspability
(bottom to top). 37

2.16 Phases considered for benchmarking in pick-and-place tasks (MNYUSI-
WALLA et al., 2020). 38

2.17 Protocol scenarios sorted by object type and amount of clutter (MNYUSI-
WALLA et al., 2020). 39

xiii

xiv LIST OF FIGURES

2.18 (Left) M-BBT and T-BBT-block templates following the test template.
(Right) BBT-100 blocks randomly placed inside a bin (MORGAN et al.,
2019). 40

2.19 Samples of rearrangement tasks: initial scenes (a, c) and target scenes (b,
d) (LIU et al., 2021). 40

2.20 Grasping benchmark environment. The radius of the circular workspace
is optional and must be reported by the authors. (BEKIROGLU et al.,
2019). 41

2.21 Object locations and poses considered by the benchmark in Bekiroglu et
al. (2019). 42

2.22 Layouts defined whithin the benchmark proposed by Bottarel et al. (2020). 43

3.1 Since GG-CNN cannot distinguish between fixed and movable objects,
a grasp can be generated on fixed objects such as a bin. To generate a
grasp, Generative Grasping Convolutional Neural Network (GG-CNN)
uses only the area inside the red box, represented in (b) and (c). This
experiment was conducted in the Laboratory of Robotics (LaR) at UFBA
and is available at youtube.com/watch?v=texbXgisPew. 54

3.2 Using the GG-CNN, a grasp is not generated for objects outside the
GG-CNN area (red box). 54

3.3 (Left) Grasp coordinate frame representation g = (p, ϕ, ω, q) and the
other frames related to the camera and robot. p = (x, y, z) describes the
gripper’s center point on the object, ϕ denotes the gripper angle around
z axis, ω describes the gripper width and q represents the grasp quality
(Right) Representation of g̃ = (s, ϕ̃, ω̃, q) on the depth image I, where s

indicates the gripper’s center point in pixels, ϕ̃ denotes the gripper angle
and ω̃ refers to the gripper width. 56

3.4 Cornell Grasping Dataset (LENZ; LEE; SAXENA, 2015) positive and
negative grasps represented as rectangles as in Jiang, Moseson and Saxena
(2011). 57

3.5 (a) Grasp angle representation considering cos(ΦT) > 0 (b) grasp angle
discontinuity around −π

2
and π

2
. 58

3.6 Graphical representation of the two components of a unit vector sin(2Φ̃T)

and cos(2Φ̃T). 59
3.7 GG-CNN Architecture. 60
3.8 The ground truth images sin(2Φ̃T), cos(2Φ̃T), Q̃T and W̃T , generated

from the Cornell Grasping dataset. The white pixels of the images
corresponding to the Grasp Quality, Grasp Angle, Grasp Width and
sin(2Φ̃T) are equal to zero. The white pixels of the image corresponding

to cos(2Φ̃T) are equal to one. 61
3.9 (a) Each rectangle comprises the tool center point, planar gripper angle,

and gripper width. These attributes were shown in different rectangles to
facilitate understanding. (b) Antipodal gripper angle is represented in the
interval

[
−π

2
, π
2

]
. 62

3.10 The index M of the max value in the quality image is used to acquire the
value of the grasp width, angle, and the height of the grasp by using the
depth measurement. 63

3.13 Test objects proposed by Mahler et al. (2017). (a) 3D Model (b) 3D-
Printed objects. The objects are called: (A) Bar clamp, (B) Nozzle, (C)
Part 3, (D) Gear Box, (E) Part 1, and (F) Vase. 66

3.14 Grasping pipeline. 69

LIST OF FIGURES xv

3.15 Depth cloud acquired from the simulated Intel Realsense D435 camera in
RViz (GOSSOW et al., 2020) (a) Depth cloud representation of the depth
image I and the best visible grasp g̃∗

θ (b) Depth cloud representation of
the filtered depth image If acquired in stage 9 and the best visible grasp g̃∗

f . 70
3.16 (a) UR5 Robot at the Laboratory of Robotics (LaR) at UFBA (b) the

Intel Realsense D435 custom support developed (c) virtual model of the
UR5 robot and the custom camera support developed. 71

3.17 The condensed version of the selective grasping ROS architecture em-
ployed. The SSD and GG-CNN nodes are used to perform the object
recognition and generate the grasp pose. The pivotal SSGG-CNN Main
node orchestrates interactions between the user, the Webots simulator,
and the nodes linked to SSD and GG-CNN. Its role is to manage the
sequence of detection and grasp generation requests, ensuring their orderly
execution for correct robotic grasping and object detection. 73

3.18 Grasps executed by the proposed grasping pipeline (Figure 3.14). The
Grasp trial axis represents the number of grasps executed by the robot.
The dashed green line represents the number of successful grasps executed
by the robot using the GG-CNN model. 75

3.19 (a) Simulated environment in Webots (b) Camera’s view from the support
shown in Figure 3.16 (c) Bin where the objects are placed after the grasp
action. 77

4.1 Overview of the proposed grasping pipeline. 80
4.2 Objects (MAHLER et al., 2017) used to test the robotic grasping pipeline

proposed in this work. 82
4.3 Dataset generation pipeline using Webots. 83
4.4 Some figures part of the dataset automatically generated in Webots using

real images as background. This dataset was used to train the Mask R-CNN. 84
4.5 Detection examples performed using real object images. 85
4.6 Signed distance used to verify collisions between the point cloud and the

Robotiq 2F-140 collision mesh. 86
4.7 Collision check system in an additive manufacturing system. (a)

Workspace configuration used for testing (b) There are no points in-
side the gripper collision mesh (c) There are points of the 3D printer or
the object point cloud inside the collision mesh of the gripper. 87

4.8 Relationship between the number of points of the workspace point cloud
and the time required to verify the collision. It is required 0.8s to calculate
the signed distance for 1 · 104 points. 88

4.9 Grasping pipeline using GraspNet (MOUSAVIAN; EPPNER; FOX, 2019),
Mask R-CNN (HE et al., 2017), and a collision check system based on
point clouds and collision meshes. The simulation is performed in Webots
(WEBOTS, 2021) using the virtual model of the UR5 robot manipulator,
Robotiq 2F-140 and Intel Realsense D435. 89

4.10 Real UR5 at the Laboratory of Robotics (UFBA) and simulated UR5 in
Webots. 90

4.11 Successful and failed grasps generated in each step of the ablation study
using the simulated environment. 91

4.12 Grasps performed in simulation by employing the ablation study referred
in Section 4.9. (1) Grasping pipeline from stages 1 to 6, (2) Grasping
pipeline from stages 1 to 10, and (3) Complete grasping pipeline. The
objects employed in the experiments are shown in section 4.5. The curve
1 for the part Nozzle is under the curve 2. In other words, there were no
successful grasps in the 20 attempts. 93

xvi LIST OF FIGURES

4.13 Time to generate a grasp for each object used in the experiments. (1)
Bar clamp, (2) Gear Box, (3) Nozzle, (4) Part 1, (5) Part 3, (6) Vase.
The processing times were based on the ablation study referred in Section
4.9. It is noticed that the entire grasping pipeline is time consuming due
to the collision check with the point cloud. However, grasp success is
considerably increased as shown in Figure 4.12. Note that the x axis of
the graphs have different scales. 94

4.14 Relationship between time threshold and success rate. The lower the time
threshold is, the lower is the success rate due to the time consumed by
the entire grasping pipeline presented in Section 4.9. 95

4.15 Comparison between GraspNet and GG-CNN using two different grasping
pipelines. The SSD512-ResNet50-COCO was employed to detect the
object of interest in both pipelines. The images depict a simulation
performed in Webots. 96

4.16 Grasps executed by the GraspNet and GG-CNN, employing SSD512-
ResNet50 to identify the objects. It was applied the grasping pipeline
detailed in Figure 4.15. 97

4.17 Time to generate a grasp for each object used in the experiments. It is
important to note the different time scales in the x-axis for the GraspNet
(seconds) and GG-CNN (milliseconds). In the graph, the objects are
represented as (1) Bar clamp, (2) Gear Box, (3) Nozzle, (4) Part 1, (5)
Part 3, (6) Vase. It is important to note that GraspNet requires more time
because it generates a set of grasps rather than a single one like GG-CNN
does. Besides that, GraspNet has more parameters than GG-CNN and
explore the entire 6D space to generate non-planar grasps. 98

4.18 Comparison between Graspnet and GG-CNN using the grasping pipeline
of the Figure 4.15. 99

4.19 Grasps performed in printed objects inside a 3D printer. Video link:
youtube.com/watch?v=APXHeSNuZYU 100

4.20 Poses S and F for each object. 101
4.21 Grasps performed by GraspNet using Mask R-CNN as the object detector.

To analyze the repeatability, the objects position were kept the same. S
means the object pose that is easier to grasp and F is the object pose
harder to grasp. These poses were randomly determined. 101

LIST OF TABLES

2.1 Specification of the most used datasets in robotic grasping applications. . 18
2.2 Comparative table comprising the dataset used in each related work,

the process adopted to augment the dataset, and the amount of data
generated by the augmentation process. Some authors do not perform
data augmentation or do not provide any related information. 24

2.3 Networks comparative table. 29
2.4 Experimental procedures, operating system, and hardware (graphics card,

robot, gripper and camera), adopted by each related work. 48
2.5 Comparative table containing the average success rate, number of param-

eters, and processing time to generate grasp poses using unknown objects.
These objects are divided in Adversarial Objects (A.O.) (MAHLER et
al., 2017), Household Objects (H.O.), and objects proposed by Viereck et
al. (2017) (V.). The type refers to a real (R) or simulated (S) evaluation
environment. The results are divided into open-loop (O.L.), closed-loop
(C.L.), and according to the Definition of a Successful Grasps (DSGs)
used in subsection 2.6.4. 50

2.6 Comparative table of the related work. 52

3.3 Evaluation of the average precision by class and mean average precision
considering the IoU metric with threshold of 0.5, 0.75, and 0.5 : 0.95. . . 74

3.4 Grasp and recognition fail per object considering the SSD512-ResNet50-
COCO as the object detector. 20 grasps were performed per object. . . . 76

3.5 Evaluation of the grasping reliability using the Man Picks Per Hour
(MPPH) metric as suggested in Mahler et al. (2018). 76

4.1 Successful and failed grasping comparison of the ablation study using the
simulated environment. 92

4.2 GraspNet and GG-CNN comparison . 97

xvii

LIST OF ABBREVIATIONS AND ACRONYMS

CGN Candidate Generation Network

CNN Convolutional Neural Network

DSG Definition of a Successful Grasp

EGAD Envolved Grasping Analysis Dataset

FPS Frames Per Second

GMM Gaussian Mixture Model

GQ-CNN Grasp Quality Convolutional Neural Network

GG-CNN Generative Grasping Convolutional Neural Network

GG-CNN2 Generative Grasping Convolutional Neural Network 2

IoU Intersection-over-union

MPPH Mean Picks Per Hour

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

NGDF Neural Grasp Distance Fields

QAN Gaussian Mixture Model

RAM Reliable Adjustment Module

ReLU Rectified Linear Unit

ROS Robot Operating System

SETA Successful task Executions over Total Attempts

SGT Simulated Grasping Trial

SGD Stochastic Gradient Descent

SSD Single Shot Multibox Detector

VAE Variational Autoencoders

xix

LIST OF SYMBOLS

Unless otherwise noted, the following mathematical symbols have the following meanings:

c Robot’s base Cartesian coordinate frame
ci RGB image considering all the obstacles in the environment
I Raw depth image with all objects in the environment
If Filtered depth image with objects of interest

ĨT Ground truth depth image input
H Height of an image in pixels
W Width of an image in pixels

RH×W Matrix of height H and width W

Ri×H×W Set of i matrices of height H and width W

p [m] Grasp center point in C
q Grasp quality
s Gripper’s center point in I
ω Gripper width in C

ω̃ [m] Gripper width in I

ϕ [rad] Planar gripper angle in C

ϕ̃ [rad] Planar gripper angle in I

Φ̃ [rad] Set of planar gripper angles in each pixel of G̃

Φ̃θ [rad] Approximated values of ϕ̃ for each pixel of I

Φ̃f [rad] Approximated values of ϕ̃ for each pixel of If

W̃ [m] Set of planar gripper width in each pixel of G̃

W̃f [m] Approximated values of ω̃ for each pixel of If

W̃θ [m] Approximated values of ω̃ for each pixel of I

Q̃ Set of planar grasp quality in each pixel of G̃

Q̃f Approximated values of ω̃ for each pixel of If

Q̃θ Approximated values of q for each pixel of I

xxi

g Grasp representation in C
g̃ Grasp representation in I
g∗
θ Best grasp visible in C

g̃∗
θ Best visible grasp in I

g̃∗
f Best visible grasp in If

G̃ Set of grasps g̃ in I

G̃θ Set of estimated grasps G̃ in I

G̃f Set of estimated grasps G̃ in If

G̃Tr Ground truth grasp rectangles

G̃g Set of grasps generated by GraspNet in 6D
Ggf Filtered grasps referenced on the camera coordinate frame
Go Grasp pose that does not collide with the printer point cloud
Gfb Selected grasp on the robot’s base coordinate frame
Ga Current gripper pose

M(·) Grasp function that generates a set of grasps G̃ from an image of
modality (·)

Mθ(·) approximation of the grasp function M(·), where θ indicates the net-
work weights

Mr Segmentation mask generated by Mask-RCNN
Nr Point cloud of the detected object
Nf Filtered point cloud of the detected object
Kr Raw point cloud of the printer
Kd Downsampled point cloud of the printer
TRG Homogeneous transformation between the robot frame and the grip-

per frame
TGC Homogeneous transformation between the gripper frame and the cam-

era frame
TCI Homogeneous transformation between the 2D image coordinates and

the 3D camera frame

xxii

CONTENTS

Acknowledgments v

Resumo vii

Abstract ix

List of Publications xi

List of Figures xvi

List of Tables xvii

List of Symbols xxi

Chapter 1—Introduction 1

1.1 Motivation . 1
1.2 Problem definition . 5
1.3 Objective . 7
1.4 Contributions . 7
1.5 Structure of this Thesis . 8

Chapter 2—Related work 9

2.1 Grasp definition . 11
2.1.1 Preliminary Considerations . 14

2.2 Grasping datasets and related processings 15
2.2.1 Robotic Grasping Datasets . 15
2.2.2 Processing on labelled dataset . 19
2.2.3 Training data generation . 19
2.2.4 Preliminary Considerations . 23

2.3 Network architecture and training . 25
2.3.1 Training process . 25
2.3.2 Evaluation metrics . 28
2.3.3 Preliminary Considerations . 29

2.4 Grasping pre-processing and post-processing 30
2.4.1 Pre-processing . 31
2.4.2 Post-processing . 31
2.4.3 Preliminary Considerations . 32

2.5 Test objects . 32
2.5.1 Preliminary Considerations . 33

xxiii

xxiv CONTENTS

2.6 Evaluation procedures, benchmarks, and results 34
2.6.1 Grasping benchmarks . 35

2.6.1.1 Benchmark protocols . 36
2.6.2 Evaluation protocols adopted in simulated experiments 44
2.6.3 Evaluation protocols adopted in real experiments 44
2.6.4 Definition of grasping success . 45
2.6.5 Grasping performance . 46
2.6.6 Preliminary Considerations . 48

2.7 Conclusion . 51

Chapter 3—Selective Planar Robotic Grasping Using Convolutional Neu-
ral Networks 53

3.1 Introduction . 53
3.2 Contributions . 55
3.3 Problem Statement . 55

3.3.1 Assumptions . 55
3.3.2 Definitions . 55

3.4 Generative Grasping CNN . 57
3.4.1 Training dataset and related processes 57
3.4.2 Network architecture . 58
3.4.3 Grasp definition . 59

3.5 Very Deep Convolutional Networks for Large-scale Image Recognition
(VGG) . 60

3.6 Deep Residual Learning For Image Recognition 61
3.7 Single Shot Multibox Detector . 63

3.7.1 Test objects . 66
3.7.2 SSD Base Network, fine-tuning and dataset 66

3.8 Selective Grasping . 67
3.8.1 Grasping pipeline . 67

3.9 Hardware and software implementation 68
3.9.1 UR5 Robot . 68
3.9.2 Robotiq Gripper 2F-140 . 69
3.9.3 Intel Realsense D435 . 69
3.9.4 Robotic Operating System Implementation 70

3.10 Pre-processing and Post-processing . 72
3.10.1 Pre-processing . 72
3.10.2 Post-processing . 72

3.11 Experiments . 72
3.11.1 Hardware and software . 72
3.11.2 Performance evaluation of the object’s recognition system 73
3.11.3 Performance evaluation of the robotic grasping system 74
3.11.4 Failure mode . 76

3.12 Conclusion . 77

Chapter 4—Selective 6D Robotic Grasping Using Convolutional Neural
Networks 79

4.1 Introduction . 79
4.2 Contributions . 80
4.3 Problem definition . 81
4.4 Object Segmentation . 82

4.4.1 Mask R-CNN . 82
4.4.2 Dataset and Training . 82

xxv

4.5 GraspNet . 83
4.6 Collision Check . 85
4.7 Grasping Pipeline . 87
4.8 Experimental Setup . 89
4.9 Experimental Results and ablation study 90
4.10 Comparative Study . 92

4.10.1 Real hardware implementation . 96
4.10.2 Failure mode . 98

4.11 Conclusion . 102

Chapter 5—Conclusion 103

5.1 Main Contributions . 103
5.2 Future Works . 104

Bibliography 114

Chapter 1

INTRODUCTION

1.1 MOTIVATION

In recent years, significant advances have been made in the field of autonomous mobile
and manipulator robots. The interdisciplinary nature of robotics has played a pivotal
role in driving substantial advancements. Artificial Intelligence and computer vision have
emerged as influential contributors, significantly enhancing the outcomes of contempo-
rary research, surpassing conventional analytical and empirical methods (MORRISON;
CORKE; LEITNER, 2018).

Robot manipulators that can autonomously manipulate objects of different geometries
in different environments have a wide range of applications such as medicine, manufac-
turing, retail, service robotics, emergency support, serving food, among others. However,
there are still many issues to be solved until they can safely be applied to perform these
activities, including but not limited to the complexity in performing grasping in unknown
objects with adversarial geometry, and the collision with the robot workspace (KROE-
MER, 2015; MAHLER et al., 2019; MOUSAVIAN; EPPNER; FOX, 2019).

Robotic grasping is defined by the position and orientation of the gripper so that an
object can be grasped, meeting several relevant criteria, such as object shape, position,
material properties, and mass, given an RGB-D image, Depth image, Point Cloud or
Voxel Grid as a reference. Grasp is also defined as the process of controlling an object’s
motion in a desired way by applying force and torques at a set of contacts (NEWBURY et
al., 2023). Robotic grasping is one of the fundamental skills in manipulating an object and
is still an open area of research (MORRISON; CORKE; LEITNER, 2020b; RIBEIRO;
GRASSI, 2019). When applying a robotic grasping technique, it is necessary to get an
accurate definition of what is a successful grasp. This definition varies according to the
technique used. Besides that, there may be several successful grasps poses in different
object regions. Therefore, it is crucial to select the positive grasp that represents the
greatest success rate (LENZ; LEE; SAXENA, 2015; REDMON; ANGELOVA, 2015).

Robotic grasping involves several areas of robotics, such as perception, motion plan-
ning, and trajectory execution. Perception is based on sensors to predict the pose that the
gripper needs to reach in 3D space, motion planning refers to the process planning a path
that satisfies the constraints of motion dynamic and obstacle avoidance and trajectory
execution uses a controller to execute the planned path (SUN et al., 2023). Consequently,
its implementation in practice is a challenge. This challenge becomes even greater when
the robot performs grasping on objects of different geometries with an unlimited amount
of positions, since it requires a high dexterity (KUMRA; KANAN, 2017; TOBIN et al.,
2017). Besides that, grasping has shifted from considering relatively simple, isolated ob-
jects to grasping geometrically and visually challenging objects in a cluttered environment
(MORRISON; CORKE; LEITNER, 2019).

Detailed instructions can be provided to a robot to perform specific tasks. This
method is known as an analytical or geometric method. Analytical robotic grasping
methods are referred to as hand-designing features and have been widely used in the past
(MAITIN-SHEPARD et al., 2010; KRAGIC; CHRISTENSEN, 2003). These methods
require the development of a mathematical grasping model that includes the geometry,
kinematics, and dynamics related to the robot and the object, which is not previously
known (KOBER; PETERS, 2010). In addition, the surface properties and friction co-
efficients are not available in priori (BOHG et al., 2013). Therefore, these parameters
cannot be accounted for unknown objects.

1

2 INTRODUCTION

Analytical methods also consider that the position of the object and the contact loca-
tions between the end effector and object are entirely known (PRATTICHIZZO; TRIN-
KLE, 2008). In some analytical methods, grasping poses are previously calculated using
a point cloud registration method, which matches the 3D mesh point cloud and the real
object models through geometric similarities (CIOCARLIE et al., 2014; HERNANDEZ et
al., 2016). Despite the satisfactory performance in known environments, analytical meth-
ods are not feasible in unknown, dynamic and unstructured environments, considering
unknown objects.

Rather than analytical methods, empirical methods have the advantage of removing
partially or entirely the need for a complete analytical model (KONIDARIS et al., 2012).
Such techniques focus on using experience-based strategies employing machine learning.
These approaches generate grasp candidates through trial and error and classify them by
using some metric. Empirical strategies usually imply the existence of previous experience
of grasping, provided with the aid of heuristics and learning (BOHG et al., 2013). This
training process requires the use of real robots (LEVINE et al., 2016), simulations (KAP-
PLER; BOHG; SCHAAL, 2015) or direct assessment in images (LENZ; LEE; SAXENA,
2015).

Pinto and Gupta (2016) acquire training data through experience, making over 50.000
grasping attempts in 700 hours of training. In contrast, recent grasping techniques have
focused on associating human-labeled positive grasps with grasping regions in RGB+D
images (LENZ; LEE; SAXENA, 2015) or just depth images (MORRISON; CORKE;
LEITNER, 2018).

In unstructured environments, robots must continuously and independently analyze
data in the workspace to support decision-making and possibly react to unwanted and
unexpected events (KATZ; KENNEY; BROCK, 2008). Moreover, robotic grasping is
inherently a problem of perception; therefore, the control algorithm must have a high
computational efficiency (LENZ; LEE; SAXENA, 2015). Recent research concerned with
robotic grasping has yielded convincing results due to the advancement of deep learning-
based computer vision techniques (MORRISON; CORKE; LEITNER, 2018).

Deep-learning techniques have provided a considerable advance in robotic grasping
applied to unknown objects. Through these techniques, it is possible to extract features
from objects that correspond to a specific grasping pose or a set of grasping poses. The
results achieved exceed the analytical and empirical models (JOHNS; LEUTENEGGER;
DAVISON, 2016; LENZ; LEE; SAXENA, 2015; MAHLER et al., 2017; MORRISON;
CORKE; LEITNER, 2018).

Several robotic grasping techniques, based on Convolutional Neural Network (CNN),
generate multiple grasping poses (LENZ; LEE; SAXENA, 2015; MAHLER et al., 2017;
PINTO; GUPTA, 2016; WANG et al., 2016; MOUSAVIAN; EPPNER; FOX, 2019).
These techniques determine the best grasp among the generated grasps based on its
score or kinematic viability. In other words, the final grasp can be determined by the
highest score inferred by the network or the one in which the inverse kinematics, given
the gripper pose, is feasible.

Deep learning-based methods are mainly divided into two categories such as sampling-
based methods and regression-based methods (NEWBURY et al., 2023). Sampling meth-
ods individually evaluate the grasp using the encoded information. In these methods, the
grasp is sampled and then evaluated using a quality estimation function, which is usu-
ally a CNN. The quality term is usually a scalar value that represents the probability
of success of the grasp. The uniform and Gaussian distributions are commonly applied
to sample grasps. Johns, Leutenegger and Davison (2016) were among the pioneers in
discovering that the application of Gaussian distributions enhances grasping performance
by effectively eliminating outliers. To generate a set of grasps poses, different sampling
methods may be applied, such as Euclidean space, priors, configuration space, latent
space, and multiple views. The Euclidean space requires post-process to refine the grasps

1.1. MOTIVATION 3

and remove infeasible grasps while latent space generates more robust grasps but still
needs post-process methods to remove grasps in collision with other objects and refine
the grasps positions (MOUSAVIAN; EPPNER; FOX, 2019).

Johns, Leutenegger and Davison (2016) used a CNN to detect robotic grasps on static
uncluttered objects. Rather than just considering an individual grasp pose, this method
finds a score for each grasp in a discretized grasp map and selects the best grasp according
to uncertainties related to the grasp pose. In this research, the CNN was trained in a
simulated environment using rendered depth images of synthetic objects. The gripper
approaches the object orthogonally to the plane composed of the RGB+D sensor (a
method known as planar grasping).

Mahler et al. (2017) used a synthetic dataset containing 3D object models to train a
CNN denoted Grasp Quality Convolutional Neural Network (GQ-CNN). This CNN infers
the grasp position directly from the depth image generated by an RGB+D sensor. The
robot first separate the objects using a push policy when it is detected that there is no
sufficient clearance to grasp an object.

Lenz, Lee and Saxena (2015) and Wang et al. (2016) applied an inference method to
find an optimal grasp pose for an object which maximizes the chances of grasping it. The
Cornell database (LENZ; LEE; SAXENA, 2015) was used in these researches. As opposed
to previous methods, they treat robotic grasping as a problem of object detection. This
method handles information in the context of feature learning, using data from RGB+D
cameras. Despite the results, potential sampled robotic grasps can be ignored. Although
the algorithm was tested in cluttered environments, the objects used in the experiments
were distant from each other, which may facilitate the grasp.

Gualtieri et al. (2016) developed a 6D robotic grasping technique for unknown objects.
This generates the position and orientation of the gripper when grasping an object. The
method used in this paper applies an open-loop controller and only works when the camera
is at a certain distance from the object (to see the whole object). Open-loop controller is
commonly referred in robotic grasping as a method that does not use visual feedback to
perform the grasping. In other words, the grasping is generated from a certain position
and orientation of the gripper and then executed without constant feedback. Despite the
high success rate in grasping cluttered objects, it is necessary to scan the object space to
be grasped beforehand; therefore, the grasping time is considerably increased.

Levine et al. (2016) were one of the first to implement closed-loop robotic grasping
using deep-learning techniques on cluttered objects. However, the CNN used has many
layers, one million parameters, and requires months of training in various robots. In
addition, the camera is fixed, making it difficult to adapt to different scenarios such
as table height. The frequency obtained ranged from 2 to 5 Hz. Viereck et al. (2017)
overcomes this limitation by decreasing the number of layers of the CNNs and placing the
camera on the gripper. The model used in this research learns the distance to the nearest
feasible grasp on the object. Despite achieving a maximum processing frequency of 5 Hz,
it was insufficient to attain a significant percentage of successful closed-loop grasps. The
network parameters were trained using OpenRAVE simulation and the kinematics solver
IKFast (DIANKOV; KUFFNER, 2008).

Morrison, Corke and Leitner (2018) have proven through real experiments that the
number of CNN parameters directly affects the performance of the robotic grasp. This
performance is essential for grasping in unstructured and dynamic environments. Morri-
son, Corke and Leitner (2018) solved the computational performance problem found in
Viereck et al. (2017) by generating grasping poses for all pixels in an image through a
relatively small 6-layer CNN and 62.000 network parameters. The maximum processing
frequency reached was 50 Hz when generating new positions, enough for the closed-
loop grasping method to be applied. In this method, the robotic grasping is defined by
g = (p, ϕ, ω, q), where p is the point on the object represented in the robot workspace, ϕ
is the gripper orientation, ω is the grasp width, and q is a parameter that represents the

4 INTRODUCTION

grasp quality. Therefore, it is possible to perform a complete robotic grasp, unlike the
method presented by Viereck et al. (2017), which ignores the grasp width. Despite the
performance of this CNN, the grasp is planar and only generates one grasp per object.

When some objects are positioned in a cluttered way, it may occlude the view of other
objects to be grasped by the robot. To solve this problem, Pas et al. (2017) has created
a point cloud inference method based on CNN. In this method, a trajectory planning
algorithm proposed by Schulman et al. (2014) is used to generate a fixed trajectory during
the grasping process. This trajectory allows the RGB+D camera to generate depth data
from occluded parts of objects at different angles. This depth data is joined together to
create a better representation of the object. Results showed a 9% increase in success rate
compared to the use of more than one static sensor in the grasping process.

Morrison, Corke and Leitner (2019) develop a method, called Multi-View Picking
(MVP), based on Pas et al. (2017). However, when building a point cloud of a set of
objects, the robot follows a predefined trajectory to scan the entire object environment.
When performing a scan, the sensor gets a full point cloud of objects, eliminating occlu-
sions. Results showed a 12% increase in success rate over single fixed viewpoint methods.
In addition, the proper exploration of the object area has been shown efficient enough to
increase the chances of successful grasping. Despite the improved performance, the time
consumed to pick an object is increased significantly. Morrison, Corke and Leitner (2019)
used objects of adversarial geometries proposed by Mahler et al. (2017).

Ribeiro and Grassi (2019) presented a CNN architecture to predict planar grasp poses
using an RGB image. The grasps are based on a rectangular representation presented
in Jiang, Moseson and Saxena (2011). The rectangle representation is composed of five
parameters corresponding to the rectangle center (x, y), the gripper width w, the gripper
plate size h, and the gripper angle θ. The Cornell database (LENZ; LEE; SAXENA, 2015)
was augmented to improve the generalization of the network architecture used. 297338
instances were generated from only 885 images in which 82% were used for training,
1% for validation, and 17% for testing. They developed a network with 4 convolutional
layers and 2 fully connected layers, containing 1.548.569 parameters. The evaluation was
performed using the Intersection over Union (IoU) or Jaccard Index bigger than 25%.
Ribeiro and Grassi (2019) achieved a performance of 74.07 FPS (13.5ms per inference)
using the GeForce GTX 1050 Ti, an accuracy of 94.8% in the Image-Wise division, and
86.9% in the Object-Wise division.

Ribeiro, Mendes and Grassi (2021) developed a CNN capable of performing dynamic
grasps using the Cornell database (LENZ; LEE; SAXENA, 2015). The grasping is per-
formed by applying a visual servo controller to adapt to changes in the object pose. The
controller is learned from scratch using a CNN capable of end-to-end visual servoing.
The image of the target is obtained a priori, and it is used as a setpoint by the visual
servoing control. The control loop is executed as long as the L1-norm of the control signal
is greater than a certain threshold. The evaluation was performed using the Intersection
over Union (IoU) or Jaccard Index bigger than 25%. A success rate of 85.7% was achieved
in a dynamic environment without clutter.

Comparing grasping algorithms is a complex task since the methods differ in terms
of software, hardware, and task (pick-and-place, shelf picking, stow, etc.) (MAHLER
et al., 2018). Some authors tried to standardize the benchmark procedure by proposing
an environment and objects for the testing phase (BEKIROGLU et al., 2019; LIU et
al., 2021; CALLI et al., 2015; MNYUSIWALLA et al., 2020; MORGAN et al., 2019).
Nevertheless, the procedure itself is not enough to compare different grasping algorithms.
The evaluation metric is also important. In this thesis, metric means the evaluation
methodology to define the grasping effectiveness, considering different parameters as time
and probability of success and failure. There are commonly used metrics in the industry to
measure the performance of grasping algorithms such as Mean Picks Per Hour (MPPH),
Successful task Executions over Total Attempts (SETA), Mean Time Between Failure

1.2. PROBLEM DEFINITION 5

(MTBF), Mean Time To Repair (MTTR) and Availability (MAHLER et al., 2018). These
metrics allow for decoupling the algorithm performance and identifying the bottleneck of
the system pipeline.

In the context of additive manufacturing systems, it is necessary to apply a robust
robotic grasping technique capable of yielding a diverse set of 6D grasps (COSTA et al.,
2020; ARRAIS et al., 2019). This is necessary as some grasps may not be kinematically
possible or collides with objects in the robot’s volumetric space. Deep learning-based
grasps techniques provided a great tool to improve the performance of grasps in unknown
objects. However, grasps are usually performed in environment that offer a low risk of
collision with objects. Techniques to avoid collisions between the robot’s gripper and the
environment are still an open area of research.

Weng et al. (2023) proposed a neural network called Neural Grasp Distance Fields
(NGDF) to predict the distance between a query pose and close grasps, representing the
manifold of grasps as a continuous level set to avoid collisions with the obstacles in the
environment. In consequence, the proposed method can plan the grasp and the motion
during the optimization problem without having to decouple the grasp synthesis, motion
planning, and collision avoidance. However, a dataset is needed for each gripper model.
Therefore, a neural network must be trained for every new gripper type.

1.2 PROBLEM DEFINITION

Recent grasping techniques are commonly focused in generating grasps and do not allow
the selection of a specific object to be grasped (MORRISON; CORKE; LEITNER, 2018;
MOUSAVIAN; EPPNER; FOX, 2019). Instead, they generate random grasps based
on a quality prediction of an input data considering all the objects in the workspace.
Therefore, given a set of objects in the workspace, the grasp generator may grasp any
of them. Nevertheless, it is not desired since the robot may grasp part of a fixed object
such as a bin instead of the movable objects. Furthermore, it is not possible to select a
specific object to be grasped using only these grasping methods.

This thesis employs two distinct environments, a tabletop and a constrained space,
to assess the efficacy of the grasp generation methodologies. The former, represented a
planar surface populated with multiple objects (Figure 1.1). Conversely, the constrained
space is exemplified by an Additive Manufacturing Unit, specifically a 3D printer. This
setting presents increased complexity owing to potential collisions between 3D printer
parts, proximate objects and the gripper (Figure 1.2).

This thesis addresses robotic grasping in static unstructured environments with un-
known objects arbitrarily positioned. To clarify, attributes such as size, shape, weight,
position, orientation, static and dynamic friction, among other physical parameters, are
not predetermined in this context. In this thesis, the objects chosen for experimenta-
tion were first proposed by Mahler et al. (2017). These objects are recommended for
benchmarking owing to their geometrically challenging features, such as smooth curved
surfaces and narrow openings.

Employing complex objects allows for a more comprehensive assessment of the pro-
posed system in realistic settings, in contrast to relying on basic shapes such as cubes
or cylinders. Traditional robotic manipulators in industrial applications predominantly
deal with standardized items. However, the rise of warehouse automation and domes-
tic robotics necessitates advanced capabilities in grasping a broader array of objects.
Highlighting the significance of this, major corporations endorse the advancement of
robotic grasping systems in unstructured environments through prominent competitions,
including the Amazon Picking Challenge (CORRELL et al., 2016) and the IROS Robotic
Grasping and Manipulation Competition (SUN et al., 2016). These challenges rigor-
ously evaluate the adeptness of robotic systems in intricate environments, including both
unknown environments and objects.

6 INTRODUCTION

Figure 1.1: Tabletop scenario for 4D grasping testing.

Figure 1.2: Additive Manufacturing Unit for 6D grasping testing.

Recent studies (NEWBURY et al., 2023; MORRISON; CORKE; LEITNER, 2019)
frequently evaluate grasping techniques within planar workspaces such as tables or bins.
Such environments are often selected for evaluating grasping efficacy due to their relative
simplicity compared to more constrained scenarios. It’s important to note that methods
that generate 4D grasps, also known as planar grasps, work well on flat surfaces but might
not be ideal for constrained spaces such as inside the 3D printer. This limitation comes
from the fact that the gripper can only grasp an object orthogonal to the surface. In other
words, the gripper can only grasp an object from the top. In constrained spaces, a 6D

1.3. OBJECTIVE 7

grasp generator is recommended since the robot can grasp the object from all directions.

1.3 OBJECTIVE

This thesis delineates the development of 4D and 6D selective grasping pipelines using
Deep Learning techniques, implemented in tabletop and constrained environments. The
grasps target objects of unknown shape and physical attributes. To discard the grasps in
collision with the environment, a novel collision avoidance algorithm utilizing point clouds
and signed distance fields has been introduced. Moreover, a heuristic-based approach was
proposed to filter and prioritize grasps based on the gripper’s position and orientation,
and the grasp score inferred by the 6D grasping generation network. The research also
compares the proposed 4D and 6D robotic grasping pipelines considering the same envi-
ronment and objects. An automatic object detection dataset generation pipeline was also
developed to facilitate the training of the object recognition and segmentation networks.

A thorough assessment, backed by experimental data, elucidates the grasping perfor-
mance. Validations for both conditions were conducted using the Intel Realsense D435
RGB+D camera, an UR5 Robot Arm Manipulator, and a Robotiq 2F-140 gripper.

1.4 CONTRIBUTIONS

This thesis has the following main contributions:

� Development of a 4D grasping pipeline using a Convolutional Neural Network Grasp
Generator and an Object Detection Network to selectively grasp objects on a table-
top scenario using an RGB+D sensor (Figure 1.3);

� Development of a selective grasping pipeline based on Variational Autoencoders and
an Object Segmentation Network to generate 6D grasps using an RGB+D sensor,
avoiding collisions between the robot’s gripper and the environment (Figure 1.4);

� Development and validation of a low computational complexity collision avoidance
system to discard grasps in collision with the environment and a heuristic method
to filter the best grasps;

� Integration of an object recognition and instance segmentation method, a 6D grasp-
ing generator, and a new collision detection system;

� Development of an automatic object recognition dataset generation pipeline using
a simulator; and

� Validation of the proposed system using an UR5 Robot Arm Manipulator, an
RGB+D camera Intel Realsense D435, and the gripper Robotiq 2F-140.

Additionally, an ablation study is conducted on the grasping pipeline stages to ana-
lyze how the size of the workspace point cloud affects collision check time. The object
detection and segmentation algorithm using deep learning for specific manufactured ob-
jects is validated in real experiments, proving the effectiveness of a simulator-generated
synthetic dataset. A detailed comparison between 4D and 6D grasping techniques is also
presented, highlighting the advantages and disadvantages of each method, using the same
set of objects.

8 INTRODUCTION

Figure 1.3: Overview of the proposed 4D grasping pipeline (Chapter 3).

Figure 1.4: Overview of the proposed 6D grasping pipeline (Chapter 4).

1.5 STRUCTURE OF THIS THESIS

The remainder of this thesis is organized as follows:

Chapter 2: A detailed overview of recent grasp techniques is provided;

Chapter 3: A grasping pipeline capable of performing grasps on unknown and
uncluttered objects is presented;

Chapter 4: A multiple 6D grasp generator is integrated with an object recognition
system to perform selective grasps. A collision check system is proposed to verify
collisions with nearby obstacles in an Additive Manufacturing Unit. An automated
dataset creation pipeline using simulation is presented;

Chapter 5: Finally, the conclusion, main contributions and future works are pre-
sented.

Chapter 2

The purpose of this chapter is to provide a review of robotic grasping techniques using deep learning. This
review is subdivided into sections regarding important aspects of robotic grasping. This review serves as
a tool to understand the impact of each procedure adopted by several authors.

RELATED WORK

As Morrison, Corke and Leitner (2018) state, it is not proper to directly compare results
between robotic grasping experiments due to the extensive grasp detection techniques
used. Each experiment differs from the other by using different types and numbers of
objects, physical hardware, robot arms, grippers, and cameras. Mahler et al. (2018) is
a guest editorial composed by reputed researchers and industry professionals in robotic
grasping in the United States, Germany, and Australia. The editorial states that although
there are openly shared codes and data, it is highly complex to compare or replicate
experimental results to identify which aspects of each approach work best. Although
Mahler et al. (2018) propose standardization of data to be given by the authors, they
do not offer a principled benchmark methodology that clearly defines each step in the
grasping pipeline as Bekiroglu et al. (2019) do.

Direct comparisons are not fair due to the disparities in the adopted hardware, soft-
ware, experimental procedures, and the environment (NEWBURY et al., 2023; MAHLER
et al., 2018). Besides that, the vision system is also confounded by lighting variation,
shadows, reflections, surroundings, and other factors. Due to the lack of documentation
in the evaluation regarding grasping methods, Mahler et al. (2018) proposes a procedural
model to simplify and increase the effectiveness of grasping’ methods comparison. It was
proposed the use of a metric1 called Mean Picks Per Hour (MPPH), commonly used in
industry to test the speed where robots can grasp objects. Nevertheless, this metric can
be affected by the trajectory planning and the robot motion, leading to the wrong inter-
pretation of the grasping precision. Mahler et al. (2019) prove that a grasping method
could achieve a high MPPH and low precision. Consequently, MPPH metric does not
evaluate exclusively the grasping method itself.

Therefore, as Bekiroglu et al. (2019) state, it is difficult to evaluate the influence of
a grasp planning algorithm independently of the vision system, robot arm, and hand.
Different authors tried to establish protocols to standardize the grasping performance
evaluation, including what type of objects should be used, how they should be placed
in the robot workspace and metrics calculation (BEKIROGLU et al., 2019). It is an
agreement between recent works that there are no tools to build meaningful comparisons,
preventing systematic analysis (MORGAN et al., 2019). Also, it is difficult to evaluate
each system’s component such as object recognition, segmentation, motion planning, and
hardware design (MORGAN et al., 2019; LIU et al., 2021).

Although Bekiroglu et al. (2019) presented a step-by-step solution for evaluating the
grasping performance, they do not provide a metric to analyze the type of object in terms
of difficulty to grasp as shown in Mahler et al. (2019). The transparency, porosity, and
deformability of the objects highly affect the grasping performance, and these should be
accounted for in the evaluation (MAHLER et al., 2019). Besides that, for the learning-
based grasping methods, the objects must be divided into the novel and seen objects.
Novel objects mean objects that were not used to train the grasping algorithm. Although

1It is important to note that in the robotic grasping field, metric means the evaluation methodol-
ogy to define the grasping effectiveness.

9

10 RELATED WORK

Mahler et al. (2019) divided the objects in terms of grasping difficulty, this parameter
was set based on the reliability across the policy adopted by the authors. It does not
represent the actual grasping difficulty because different grasping methods would result
in different reliabilities. Therefore, this metric is not directly comparable.

The level of clutter also influences grasping performance. Mnyusiwalla et al. (2020)
evaluated grasping methods using the same test environment and objects in different
clutter levels, documented through images. They found that the higher the clutter the
lower is the grasping performance.

There are famous image recognition challenges in computer vision such as COCO (LIN
et al., 2015) and VOC (EVERINGHAM et al., 2010a) which contributed to the enormous
advancements in the field. But there are no similar challenges for robot grasping because
it is significantly more challenging due to the mechanical, sensorial, and algorithmic
innovations combined in any solution (BEKIROGLU et al., 2019). Liu et al. (2021)
created a robot setup, called OCRTOC (Cloud-Based Competition and Benchmark for
Robotic Grasping and Manipulation), to perform remote experiments of standardized
table organization scenarios in varying difficulties to provide a fair environment grasping
performance comparison.

System-level benchmarks also depend on the application itself. There are benchmarks
for pick-and-place in tabletop scenarios (CALLI et al., 2015), pick-from-the-self scenario
(LEITNER et al., 2017), bin-picking (MNYUSIWALLA et al., 2020). There are extensive
grasping applications, and it is impossible to derive a benchmark that covers all of them
(MNYUSIWALLA et al., 2020).

The type of the end-effector is also an important factor that affects the grasping
performance. Mnyusiwalla et al. (2020) evaluated four types of end-effectors on the same
set of objects. They found that the grasping performance highly depends on the gripper
type. The challenges behind the hardware design are also reported in Sun et al. (2021).

In addition to the challenging comparison between the grasping methods, the grasp-
ing performance can be strongly affected by the network architecture and its parameters
(MORRISON; CORKE; LEITNER, 2018). The grasping methods applied in each re-
search vary considerably by employing different experimental procedures, datasets, net-
work architectures, metrics, pre-processings, post-processings, etc. Therefore, it is crucial
to review the motivation underlying each pipeline step. It is noted poor documentation
in some research, which can lead to even more challenging comparisons.

Figure 2.1 shows a flowchart that describes the commonly adopted processes in several
grasping methods as well as the sections in which each process is presented in this chapter:

� Section 2.1 shows the specificities related to the grasp definition;

� Section 2.2 describes the dataset generation method and its related pre-processes
and post-processes. Some grasping datasets are generated from simulation if they
are not manually labeled beforehand;

� Section 2.3 details several network architectures, training procedures, cost functions,
weight initialization, and more network-related information;

� Section 2.4 presents the pre-processing and post-processing commonly applied to
improve the grasping performance;

� Section 2.5 shows the objects often used for evaluating the grasping performance
in real experiments. Robotic grasping methods are not tested in the same way
as object recognition networks. It requires real or simulated tests with complete
hardware including the robot, sensors, objects, and the controller;

2.1. GRASP DEFINITION 11

� Section 2.6 indicates the performance results of each related work and the proce-
dures and benchmarks employed for the grasping performance evaluation; and

� Section 2.7 concludes this chapter.

Each section includes preliminary considerations, which summarize important obser-
vations.

Figure 2.1: Flowchart that describes the commonly adopted processes in several grasp-
ing methods as well as the subsection in which each process is presented.

2.1 GRASP DEFINITION

There are several ways to define a robotic grasp, and it highly depends on the method
used. Johns, Leutenegger and Davison (2016) define a grasp as a pose, comprising of three
parameters (x, y, θ), where x and y are the positions related to the gripper’s grasping axis
in the image coordinate relative to the center of the image and θ is the gripper orientation.
This grasp definition is commonly applied when the method refers to planar grasping. The
gripper pose is obtained in the robot’s base coordinate using a sequence of homogeneous
transforms,

12 RELATED WORK

g = TRG(TGC(TCI (g̃))), (2.1)

where g is the gripper pose in the robot base frame, g̃ is the gripper pose in the image
coordinate frame, TRG is the homogeneous transformation between the robot frame and
the gripper frame, TGC is the transformation between the gripper frame and the camera
frame, and TCI is the transformation between the 2D image coordinates and the 3D
camera frame.

Mahler et al. (2017) defined the grasping pose as a set of four parameters: (x, y, z),
and ϕ, the planar gripper angle. Jiang, Moseson and Saxena (2011) developed a grasp
representation based on a rectangle corresponding to a pair of parallel edges of a robotic
gripper. This grasp rectangle is composed of five parameters: x and y coordinates of the
upper-left corner of the rectangle, gripper width ω corresponding to the antipodal grasp,
gripper finger’s tip width h and grasp angle ϕ. This representation is commonly adopted
in related works (LENZ; LEE; SAXENA, 2015; RIBEIRO; GRASSI, 2019). Pinto and
Gupta (2016) employed a similar representation but fixed the length of the grasp width
and gripper finger’s tip instead. Gualtieri et al. (2016) represented the grasp pose as a
6D pose, comprising the position and orientation in R3.

Definition 2.1.1. The term antipodal grasp refers to the term antipode also used in
plane geometry. Given a point O lying in the center of circle C, the antipode O′ of O

is the other point lying on the conic through which the line
−→
OC passes (Figure 2.2a). In

robotic grasping, antipodal grasp is used to define the gripper angle Φ, the Tool Center
Point (TCP), and the finger’s plate position represented as antipodal points (Figure 2.2b).

(a) (b)

Figure 2.2: (a) Antipodal point of a point on a circle (b) antipodal grasp definition.

Levine et al. (2016) also defined a grasp by the position (x, y, z), and orientation ϕ
of the gripper. Although they have not used grasp representation such as Mahler et al.
(2017), during the grasp process, the gripper remains planar to the surface where the
objects are located.

Morrison, Corke and Leitner (2018) and Morrison, Corke and Leitner (2020b) define
a grasp as six parameters: x, y, z coordinates of the grasp point, gripper angle ϕ, gripper
width ω and q which is a pixel-wise quality measure of the grasp. The grasp is first
obtained in image coordinates given a 2.5D depth image and is later transformed into
the robot base coordinates by

g = TRC(TCI(g̃)), (2.2)

2.1. GRASP DEFINITION 13

where TCI transforms from the image coordinate to the camera frame and TRC transforms
from the camera frame to the robot’s base frame.

2.5D depth image is definied as a simplified representation of 3D data in hich every
pixel (x, y) on the camera’s image plane contains only the depth value, measuring its
distance to the scene (CHONG; TEOH; ONG, 2016).

Some authors defined the grasp by (R, T) ∈ SE(3) where R ∈ SO(3) and T ∈ R3 are
the rotation and translation of grasp g (MURALI et al., 2020; MOUSAVIAN; EPPNER;
FOX, 2019; MAHLER et al., 2019, 2016). Grasps are defined in the object reference
frame, whose origin is the center of mass of the point cloud observed. This method is
known as 6D or non-planar grasp. Contrary to Morrison, Corke and Leitner (2018), it
is not necessary to transform the grasp representation from the image coordinates to the
camera frame, since the grasp is already obtained in the camera coordinate frame. Figure
2.3 summarize the types of grasping commonly adopted.

Figure 2.3: Types of grasp adopted by several authors. The grasping position is defined
as (x, y, z), and the orientation as θ, ψ, ϕ, corresponding to the roll (θ), pitch (ψ), and
yaw (ϕ) angles.

Sundermeyer et al. (2021) state that the grasp representation is crucial to solving
the grasping task using learning-based methods to generalize well to unseen objects and
handle the high-dimensional output space well. The authors consider only the grasps
that lie on surfaces that can be observed with a depth sensor. Given that the grasp point
c in Figure 2.4 is predictable, it is possible to reduce the 6-DOF learning problem to
estimating the 3-DOF grasp rotation Rg ∈ R3×3 and grasp width ω ∈ R of a parallel-yaw
gripper.

In Sundermeyer et al. (2021), the grasp g ∈ G is defined as the orientation and position
(Rg, tg) ∈ SE(3) and grasp width ω ∈ R as

tg = c+
ω

2
b+ da, (2.3)

and

Rg =

[| | |
b a× b a
| | |

]
, (2.4)

where a ∈ R3, ||a|| = 1 is the approach vector, b ∈ R3, ||b|| = 1 is the grasp baseline
vector, and d ∈ R is the constant distance from the gripper baseline to the gripper base.
The reduced dimensionality greatly facilitates the learning process compared to methods
that estimate grasp poses in unconstrained SE(3) spaces.

Breyer et al. (2021) defines a grasp g by the position t and orientation r of the
gripper with respect to the robot’s base coordinate system. The gripper opening ω is also
considered. For each pose, a quality q ∈ [0, 1] capturing the probability of grasp success
is added.

14 RELATED WORK

Figure 2.4: c depicts an observed contact point, b constitute the 3-DOF rotation, ω is
the predicted grasp width, d is the distance from baseline to base frame (SUNDER-
MEYER et al., 2021).

Jiang et al. (2021) define a 6-DoF grasp g as the grasp center position t ∈ SO(3) of
the gripper, and the opening width ω ∈ R between the fingers. A scalar grasp quality
q ∈ [0, 1] estimates the probability of grasp success. For an arbitrary point p ∈ R3, the
occupancy b ∈ [0, 1], indicating whether a point is occupied by any other objects in the
scene, is also considered.

Ni et al. (2020) denote grasps in 3D space as g = (p, n, r, d) where p ∈ R3 is the grasp
point, n ∈ R3 is the unit approaching vector, r ∈ R3 is the opening vetor, and d ∈ R is
the approaching distance of two fingers relative to grasp point p (Figure 2.5).

Figure 2.5: Grasp representation in 3D (NI et al., 2020).

2.1.1 Preliminary Considerations

Some approaches define the grasp position in R2 on the surface where the objects are
located (RIBEIRO; GRASSI, 2019; JOHNS; LEUTENEGGER; DAVISON, 2016; LENZ;
LEE; SAXENA, 2015; PINTO; GUPTA, 2016), whereas others define the grasp posi-
tion in R3, considering the height of the object on the surface (MAHLER et al., 2017;
MORRISON; CORKE; LEITNER, 2018, 2019, 2020b). Both aforementioned grasp rep-
resentations consider a planar grasp; therefore, the orientation is only defined in one axis
of rotation, orthogonal to the grasping rectangle.

2.2. GRASPING DATASETS AND RELATED PROCESSINGS 15

The quality measure of the grasping pose can also be considered as part of the grasp
definition (MORRISON; CORKE; LEITNER, 2018, 2020b). Although it benefits the
acquisition of an acceptable grasp pose, it is not guaranteed to obtain a feasible or the
best pose. Mousavian, Eppner and Fox (2019) do not use only the grasp score but also
verify the kinematic feasibility of the generated grasp poses as well as if the grasp position
leads to collision with other objects in the environment.

Furthermore, planar grasp techniques restrict its real applications. To perform bin
picking, planar grasp techniques may be well suited. Nevertheless, for picking objects in
constrained spaces, it is necessary to apply non-planar grasp techniques (MOUSAVIAN;
EPPNER; FOX, 2019).

2.2 GRASPING DATASETS AND RELATED PROCESSINGS

This section focuses on the investigation of each dataset applied in robotic grasping meth-
ods as well as the data pre-processing preceding the network training. Subsection 2.2.1
briefly details each dataset applied in different robotic grasping researches. Subsection
2.2.2 describes the techniques employed to augment a labeled dataset and the procedures
adopted to adequate the training data to fit the network architecture adopted by each
related research. Subsection 2.2.3 indicates the techniques adopted to sample grasps from
an existing not labeled dataset (such as 3D object’s mesh dataset) through offline simula-
tions. Subsection 2.2.4 depicts important aspects of the related work in terms of dataset
manipulation.

2.2.1 Robotic Grasping Datasets

KIT (KASPER; XUE; DILLMANN, 2012) is a dataset of 3D data acquired with a high-
accuracy laser scanner model Minolta VI-900. The objects are rotated in the scanning
processing in order to get different viewpoints of the object. The resolution of the depth
images is 640× 480 pixels. Color stereo images with 1392× 1038 pixels are also captured
from different angles using the camera Marlin 145C2 with known intrinsic parameters.

The 3DNet (WOHLKINGER et al., 2012) is a dataset that is divided into 4 other
databases with 10, 60, 100, and 200 object classes, varying the difficulty in object recog-
nition. It comprises 360 synthetic objects suitable for robotic manipulation, 1600 scenes
of single objects on a planar surface in random poses, and several instances per class
captured with an RGB+D sensor. For each scene, a color image, a point cloud, and a
bounding box with the class label are provided. This dataset is generally used for object
class recognition and 6D pose estimation.

BigBird dataset (SINGH et al., 2014) contains depth scans and RGB images of 125
real objects. 600 registered point clouds from a Primesense Carmine 1.09 sensor are
provided. The objects are scanned by 600 different viewpoints. Transparent objects are
not well scanned due to the depth measurement limitation. The segmentation masks for
each of the images and point clouds are also provided.

Kappler, Bohg and Schaal (2015) presented a dataset with 700 object instances in
80 different categories, including drugstore products, groceries, music instruments, toys,
tools and household instruments. Each object contains 500 grasps, totalizing 300k differ-
ent grasps. This dataset also contains point clouds from different viewpoints. The mesh
models used are from the 3DNet dataset (WOHLKINGER et al., 2012).

The Cornell Grasping Dataset (LENZ; LEE; SAXENA, 2015) has 885 depth images
of real objects available and 5110 human-labeled positive and 2909 negative grasps. This
dataset has the advantage of having several labeled grasps available per image. The
Cornell Dataset represents antipodal grasps as rectangles using pixel coordinates, aligned
to the position and rotation of a gripper as in Jiang, Moseson and Saxena (2011).

The ModelNet dataset (WU et al., 2015) is a large-scale collection of 3D mesh models

16 RELATED WORK

representing a range of common objects. This dataset is specifically applied for deep
learning experimentation comprising 127,915 synthetic objects, 662 object categories,
and 10 categories with annotated orientation.

The Yale-CMU-Berkeley (YCB) dataset (CALLI et al., 2017) contains 600 high-
resolutions RGB images, 600 RGB+D images and five sets of textured three-dimensional
geometric models. The real objects were scanned using BigBIRD and Google Scanners
and are available to researchers upon request. In total, 77 objects were scanned and
made available online. The objects sets were divided into 5 categories: Food items,
kitchen items, tool items, shape items, task items.

The Jacquard Dataset (DEPIERRE; DELLANDRÉA; CHEN, 2018) contains RGB
and depth images with antipodal grasp rectangles represented as pixels coordinates.
These grasp rectangles are collected in simulation and do not require manual labeling.
This dataset is usually applied in Simulated Grasping Trials (SGTs), where the successful
grasps are obtained through simulations. This dataset contains 54,485 rendered images
labeled with almost 5 million grasp annotations. It is also possible to access the simulated
environment in which it was created, allowing the application of SGTs.

Mahler et al. (2017) presented a new dataset, denoted Dexterity Network 2.0 (Dex-
Net 2.0). This dataset comprises more than 6.7 million point clouds of 1,500 synthetic
objects. The images are not multiple-labeled such as the Cornell dataset. The grasp
rectangles were associated with each image through simulations; therefore, several hours
of tedious hand labeling were avoided.

Most datasets apply only to a specific type of gripper. To avoid this limitation, Mahler
et al. (2019) developed a new dataset called Dexterity Network (Dex-Net) 4.0, extending
the gripper-specific models of Dex-Net 2.0 (MAHLER et al., 2017) and 3.0 (MAHLER
et al., 2018). This dataset is comprised of 5 million grasps computed over 1664 unique
3D objects in simulated clutter.

Morrison, Corke and Leitner (2020a) developed a dataset specifically for robotic grasp-
ing applications. It uses evolutionary algorithms to generate a set of objects that varies
in terms of geometry complexity and graspability. This dataset contains 2000 3D object
mesh, including a set of 49 printable objects that represent many semantic classes. In
this dataset, objects are labeled according to their complexity and difficulty, providing a
range in both dimensions. A set of 1 million precomputed grasp poses is provided. Each
object is comprised of 100 antipodal grasps labeled with a robust grasp-quality metric
(MAHLER et al., 2017). The code to create a custom object dataset from the Envolved
Grasping Analysis Dataset (EGAD) is also provided.

Fang et al. (2020) presented a dataset called GraspNet. This dataset contains 97.280
RGB-D images of real world objects and over one billion 6D grasp poses manually an-
notated. The images were taken from the Intel Realsense D435 camera and Kinect V4
Azure. The grasp evaluation is done by analytical computation. The authors scanned 88
objects and generated 4 datasets with 190 scenes in total, called train (100 scenes), test
seen (30 scenes), test similar (30 scenes) and test novel (30 scenes). Each scene contains
256 RGB-D images and millions of grasps for 10 objects randomly sampled.

Zhang et al. (2022) introduced the dataset REGRAD (Large-Scale Relational Grasp
Dataset for Safe and Object-Specific Robotic Grasping in Clutter). The object is com-
posed of 2D images and point clouds. The dataset contains 200 object instances, 55
categories and 50K different object models. The labels include 6D pose of each object,
bounding boxes, 2D segmentations, point cloud segmentations, Manipulation Relation-
ship Graph (MRG) indicating the grasp order, collision-free and stable 6D grasps of each
object and rectangular 2D grasps. The dataset contains 118.1K different scenes.

Fang et al. (2022) presented a dataset called DexGraspNet with 1.32M grasps and
5355 objects for robotic hands. The dataset contains 133 object categories and more
than 120 diverse grasps per object. The objects encompassed within the dataset are de-

2.2. GRASPING DATASETS AND RELATED PROCESSINGS 17

rived from hand-scale categories, collected from both synthetic and real datasets such as
YCB (CALLI et al., 2017), BigBIRD (SINGH et al., 2014), Grasp (KAPPLER; BOHG;
SCHAAL, 2015), KIT (KASPER; XUE; DILLMANN, 2012), and Google’s Scanned Ob-
ject Dataset (DOWNS et al., 2022). These objects are then processed—normalized,
cleaned, remeshed into manifolds, and further assessed for collision meshes to ensure
the dataset’s quality and utility. DexGraspNet’s generation leverages a highly efficient
synthesis method anchored on a deeply accelerated differentiable force closure estimator,
which robustly and efficiently synthesizes stable and diverse grasps on a large scale.

Table 2.1 shows a comparison between the datasets applied in robotic grasping tech-
niques. It comprises important aspects of datasets such as the modality of the data
provided and the type of supported grippers, divided by (1) vacuum gripper, (2) two-
fingered gripper, (3) three-fingered gripper, (4) four-fingered gripper, and (5) five-fingered
gripper. It also shows the labeling process and the number of ground-truths available as
well as image resolutions when provided. Unfilled fields mean that the information was
not provided, or it is not applicable for this dataset.

Table 2.1: Specification of the most used datasets in robotic grasping applications.

Data Type
Type of
Gripper

Annotated
dataset

Grasp Type
Ground
Truths

Multiple
Labels

Multiple
Views

Image
Resolution

Number of
Objects

Number of
Images

REGRAD (ZHANG et al., 2023)
RGB/Point

Cloud
2 3D+ 100M 200 900K

DexGraspNet (Fang et al., 2022) CAD 5 3D+ 1.32M 5355
EGAD (MORRISON et al., 2020a) CAD Adaptable 3D+ 1M 2000
Dex-Net 4.0 (MAHLER et al., 2019) Depth 1, 2 3D+ 13K 96x96 1664 5M
Jacquard (DEPIERRE et al., 2018) RGB+D 2 3D, 4D 1.1M 11K 54K
Dex-Net 2.0 (MAHLER et al., 2017) Depth 2 3D+ 6.7M 640x480 1500 6.7M
YCB Dataset (CALLI et al., 2017) CAD/RGB+D 3D+ 1920x1080 77 600

Wohlkinger et al. (2012) CAD 3D+ 700
ModelNet (WU et al., 2015) CAD 3D+ 128k
Cornell (LENZ et al., 2015) RGB+D 2 3D, 4D 8019 640x480 240 1035
BigBird (SINGH et al., 2014) RGB+D 3D, 4D 125 600

3DNet (WOHLKINGER et al., 2012) CAD 3D+ 1500
KIT (KASPER et al., 2012) Depth 3, 4, 5 3D, 4D 1392x1038
KIT (KASPER et al., 2012) RGB 3, 4, 5 3D, 4D 640x480

Type of gripper: 1 - vacuum gripper, 2 - two-fingered gripper, 3 - three-fingered gripper, 4 - four-fingered gripper, and 5 - five-fingered gripper.

Grasp Type: The type of grasping prevalent in most work utilizing the dataset. The grasping type 3D+ means that the dataset can be used to train from 3D to 6D grasps.

Multiple Labels: Multiple labels or grasps per object.

Multiple Views: Grasps annotated considering the same object from different views.

RELATED WORK18

2.2. GRASPING DATASETS AND RELATED PROCESSINGS 19

2.2.2 Processing on labelled dataset

Lenz, Lee and Saxena (2015) extracted an RGB+D image from each grasping rectangle
of the Cornell Grasping Dataset and used this to generate features for each rectangle.
This image is rotated to align the gripper orientation and re-scaled to 24 × 24 pixels to
fit the network input. These images have 7 channels. The first three are the YUV color
space representation, the fourth is the depth measurement and the last three are the
position of the point cloud in R3. Each modality was regularized separately to match
as closely as possible the statistics of each data to avoid biases. Lenz, Lee and Saxena
(2015) found that distorting image features may cause non-graspable rectangles to be
wrongly determined as graspable, decreasing the grasping performance.

Morrison, Corke and Leitner (2018) used the Cornell Dataset since there are multiple
labeled grasps available per image. Besides that, the data better suits the pixel-wise
grasp representation adopted. The Cornell Dataset was augmented by using random
crops, zooms, and rotations to generate a set of 8840 depth images. This augmentation
generated 51.100 grasp samples. It was noticed that the Cornell Dataset produces a
more reasonable grasp estimation if compared to a unique image to represent a grasp as
in Mahler et al. (2017). Only the positive labeled grasps were considered for training.

Morrison, Corke and Leitner (2018) cropped each Cornell Dataset depth image into a
300× 300 image and generated three other 300× 300 images from it. The images consist
of the grasp quality, grasp angle, and grasp width. Each pixel in the grasp quality image
is obtained by dividing each ground-truth grasp rectangle into three equal parts. The
center of this rectangle is represented as the maximum grasp quality. Each pixel in the
image representing the grasp angle is obtained through two vector components in the
interval

[
−π

2
, π
2

]
. The grasp width values are calculated in pixels in the interval [0, 150]

for each grasp rectangle and normalized to the interval [0, 1] before the training process.
Morrison, Corke and Leitner (2020b) used the Cornell Dataset to train a grasp net-

work. Nevertheless, the Jacquard Dataset (DEPIERRE; DELLANDRÉA; CHEN, 2018)
was used to evaluate the network performance through SGTs. Real experiments proved
the relevance of data augmentation for the proposed method to be transferred to a real
robot. Cornell and Jacquard’s dataset considers only RGB and Depth Images obtained
from a single camera viewpoint. Therefore, random crops, rotations, and zooms were
applied in the training process to obtain different viewpoints and depth invariances.

Ribeiro and Grassi (2019) used a trimming window of 320 × 320 resolution to crop
the RGB images in Cornell Dataset under the restriction that no part of the object is
outside the window area. The trimming windows were then resized to 224 × 224 to fit
the network input. By applying this data augmentation, 297.388 images were generated.

2.2.3 Training data generation

Since the dataset used by Johns, Leutenegger and Davison (2016) for training the network
is not already labeled as in Cornell dataset, a different approach was adopted to generate
the training data. By using SGTs, a generic two-finger gripper is randomly positioned on
the object’s surface and closes at a constant velocity and force for a fixed time. To the
grasp is given a score of one if the object is successfully lifted by 20 cm above the surface,

20 RELATED WORK

and zero if the object falls. The overall score for the pose is calculated as an average of
five attempts. To perform the simulations, 1000 synthetic objects were randomly selected
from the ModelNet Dataset. The physical parameters such as finger torque, coefficients
and friction, and the object density were manually tweaked in the simulation. The depth
rendered images of the synthetic objects were randomly rotated and shifted to achieve
1000 new augmented images per original image. A noise model was added to each image
since it was acquired in the simulation.

Pinto and Gupta (2016) developed a large-scale experimental study that increases
the amount of data for learning to grasp. 50 k data points were collected over 700 hours
of trial and error experiments. This dataset considers positive as well as hard-negatives
(grasps that appear correct but fail). The objects used for generating the dataset vary in
terms of graspability difficulty. During the collection of data, the robot moves 25 cm above
the object, and the system filters the region of interest using an off-the-shelf Mixture of
Gaussians (MOG). The grasp position and orientation are randomly sampled from that
region of interest. The grasp is considered a success if the force sensor of the gripper
detects a grasping and the object is lifted by 20 cm. The image corresponding to the
successful grasp is then saved as a 277 × 277 pixels to fit the network input. The data
was augmented by using random rotation. 150 objects were used to collect data points
and 800 images were randomly sampled and evaluated for every trial.

Gualtieri et al. (2016) sampled thousands of 6D antipodal grasp candidates. These
grasps are generated in simulation considering different cameras’ views of the object. The
grasp is considered successful if part of the point cloud of the object is contained between
the fingers after the grasp approach. The BigBird dataset was used since the mesh is
registered with the point cloud. Despite this, since the data from the BigBird dataset is
acquired from a real camera, it contains noise that can worsen the grasping performance.
216 k grasps candidates were generated by using this technique.

Mahler et al. (2017) presented a new dataset, denoted Dex-net 2.0, with 1500 objects in
which 1371 are synthetic models from the 3DNet dataset (WOHLKINGER et al., 2012)
and 129 are laser scans from the KIT object dataset (KASPER; XUE; DILLMANN,
2012). For each synthetic object, a set of planar parallel-jaw grasps is generated on
the object’s surface given a generic gripper model. These grasps are binary labeled
as success or fail based on a collision-free position and a robust quality metric (LIU;
HE; CHANG, 2010) by using SGTs. Depth images are also generated for the object’s
mesh, considering random objects and the camera’s planar position. Each depth image
generated is rotated, translated, cropped, and scaled to align the grasp to the image’s
center, creating 6.7 million 32× 32 pixels grasp depth images. Since the depth image is
rendered in simulation, a noise model is added. This dataset is augmented by rotating
each image by 180◦ and reflecting the image about its vertical and horizontal axes.

Mousavian, Eppner and Fox (2019) and Murali et al. (2020) sampled grasps in simula-
tion using the software FleX (VICENT et al., 2016) (Figure 2.6). Candidate grasps were
sampled based on the object geometry using the surface normal as a reference to align the
gripper’s z-axis. The distance between the gripper and the object are sampled uniformly
between zero and the gripper’s finger length. Grasps in a collision or grasps that don’t
have a volume between the fingers are discarded. Objects from six categories, including

2.2. GRASPING DATASETS AND RELATED PROCESSINGS 21

boxes, cylinders, bowls, bottles, and mugs were used. A total of 10.816.720 grasps were
sampled and 7.074.038 were positive grasps (successful grasps). In the simulation process,
a free-floating parallel-jaw gripper and a free-floating object without gravity were used.
Surface friction and object density are kept constant. After grasping the object, the
gripper performs a pre-defined shaking motion. The grasping is successful if the object
does not fall. From the 7.074.038 grasps sampled, only 2.104.894 grasps were successful
(19.4%).

Figure 2.6: The grasp sampling simulation used by Mousavian, Eppner and Fox (2019)
and Murali et al. (2020). The FleX sim (VICENT et al., 2016) was used to sample the
grasps.

Sundermeyer et al. (2021) used the ACRONYM dataset (EPPNER; MOUSAVIAN;
FOX, 2021), which consists of 8872 meshes from the ShapeNet dataset (CHANG et al.,
2015). 17.7 million simulated grasps were sampled under varying friction. Only the grasps
that are within a radius of 5mm are considered as positive grasps. The main goal is to
generate a set of grasps in the entire scene to increase the grasp coverage.

Figure 2.7: Training data pipeline adopted by Sundermeyer et al. (2021). Grasps are
sampled from object’s point cloud. The objects are in stable positions. Only the grasps
that are in contact with the objects are considered.

Breyer et al. (2021) generated a diverse set of labeled grasps by creating different
piles of objects in clutter and the whole configuration space of the gripper. They created
virtual scenes for simulated grasping trials using “pile” and “packed” objects. In the
Pile configuration, the objects are dropped into a box placed on a flat surface. In the
Packaged configuration, a subset of taller objects is placed upright at random locations
avoiding collisions with other objects (Figure 2.8). Pile configuration favors top-down
grasps and Packed favors side-grasps.

22 RELATED WORK

Figure 2.8: (a) Pile and (b) Packed object configuration adopted in Breyer et al.
(2021).

Breyer et al. (2021) reconstructed a point cloud by fusing synthetic depth images. The
virtual viewpoint of the camera was sampled using spherical coordinates. The authors
sampled a point and associated normal from the reconstructed cloud. They tested six
different grasps orientations about the normal vector by spawning the gripper at the given
pose. Grasps with collision were labeled as negative. The grasp width was also stored.
Only 120 points were sampled for each cloud. They generated a dataset with two million
grasps by discarding redundant negative samples and limiting the angle by 90◦ about the
normal vector.

Jiang et al. (2021) collected ground-truth grasps from physical trials in simulation
using 303 objects for training and 40 objects for testing. The objects were organized in
Pile and Package configuration as in Breyer et al. (2021) (Figure 2.9). Once the scene
is created, grasp’s centers and orientations are sampled near the surface of the objects
and these grasps are executed in simulation. The grasps are uniformly distributed on the
object’s surface.

Figure 2.9: (Left) Pile and (Right) Packed object configuration adopted in Jiang et al.
(2021).

Natarajan, Brown and Calli (2021) also generated synthetic data using simulation.
For a given start pose, each compass direction was explored for a grasp. If no grasps
were found, a further exploration of four random steps form each compass direction was
performed three times. The camera path as well as the shorted working path exploration
were saved. This was repeated for 1, 000 random initial poses of six objects.

2.2. GRASPING DATASETS AND RELATED PROCESSINGS 23

Ni et al. (2020) sampled single grasps in simulation. The goal was to obtain grasps g,
metricsQc(g), supplementary grasps g̃ and negative grasp points and normals (pneg, nneg).
The quality metric Qc(g) is the distance between the grasp origin and the nearest point
in the boundary of BG. BG is the convex hull of the primite grasp wrenches (MISHRA;
SCHWARTZ; SHARIR, 1987). N points were randomly sampled on the object’ surface
and their normals n were also calculated. The grasps were rotated for Nr times along
the approaching vector n. A collision detection is performed for each grasp generated. If
no grasps were generated for a given sampled point, this point and its normal are con-
sidered as negative and added to (pneg, nneg). The grasp with maximum metrics value
is considered as the best grasp (Figure 2.10). The object’s density and friction are kept
fixed in the data generation.

Figure 2.10: (a) Grasping model. (b) Best grasp and supplementary grasp (c) Sampled
grasps varying from low to high inferred quality.

2.2.4 Preliminary Considerations

Table 2.2 shows the dataset used by each related work, the procedures applied in order
to augment it, and the amount of augmented data. Unfilled fields mean that the author
did not provide the related information.

Most grasping datasets just give a general gripper geometry (FANG et al., 2020).
Consequently, grasp synthesis algorithms commonly ignore this information and let the
collision check process for the motion planning algorithm. This approach is computation-
ally expensive and waste computational time, since many grasps will be in collision with
the environment and must be discarded. This process is usually done by neural networks
(MURALI et al., 2020) that learns how to prone grasps that are in collision with the
environment or analytically using the gripper geometry as proposed in this thesis.

Some grasping approaches require considerable time to generate training data (JOHNS;
LEUTENEGGER; DAVISON, 2016). The physical parameters are frequently tweaked
by hand when training the CNN in simulation. Despite this, the grasp score associated
with the grasp performed in data generation highly depends on the friction between the
gripper and the object and can lead to false scores (JOHNS; LEUTENEGGER; DAVI-
SON, 2016). Nevertheless, a synthetic object can be positioned at a random orientation
in the data generation stage using simulation, in contrast to the Cornell Dataset (MOR-
RISON; CORKE; LEITNER, 2018, 2020b; RIBEIRO; GRASSI, 2019), BigBird (SINGH

24 RELATED WORK

Table 2.2: Comparative table comprising the dataset used in each related work, the
process adopted to augment the dataset, and the amount of data generated by the aug-
mentation process. Some authors do not perform data augmentation or do not provide
any related information.

Dataset Data Augmentation
Amount of

augmented data

Jiang et al. (2021) Simulation - -
Breyer et al. (2021) Simulation - 2M

Sundermeyer et al. (2021) ACRONYM - 17.7M
Ni et al. (2020) Simulation - -

Morrison, Corke and Leitner (2020a) EGAD - -
Morrison, Corke and Leitner (2020b) Jacquard - 54k
Mousavian, Eppner and Fox (2019) Simulation - 2M
Morrison, Corke and Leitner (2019) Cornell Crops, zooms, and rotations 51k

Mahler et al. (2019) Dex-Net 4.0 Rotations and reflections -
Ribeiro and Grassi (2019) Cornell Trimming Window 297k

Morrison, Corke and Leitner (2018) Cornell Crops, zooms, and rotations 51k
Mahler et al. (2017) Dex-Net 2.0 rotations and reflections 6.7 M

Johns, Leutenegger and Davison (2016) ModelNet Shift and Rotation 1M
Lenz, Lee and Saxena (2015) Cornell - -

Pinto and Gupta (2016) Experience Rotations -
Gualtieri et al. (2016) BigBird - 216k

et al., 2014), Jacquard (DEPIERRE; DELLANDRÉA; CHEN, 2018), and other grasping
datasets that offer only RGB and Depth images.

Data distribution is relevant for archiving a high grasping performance since the more
diverse the dataset is, the higher the success rate will be in a physical robot (MAHLER
et al., 2019). Datasets such as ModelNet, 3DNet, and KIT are commonly employed for
machine-learning-based grasp generation. Despite this, these datasets were built on the
premise of object recognition applications. Furthermore, they contain a low variety of
object classes, leading to poor grasping performances when considering unknown and
complex objects (MORRISON; CORKE; LEITNER, 2020a).

According to Pinto and Gupta (2016), creating a grasp dataset using hand labeling
ground-truth grasps is challenging and biased since an object can be grasped in multiple
ways. Nevertheless, generating training data from offline simulation instead of hand-
labeled data can lead the grasping algorithm to choose a graspable area that is not
adequate. For instance, a knife might be grasped by the blade during the training or a
hot glue gun by the barrel (GUALTIERI et al., 2016).

The number of augmented data varies significantly in each grasping method. Some
research adopts a high number of data (RIBEIRO; GRASSI, 2019) compared to other
(MORRISON; CORKE; LEITNER, 2018, 2020b). Nonetheless, it seems reasonable to
generate significantly more data when the number of parameters of the network architec-
ture is higher (RIBEIRO; GRASSI, 2019).

According to Morrison, Corke and Leitner (2020b), data augmentation techniques,
such as zooms, rotations, and crops can be applied to RGB and depth images to get
different camera viewpoints. Nevertheless, these operations do not correspond to different
viewpoints, but the same image is translated, cropped, or rotated. Johns, Leutenegger

2.3. NETWORK ARCHITECTURE AND TRAINING 25

and Davison (2016) states that synthetic depth images are more realistic than RGB
images, as these often struggle to model illumination and texture with sufficient realism.

Pinto and Gupta (2016) stated that labeling a dataset by hand such as in Cornell
Grasping Dataset does not represent well the grasps. The reason is that other parts of
the object not labeled as positive cannot be considered as negative grasp only because it
was not labeled. Nevertheless, it is proved that it is not necessary to consider the negative
grasps to achieve a high grasping performance (MORRISON; CORKE; LEITNER, 2018).

Gualtieri et al. (2016) used a point cloud of the object to be grasped to generate 6D
grasp poses. Despite the performance stated, this method struggles with filtering only
the point cloud of the object of interest, leading the grasping to poor performance in
clutter.

According to Mahler et al. (2017), aligning the grasp horizontally in the center of
the image removes the necessity to learn rotational invariance. It discards the need
to discretize a set of orientations as in (JOHNS; LEUTENEGGER; DAVISON, 2016).
Nevertheless, centering the grasp in an image prevents the dataset to have multiple labels
per image as found in Cornell Dataset.

Mousavian, Eppner and Fox (2019) and Ni et al. (2020) generate data in simulation
considering only one object at a time. Consequently, the grasping learning model will not
learn to avoid collisions with nearby objects and will be required a collision avoidance
method to work with the grasp generation model. Jiang et al. (2021), Breyer et al.
(2021) and Sundermeyer et al. (2021) generated datasets with objects organized in pile
or packed. Hence, the grasp model undergoes learning to comprehensively analyze the
entire environment and prevent collisions while executing the grasping action.

2.3 NETWORK ARCHITECTURE AND TRAINING

According to Mahler et al. (2018), the training proceedings used for machine learning
should be reported to allow for a reasonable comparison between the grasp methods.
Therefore, subsection 2.3.1 focuses on the comparison between the network training pro-
cess adopted in each related work. Subsection 2.3.3 depicts relevant considerations about
the training process in the related works.

2.3.1 Training process

Johns, Leutenegger and Davison (2016) trained a CNN to classify every inferred pose in
a discretized grasp map in terms of its score. This network takes a 240×240 pixels depth
image as input. The CNN architecture is composed of five convolutional layers followed by
max pooling, and two fully connected layers. The gradient descent optimization method
was applied to mini batches using a Softmax classifier. The training took an average
time of 10 minutes per object and one week to complete since more than one million
augmented images were used.

Lenz, Lee and Saxena (2015) proposed a two-stage cascaded CNN detection system
based on deep learning. The first stage of the CNN is faster due to fewer parameters of the
architecture. This stage filters the grasps on the objects by scoring potential grasps in an

26 RELATED WORK

RGB+D image. The second stage is a deeper CNN that is more precise and rejects false
positive grasps by inferring the best-ranked grasp. An RGB+D image is used as input for
this network. A regularization method is applied to improve the network generalization
performance.

Pinto and Gupta (2016) presented a pre-trained CNN based on AlexNet (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012) with 18M parameters to generate a robotic grasp. This
network is responsible for sampling image patches and predicting the grasping angle. It is
accomplished by classifying 18 discretized angle bins. The network architecture comprises
five convolutional layers and two fully connected layers. The training took 700 hours and
collected 50 k data points.

Gualtieri et al. (2016) used CAD models for training a CNN to classify grasps. This
network comprises four convolutional layers. The network architecture used was based
on the LeNet (LECUN et al., 1998). The network training was performed in Caffe (JIA
et al., 2014). Approximately 85% of the training data was used in training.

Mahler et al. (2017) presented a CNN architecture, denoted Grasp Quality Convolu-
tional Neural Network (GQ-CNN). The GQ-CNN architecture comprises four convolu-
tional layers in pairs followed by three fully connected layers. The input of the network
is divided into two: one for a depth image representing the grasp and the other for the
height from the grasp pose. The stochastic gradient descent with momentum was used in
training with the Rectified Linear Unit (ReLU) activation function for the output layer.
The weights of the network were initialized by a probabilistic Gaussian model.

Morrison, Corke and Leitner (2018) presented a CNN with a fully convolutional topol-
ogy, denoted Generative Grasping Convolutional Neural Network (GG-CNN). The GG-
CNN generates a grasp pose in a pixel-wise grasp map in terms of a quality image. This
network takes a 300 × 300 pixels depth image as input. The L2 loss function and the
Adam optimization (KINGMA; BA, 2014) were used in the training. 80% of the dataset
was used in training and 20% in evaluation. The GG-CNN outputs four 300× 300 pixels
images. One image is related to the grasp quality, two images are concerned with the
grasp angle in terms of its x and y components, and one image is related to the grasp
width. The network architecture was defined by evaluating the performance of 95 similar
network architectures in respect of the grasping time and success rate.

Ribeiro and Grassi (2019) presented a CNN architecture to predict the best grasp
position in uncluttered environments. This network takes as input 224× 224 pixels RGB
images. The network architecture comprises two convolutional layers, followed by batch
normalization, max pooling, convolution filters, and two fully connected layers with a
dropout rate of 50%. The activation function ReLU is used except for the output layer,
in which the linear function is used. The training was divided into image-wise, where
the dataset is randomly organized into sets, and object-wise, where all similar images
are organized in the same set. Approximately 84.5% of the training dataset was used in
training, 0.8% was used for validation, and 14.7% was used for testing.

Morrison, Corke and Leitner (2020b) presented a new version of the GG-CNN, de-
noted GG-CNN2. GG-CNN2 is a fully convolutional network based on the semantic
segmentation architecture (YU; KOLTUN, 2015). It uses the same input and output
as the GG-CNN. The GG-CNN2 is a result of several tests performed by modifying its

2.3. NETWORK ARCHITECTURE AND TRAINING 27

architecture and evaluating its performance through a SGT simulator. In this simulation,
the convolutional layers, filter sizes, dilation parameters, data augmentation, and output
filtering are modified in order to achieve a better success rate and less grasping time.
This network is trained using the Jacquard dataset with 95% left for training and 5% for
testing. The L2 loss function and the Adam optimization (KINGMA; BA, 2014) were
used in the training.

Mahler et al. (2019) developed a CNN to learn a grasping policy in synthetic training
datasets using analytic models. This network maximizes the chance to grasp each object
in a cluttered bin considering a fixed time per grasp. This method considers uncertain-
ties in the environment related to the object’s properties such as geometry, friction, and
the center of mass. The loss function used in training takes the gripper type into ac-
count (parallel or suction gripper). Therefore, each object is grasped by the appropriate
gripper. The network architecture comprises four convolutional layers and two fully con-
nected layers and used an 80-20 training-to-validation image-wise split of the Dex-Net
4.0 dataset.

Mousavian, Eppner and Fox (2019) developed a grasping technique called GraspNet,
which is a 6D grasping CNN based on Variational Autoencoders (VAEs) (KINGMA;
WELLING, 2013). VAEs are deep generative models developed based on classic Autoen-
coders. This network consists of an encoder and decoder that map the input data to a
latent space of reduced dimensionality. The encoder and decoder use the PointNet++
(QI et al., 2017) network architecture to extract spatial characteristics from each point
of the object’s point cloud and the robot’s end effector for each grasp generated, whether
successful or not.

GraspNet (MOUSAVIAN; EPPNER; FOX, 2019) has two modules: generator and
evaluator. The generator module relies on different samples of a latent space and the
object and gripper’s partial point cloud to produce different grasps. The evaluator module
accepts or rejects the grasps based on their probability of success. In addition, there is a
grasp refinement process, which applies a grasp shift, given by ∆g, to increase the grasp of
success rate. GraspNet was trained from grasps obtained in the software FleX (VICENT
et al., 2016). In the training process, each object is rendered from a random view and
64 grasps are sampled using stratified sampling to make sure that sampled grasps have
enough diversity. Both generator and evaluator are trained using Adam optimizer with
a learning rate of 0.0001.

GraspNet for target-driven (MURALI et al., 2020) improves the GraspNet (MOUSA-
VIAN; EPPNER; FOX, 2019) by adding a collision network called CollisionNet to predict
a clutter-centric collision score. The ground truth labels are generated in simulation with
a collision checker assuming full state information. CollisionNet is optimized using cross
entropy loss. The goal of this method is to avoid collisions with nearby obstacles when
considering clutter scenes.

Ni et al. (2020) presented a CNN based grasping network based on PointNet++
(QI et al., 2017). The input of the PointNet++ is the point cloud of the object to be
grasped. Two layers of one dimensional convolutional filters were added on the top of the
PointNet++ network. The output of these two convolutional layers has the dimension
8192× 9, corresponding to a score, category, normal and rotational blocks. The network

28 RELATED WORK

was trained by stochastic gradient descent using fixed learning rate of 10−4, momentum
of 0.9, and weight decay of 2−5.

Breyer et al. (2021) employed the set abstraction and feature propagation layers pro-
posed in PointNet++ (QI et al., 2017) to build an asymmetric U-shape network. The
network takes p = 20.000 (p ∈ R3) points as input and predict grasps for only m = 2048
farthest points of the input. The network has four heads with two 1D-Conv layers each
and per-point outputs s ∈ R, z1 ∈ R3, z2 ∈ R3, o ∈ R10, from which the grasp represen-
tation is constructed. The vectors representing the grasp approach and surface normal
are orthonormalized using Gram-Schmidt orthonormalization to facilitate the regression
of 3D rotations. The loss is evaluated at all outputs points using binary cross entropy.
A set of pre-defined points representing the gripper are transformed considering the in-
ferred grasping points. Breyer et al. (2021) formulate the 6-DoF grasp loss as a weighted
minimum average distance between ground truth and inferred gripper points.

Sun et al. (2023) proposed a grasping pipeline with three stages called Candidate
Generation Network (CGN), Reliable Adjustment Module (RAM), and Gaussian Mixture
Model (QAN). CGN is a neural network, based on PointNet++ (QI et al., 2017), that
predict grasp scores through features extracted from point clouds. RAM is responsible
for adjusting the grasp width and position to avoid collision with nearby obstacles. QAN
evaluates the grasp quality and selects the best grasp. The losses are based on the
graspability classification, calculated using cross-entropy, approach direction, calculated
using mean squared error, and in-plane rotation angles, calculated using log-likelihood
loss. The network was trained using Stochastic Gradient Descent (SGD). The learning
rate was set to 0.02 and the momentum to 0.9. The network was trained for 100 epochs
with a batch size of 128.

Lundell et al. (2023) suggested the use of Conditional Variational Encoders (CVAE) to
generate constrained 6D grasps for completing specific tasks such as squeezing out liquid
from a bottle. The grasps are generated on a specific part of the object. PointNet++
(QI et al., 2017) is used to extract feature of the object. Eleven features were extracted
from the point cloud such the 3D position of each point, the binary feature indicating if
the point belongs to the target area or not, and 7-dimensional grasp pose representation.
A grasp evaluator was also implemented to prone out bad quality grasps based on the
object and gripper point cloud.

2.3.2 Evaluation metrics

Analogous to the object detection task, the grasping task incorporates distinct metrics for
assessing network performance within the evaluation phase. It is important to note that
the metrics employed during the grasping test (referenced in subsection 2.6.1) differ from
those used in the context of object detection. This distinction is based on the necessity
of rigorously testing the grip synthesis method, which includes applying real-world or
simulated grasping motions using robotic equipment to enable the evaluation of grasp
success rates. As a result, this evaluation process differs from the testing procedures
applied to the object detection task.

The most common metrics used to evaluate the grasping task are (NEWBURY et al.,

2.3. NETWORK ARCHITECTURE AND TRAINING 29

2023):

� Intersection-over-union (IoU): Ratio between the intersection and the union of the
predicted and ground truth bounding boxes (MORRISON; CORKE; LEITNER,
2018);

� Coverage: Percentage of sampled ground truth grasps that are within a threshold
distance of any the generated grasps;

� Grasps prediction accuracy: Percentage of grasps outcomes correctly predicted
(number of successful grasp predictions over the number of predictions);

� Precision: Percentage of true positive grasp predictions similar to the precision
metric used in object detection or the number of true positive grasp predictions
over the number of selected positive grasps; and

� Precision@k: Average precision of the top-k ranked grasps. Apµ denotes the average
precision for k ranges with a force closure parameter lower than µ (SUN et al., 2023).

These metrics are simpler to employ during the training or evaluation process given
that it is challenging to determine which grasping, out of all the ones generated (in the
case of sampling-based grasping methods), is successful, especially in the case of cluttered
sceneries. It would not be practical in a real-world situation to put back the objects in
the scene exactly as they were before the grasp was applied.

2.3.3 Preliminary Considerations

Table 2.3 summarizes the network’s input size, activation function, weight initialization,
optimizer, number of parameters, and the library used for training.

Table 2.3: Networks comparative table.

Input Size
Output Layer
Configuration

Weight
Initialization

Optimizer
Number of
parameters

Framework

Sun et al. (2023)
Point
cloud

- - SGD - PyTorch

Breyer et al. (2021) - - - Adam -
Morrison, Corke and Leitner (2020a) 300x300 ReLU Xavier Adam 66.000 PyTorch
Mousavian, Eppner and Fox (2019) - - - Adam - Tensorflow

Mahler et al. (2019) 96x96 - Gaussian GD - -
Ribeiro and Grassi (2019) 320x320 ReLU Xavier Nadam 1.5 million Tensorflow

Morrison, Corke and Leitner (2018) 300x300 ReLU Xavier Adam 62.400 Keras
Mahler et al. (2017) 32x32 ReLU Gaussian GD 18 million Tensorflow

Johns, Leutenegger and Davison (2016) 240x240 Softmax - GD 7.3 million Tensorflow
Pinto and Gupta (2016) 227x277 Softmax Gaussian - 18 million -
Gualtieri et al. (2016) - ReLU Pretrained - - Caffe

Lenz, Lee and Saxena (2015) 24x24 -
Unsupervised

Feature Learning
Log-sum-
exponential

- MATLAB

Hand-engineered, deterministic or analytic methods are avoided by recent research
since deep learning methods using CNN have achieved an outstanding performance.

30 RELATED WORK

These results are observed even in real experiments with unknown and dynamic ob-
jects (LENZ; LEE; SAXENA, 2015; MORRISON; CORKE; LEITNER, 2018; MAHLER
et al., 2018).

Pinto and Gupta (2016) state that the network would fail to generalize to new objects
if the amount of data used in training is fewer than the number of parameters of the
network. Despite this, Morrison, Corke and Leitner (2018, 2019, 2020b) have proved in
real experiments, that the number of data does not necessarily need to be larger than
the number of parameters for object generalization. The network architecture and the
post-processing have proved to be the key points of a good grasping performance.

Depth images are commonly applied instead of RGB images since it better represents
the object features (GUALTIERI et al., 2016; MOUSAVIAN; EPPNER; FOX, 2019).
In addition, color images are often avoided due to object color variations and ambient
luminance. To avoid this limitation, some grasping methods have adopted depth images
instead (MORRISON; CORKE; LEITNER, 2018, 2019).

2.4 GRASPING PRE-PROCESSING AND POST-PROCESSING

This section reviews the methods used to improve the network inference in real or sim-
ulated environments. These methods are related to the procedures employed to the
network input, as described in subsection 2.4.1, or the network output, as described in
subsection 2.4.2.

Figure 2.11 shows the grasping stages in a pipeline presented in (NEWBURY et al.,
2023). The first stage is the grasp synthesis, which is responsible for generating a set of
grasps. The second stage is the trajectory planning, which is responsible for planning
the robot’s trajectory to approach the object. The third stage is the grasp execution and
the last one involves trajectory planning as well. The pre-processing and post-processing
methods are commonly applied to the network input and output in the first stage of this
pipeline. However, trajectory planning can also be applied to filter the grasps generated
by the network as a post-process method Gualtieri et al. (2016) or used to get multiple
view of the objects as a pre-process method Morrison, Corke and Leitner (2019).

Figure 2.11: Grasping pipeline stages, including grasp synthesis, trajectory planning
(before approaching), and grasp execution (NEWBURY et al., 2023).

2.4. GRASPING PRE-PROCESSING AND POST-PROCESSING 31

2.4.1 Pre-processing

Morrison, Corke and Leitner (2018) applied the inpaint operation (BRADSKI, 2000b) to
the network input depth images. It removes the values where the depth measurements
are not available due to fails in sensing. This processing was also adopted by Johns,
Leutenegger and Davison (2016). The inpaint operation replaces the pixels or an average
of pixels with the nearest non-zero value.

Mahler et al. (2017) generate a discrete set of antipodal grasps, sampled uniformly
at random in the image space for the object’s surfaces normals. Firstly, areas of a high
gradient in the depth image are found. Then, a set of candidate antipodal grasps are
generated by using a rejection sampling through pairs of pixels. The antipodal grasps
are converted to 3D by discretizing the grasp height relative to the table surface. Due
to limitations related to this derivative method, Mahler et al. (2017) also presented a
derivative-free optimization to obtain a robust grasp by iteratively re-sampling grasps
from a learned distribution using a Gaussian Mixture Model (GMM).

In order to compute the best grasp during the picking attempt, Morrison, Corke and
Leitner (2019) developed a controller, denoted Multi-View Picking (MVP). It combines
visual grasp predictions from multiple camera views along a trajectory. It is accomplished
by reducing the entropy associated with the grasp prediction in clutter. Before the grasp
attempt, it adapts the robot’s trajectory in real-time in order to explore areas of higher
entropy. This exploration increases grasping success when considering objects in clutter.
The trajectory is defined as a set of K discrete points in which a visual grasp detection
observation is performed. The initial trajectory’s position is defined at zmax and the final
trajectory’s position is equivalent to the grasp pose.

Sun et al. (2023) decouples the orientation as viewpoint classification and in-plane
rotation prediction. Each approach vector are classified into V predefined viewpoints.
The grasping scoring is used to predict the approaching direction, where the score of the
approaching direction represents the success rate of grasping in this direction. The point
clouds are transformed to the viewpoint which has the highest score and used to estimate
the in-plane rotation angle.

2.4.2 Post-processing

Johns, Leutenegger and Davison (2016) applies a covariance matrix to represent the
gripper’s pose uncertainty. The grasp function is convolved with a probability density
function given this uncertainty. This is performed by smoothing the grasp function in
3-dimensions, the position (x, y) and the orientation θ, with a kernel corresponding to
a Gaussian distribution. In addition, trilinear interpolation is performed over the pose
space to improve the precision beyond the pose discretization level. This method is also
adopted in Morrison, Corke and Leitner (2018) since the authors noticed that using the
Gaussian kernel found in Johns, Leutenegger and Davison (2016) improved the grasping
performance by 10% because outliers are removed, increasing the robustness of the grasps.

In order to mitigate the imprecision found in the Baxter robot, Pinto and Gupta
(2016) re-rank a sample of the top 10 grasps identified in the neighborhood of the image
patches generated. The average of the best angle scores for the neighborhood patches is

32 RELATED WORK

assigned as the new patch score for the grasp configuration. This method improved the
precision of the grasping system.

Gualtieri et al. (2016) used the trajectory planning denoted TrajOpt (SCHULMAN
et al., 2013) to generate an offline trajectory. A constraint was applied to TrajOpt to
align the line-of-sight axis of the camera towards the bin’s center, keeping a distance of
40 cm from it. The IKFast and OpenRave (DIANKOV; KUFFNER, 2008) was used to
generate the inverse kinematics and check collisions.

When the CNN has a high frequency, the fast-shifting between grasp poses should be
avoided. Considering this, Morrison, Corke and Leitner (2018) obtain three grasps from
the highest local maxima and consider the best grasp acquired in the previous iteration.
Since the robot’s movement is slow compared to the control loop, the frames do not
considerably change. The grasp system is started by tracking the global maxima at every
grasp attempt.

2.4.3 Preliminary Considerations

In some approaches, the grasp quality is simultaneously predicted over a set of discrete
grasp candidates (JOHNS; LEUTENEGGER; DAVISON, 2016; PINTO; GUPTA, 2016).
Although it is time-consuming, the execution time can be reduced by reducing the grasp
candidates (LENZ; LEE; SAXENA, 2015; WANG et al., 2016). It is achieved by concili-
ating the number of sampled grasps with execution time. Besides that, several potential
grasps are ignored.

The process of generating grasps from depth image gradients is commonly applied
when the network does not return the best grasp but rank the identified grasps in the
image (MAHLER et al., 2017). Besides that, it may be necessary to select a feasible
grasp if the CNN generates a set of grasps (MOUSAVIAN; EPPNER; FOX, 2019).

2.5 TEST OBJECTS

This section describes the objects used in real experiments in order to evaluate the grasp-
ing performance.

Johns, Leutenegger and Davison (2016) used a set of known 20 everyday objects of
different shapes, frictional coefficients, and sizes as shown in Figure 2.12a. Lenz, Lee and
Saxena (2015) used a diverse set of 35 objects within a size of 0.3m× 0.3m× 0.3m and
weighing at most 2.5 kg from their offices, homes and lab (Figure 2.12b). The objects have
simple geometry and were chosen based on the gripper width limit. Similarly, Gualtieri
et al. (2016) used common household objects that weigh less than 500 g and have at least
one part that fits within the gripper used (Figure 2.12c).

Pinto and Gupta (2016) divided the test objects into two categories: a set of objects
used for training the network and another set of objects never seen in training. Both sets
of objects consist of household objects with simple shapes, as shown in Figure 2.12d.

In order to increase the grasping difficulty in real experiments and standardize the
evaluation performance in real experiments, Mahler et al. (2017) proposed a set of eight
objects with adversarial geometric features such as smooth curved surfaces and narrow

2.5. TEST OBJECTS 33

openings (Figure 2.12e). The objects are easily reproducible with 3D printing; therefore,
eliminating the need for purchasing matching objects. These objects also fit most grippers
on the market such as Robotiq 2F-80/2F-140. The household objects (Figure 2.12f) were
also employed for testing the grasping performance.

According to Morrison, Corke and Leitner (2018), experiments are commonly per-
formed with objects that are not easily reproducible. These objects are very easy to
grasp or unfeasible small, large or heavy for many robot arms and grippers such as the
objects found in ACRV Picking Benchmark (APB) (LEITNER et al., 2017) and Yale-
CMU-Berkeley (YCB) Object Set (CALLI et al., 2015). In order to make the experiments
reproducible, Morrison, Corke and Leitner (2018) used the adversarial objects found in
Mahler et al. (2017) (Figure 2.12g). They also used a set of household objects with dif-
ferent surfaces, sizes and grasp difficulties found in Leitner et al. (2017) and Calli et al.
(2015) (Figure 2.12h). The household objects found in Viereck et al. (2017) (Figure 2.13)
were also employed to compare the robotic grasping technique used.

Mahler et al. (2019) separated objects into four sets with 25 objects each in terms of
their difficulty to grasp. The first set (Figure 2.14a) consists of prismatic and circular
solids. The second set (Figure 2.14b) contains common household objects weighting up
to 500 g. The third set (Figure 2.14c) consists of 25 novel objects with few accessible and
perceptible grasps due to adversarial geometry, transparency, specularity, and deforma-
bility. The fourth set comprises objects that cannot be grasped with Dex-Net 4.0 due
to reflectance and material properties which make the object imperceptible to a depth
camera (MAHLER et al., 2019).

The test objects can affect the assessment of grasp and the lack of standardization
can make comparisons between grip techniques difficult. Researchers commonly adopt
unique household or commercial products that are not easily reproducible or available to
use in evaluation. Given this limitation, Morrison, Corke and Leitner (2020a) created a
set of 49 3D-printable objects for performance evaluation that varies in shape and grasp
complexity (Figure 2.15). Nevertheless, the objects lack semantic meaning which may
not generalize well for real-world applications (NEWBURY et al., 2023).

2.5.1 Preliminary Considerations

The grasping tested performance highly depends on the dataset used (MORRISON;
CORKE; LEITNER, 2020b). Therefore, it is essential to standardize the test objects
used for reasonable performance comparison. In addition, commonly adopted test ob-
jects are not applicable for all robotic grippers. Therefore, a set of test objects that can
easily be printed and scaled to fit the most gripper’s limitation while maintaining a fair
comparison is required (MORRISON; CORKE; LEITNER, 2020a).

Some objects are not perceived well by depth cameras, such as those that are reflective,
transparent, or black (MAHLER et al., 2019). Narrow objects can also be difficult to
grasp since collisions may happen with the gripper. This is a consequence of a few similar
objects used in training. Curved objects are also difficult to grasp since the object slides
from the gripper (MORRISON; CORKE; LEITNER, 2020a).

34 RELATED WORK

(a) Simple geometry objects
used by Johns, Leutenegger
and Davison (2016)

(b) Simple geometry objects
from home, lab, and offices
(LENZ; LEE; SAXENA,
2015)

(c) Household objects used
by Gualtieri et al. (2016)

(d) Simple household ge-
ometry objects (PINTO;
GUPTA, 2016)

(e) Eight objects with adver-
sarial geometry (MAHLER
et al., 2017).

(f) Household objects
(MAHLER et al., 2017).

(g) Eight adversarial objects
(MAHLER et al., 2017).

(h) Household objects
(LEITNER et al., 2017).

Figure 2.12: Objects used by different authors to test grasping algorithms.

2.6 EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS

According to Mahler et al. (2018), the performance may be categorized based on the
target application, such as warehouse picking, pick and place, industrial kitting, stowing,
assembly, etc. To standardize the grasping performance measurement, some authors
presented benchmarking processes that are also discussed in this section. This section is
organized in the following way:

� Subsection 2.6.1 describes some grasping benchmarks commonly adopted in re-
searches. These benchmarks are protocols created to fairly evaluate grasping meth-
ods;

2.6. EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS 35

(a) Household objects presented by
Viereck et al. (2017).

(b) Household objects reproduced by
Morrison, Corke and Leitner (2018).

Figure 2.13: Objects used by Morrison, Corke and Leitner (2018) to test the perfor-
mance of the robotic grasping algorithm presented.

� Subsections 2.6.2 and 2.6.3 covers the procedures employed in simulated and real
experiments by distinct authors. Although these procedures are not commonly stan-
dardized, making it difficult to compare the grasping performances, it is important
to note how the authors are evaluating their grasping performances;

� Subsection 2.6.4 establish different Definition of a Successful Grasp (DSG) usually
chosen;

� Subsection 2.6.5 details the performance achieved by each grasping method accord-
ing to the DSG and evaluation procedure or benchmark adopted; and

� Subsection 2.6.6 describes observed aspects of related works in terms of the DSG
adopted, performance achieved, and experimental procedures employed.

2.6.1 Grasping benchmarks

As previously mentioned, there are image recognition challenges in computer vision such
as COCO (LIN et al., 2015) and VOC (EVERINGHAM et al., 2010a) that assisted the
evolution of object detection techniques over the last years. Unfortunately, there are no
similar challenges for robot grasping due to its mechanical, sensorial, and algorithmic
complexity (BEKIROGLU et al., 2019). Despite it, Liu et al. (2021) provided a remote
robot platform testing environment to allow fair comparisons between grasping algorithms
called OCRTOC (Cloud-Based Competition and Benchmark for Robotic Grasping and
Manipulation). Nevertheless, the grasping evaluation is not as easy as the COCO or
VOC challenges. It requires manual organization of the environment, which reduces the
availability for researchers worldwide. Different authors tried to establish protocols to
standardize the grasping performance evaluation, including the type of objects that should
be used, how objects should be placed in the robot workspace and metrics calculation
(BEKIROGLU et al., 2019).

The type of benchmark procedure highly depends on the grasping application. There
are benchmarks for pick-and-place in tabletop scenarios (CALLI et al., 2015; BEKIROGLU

36 RELATED WORK

(a) Level 1 objects. (b) Level 2 objects.

(c) Level 3 objects. (d) Level 4 objects.

Figure 2.14: (a) Level 1 objects consisting of prismatic and circular solids (b) Level
2 objects including clear plastic and household objects with a lower level of graspabi-
lity. (c) Level 3 objects with adversarial geometry and material properties (d) Level 4
objects with different reflectances and material properties which affect the ability to
form a vacuum seal on the object surface (MAHLER et al., 2019).

et al., 2019), pick-from-the-self scenario (LEITNER et al., 2017), bin-picking (MNYUSI-
WALLA et al., 2020). There are robot manipulation benchmarks such as Collins et al.
(2019), but these do not evaluate the grasping performance itself since it is mainly focused
on measuring the gap between simulated and real robot motions.

The goal of the benchmarking proposed by Bekiroglu et al. (2019) is to analyze only
the performance of the grasping algorithm in tabletop environments, excluding the motion
planning and other factors that could influence the grasping performance. The main
question asked by the authors is: “How do we evaluate the influence of a grasp planning
algorithm independently of the vision system, arm and hand?”. The answer is complex
since authors use different hardware, pipelines, software, etc. Despite that, they make an
effort to increase the comparability of grasping methods.

There are robotic grasping challenges such as Amazon Picking (CORRELL et al.,
2016) and the IROS Robotic Grasping and Manipulation Competition (SUN et al., 2016).
Nevertheless, this challenge evaluates the grasping method at a system level. In other
words, we cannot assure that the robot achieved a bad performance due to the grasping
method since the hardware design and perception system could highly influence this result
(CALLI et al., 2021).

2.6.1.1 Benchmark protocols Mnyusiwalla et al. (2020) proposed a benchmark
protocol, based on the YCB dataset evaluation protocol (CALLI et al., 2015), to evaluate
grasping methods in pick-and-place systems, inspired by a task in the logistic domain by
picking up fruits and vegetables from a container and placing them in an order bin.

2.6. EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS 37

Figure 2.15: 3D-printed objects for grasping evaluation performance. These test objects
varies in terms of complex geometry (left to right), and graspability (bottom to top).

They were inspired by the grocery use case of Ocado, the world’s largest online-only
supermarket. The focus of the research found in Calli et al. (2015) is to test different end-
effectors in cluttered and geometrically constrained set-ups. The goal is to autonomously
pick one-by-one all objects placed in a non-mixed storage container, transport and place
them in a delivery container in the minimum possible time. Since it is very difficult to
find why the grasping failed, the authors break down the grasping task into pre-grasping,
grasping, transport, and placement.

Figure 2.16 comprises the following stage:

1. Pre-grasping phase: is the phase in which the end-effector moves to the vicinity of
the object to be grasped.

2. Grasping phase: System’s attempt to grasp the object. Ends when the object loses
contact with the bin.

3. Transport phase: Motion of the system when the hand fully supports the object,
up to the position when the gripper is over the placement area.

4. Placement phase: The system intentionally releases the object inside the target bin
from a maximum allowed height (20 cm) over the bin.

Calli et al. (2015) state that although the object may fail in the transport phase due
to an unstable grasping in the grasp phase, this evaluation methodology helps track the
issue using per-phase analysis. The bins must have an opening of exactly 60 cm × 40
cm (L × W) and a minimum height of 15 cm. The bin position is not standardized
since the reachability and workspace of the robotic arm vary. Nevertheless, the pose of
the bin must be fixed with respect to a static coordinate frame and must be reported.
Calli et al. (2015) standardized the set of objects of the experiments. They used a net
bag of limes, mango, loose-leaf salad bag, cucumber, and punnet (small plastic box) of

38 RELATED WORK

Figure 2.16: Phases considered for benchmarking in pick-and-place tasks (MNYUSI-
WALLA et al., 2020).

blueberries. Besides that, the authors proposed a set of pre-defined environments with
different clutter levels (Figure 2.17). The scenarios are designed to mimic the initial
placement of objects corresponding to optimal packing. The system must not know any
object pose inside the bin a priori.

The objects dropped outside the storage container should not be introduced again,
and no external intervention is allowed during the execution. The system must stop
picking when it is empty.

Morgan et al. (2019) proposed a pick-and-place benchmarking based on the Box and
Blocks Tests (BBTs) and its variations modified-BBT (M-BBT) and targeted-BBT (T-
BBT). BBT test consists of two containers separated by a barrier, with one container
holding 150 colored wooden blocks 2.18. Within one minute, the robot must transfer the
blocks to the empty container, ensuring that the end effector crosses the division between
the containers. The BBT benchmarks were applied because they increasingly challenge
the robot grasping pipeline, including motion planning, the perception system, etc.

The standard BBT has been utilized for clinical tests in physically impaired individ-
uals. This test provides norms for able-bodied individuals, ages 20-92 in 12 ages groups
(318 females and 310 males). It allows meaningful comparison between humans and
robots in pick-and-place operations since there are extensive public data of individual
tests.

There are protocols established by Morgan et al. (2019) to use the BBT in robotics.
The bins must be positioned on a support surface in a reachable area for the robot arm.
The bin’s location is optional. The lid and the containers must have the same length.
Each test has its block organization inside the bin. The bin to be filled is optional (left or
right). The end-effector must start in a position outside of either container. The blocks
must be part of the YCB set (CALLI et al., 2015). They must have the same size, colors,

2.6. EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS 39

Figure 2.17: Protocol scenarios sorted by object type and amount of clutter (MNYUSI-
WALLA et al., 2020).

weight, and texture of the blocks from the YCB dataset. Markers cannot be placed on
any of the blocks. If the center of the bin moves more than 2.54 cm, or the cube rotates
more than 10◦, the task must be restarted and the score for that task execution is zero.

Liu et al. (2021) created a robot benchmark setup, called OCRTOC (Cloud-Based
Competition and Benchmark for Robotic Grasping and Manipulation) to perform re-
mote experiments of robotic grasping algorithms. This benchmark is focused on object
rearrangement, which is a canonical robotic task as it includes object grasping, recog-
nition, manipulation planning, and reasoning. The complexity of a rearrangement task
depends on the object features, goal definition (exact or coarse), motions for the rear-
rangement (random or ordered), and the test environment (real or simulated). Coarse
goal definition means that the goal pose of the object is not important, such as placing
the object in a bin (Figure 2.19).

The objects in the ORCTOC benchmark system are selected from a subset of objects
that can be easily found in daily life. Some objects used in testing are scanned to provide
the training data for the challengers to build their own solutions. Five tasks are offered
to the users with increasingly clutter, therefore increasingly difficulty. This benchmark
only evaluates the grasp success rate, error, and improvement percentage from the last
winner of the benchmark considering the grasp success rate as a base.

Bekiroglu et al. (2019) defined a protocol for executing grasps under repeatable con-
ditions in terms of objects and their placements. In addition, they proposed a success
criterion for measuring the grasp robustness. Objects of the YCB dataset (CALLI et
al., 2015) must be used in this benchmarking. The objects should be placed within the

40 RELATED WORK

Figure 2.18: (Left) M-BBT and T-BBT-block templates following the test template.
(Right) BBT-100 blocks randomly placed inside a bin (MORGAN et al., 2019).

Figure 2.19: Samples of rearrangement tasks: initial scenes (a, c) and target scenes (b,
d) (LIU et al., 2021).

robot’s reachable space. The robot must start the test with a 90 − 90 configuration as
shown in Figure 2.20. r can be modified by the use for grasping large and heavy objects.
The camera’s position is also optional. The object’s pose must respect the sequence of
poses stated by the authors of the benchmark (Figure 2.21). The benchmark performed
in Bekiroglu et al. (2019) includes lift, rotational, and shaking tests. Also, the time for
grasping each object is considered.

Bottarel et al. (2020) proposed a set of printable layouts of predefined grasping sce-
narios equipped with localization markers to enhance test reproducibility. It was also
proposed a protocol for testing the robot reachability and calibrating the vision system.
The benchmark system also generates scores, grasp stability evaluation, and gives the
possibility to evaluate the grasping algorithm using objects in isolation or in clutter. The
objects of the YCB dataset (CALLI et al., 2015) are used. By using this benchmark, the
reproducibility is significantly increased.

2.6. EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS 41

Figure 2.20: Grasping benchmark environment. The radius of the circular workspace is
optional and must be reported by the authors. (BEKIROGLU et al., 2019).

Newbury et al. (2023), Fujita et al. (2020), and Calli et al. (2015), proposed the use
of four grasping evaluation metrics:

� Grasping Success rate: Ratio between the number of objects successfully grasped
and the initial number of objects in the bin;

� Mean Picks Per Hour (MPPH): Most used metric in logistics business for measuring
human and robot grasping efficiency;

� Successful task executions over total attempts (SETA): Estimation of the success
probability of a single grasp;

� Mean Time Between Failure (MTBF): Calculated by dividing the operating time
by the failure count of the system;

� Mean Time To Repair (MTTR): Obtained by dividing the total time of failure by
the failure count of the system;

� Availability: Measured by dividing MTBF/(MTBF +MTTR); and

42 RELATED WORK

Figure 2.21: Object locations and poses considered by the benchmark in Bekiroglu et
al. (2019).

� Completion/clearance rate: Percentage of objects that are removed from the clutter
(structured or not).

In their study, Newbury et al. (2023) emphasize the importance of assessing the time
efficiency of grasping techniques. To illustrate, situations may arise where opting for a
quicker robot with a 75% success rate is more favorable than selecting a slower robot
achieving 95% success, provided that occasional failed grasps do not yield significant
drawbacks. Consequently, the authors allege that utilizing MPPH as the designated
metric for this objective is reasonable. However, it should be noted that this metric’s re-
liability is significantly influenced by factors such as robot hardware, trajectory planning,
and computational resources.

Calli et al. (2015) recommends the application of the aforementioned metrics over
three consecutive runs for each experiment. The average value of all three runs must be
reported. The total failures that happen in each one of the phases, including pre-grasping,
grasping, transport, and placement should be reported. Fujita et al. (2020) compared
the aforementioned metrics against the score adopted in the Amazon Picking Challenge
2017. They studied the correlation between the team’s performance and each metric.
The goal was to find which technologies are important for the competition and future
practical use.

According to Fujita et al. (2020), MPPH evaluates the task in a system level, since it
also considers trajectory planning time besides the grasping algorithm. Although MPPH
considers the average probability of success and the operation time, teams of the Amazon
Picking Challenge 2017 that had a better operation time achieved better scores. By
applying different metrics, it is possible to understand individually each aspect of the
system.

When evaluating new grasping methods, authors are highly encouraged by the robotic
grasping community to:

� Provide the lighting level (lux) of the environment (if the method is dependent on
lighting) (MAHLER et al., 2018);

� Report the camera registration procedure, hardware and software used, and USB
bandwidth (MAHLER et al., 2018);

2.6. EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS 43

Figure 2.22: Layouts defined whithin the benchmark proposed by Bottarel et al.
(2020).

� Make use of existing published datasets when possible (CALLI et al., 2021);

� Utilize a standard template that summarizes the protocol and benchmark (CALLI
et al., 2021); and

� Provide multimedia files that illustrate and demonstrate the protocol (CALLI et
al., 2021).

Depending on the grasp application, the experiments adopted for testing grasping
method performance is usually divided into (NEWBURY et al., 2023; MORRISON;
CORKE; LEITNER, 2018; VIERECK et al., 2017):

� Grasping individual objects, where only one object is grasped at a time;

� Grasping objects in a piled cluttered environment, where multiple objects are ran-
domly placed in bins or boxes;

� Grasping objects in a structured environment, where multiple objects are spread
out in a scene such that they are not touching each other;

� Grasping a specific class of objects such as household objects;

� Grasping objects with adversarial geometry;

� Grasping in open-loop. In this experiment, the objects are static. This method is
also called one-shot grasp (VIERECK et al., 2017); and

� Grasping in closed-loop. In this experiment, the controller constantly updates the
grasping pose in real-time (MORRISON; CORKE; LEITNER, 2020b).

44 RELATED WORK

2.6.2 Evaluation protocols adopted in simulated experiments

Johns, Leutenegger and Davison (2016) performed experiments in both simulated and
real environments to investigate how well the training adapts to real data. A set of
1000 randomly selected object meshes from the ModelNet dataset (MND) (WU et al.,
2015) was used for testing. Firstly, the object is placed on the surface at a random
position and orientation within the camera’s field of view. The gripper is sent to the pose
corresponding to the maximum grasp score in the depth image and a grasp attempt is
performed. The Dynamic Animation and Robotics Toolkit (DART) (LEE et al., 2018)
was employed in testing.

2.6.3 Evaluation protocols adopted in real experiments

Johns, Leutenegger and Davison (2016), Morrison, Corke and Leitner (2018), and Mor-
rison, Corke and Leitner (2020b) fixed a robot on a table and rigidly mounted a camera
onto the wrist of the robot. The camera was positioned perpendicular to a table at a
fixed height.

Lenz, Lee and Saxena (2015) performed experiments in a static uncluttered environ-
ment. The gripper is firstly positioned 14 cm backward from the grasp position, and then
move towards it. Then, the gripper is closed and moved 30 cm upwards. The experi-
ments are performed in an open-loop. Gualtieri et al. (2016) used two statically mounted
depth sensors to build a depth cloud of the object to be grasped. The gripper opening is
restricted from 3 to 7 cm width. The objects are mixed in a box before being placed in
the workspace and the robot performs the grasp until no objects are found in a bin. The
experiments are performed in open-loop.

Johns, Leutenegger and Davison (2016) performed experiments in a static uncluttered
environment. The objects were placed at five random positions and orientations within
a graspable area in the robot workspace, but the way objects are placed into the robot’s
workspace was not informed. The distance between the gripper fingers was kept fixed at
10 cm before the gripper is closed at the grasp pose. The experiments were only performed
in open-loop control since the grasp is not updated over the path to the grasp pose.

Mahler et al. (2017) conducted experiments in a static environment with individual or
cluttered objects using an open-loop controller. The camera is fixed in the environment.
Before each grasping experiment, a human operator shakes the objects in a box and
places them on the workspace.

Morrison, Corke and Leitner (2018) performed experiments in a static environment
with individual objects and a dynamic environment with cluttered objects. Since the
camera does not acquire depth measurements from a distance closer than 150mm, the
target grasp is not updated after this distance. Besides that, the depth camera used is
unable to provide any valid depth data on many black or reflective objects. The gripper
used has a maximum stroke of 175mm but it was limited to 70mm to increase the grasp
precision. Before placing the objects in the workspace, they are shaken in a cardboard box
to remove the bias related to the object pose. The grasping experiments were divided into
open-loop and closed-loop grasping. The closed-loop grasping was dynamically executed
by manually moving a sheet where objects are placed. In the open-loop grasp experiment,

2.6. EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS 45

the objects are grasped while kept fixed in the environment.
Mahler et al. (2019) executed more than 2500 grasp attempts on a physical robot

system with a parallel-jaw and vacuum gripper. 50 test objects were used in the experi-
ments. In the experiments, all objects are placed in a bin and the grasp is performed until
the bin is empty or the number of grasp attempts reached the limit. A fixed 3D depth
camera was used. Morrison, Corke and Leitner (2019) validated the approach using a
Franka Emika Panda robot equipped with a custom 3D-printed gripper finger. The Intel
Realsense D435 depth camera was used. These experiments consider cluttered objects
in a bin. In each grasping experiment, 20 objects are chosen at random, and the robot
performs the grasps until all objects have been removed.

Morrison, Corke and Leitner (2020b) is an extension of the research presented in
Morrison, Corke and Leitner (2018). The objects are shaken in a cardboard box before
placing them into the robot’s workspace in order to avoid bias associated with the grasping
attempt in individual or cluttered scenarios. In the open-loop experiments, the camera
is positioned 350mm above and orthogonal to the planar surface. The one-shot grasping
is performed in this case. The robot moves to a pre-grasp position, 170mm above the
surface. From this position, the gripper moves down slowly to grasp the object while
closing the gripper and stopping the movement if any unexpected collision is detected.
In closed-loop experiments, the camera is positioned at 400mm above the surface and
the objects are manually moved using labels as a reference of the start and final position
of the movements.

2.6.4 Definition of grasping success

In this research, DSG refers to a method to determine if the grasp performed was suc-
cessful or not. It is important to emphasize that authors commonly adopt only one DSG
to evaluate their grasping algorithms.

Each DS is referenced as its related number from this section. In performance evalu-
ations, the grasp is considered successful if:

DSG 1: The object is lifted to a certain distance from its initial position (JOHNS;
LEUTENEGGER; DAVISON, 2016; PINTO; GUPTA, 2016);

DSG 2: The object is lifted to the gripper start position (MORRISON; CORKE;
LEITNER, 2018);

DSG 3: The angle difference between the predicted rectangle and ground-truth
grasp rectangle is less than 30◦ and the IoU is greater than 25%. This DSG is com-
monly referred as IoU (RIBEIRO; GRASSI, 2019; MORRISON; CORKE; LEIT-
NER, 2020b);

DSG 4: The object is lifted to a predefined position, shaken, and does not fall
(MAHLER et al., 2017).

DSG 5: The object is lifted to a predefined position and held for one second.
(LENZ; LEE; SAXENA, 2015).

46 RELATED WORK

DSG 6: The object is transported to the bin on the side of the workspace (MAHLER
et al., 2019).

The objects used in the experiments are commonly divided into two categories:

1. Known Objects: Objects used in training (known by the network);

2. Unknown Objects: Objects not used in training (unknown by the network).

2.6.5 Grasping performance

In their study, Lenz, Lee and Saxena (2015) observed a notable performance increase of
9% when incorporating a regularization function during training. Experiments demon-
strated that integrating multimodal data, including depth measurements, surface nor-
mals, and RGB images of the objects, during training significantly enhanced grasping
performance. A success rate of 89% was achieved considering DSG 5. Despite these per-
formance improvements, it’s worth noting that a single grasp took 13.5 s to be generated

In their work, Johns, Leutenegger and Davison (2016) took into account uncertainties
when generating grasps. This approach proved to be more effective than the grasp method
based on the object’s centroid. This is because the centroid may not always be the optimal
point for picking up a complex object, such as a toy gun. The grasp method achieved an
impressive 80.0% success rate in a static, non-cluttered environment, specifically in DSG
1.

Pinto and Gupta (2016) performed experiments using objects that have not been seen
in the training. 3 k grasps attempts were executed in real experiments. They achieved a
success rate of 79.3% for unknown objects considering DSG 1. In the experiments, 150
grasp trials were performed.

Gualtieri et al. (2016) performed two different experiments: one experiment was per-
formed with a camera fixed in the environment (passive scenario) and the second with
the camera positioned on the robot’s wrist (active scenario). A success rate of 84% was
achieved for the passive scenario and 93% for the active scenario. Most of the failures
are related to perception errors caused by the grasping detection algorithm. Nonetheless,
90% of the objects were cleared from the bin.

Mahler et al. (2017) presented a new grasping method, denoted GQ-CNN. By using
DSG 4, the network performance achieved a success rate of 93% when evaluated with
unknown objects. The entire grasping pipeline took 0.8 s to plan a new grasp.

Morrison, Corke and Leitner (2018) presented a new grasping method, denoted GG-CNN,
that takes 19ms to generate a new grasp considering the entire grasping pipeline. The
network inference takes 2.1 − 6ms to compute a new grasp. Firstly, an experiment
was performed in a static environment using individual objects considering DSG 2. The
grasps achieved a success rate of 84% for the open-loop case and 81% for the closed-loop
case. The adversarial objects from Mahler et al. (2017) (Figure 2.12g) were used in the
experiments. Secondly, an experiment was performed in a dynamic environment using
individual objects. A grasp success rate of 83% was obtained for the adversarial objects
and 88% for the household objects. Finally, an experiment was performed in a cluttered

2.6. EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS 47

dynamic environment using multiple objects (Figure 2.13b). A success rate of 81% was
obtained for the household objects.

Mahler et al. (2019) evaluated the performance of the GQ-CNN in a new dataset (Dex-
Net 4.0). A success rate of 95% was achieved on a physical robot with 300 MPPH in
clutter. They achieved a success rate of 97% on a set of household objects. Experimental
results showed an improvement when considering ambidextrous grasping. The grasping
reliability increased from 80% to 95%. The experiments were evaluated using DSG 6.

Morrison, Corke and Leitner (2019) achieved a success rate of 80% in grasping from
clutter considering a multi-view approach. The grasp was evaluated using DSG 6. It was
proved that the success rate and time of the grasp depend on the trajectory performed by
the robot preceding the grasping action. The method presented achieved a 282 MPPH.

Morrison, Corke and Leitner (2020a) evaluated the performance of the GG-CNN in a
new dataset EGAD created specifically for robotic grasping. The performance decreased
significantly compared to the results found in Morrison, Corke and Leitner (2018). They
accomplished a success rate of 69% for simple objects and 40% for complex objects using
DSG 2. This is expected since the test objects from the EGAD dataset provide a higher
level of grasping complexity.

Morrison, Corke and Leitner (2020b) presented a new version of the GG-CNN called
Generative Grasping Convolutional Neural Network 2 (GG-CNN2). The GG-CNN2 takes
only 20ms to generate a new grasp, considering the entire grasping pipeline. The network
inference takes only 3ms to compute a new grasp. Regardless of the training set used,
the GG-CNN2 outperforms the GG-CNN when evaluated using SGTs. The GG-CNN2
performance was evaluated using only open-loop control through IoU, SGTs and real
experiments. The network achieved a success rate of 85% (DSG 2) and 84% (DSG 3).
When applying data augmentation to this dataset, the grasping success rate decreased
to 79% (DSG 2) and 82% (DSG 3). The experiment performed on a real robot achieved
94% on household objects and 84% on adversarial objects considering DSG 2.

Sun et al. (2023) proposed a new grasp detection based on single-view local point
clouds. It introduces a three-stage process consisting of the Candidate Generation Net-
work (CGN), Reliable Adjustment Module (RAM), and Quality Assessment Network
(QAN) to predict the graspability and the initial grasp pose of sampled points based on
features extracted from local sphere regions, leveraging an improved version of PointNet
for feature extraction. The network was trained using real world data acquired from two
RGBD cameras. Due to the inference time of 2.58s for 1024 points, the method can only
be used in open loop. Experiments performed on real robots reported 88.3% of success
rate for single object scenes and 83.0% for cluttered scenes.

Jauhri, Lunawat and Chalvatzaki (2023) introduced a grasping method called Neu-
GraspNet. This network was trained in simulation with piled and packed upright objects
on a table. The dataset comprises 343 objects split into 303 training and 40 testing
objects. The training process employed a total of 1.4 million grasps in 33, 313 scenes for
pile scenarios and 1.2 million grasps in 33, 534 scenes for packed scenarios. The dataset
comprises both successful and unsuccessful grasps and utilizes 100, 000 occupancy points
per scene for training scene reconstruction. In pile scenes, the Grasp Success Rate (GSR)
ranged from 73.95% to 86.51%. In packed scenes, the GSR ranged from 78.76% to 97.65%.

48 RELATED WORK

Sun et al. (2023) tested the proposed grasping synthesis algorithm using a real hard-
ware. A structured pile of 8 to 10 objects was used to evaluate the performance of the
algorithm. The algorithm achieved a success rate of 88.3% of the average success rate for
single object scenes and 83.0% for cluttered scenes.

2.6.6 Preliminary Considerations

An overview of the experimental procedures, operating system, and hardware adopted
by each related work is presented in Table 2.4.

Table 2.4: Experimental procedures, operating system, and hardware (graphics card,
robot, gripper and camera), adopted by each related work.

Simulated
Experiment

Real
Experiment

Camera’s
Position

Operating
System

Robot Gripper Camera Graphic Card

Sun et al. (2023) Gripper Kinova Gen 3 Robots-2q Kinect v2 RTX 3080Ti
Morrison, Corke and Leitner (2020a) Gripper Ubuntu 16.04 Kinova MICO Kinova KG-2 Realsense SR300 GTX 1070

Morrison, Corke and Leitner (2019) Gripper
Franka Emika

Panda
Custom Realsense D435

Mahler et al. (2019) Fixed Ubuntu 16.04 ABB YuMi Custom
Photeneo PhoXi
S industrial 3D

Titan XP

Ribeiro and Grassi (2019) Ubuntu 16.04 GTX 1050 Ti
Morrison, Corke and Leitner (2018) Gripper Ubuntu 16.04 Kinova MICO Kinova KG-2 Realsense SR300 GTX 1070

Mahler et al. (2017) Fixed Ubuntu 14.04 ABB YuMi Custom
Primesense
Carmine 1.08

GTX 1080

Johns, Leutenegger and Davison
(2016)

Gripper Kinova MICO Kinova KG-2
Primesense
Carmine 1.09

Pinto and Gupta (2016)

Gualtieri et al. (2016) Fixed
Baxter Research

Robot
Stock Baxter
Prallel-jaw

Asus Xtion Pro GTX 660

Lenz, Lee and Saxena (2015)

Some approaches limit the maximum grasp width at a specific value and state that
this would improve the grasp precision (MORRISON; CORKE; LEITNER, 2020b, 2018).
Nevertheless, it can restrict the type and size of objects used in real experiments. Besides
that, it can be used as a shortcut to avoid a collision while grasping objects in clutter
or placed in a bin. Other grasping techniques dynamically change the grasp width over
the path to the grasp pose considering the network inference (MORRISON; CORKE;
LEITNER, 2020b, 2018). Therefore, possible collisions with the surrounding objects may
be avoided.

When the grasping is performed in closed-loop, some grasping methods stop updating
the camera’s depth measurements and the robot usually performs a blind grasp from this
position (MORRISON; CORKE; LEITNER, 2020b, 2018). Therefore, it can be dangerous
if the object continues moving after the depth measurements shutdown. The depth
measurement limitation could be solved by a fixed camera position in the environment
(MAHLER et al., 2017), but occlusions could easily occur due to the arm position or a
pile of objects in clutter. Consequently, the minimum camera depth measurement is an
important parameter that must be considered in dynamic grasps.

Testing the grasping performance through real experiments is crucial to determine
the efficiency of the grasping method (MORRISON; CORKE; LEITNER, 2020a). To
evaluate the grasping performance, different DSGs are employed. DSG 1 is sometimes
applied for a quick offline evaluation, whereas other time-consuming DSGs are still used
such as DSG 2 (MORRISON; CORKE; LEITNER, 2020b). DSG 3 (IoU) is susceptible

2.6. EVALUATION PROCEDURES, BENCHMARKS, AND RESULTS 49

to false negatives because no simulation is performed. In this case, the grasp is considered
successful only if a ground-truth label exists in the dataset.

Besides that, only the average of physical success grasps over a set of objects are re-
ported. Nevertheless, it does not allow easy identification of the limitation of the grasp-
ing technique proposed. This leads authors to detail the failure modes (MORRISON;
CORKE; LEITNER, 2020b).

Small network architectures have proved to be efficient enough to perform grasp using
closed-loop control even with an intermediate hardware (MORRISON; CORKE; LEIT-
NER, 2018, 2020b). The benefit of using closed-loop controls is to perform accurate
grasps regardless of inaccurate hardware. DSG 3 was commonly employed to test grasp-
ing method performances (RIBEIRO; GRASSI, 2019). Nonetheless, without a real or
simulated environment, it is difficult to validate the performance reported.

Table 2.5 shows the performance achieved with unknown objects. This table is or-
ganized according to the test object used in the experiments such as adversarial objects
(MAHLER et al., 2017), household objects, or the objects proposed by (VIERECK et al.,
2017). In this table, the unfilled cells mean that the authors did not provide any related
information. It also shows if the evaluation was performed in real or simulated environ-
ments. Comparisons cannot be made directly since the objects used in these researches
differ substantially from each other, so the table is for indicative purposes only.

Table 2.5: Comparative table containing the average success rate, number of parameters, and processing time to gener-
ate grasp poses using unknown objects. These objects are divided in Adversarial Objects (A.O.) (MAHLER et al., 2017),
Household Objects (H.O.), and objects proposed by Viereck et al. (2017) (V.). The type refers to a real (R) or simulated
(S) evaluation environment. The results are divided into open-loop (O.L.), closed-loop (C.L.), and according to the DSGs
used in subsection 2.6.4.

Grasping Performance on Unknown Objects

Static
Individual

Static
Cluttered

Dynamic
Individual

Dynamic
Cluttered

Param
Number

MPPH
Network
Inference
Time

Entire
Grasping
PipelineObjects Type Metric C.L. O.L. C.L. O.L. C.L. C.L.

Morrison, Corke and Leitner (2020a) EGAD R 2 69% 2.1− 6ms 19ms

Morrison, Corke and Leitner (2020b) A.O. R 1 84% 66k 3ms 20ms
Morrison, Corke and Leitner (2019) A.O. R 6 80% 62k 282 2.1− 6ms 19ms
Morrison, Corke and Leitner (2018) A.O. R 2 81% 84% 83% 62k 2.1− 6ms 19ms

Jauhri et al. (2023) H.O. R 2 97.7% 5.5s
Sun et al. (2023) H.O. R 2 88.3% 83% 2.58s

Morrison, Corke and Leitner (2020b) H.O. R 2 94% 66k 3ms 20ms
Mahler et al. (2019) H.O. R 6 97% 300

Morrison, Corke and Leitner (2018) H.O. R 2 91% 92% 62k 2.1− 6ms 19ms
Mahler et al. (2017) H.O. R 4 80% 18M 0.8s
Pas et al. (2017) H.O. R 93% 0.3− 6.2s

Levine et al. (2016) H.O. R 80% 1M 0.2− 0.5s
Pinto and Gupta (2016) H.O. R 1 79.5% 18M

Johns, Leutenegger and Davison (2016) H.O. R 1 80% 7.3M
Gualtieri et al. (2016) H.O. R 93% 3s

Lenz, Lee and Saxena (2015) H.O. R 5 89% 13.5s

Morrison, Corke and Leitner (2018) V R 2 100% 87% 81% 62k 2.1− 6ms 19ms
Viereck et al. (2017) V R 98% 89% 77% 0.2s

Comparisons cannot be made directly since the objects used in these research differ substantially from each other, so the table is for indicative purposes only.

RELATED WORK50

2.7. CONCLUSION 51

2.7 CONCLUSION

Object features such as the center of mass, friction, or geometry are unknown in unstruc-
tured environments. Therefore, real robotic grasping applications that depend on these
parameters do not perform well in practice (MAHLER et al., 2018). Analytic methods
that require a partial or complete knowledge of known objects are also avoided since they
cannot generalize well to unknown objects (MORRISON; CORKE; LEITNER, 2020a;
MAHLER et al., 2019).

Note that authors avoid performing experiments only in the simulation since it cannot
fairly model the reality. It is easy to observe given that the results significantly differ in
simulation and real experiments.

Robotic grasps are commonly performed by fixing the camera on the robot’s wrist.
Gualtieri et al. (2016) compared the active scenario (camera on robot’s wrist) and the
passive scenario (camera fixed in the environment). They concluded that the active
scenario outperforms the passive scenario. The reason is that a better view of the objects
can be obtained without occlusion of the robot’s arm and different points of view can be
obtained during the grasp.

It is recommended to have the same set of test objects to get a comparable average
success rate. Some objects commonly used in real experiments for evaluation consist
of simple geometry. Therefore, they do not require a precise grasp. To offer a more
challenging robotic grasping environment, Morrison, Corke and Leitner (2020a) proposed
a set of test objects called EGAD dataset. It has complex shapes and can be easily 3D
printed.

The grasp is usually performed in individual objects rather than cluttered objects. It
does not always correspond to the real world since most applications in robotics consider a
cluttered environment such as warehouse and order fulfillment. Depending on the target
application such as picking objects on a non-stop conveyor belt includes a dynamic envi-
ronment. In this case, closed-loop control is required, but little research has achieved high
performance considering this environment (MORRISON; CORKE; LEITNER, 2018).

Since most of the related work uses deep learning approaches for robotic grasping, it is
a common practice to provide the code and the training data for performance comparison
(PAS et al., 2017; MAHLER et al., 2019; MORRISON; CORKE; LEITNER, 2018). Table
2.6 summarizes important aspects of each related work.

Table 2.6: Comparative table of the related work.

R
ea

l e
xp

er
im

en
ts

G
ra

sp
in

6D
O

F
Ca

m
er

a
on

gr
ip

pe
r

D
at

as
et

O
bj

ec
ts

Co
m

pl
ex

O
bj

ec
ts

Cl
ut

te
re

d
En

vi
ro

nm
en

t

D
yn

am
ic

En
vi

ro
nm

en
t

Cl
os

ed
lo

op
D

at
a

av
ai

la
bl

e
M

ul
tiv

isi
on Trajectory Planner

Sun et al. (2023)
Jauhri, Lunawat and Chalvatzaki (2023)

Ribeiro, Mendes and Grassi (2021)
Morrison, Corke and Leitner (2020b)
Morrison, Corke and Leitner (2020a)
Morrison, Corke and Leitner (2019)

Mahler et al. (2019)
Ribeiro and Grassi (2019)

Morrison, Corke and Leitner (2018)
Pas et al. (2017) TrajOpt (SCHULMAN et al., 2013)

Viereck et al. (2017) IKFast (DIANKOV; KUFFNER, 2008)
Mahler et al. (2017)

Pinto and Gupta (2016) EST (HSU; LATOMBE; MOTWANI, 1997)
Gualtieri et al. (2016) TrajOpt (SCHULMAN et al., 2013)
Levine et al. (2016)

Johns, Leutenegger and Davison (2016)
Lenz, Lee and Saxena (2015)

Dataset Objects: The object used for testing the grasping method are available for download.

Complex Objects: the objects used for testing are more complex than boxes, cylinders, and bowls and have an adversarial geometry.

Cluttered Environment: The objects used for testing are too close together or on top of each other.

Data available: Code and dataset available for access.

Multivision: Techniques that explore the robot workspace from more than one view to generate a grasp.

RELATED WORK52

Chapter 3

This chapter presents a two-step cascaded grasping system. It is comprised of the grasp generator denoted

Generative Grasping Convolutional Neural Network (GG-CNN) and a modified version of the Single

Shot Multibox Detector architecture (SSD). The integration of the object detection network to the grasp

generator allows the robot to select the object to be grasped.

SELECTIVE PLANAR ROBOTIC GRASPING

USING CONVOLUTIONAL NEURAL

NETWORKS

3.1 INTRODUCTION

Robotic grasping techniques have achieved the next level in terms of performance in a
real environment thanks to the advances in Artificial Intelligence and Computer Vision
techniques. Recent researches have proved that letting the system build a grasp function
itself instead of developing an analytical model is promising (MORRISON; CORKE;
LEITNER, 2019; MAHLER et al., 2018; SATISH; MAHLER; GOLDBERG, 2019).

Morrison, Corke and Leitner (2019) developed an object-agnostic grasping method
called GG-CNN well-known for its good performance in open-loop and closed-loop sys-
tems. Its not possible to select an specific object to grasp using GG-CNN because it
generates grasps based on a quality prediction of an input depth image considering all
the objects in the workspace. The object closer to the camera is generally preferred to be
grasped by the network inference. This is not desired since the robot may grasp a fixed
object such as a bin instead of movable objects, as shown in Figure 3.1.

In order to mitigate the problem shown in Figure 3.1 and also recorded in video1,
the Single Shot Multibox Detector (SSD) was implemented. The SSD is coupled with
the GG-CNN to create a grasping system capable of choosing the object to perform the
grasp. Furthermore, the GG-CNN input is a fixed area in a depth image of 300 × 300.
Consequently, if the depth sensor has a higher resolution, a grasp cannot be generated
for the objects outside this area (Figure 3.2). Since the actual and target position and
orientation of the gripper is known, and no obstacle avoidance is considered in the tra-
jectory to the gripper pose, a quintic polynomial trajectory planner was applied to align
the object in the workspace with the GG-CNN area.

1https://www.youtube.com/watch?v=texbXgisPew

53

54
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

(a) Robot initial po-
sition.

(b) RGB image from
the gripper point of
view. The red box if
the GG-CNN area.

(c) Depth image from
the gripper point of
view. The red box if
the GG-CNN area.

(d) GG-CNN area
and the grasp gener-
ated on the bin.

(e) Final grasp posi-
tion and orientation.

Figure 3.1: Since GG-CNN cannot distinguish between fixed and movable objects, a
grasp can be generated on fixed objects such as a bin. To generate a grasp, GG-CNN
uses only the area inside the red box, represented in (b) and (c). This experiment
was conducted in the Laboratory of Robotics (LaR) at UFBA and is available at
youtube.com/watch?v=texbXgisPew.

Figure 3.2: Using the GG-CNN, a grasp is not generated for objects outside the
GG-CNN area (red box).

This chapter is organized as follows: Section 3.3 specifies the problem which is tried
to be solved and define the variables used in this chapter, Section 3.4 introduces the
GG-CNN, Section 3.7 describes the SSD used for object detection, Section 3.8 explains
the grasping pipeline, Section 3.9 depicts the hardware and software used in the experi-
ments, Section 3.10 describes the pre-processing and post-processing applied to the input

3.2. CONTRIBUTIONS 55

and output of the GG-CNN, Section 3.11 details the experiments performed using the
GG-CNN and the object recognition networks used in this research, and Section 3.12
concludes this chapter.

3.2 CONTRIBUTIONS

This chapter has the following main contributions:

� Development of a 4D grasping pipeline using a Convolutional Neural Network Grasp
Generator and an Object Detection Network to selectively grasp objects on a table-
top scenario using an RGB+D sensor;

� Validation of the proposed system using an UR5 Robot Arm Manipulator, an
RGB+D camera Intel Realsense D435, and the gripper Robotiq 2F-140.

3.3 PROBLEM STATEMENT

In this chapter, a selective 4D grasping pipeline using an RGB+D sensor is proposed.
The RGB+D sensor is used because the object is recognized using an RGB image and
the grasp is generated using a Depth image. It performs antipodal grasps on objects of
interest.

3.3.1 Assumptions

It is assumed that the objects are located on a flat surface, and the grasping is performed
by a parallel-jaw gripper and a camera mounted in the robot’s wrist. All intrinsic camera
parameters are known. The grasp is defined by the position and orientation of the gripper
with known geometry, as shown in Figure 3.3. The parameters associated with the
grasping, used in that figure and the rest of the work can be found in Subsection 3.3.2.

3.3.2 Definitions

Definition 3.3.1. Let I0 = RH×W describe an 2.5D depth image in which no object is
considered. H and W represent the height and the width of this image, respectively.

Definition 3.3.2. Let I = RH×W be an 2.5D depth image in which every object in the
environment is considered. H and W represent the height and the width of this image,
respectively, and the pixel value is the depth measurement.

Definition 3.3.3. Let If = RH×W denote a filtered 2.5D depth image, in which every
object of interest is considered. H and W represent the height and the width of this
image, respectively.

Definition 3.3.4. Let C define the robot base coordinate frame.

Definition 3.3.5. Let g = (p, ϕ, ω, q) represents the grasp in C, where p = (x, y, z)
describes the gripper’s center point on the object, ϕ denotes the gripper angle around z
axis, ω describes the gripper width and q represents the grasp quality obtained from one
of the outputs of the GG-CNN.

56
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Figure 3.3: (Left) Grasp coordinate frame representation g = (p, ϕ, ω, q) and the other
frames related to the camera and robot. p = (x, y, z) describes the gripper’s center
point on the object, ϕ denotes the gripper angle around z axis, ω describes the gripper
width and q represents the grasp quality (Right) Representation of g̃ = (s, ϕ̃, ω̃, q) on
the depth image I, where s indicates the gripper’s center point in pixels, ϕ̃ denotes the
gripper angle and ω̃ refers to the gripper width.

.

Definition 3.3.6. Let g̃ = (s, ϕ̃, ω̃, q) be the grasp in I, where s indicates the gripper’s
center point in pixels, ϕ̃ denotes the gripper angle and ω̃ refers to the gripper width.

Definition 3.3.7. Let G̃ = (Φ̃, W̃ , Q̃) ∈ RH×W×3 describes a set of grasps g̃ in I, where
Φ̃, W̃ and Q̃ consist of values of ϕ̃, ω̃ and q for each pixel.

Definition 3.3.8. Let M(I) = G̃ describes a grasp function that generates a grasp map
G̃ from a depth image I.

Definition 3.3.9. LetMθ(I) describes an approximation of the grasp function by means
of a CNN, where θ indicates the network weights.

Definition 3.3.10. Let G̃θ = (Φ̃θ, W̃θ, Q̃θ) ∈ RH×W×3 describes a set of estimated
grasps G̃ in I, where Φ̃θ, W̃θ and Q̃θ consist of the approximated values of ϕ̃, ω̃ and q
for each pixel. H and W represent the height and the width of this image, respectively.

Definition 3.3.11. Let G̃f = (Φ̃f , W̃f , Q̃f) ∈ RH×W×3 denotes an approximated grasp

function in If , where Φ̃f , W̃f and Q̃f consist of the approximated values of ϕ̃, ω̃ and q
for each pixel. H and W represent the height and the width of this image, respectively.

Definition 3.3.12. Let g∗
θ refers to the best grasp visible in C.

Definition 3.3.13. Let g̃∗
θ be the best visible grasp in I, as a result of G̃θ.

Definition 3.3.14. Let g̃∗
f indicates the best visible grasp in If , from G̃f .

Definition 3.3.15. Let ĨT describes a ground truth depth image from a grasping dataset.

Definition 3.3.16. Let G̃T denotes a ground truth grasp map generated from a ground
truth depth image ĨT .

3.4. GENERATIVE GRASPING CNN 57

Definition 3.3.17. Let Q̃T refers to a ground truth quality image.

Definition 3.3.18. Let Φ̃T be a ground truth grasp angle.

Definition 3.3.19. Let W̃T denotes a ground truth gripper width.

3.4 GENERATIVE GRASPING CNN

3.4.1 Training dataset and related processes

The Cornell Grasping Dataset (LENZ; LEE; SAXENA, 2015) is used for training the
GG-CNN. As mentioned in Section 2.2.1, the Cornell Grasping Dataset has 885 depth
images of real objects available and 5110 human-labeled positive and 2909 negative grasps.
This dataset has the advantage of having several labeled grasps available per image
(Figure 3.4). The Cornell Dataset represents antipodal grasps as rectangles using pixel
coordinates, aligned to the position and rotation of a gripper as in Jiang, Moseson and
Saxena (2011).

Figure 3.4: Cornell Grasping Dataset (LENZ; LEE; SAXENA, 2015) positive and nega-
tive grasps represented as rectangles as in Jiang, Moseson and Saxena (2011).

From each grasp rectangle in Figure 3.4, it is possible to extract the gripper width
ω, the tool center point p, and the planar gripper orientation ϕ (Figure 3.9a). Since the
antipodal grasp is symmetrical around the y axis, the gripper orientation ϕ is constrained
in the interval

[
−π

2
, π
2

]
(Figure 3.9b). Rather than considering the gripper orientation as

an angle, Hara, Vemulapalli and Chellappa (2017) found that representing the gripper
orientation as two components of a unit vector makes the training procedure more effec-
tive. This procedure is also adopted by Morrison, Corke and Leitner (2018). However,
representing the angle as two components of a unit vector sin(Φ̃T) and cos(Φ̃T) (Figure
3.5a) causes a discontinuity around ±π

2
, as shown in Figure 3.5b, which is particularly

challenging when employing AI techniques such as backpropagation that rely on smooth,
continuous functions for effective learning and convergence.

58
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

(a) (b)

Figure 3.5: (a) Grasp angle representation considering cos(ΦT) > 0 (b) grasp angle
discontinuity around −π

2
and π

2
.

In order to avoid this problem, the two components of a unit vector are defined as
sin(2Φ̃T) and cos(2Φ̃T). It removes the discontinuity around ±π

2
and provides a unique

representation for the grasp rectangle when the gripper angle is at −π
2
or π

2
(Figure

3.6). Morrison, Corke and Leitner (2018) augmented the Cornell Grasping Dataset using
random zooms, crops and rotations to generate a set of 8.840 depth images ĨT . Each
depth image was associated to grasp maps G̃T , integrating 51.100 grasp samples in total.
Since the Cornell Grasping Dataset provides multiple ground truths per object, a higher
estimation of G̃ is obtained if compared to datasets that only provide a single grasp per
image (MAHLER et al., 2017).

3.4.2 Network architecture

The GG-CNN provides an approximation of the complex function M(I). It is proved
through experiments that Mθ(I) = G̃θ = (Φ̃θ, W̃θ, Q̃θ) can be learned by means of the
input ĨT and the corresponding output G̃Tr (MORRISON; CORKE; LEITNER, 2018).
It is accomplished by using a set of training data, and applying the cost function L2-norm,
represented by L, so that:

θ = argmin
θ

L(G̃Tr,Mθ(ĨT)) (3.1)

Rather than estimate a single grasp from the depth image I, a single grasp is generated
on each pixel of I. Therefore, a map of grasps G̃θ corresponding to the width and
height of the image I is created. GG-CNN comprises a fully CNN architecture since
it has proven to be efficient in image segmentation techniques (BADRINARAYANAN;
KENDALL; CIPOLLA, 2017; LONG; SHELHAMER; DARRELL, 2015) and contour

3.4. GENERATIVE GRASPING CNN 59

Figure 3.6: Graphical representation of the two components of a unit vector sin(2Φ̃T)
and cos(2Φ̃T).

generation (YANG et al., 2016). GG-CNN is composed of six convolutional layers as
shown in Figure 3.7. Its architecture has only 62,420 parameters, resulting in a low time
execution, which is important for closed-loop applications. The authors achieved 52Hz
using the graphics card GTX 1070. 80% of the 8.840 images IT were used for training
and 20% for validation. No additional noise is added to the depth image IT , since the
Cornell Grasping Dataset already incorporates a noise from a real camera.

The GG-CNN output corresponds to four images with 300× 300 pixels (Figure 3.8):
one image for the grasp quality Q̃θ, one image for each component of a unit vector
(sin(2Φ̃θ) and cos(2Φ̃θ)), and one image for the grasp width W̃θ. In each GG-CNN
output image, the area of the center third part of the grasp rectangle is used to represent
the grasp features (grasp quality, width and angle) as shown in Figure 3.8. The values
in Q̃θ, contained in the range [0, 1], indicate the grasp success rate, with the higher
values denoting a higher success rate. The values of sin(2Φ̃θ) and cos(2Φ̃θ), indicate the
antipodal grasp angle, symmetrical around ±π

2
rad. The values of W̃θ, contained in the

range [0, 150], correspond to the grasp width in pixels. The values of W̃T are normalized
in the interval [0, 1] during the training.

Each pixel of Q̃θ, sin(2Φ̃θ), cos(2Φ̃θ), and W̃θ, corresponds to a grasp representation,
summing up to a total of 90, 000 grasps samples per image. Note that, by applying this
process, only the positive grasps are considered when training the network, contrary to
Lenz, Lee and Saxena (2015). Figure 3.9 shows the grasping rectangles as well as the
antipodal gripper angle.

3.4.3 Grasp definition

Figure 3.10 shows that the best grasp pose g̃∗
θ is defined by using the index M of the

maximum value in the quality image Q̃T . This index is used to obtain the value of each
image sin(2Φ̃T), cos(2Φ̃T), and W̃θ. The corresponding gripper width is calculated in

60
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Figure 3.7: GG-CNN Architecture.

pixels in the interval [0, 150]. These pixels are converted in meters by using the depth
measurement of the grasp pose and intrinsic camera’s parameters. The height of the
grasp is also obtained by using the depth measurement correspondent to the index M in
the depth image If cropped to 300× 300 pixels.

The image Φ̃θ, equivalent to the grasp angle, is obtained from the images sin(2Φ̃θ)
and cos(2Φ̃θ) by:

Φ̃θ =
1

2
arctg

(
sin(2Φ̃θ)

cos(2Φ̃θ)

)
. (3.2)

where sin(2Φ̃θ) represents the vector pointing in the y direction and cos(2Φ̃θ) represents
the vector pointing in the x direction.

Lastly, g∗
θ is acquired from a sequence of homogeneous transformations:

g∗
θ = tRC(tCI(g̃∗

θ)) (3.3)

Where tCI indicates the transformation from the image space I to the camera frame and
tRC represents the homogeneous transformation from the camera frame C to the robot’s
base frame R.

3.5 VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE
IMAGE RECOGNITION (VGG)

Simonyan and Zisserman (2014) proposed a network architecture known as VGG. This
CNN won the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2014 in the
first and second places in the localization and classification tracks, respectively. VGG is

3.6. DEEP RESIDUAL LEARNING FOR IMAGE RECOGNITION 61

Figure 3.8: The ground truth images sin(2Φ̃T), cos(2Φ̃T), Q̃T and W̃T , generated
from the Cornell Grasping dataset. The white pixels of the images corresponding to the
Grasp Quality, Grasp Angle, Grasp Width and sin(2Φ̃T) are equal to zero. The white
pixels of the image corresponding to cos(2Φ̃T) are equal to one.

a classification network that increases the depth by applying convolutional layers of size
3× 3. The size of the receptive field (3× 3) is chosen to capture the notion of left/right,
up/down, and center. A convolution filter of 1 × 1 is also used to add nonlinearities to
the network. The stride used in the convolution is always equal to one. To maintain the
spatial resolution, the padding of one is chosen for the convolutional layers. Max-pooling
is performed over a 2× 2 pixel window, with stride two. Not all the convolutional layers
are followed by max-pooling. The input to VGG is RGB images of 224× 224. To obtain
the fixed-size 224×224 input images, they were randomly cropped from rescaled training
images.

A stack of convolutional layers is followed by two Fully-Connected layers (FC) with
4096 channels each and one FC with 1000 channels. A softmax layer is applied at the
end. VGG has six configurations named A, A-LRN, B, C, D and E (Table 3.1). Each
configuration varies in depth, going from 11 weight layers in network A to 19 weight
layers in network E. The depth of the layers goes from 64 to 512. The configuration
D (VGG-16) is used in this thesis due to a better relationship between accuracy and
performance. This is because configuration D (VGG-16) has 6 million parameters less
than configuration E (VGG-19) and achieved only 0.1% less in the top-5 ILSVRC 2014
validation error.

3.6 DEEP RESIDUAL LEARNING FOR IMAGE RECOGNITION

It was a common belief that deeper neural networks could achieve better performance
on object recognition. Despite this, He et al. (2016) confirmed that CNNs deeper than
VGG-19 (SIMONYAN; ZISSERMAN, 2014) degrades in performance. He et al. (2016)

62
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

(a) Rectangle representation of a grasp (b) Antipodal gripper angle

Figure 3.9: (a) Each rectangle comprises the tool center point, planar gripper angle,
and gripper width. These attributes were shown in different rectangles to facilitate un-
derstanding. (b) Antipodal gripper angle is represented in the interval

[
−π

2
, π
2

]
.

compared plain networks with 20 and 56 layers similar to VGG-16 and proved through
experiments that the more the number of layers, the more is the training and testing
error. Therefore, adding more layers to the network does not improve its performance.
This limitation arises due to the manifestation of vanishing gradients in deeper layers.
The authors confirmed that this problem was not caused by overfitting.

He et al. (2016) proposed a CNN called ResNet that is easy to train and deeper than
VGG-19 Simonyan and Zisserman (2014). This network won first place on the tasks of
ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation
in 2015. The difference between ResNet and VGG-19 is that ResNet has shortcut con-
nections. These shortcuts are applied after each block of the Table 3.2. Through the
shortcuts, the input of the n convolutional layer is directly connected to the input of the
next n + p convolutional layer where p represents the number of convolutional layers in
the building block (shown in each line of the Table 3.2), also called residual function.

Figure 3.11 shows the residual blocks used in ResNet architectures for p = 2 applied
in ResNet-18/34 and p = 3 used in ResNet-50/101/152.

Between the convolutions 2.x, 3.x, 4.x, and 5.x, a convolution with stride two was
applied to reduce the dimension instead of applying a pooling operation. Inside the
blocks, the stride and padding operations are set to one to maintain the dimensions.
When the dimension of the building blocks reduces, the shortcut connections also need
to reduce in order to allow additional operations between layers. When the shortcut
dimension is not required to change, an identity shortcut is used. This identify shortcut
works by simply bypassing the input volume to the addition operator. It is important
not to increase the complexity of the bottleneck architectures. When the width, height,

3.7. SINGLE SHOT MULTIBOX DETECTOR 63

Figure 3.10: The index M of the max value in the quality image is used to acquire the
value of the grasp width, angle, and the height of the grasp by using the depth mea-
surement.

Figure 3.11: Left: A building block (on 56 × 56 feature maps). Right: a bottleneck
building block for ResNet-50/101/152 (HE et al., 2016).

and depth of the layer are required to change, a projection shortcut is applied. This is
employed between the convolutions 2.x, 3.x, 4.x, and 5.x.

There are two types of projections shortcuts: padding the input volume or performing
1× 1 convolutions. In the case of padding the input volume, a convolution with stride 2,
padding 1, and kernels of 3 × 3 are applied. The number of filters of the convolutional
shortcut is chosen to be the same as the output feature map depth of the building block.
In the case of 1 × 1 convolutions, a zero-padding with stride 2 is employed to halve the
input size (width and height).

Compared to VGG nets, ResNets have fewer filters and lower complexity. VGG-19
model (SIMONYAN; ZISSERMAN, 2014) has 19.6 billion FLOPs while ResNet-34 (Table
3.2) has 3.6 billion FLOPs. ResNet-50 has 23.521 million parameters compared to 138
million parameters of VGG-16.

3.7 SINGLE SHOT MULTIBOX DETECTOR

SSD is commonly called as a framework by its authors (LIU et al., 2016). It was designed
to identify multiple objects in a scene. The SSD has two variants: SSD300 and SSD512,
which nomenclature refers to the image resolution of 300 × 300 pixels and 512 × 512
pixels, respectively. Liu et al. (2016) achieved a higher accuracy and detection speed (59

64
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Table 3.1: VGG varying in size from configuration A to E (SIMONYAN; ZISSERMAN,
2014).

FPS with mAP 74.3%) on VOC2007 test if compared to past techniques such as Faster
R-CNN (REN et al., 2015) (7 FPS with a mAP 73.2%) or YOLO (REDMON et al., 2016)
(45 FPS with mAP 63.4%) by applying the following procedures:

1. Generate a set of fixed-size bounding boxes and scores for each object class, suc-
ceeded by a non-maximum suppression to produce the final detection;

2. Add convolutional feature layers that decrease in size progressively to the auxiliary
part of the network architecture; and

3. Using multiple features map from deeper layers to perform detection at multiple
scales.

By applying the aforementioned process, Liu et al. (2016) achieved a high inference
speed using low-resolution images. For each object of interest in an image, the SSD model
generates: the coordinates of a bounding box that involve the objects, the class identifier
for the object, and a confidence value for each prediction. According to Liu et al. (2016),
the SSD outperforms previous works in terms of processed images per second.

3.7. SINGLE SHOT MULTIBOX DETECTOR 65

Table 3.2: ResNet configurations (HE et al., 2016).

The first layers of the original SSD model comprise part of a network previously
trained for object identification. These first layers are called the base network. Liu et al.
(2016) applied the VGG16 Network (SIMONYAN; ZISSERMAN, 2014) as a base network
for the SSD, and suggested the possibility to adopt other network architectures as a base
network, as shown in Figure 3.12. The remaining part of the network, called the auxiliary
part, consists of several convolutional layers that gradually decrease in size. It allows the
system to make detection predictions at multiple scales. The SSD300-VGG16 is very
sensitive to the bounding box size, and it has worse performance on smaller objects. The
SSD512-VGG16 performs better than the SSD300-VGG16 when detecting small objects,
as Liu et al. (2016) state. However, both SSD300-VGG16 and SSD512-VGG16 have less
localization error and are faster if compared to the R-CNN (GIRSHICK et al., 2014).
The reason is that it classifies the object classes and learns to regress the object shape
without decoupling steps.

In this work, the performance of the deep learning model networks SSD300, and the
SSD512 was evaluated, using ResNet50 (HE et al., 2016) and VGG16 (SIMONYAN;
ZISSERMAN, 2014) as a base network. ResNet-50 is chosen from the list of 34, 50,
101, and 152 ResNets as a midterm between the number of parameters and low error
rates. VGG-16 is chosen from the list of VGG’s versions (11, 13, 16, and 19) of the
original paper (SIMONYAN; ZISSERMAN, 2014) due to a better relationship between
accuracy and performance. The COCO Dataset (LIN et al., 2014), and VOC Dataset
(EVERINGHAM et al., 2010b) were used in the pre-trained versions of the SSD300 and
SSD512. Due to the implementation of the ResNet50 and VGG16 as a base network for
the SSD300 and SSD512, they are called SSD300-VGG16, and SSD512-ResNet50 from
this subsection. Furthermore, each network appends the name of the dataset used in the
training process. The SSD512-ResNet50 is renamed to SSD512-ResNet50-COCO if the
COCO dataset is considered in the pre-trained version of the network.

66
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Figure 3.12: Original SSD300 Architecture using the VGG-16 as a base network (LIU
et al., 2016).

3.7.1 Test objects

Mahler et al. (2017) proposed a set of objects that provides a moderate degree of com-
plexity in the grasping process. These objects are used in the experiments shown in
subsection 3.11.3. They were manufactured using a 3D printer and are shown in Figure
3.13. In order to perform the training of the SSD512 and SSD300 using these objects,
a fine-tuning method was applied to a pre-trained model of these networks using both
COCO and VOC Dataset.

(a) (b)

Figure 3.13: Test objects proposed by Mahler et al. (2017). (a) 3D Model (b) 3D-
Printed objects. The objects are called: (A) Bar clamp, (B) Nozzle, (C) Part 3, (D)
Gear Box, (E) Part 1, and (F) Vase.

3.7.2 SSD Base Network, fine-tuning and dataset

The SSD framework uses the VGG-16 (SIMONYAN; ZISSERMAN, 2014) as a base net-
work with slight modifications. The stride applied to the fifth max-pooling layer is modi-
fied to one, the filter size applied is three, and the padding has a size one. In addition, the
fc6 and fc7 layers are changed to convolutional layers by subsampling parameters from fc6
and fc7 as also performed in Chen et al. (2014). The à trous algorithm (HOLSCHNEI-
DER et al., 1990) is used to fill empty spaces during the convolution.

3.8. SELECTIVE GRASPING 67

The dataset containing the objects of the Figure 3.13 used in training has 614 manually
labeled images. 80% was used in training and 20% in validation.

The fine-tuning process was applied to the SSD300 and SSD512, in which both were
pretrained in COCO and VOC dataset with VGG16 and ResNet50 as backbone networks.
A LR (Learning Rate) of 0.00016 was applied in 80 epochs, using a LRD (Learning Rate
Decay) in epoch 30 and 50 of 0.1. In other words, the learning rate decayed 10% in
epochs 30 and 50. The Adam optimizer (KINGMA; BA, 2014) was applied with β1 = 0.9,
β2 = 0.999 and ϵ = 10−8. A non-maximum suppression algorithm was employed with a
IoU (Intersection Over Union) of 50%. The batch size was equal to 16.

3.8 SELECTIVE GRASPING

The GG-CNN generates planar grasps on unknown cluttered objects (MORRISON;
CORKE; LEITNER, 2018). However, this technique was not developed to grasp ob-
jects of interest. Therefore, the GG-CNN generates the best visible grasp g̃∗

θ for any
object in the robot workspace without allowing to grasp a specific one. This pipeline
proposes an integration of GG-CNN and SSD. This cascade system uses RGB and depth
images as input. Therefore, it requires an RGB+D sensor.

3.8.1 Grasping pipeline

To perform robotic grasps on objects of interest on a flat surface, the grasping pipeline
(Figure 3.14) is proposed. It comprises the following stages:

Stage 1: The robot moves to a previously defined initial position and all the objects
are kept out of the workspace. The robot’s position was precisely determined to en-
sure optimal camera visibility into the 3D printer’s environment. In this condition,
a depth image I0 is stored.

Stage 2: All the objects (Figure 3.13) are placed in the robot’s workspace. An
RGB image comprising all these objects is used as input to the object detection
network.

Stage 3: A object of interest is randomly chosen. If the network is capable of
recognizing it, a bounding box is generated in the RGB image.

Stage 4: It is verified if the bounding box of the chosen object lies inside the GG-
CNN area (300×300pixels) just above the gripper. If it is true, this stage is ignored
and the pipeline goes to Stage 7. If it is false, trajectory planning is requested to
align the bounding box inside the GG-CNN area in Stage 5.

Stage 5: If a trajectory is requested in Stage (4), a quintic polynomial trajectory
planner (SPONG et al., 2006) is generated to move the end effector to the location
of the detected objected. This trajectory facilitates the interpolation between the
initial and final robot configurations, guaranteeing a seamless and fluid motion.

68
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Stage 6: A bounding box is generated for the actual location of the object, given
the actual camera view.

Stage 7: The indexes of the bounding box acquired in stage (3) are used to generate
the bounding boxes in the depth image I. The RGB image and the depth image I
must be aligned. Therefore, the RGB+D camera must be calibrated.

Stage 8: The indexes of the bounding box are used to copy the corresponding area
of the depth image I to the depth image If . In this image, only the selected object
is considered.

Stage 9: The filtered depth image If is cropped in a square of 300 × 300 pixels,
to fit the GG-CNN input. The image If is inpainted to remove invalid values and
a Gaussian filter is applied to increase the grasp robustness, as detailed in Section
3.10.

Stage 10: The best visible grasp g̃∗
f in the filtered depth image If is acquired by

using the GG-CNN.

Stage 11: The best visible grasp g∗
θ in C is obtained from the grasp g̃∗

f (Figure
3.15) as the following:

g∗
θ = tRC(tCI(g̃∗

f)), (3.4)

Where tCI indicates the transformation from the image space I to the camera frame
C and tRC represents the homogeneous transformation from the camera frame C
to the robot’s base frame R.

The entire grasping pipeline is shown in Figure 3.14.

3.9 HARDWARE AND SOFTWARE IMPLEMENTATION

Following the guidelines provided in Mahler et al. (2018), this section describes each
aspect of the hardware and software used to implement the grasping pipeline presented.

3.9.1 UR5 Robot

The UR5 Robot (ROBOTS, 2019) is a flexible, lightweight and user-friendliness industrial
robotic arm designed to perform repetitive manual tasks weighing up to 5 kg (Figure
3.16a). It is commonly applied in light tasks such as packing, assembly, bin picking, or
testing. This robot is commonly used in industry due to the fast playback time offered,
being operational in less than a day due to the simple 3D visualization programming
provided in teach pendant. The UR5 robot has a maximum reach of 850mm. The joint
limit rotation is ±360◦ and the maximum speed is 180◦/s. This robot has 6 rotating
joints and weights 18.4 kg. Its repeatability is ±0.1mm.

3.9. HARDWARE AND SOFTWARE IMPLEMENTATION 69

Figure 3.14: Grasping pipeline.

3.9.2 Robotiq Gripper 2F-140

The Robotiq Gripper 2F-140 (ROBOTIQ, 2020) is a plug and play end effector designed
for collaborative robots. Its payload is 50% lower than the Robotiq Gripper 2F-85 or up to
2.5 kg, and a grip force from 10N to 125N . It has a maximum stroke of 140mm (64, 7%
higher than the Robotiq Gripper 2F-85). Its maximum closing speed is configurable
between 30 to 250mm/s. Since the gripper weight is 1 kg and the UR5 robot has a
payload of 5 kg, only objects up to 4 kg can be grasped.

3.9.3 Intel Realsense D435

The Intel Realsense D435 (INTEL, 2019) is a stereo RGB-D camera with a range up to
10m. It is composed of left and right HD image sensors, one IR projector, and one 1080p

70
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Figure 3.15: Depth cloud acquired from the simulated Intel Realsense D435 camera in
RViz (GOSSOW et al., 2020) (a) Depth cloud representation of the depth image I and
the best visible grasp g̃∗

θ (b) Depth cloud representation of the filtered depth image If
acquired in stage 9 and the best visible grasp g̃∗

f .

RGB image sensor. The depth output resolution is up to 1280 × 720 at maximum 90
Frames Per Second (FPS). The minimum depth distance is 0.105m. The minimum depth
distance is highly important in grasping applications since the camera cannot update the
grasp pose when it is close to the object. The depth field of view if 85◦ × 57◦(±3◦).

The RGB sensor provides the maximum resolution of 1920 × 1080 at 30 FPS. The
RGB field of view is 69.4◦ × 42.5◦(±3◦). The connector is a USB-C 3.1 Generation 1,
providing a 5 Gbps of data rate, approximately 10 times faster than USB 2.0 high-speed.
Custom camera support was designed and manufactured on a 3D printer to fix the camera
on the UR5 robot’s wrist. The distance between the camera and the Robotiq Gripper
2F-140’ tool center point is 23 cm along the line of sight. The custom 3D-printed camera
support was rotated 14◦ in the gripper’s direction, as shown in Figure 3.16b.

3.9.4 Robotic Operating System Implementation

The Robot Operating System (ROS) (QUIGLEY et al., 2009) is an open-source robot
framework developed for dealing with the growing development and complexity of ad-
vanced robotic systems. This framework was designed to follow a series of criteria such
as:

1. The possibility to connect multiple hosts at a run time through a peer-to-peer
topology;

2. Support cross-language development. It is possible due to a language-neutral in-
terface definition language (IDL) to describe the messages sent between modules

3.9. HARDWARE AND SOFTWARE IMPLEMENTATION 71

(a) UR5 Robot at the
Laboratory of Robotics
(UFBA).

(b) Intel Realsense D435
custom support for the UR5
robot.

(c) Virtual model of the
UR5 robot and the camera
support designed.

Figure 3.16: (a) UR5 Robot at the Laboratory of Robotics (LaR) at UFBA (b) the
Intel Realsense D435 custom support developed (c) virtual model of the UR5 robot and
the custom camera support developed.

(nodes or services);

3. Stay lean to ensure effortless sharing of implementations;

4. Allow the re-use of code from numerous open-source libraries such as OpenCV
(BRADSKI, 2000b) and OpenRAVE (DIANKOV; KUFFNER, 2008); and

5. Offer unrestricted access for both non-commercial and commercial projects by
adopting the BSD license, ensuring freedom and openness in usage.

Within the framework of Robotics Operating System (ROS), facilitating data ex-
change among modules occurs through inter-process communication. This communica-
tion architecture comprises essential elements: nodes, messages, topics, services. Nodes,
functioning as autonomous processes, execute computations facilitated by messages—a
structured data format supporting fundamental types (boolean, integer, floating-point,
etc.). Messages are transmitted via topics, where a publishing node disseminates infor-
mation to a specific topic, allowing subscribing nodes to receive this data. Additionally,
ROS employs services, enabling nodes to request specific tasks or information from other
nodes, creating a synchronous, request-response interaction.

The UR5 Robot2, Intel Realsense D435 camera3, and the Robotiq 2F-1404 are compat-
ible with ROS since there are solid ROS packages already implemented for this purpose.
The SSD and the GG-CNN were also implemented using different ROS nodes that receive
data from the Master Node, to perform the object recognition and generate a grasp pose.
The Webots simulator was used to evaluate the performance of the grasping pipeline

2⟨https://github.com/ros-industrial/universal robot⟩
3⟨https://github.com/IntelRealSense/realsense-ros⟩
4⟨https://github.com/ros-industrial/robotiq⟩

72
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

in simulation, and the RViz5 (GOSSOW et al., 2020) was used for visualizing the data
being published by the nodes such as the point cloud and the coordinate frames. We-
bots simulator was chosen over Gazebo6 due to the better performance related to physics
interaction between the gripper and objects.

Figure 3.17 shows the architecture implemented using ROS, RViz, and Webots. The
virtual model of the Intel Realsense D435 camera, UR5 robot, and Robotiq Gripper
2F are used in Webots. The main node receives the simulated depth data from the
Intel Realsense D435, the joint angles from the UR5 robot, and the gripper angles from
the Robotiq Gripper. By following the grasping pipeline detailed in Section 3.8.1, the
main node generates a new grasp g∗θ in the robot’s base coordinate frame C. To move the
gripper to the grasp pose, a quintic polynomial trajectory algorithm is applied considering
the initial and final joint angles. The TF package7 is used to track the model coordinate
frames over time.

3.10 PRE-PROCESSING AND POST-PROCESSING

3.10.1 Pre-processing

The depth images acquired from a real sensor often provide invalid depth measurements.
These invalid values can highly affect the GG-CNN performance by causing the grasp to
converge to regions of poor grasp quality. Therefore, to avoid this problem, a method
called inpainting provided by OpenCV (BRADSKI, 2000a) is applied to the depth image
before the network processing. This method removes the invalid depth measurements by
replacing those values with its neighboring pixels so that it looks like the neighborhood.

3.10.2 Post-processing

Johns, Leutenegger and Davison (2016) found that filtering the quality image Q̃θ using a
Gaussian kernel removed the maxima that were close to areas of low quality grasps as well
as created a more diverse set of grasps that are more consistent between the successive
grasps when performing the grasp in closed-loop. This filter is used in the quality image
Q̃θ of the GG-CNN.

3.11 EXPERIMENTS

3.11.1 Hardware and software

The computations were performed on a desktop running Ubuntu 20.04 with a 2.9 GHz
Intel Core i5-10400F, 32 GB RAM, and NVIDIA GeForce RTX 3060 graphic card with 12
GB VRAM. The experiments were performed in Webots simulator (KOENIG; HOWARD,
2004) integrated to the ROS (Robot Operating System) Noetic version (QUIGLEY et
al., 2009). The virtual model of the UR5 robot (Figure 3.16c) was employed in the
simulation.

5⟨https://github.com/ros-visualization/rviz⟩
6⟨http://gazebosim.org/⟩
7⟨http://wiki.ros.org/tf⟩

3.11. EXPERIMENTS 73

Figure 3.17: The condensed version of the selective grasping ROS architecture em-
ployed. The SSD and GG-CNN nodes are used to perform the object recognition and
generate the grasp pose. The pivotal SSGG-CNN Main node orchestrates interactions
between the user, the Webots simulator, and the nodes linked to SSD and GG-CNN.
Its role is to manage the sequence of detection and grasp generation requests, ensuring
their orderly execution for correct robotic grasping and object detection.

3.11.2 Performance evaluation of the object’s recognition system

This subsection shows a performance evaluation of the SSD300-VGG16-VOC, SSD512-
ResNet50-COCO, SSD512-VGG16-VOC, and the SSD512-VGG16-COCO in detecting
the 3D-printed objects shown in Figure 3.13 using the IoU metric with the threshold
value set to 0.5, 0.75 and 0.5 : 0.95 (an average of the IoU’s between 0.5 and 0.95).

The SSD300-VGG16-VOC network had the worst performance since the small image
resolution jeopardizes the object identification, as stated by Liu et al. (2016). As a result,
the mAP is lower with the SSD300 network, regardless of the base network used. The
SSD512 has proved to be better in recognizing the objects than the SSD300 in simulation,
although it has more computational cost compared to the SSD300. In addition, the base
network ResNet50 has shown small improvements if compared with the VGG16 network.
The higher sensitivity of the ResNet50 to edges compared to the VGG16 may contribute
to this result (MIAO et al., 2019). It was possible to achieve a higher mAp using the
COCO dataset if compared to the VOC dataset since the objects in COCO tend to be

74
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

smaller than VOC.
The best performance related to the object recognition system is given to the SSD512-

ResNet50-COCO. Since recognition is part of the grasping system, it highly influences
grasping performance.

Table 3.3: Evaluation of the average precision by class and mean average precision con-
sidering the IoU metric with threshold of 0.5, 0.75, and 0.5 : 0.95.

mAP@IoU Average Precision by class

Network 0.5 0.75 0.5:0.95
Bar
clamp

Gear-
box

Vase Part 1 Part 3 Nozzle

SSD300-VGG16-VOC 93 86.4 67.7 99.62 99.9 90.91 81.64 90.91 99.65
SSD512-ResNet50-COCO 97.7 92.2 73.5 100 90.91 100 90.91 99.86 100
SSD512-ResNet50-VOC 96.5 87.5 69 100 99.9 99.93 90.91 90.91 100
SSD512-VGG16-VOC 94.1 87 69.5 99.62 90.91 99.48 81.82 90.91 100
SSD512-VGG16-COCO 95.4 89.6 70.7 100 99.71 90.76 100 90.83 90.91

By using the hardware mentioned in subsection 3.11.1, the GG-CNN takes the average
of 100ms to compute a new grasp. In order to recognize an object, the SSD512 takes
230ms, and the SSD300 takes 200ms with the code written in Python.

3.11.3 Performance evaluation of the robotic grasping system

In the experiment, only static grasps are performed. The objects of interest are randomly
placed in the workspace before the grasps are performed. After picking the object, it is
moved to a bin close to the robot. The object’s classes are indicated in Figure 3.13.
A grasp is considered successful if an object of interest is recognized and moved to the
bin, following the Metric 6 referenced in Section 2.6. The success rate is considered as a
fraction of the total number of grasp attempts. The object is replaced in the workspace
if it is successful.

In simulation, the objects positions were kept through all the experiments for a fair
comparison between the object recognition methods. In order to acquire the joint angles
of the robot given the position and the orientation of the grasp, the inverse kinematics
problem was solved and implemented for the UR5 Robot arm.

When only the GG-CNN is used, the grasps are performed considering the depth image
I where all the objects are included. Therefore, for a fair comparison, the GG-CNN is
only evaluated with the object recognition networks and not individually, as it cannot
identify the objects in the workspace. Five experiments were conducted considering the
GG-CNN for grasp generations and each one of the five networks mentioned in Table 3.3.
The objects shown in Figure 3.19a and b were employed. The grasping pipeline used
in this experiment is explained in Section 3.8.1. April tags (OLSON, 2011) were used
to identify each one of the six bins (Figure 3.19c) located in the workspace to place the
object after the grasp action. A successful grasp is considered when the object is placed
in the correct bin. If the grasp generated is not stable enough, during the trajectory to
the bin, the object falls from the gripper, and the grasp is considered a failure.

3.11. EXPERIMENTS 75

2 4 6 8 10 12 14 16 18 20

2
4

6

8
10

12
14

16

18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Bar Clamp

GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2
4

6
8

10

12
14
16

18
20

Grasp trial
S
u
cc
es
sf
u
l
p
ic
k
s

Gear box

GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2
4

6
8

10
12

14
16
18

20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Nozzle

GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2

4
6
8

10
12

14
16
18

20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Part 1

GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2

4
6
8

10

12
14
16

18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Part 3

GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2

4
6
8

10
12

14
16
18

20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Vase

GG-CNN
Ideal

Figure 3.18: Grasps executed by the proposed grasping pipeline (Figure 3.14). The
Grasp trial axis represents the number of grasps executed by the robot. The dashed
green line represents the number of successful grasps executed by the robot using the
GG-CNN model.

Fig 3.18 shows the successful and failed grasps for each one of the six objects used
in the experiments. In the experiments, 20 grasp attempts were performed per object.
An average of 68% of the grasps was successful in this environment. Table 3.4 shows
the successful and fail grasps per object. Results show that some objects such as part
1 and part 3 are easier to grasp compared to the other objects. The Nozzle is the most
challenging object to grasp since it has a small contact area. The Gear Box recognition
failed 20%, decreasing the grasp success for this object.

According to Mahler et al. (2018), industrial practitioners characterize picking in
terms of the rate, reliability, and range (class of objects). One metric for comparison is
MPPH, which is formalized as:

MPPH = v · Φ, (3.5)

computed as the mean over T grasp attempts, where v is the mean grasp rate, or an
average number of attempts per hour, and Φ is the mean grasp reliability (or success
rate). The mean grasp rate can be formalized as:

v =
1

ts + tc + tr
, (3.6)

76
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Table 3.4: Grasp and recognition fail per object considering the SSD512-ResNet50-
COCO as the object detector. 20 grasps were performed per object.

Grasp
Success

Grasp
Fails

Recognition
Fail

Bar Clamp 70% 30% 0%
Part 1 75% 10% 15%
Part 3 75% 25% 0%
Nozzle 60% 25% 15%
Vase 65% 25% 10%

Gear box 65% 15% 20%

where ts + tc + tr are the average times for sensing, computation and robot motion,
respectively, in fractions of an hour.

The mean grasp reliability Φ is defined as:

Φ =

[
1

T

T−1∑
t=0

Rt

]
, (3.7)

where T is the total number of attempts, and Rt = 1 if the grasp is considered successful.
Table 3.5 shows the grasp reliability of each object recognition network used in this

research. The performance of the object recognition network is essential to generate a new
grasp using the GG-CNN, since the object recognition precedes the grasp generation, as
stated in the grasping pipeline. As expected, the SSD512-ResNet50-COCO had the best
MPPH performance, although it was not noticed a big difference between the MPPH of
the object recognition networks in the simulated experiments. The ideal MPPH depends
on the application. For example, in a warehouse, the MPPH should be high to increase
the productivity. Besides that, the MPPH is also related to the robot’s speed. The faster
the robot, the higher the MPPH.

Table 3.5: Evaluation of the grasping reliability using the Man Picks Per Hour
(MPPH) metric as suggested in Mahler et al. (2018).

Attempts Fails MPPH

SSD300-VGG16-VOC 80 16 169
SSD512-ResNet50-COCO 80 13 177
SSD512-ResNet50-VOC 80 14 175
SSD512-VGG16-VOC 80 15 172
SSD512-VGG16-COCO 80 14 175

3.11.4 Failure mode

The failure modes can be classified into the following categories:

3.12. CONCLUSION 77

Figure 3.19: (a) Simulated environment in Webots (b) Camera’s view from the support
shown in Figure 3.16 (c) Bin where the objects are placed after the grasp action.

� The grasp generated is planar. Consequently, it may not be possible to grasp the
objects depending on their position and orientation in the workspace;

� If the camera is located in the robot’s wrist, the gripper fingers may be visible.
In consequence, the object recognition system may generate false positives in this
region;

� When a quintic polynomial trajectory is generated to align the bounding box into
the GG-CNN area, the object recognition system needs to acquire a new RGB
image to generate a new bounding box from the new pose. Therefore, it may not
be possible to recognize the object considering the new camera angle;

� The GG-CNN only generates a single grasp that is acquired by evaluating the max
quality value from the network outputs. This can lead to a poor grasp generation
since the generated grasp may not be kinematically feasible or may be in collision
with other objects; and

� Since the bounding box of the RGB image must be transformed to the depth image,
it is required to align the RGB and Depth image precisely. The Intel Realsense D435
camera has a calibration tool that can be used to calibrate the RGB and Depth
images. Nevertheless, alignment inaccuracies are difficult to completely avoid.

3.12 CONCLUSION

In this chapter, a two-stage cascade system to perform selective planar grasps is pro-
posed. This system performs robotic grasps on objects of interest located in the robot’s

78
SELECTIVE PLANAR ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

workspace. The proposed method has demonstrated improvements compared to the
GG-CNN (MORRISON; CORKE; LEITNER, 2018), since it allows the grasping of spe-
cific objects in the robot workspace. The grasp generator and the object recognition
system are different algorithms. Nevertheless, experiments performed in Webots have
shown that the performance of the object recognition network affects the grasping suc-
cess rate since it is employed in series before the grasp generation.

The grasping pipeline proposed in this research is slower compared to the GG-CNN.
The reason is that SSD has more parameters and it is integrated in series with the
GG-CNN. The SSD considered in this research takes 50ms on average to recognize
an object using an RGB image and the GG-CNN takes 20ms to generate a new grasp
position and orientation. The execution time is fixed and depends on the GPU used. The
number of parameters of the SSD regardless of the base network is considerably higher
than the GG-CNN. Despite this disadvantage, the technique proposed demonstrated a
good performance since it is applied in a static environment.

It is important to note that GG-CNN is a planar grasp generator. In other words, the
gripper can only grasp an object orthogonal to the surface. It limits applications such as
grasping manufactured objects in a 3D printer since the gripper cannot be orthogonal to
the 3d printer bed. In that case, a 6D grasp generator is recommended since the robot
can grasp the object from all directions outside the printer.

The GG-CNN was not trained using SGT. Therefore, it required a high number of
ground truths grasps manually labeled. In practice, it would not be feasible to manually
generate thousands of grasps to improve the CNN. Recent research is employing SGTs us-
ing parallel processing to generate millions of annotated grasps. Nevertheless, it requires
powerful GPUs to deal with the high processing of the dataset generation (MOUSAVIAN;
EPPNER; FOX, 2019). Besides that, the dataset used to train the GG-CNN only con-
siders grasps of the object from a few points of view. It is a limitation of this technique
since the same object can be grasped from any angle and point of view and not just one
or two.

Chapter 4
This chapter presents a selective grasping pipeline to generate 6D grasps using an RGB+D sensor avoid-

ing collisions between the robot’s gripper and the environment. The performance analysis of the proposed

system is validated using real hardware and environment.

SELECTIVE 6D ROBOTIC GRASPING USING

CONVOLUTIONAL NEURAL NETWORKS

4.1 INTRODUCTION

Grasps can be single (MORRISON; CORKE; LEITNER, 2018; JOHNS; LEUTENEG-
GER; DAVISON, 2016) or multiple (MOUSAVIAN; EPPNER; FOX, 2019; GUALTIERI
et al., 2016). Multiple grasps refer to the conception of more than one feasible grasp
per object and single grasp techniques converge to a single solution per image. Ongoing
research continues to focus on multiple 6D grasp techniques, driven by the necessity to
navigate the expansive six-dimensional space involving the object. This exploration is es-
sential despite the considerably higher computational demands compared to single grasp
techniques.

In the context of additive manufacturing systems (ARRAIS et al., 2019; COSTA et
al., 2020), it is necessary to apply a grasping technique capable of yielding a diverse set of
6D grasps. This is necessary as some grasps may not be kinematically possible or collides
with objects in the robot’s volumetric space. Deep learning-based grasps techniques
provided a great tool to improve the performance of grasping unknown objects. However,
grasps are usually performed in environment that offer a low risk of collision with objects.
Techniques to avoid collisions between the robot’s gripper and the environment are still
an open area of research.

Some grasping techniques have shown a convincing grasping performance (VIERECK
et al., 2017; MAHLER et al., 2017; LEVINE et al., 2016). Despite that, they consider
only planar grasps and have high computational cost. The solution of the computational
efficiency problem was proposed by Morrison, Corke and Leitner (2018). Nevertheless, it
considers only planar and single grasps. Mousavian, Eppner and Fox (2019) presented a
grasp technique that generates multiple grasps per object in 6D. Therefore, it is possible
to choose a grasp in which the inverse kinematic solution for the robot is feasible and
avoids possible collisions with other objects in the environment.

Regarding the fourth industrial revolution, there is a high demand for flexible and
versatile robotic manipulators applicable to new environments and products (COSTA
et al., 2020). In this regard, the additive manufacturing industry has shown a growing
interest in these systems, which regularly deal with an increasing number of new parts
(ARRAIS et al., 2019). In view of the above, a grasping method capable of generating
multiple 6D grasps is required.

In this chapter, a selective grasping pipeline is introduced for generating 6D grasps
by leveraging an RGB+D sensor. This approach prioritizes collision avoidance between

79

80
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

the robot’s gripper and the surrounding environment (Figure 4.1). To avoid collisions
with nearby obstacles, a new collision detection system and a heuristic method to filter
grasps were developed. The collision avoidance algorithm is exclusively applied to the
gripper, as, in the particular test case, there is no danger of the robotic arm colliding
with the 3D printer. Although the method has been tested in an Additive Manufacturing
Unit to pick objects from a 3D printer bed, it is not limited to this application and can
be adapted for other environments, such as bin picking. An extended analysis of the
grasping performance is given with real and simulated experiments.

Figure 4.1: Overview of the proposed grasping pipeline.

4.2 CONTRIBUTIONS

This chapter has the following main contributions:

� Development of a selective grasping pipeline based on Variational Autoencoders and
an Object Segmentation Network to generate 6D grasps using an RGB+D sensor,
avoiding collisions between the robot’s gripper and the environment;

� Development and validation of a low computational complexity collision avoidance
system to discard grasps in collision with the environment and a heuristic method
to filter the best grasps;

� Integration of an object recognition and instance segmentation method, a 6D grasp-
ing generator, and a new collision detection system;

� Development of an automatic object recognition dataset generation pipeline using
a simulator; and

� Validation of the proposed system using an UR5 Robot Arm Manipulator, an
RGB+D camera Intel Realsense D435, and the gripper Robotiq 2F-140.

4.3. PROBLEM DEFINITION 81

4.3 PROBLEM DEFINITION

It has only been in the last few years that convincing experimental data have proven,
in practice, the efficiency of grasping methods. Nevertheless, the grasping techniques
are often applied for picking objects on planar surfaces such as a table (MORRISON;
CORKE; LEITNER, 2018) or in a bin (MAHLER et al., 2019; MORRISON; CORKE;
LEITNER, 2019). This workspace (table and bin) offers relatively simple test benches to
evaluate the grasping performances if compared with constrained spaces such as inside
3D printers. Therefore, 4D grasping methods (also called planar grasps) are enough to
generate feasible grasps for planar surfaces but not are suitable for constrained spaces
such as inside 3D printers.

To perform grasp in constrained spaces, it is required to avoid collisions with nearby
obstacles such as the printer bed. Therefore, it is necessary to generate a set of feasible
grasps with different positions and orientations for the same object since some grasps
are in collision with obstacles in the workspace or kinematically infeasible. Following the
description of symbols utilized within this thesis:

RGB image. Ci expresses a raw 8-bit RGB image.

Depth image. Let I be an 8-bit 2.5D depth image in which every object in the
environment is considered. H and W represent the height and the width of this image,
respectively.

Segmentation Mask. Mr represents the object segmentation mask.

Object point cloud. Nr evidence the detected object point cloud.

Filtered object point cloud. Nf represents the filtered point cloud of the detected
object.

Printer point cloud. Kr represents the raw point cloud of the 3D printer.

Downsampled printer point cloud. Kd denotes the downsampled point cloud of
the 3D printer.

Grasp set. G̃g = (P̃ , Õ) denotes a 6D grasps set, in which P̃ and Õ denotes the
position and orientation angles, relative to the camera frame.

Filtered grasps. Ggf = (Pgf ,Ogf) represents the position Pgf and orientation Ogf

of the filtered grasps by applying the heuristics described in section 4.7, relative to the
camera frame.

Collision-free grasps. Go = (Po,Oo) denote the position Po and orientation Oo of
the collision-free grasps, relative to the robot base coordinate frame.

Grasp on the robot base coordinate frame. Gfb = (Pfb,Ofb) represents the
position Pfb and orientation Ofb of the collision-free grasps, relative to the robot base
coordinate frame.

Current gripper pose. Ga = (Pa,Oa) describes the actual gripper position Pa and
orientation Oa, relative to the robot base coordinate frame.

82
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

4.4 OBJECT SEGMENTATION

4.4.1 Mask R-CNN

Mask R-CNN (HE et al., 2017) is a deep learning algorithm used for object instance
segmentation. It extends Faster R-CNN (REN et al., 2015) by adding a branch for
predicting segmentation masks on each Region of Interest (RoI). This branch is set up
in parallel with the existing branch for classification and bounding box regression. The
mask branch downgrades the performance of the object detection but is still able to reach
better performance and accuracy than the COCO instance segmentation task winner in
2016. Mask R-CNN runs at five fps on an Nvidia Tesla M40 GPU.

The layer applied in Faster R-CNN after the Region Proposal Network was used to
extract features to classify and apply box regression. It was not designed for pixel-to-
pixel alignment between network inputs and outputs. To solve this problem, He et al.
(2017) applied a quantization-free layer, called RolAlign, that maintains spatial locations.
The classes’ mask is inferred independently and depends on the RoIAlign to classify and
predict categories as is also done on Faster R-CNN.

Mask R-CNN receives an RGB image as input and returns three outputs: a bounding
box, class, and mask for each object. Similar to Faster R-CNN, the Mask R-CNN also
employs a backbone architecture. Results show that using a better feature extractor
network such as ResNeXt-101-FPN (XIE et al., 2017) instead of ResNet-50-FPN (LIN et
al., 2017), improves the performance of the Mask R-CNN.

4.4.2 Dataset and Training

In order to detect and segment the object’s image, the Mask R-CNN was trained using
a fine-tuning process. The test objects, as proposed by Mahler et al. (2017), depicted in
Figure 4.2, were specifically chosen to evaluate the grasping method due to their difficulty
to grasp.

Figure 4.2: Objects (MAHLER et al., 2017) used to test the robotic grasping pipeline
proposed in this work.

A synthetic dataset was generated using the Webots simulator by applying the fol-
lowing pipeline (Figure 4.3):

4.5. GRASPNET 83

Figure 4.3: Dataset generation pipeline using Webots.

1. The object is randomly positioned in a predefined area with a white background
and a camera is used to capture an RGB image of the object.

2. The RGB image is generated in simulation.

3. It was experimentally verified that the object is better segmented in the simulation
if the RGB image is turned into a gray image.

4. The object’s contour is generated using the chain approximation method (BRAD-
SKI, 2000b). A bounding box is also automatically generated using the edges of
the contour.

5. The contour is shown in the RGB image of stage 2.

6. The object pixels in the synthetic RGB image are copied to real images of 3D
printers as shown in Fig 4.4. 3D printers were used to increase the detections’
accuracy since the network will learn to differentiate the printer and the objects.

In total, 900 images were generated using this pipeline, 150 for each object in Figure
4.2. The training and validation set was divided into 80% and 20% respectively. The
Average Precision (AP), considering the average of IoU thresholds of 0.5:0.05:0.95, was
87.9% for the segmentation task. This average precision with averaging IoUs is used to
determine the winner of the COCO challenge dataset. Figure 4.5 shows detection exam-
ples using real object images. Figure 4.4 shows some images of the dataset automatically
generate to fine-tune the Mask R-CNN.

The Mask R-CNN was pretrained on the COCO dataset and fine-tuned in 26 epochs.
The learning rate was set to 0.0025 with a decay of 10% in epochs 17 and 23. The
Stochastic Gradient Descent was used with a weight decay of 0.0001 and momentum of
0.9. The batch size was set to two.

4.5 GRASPNET

This section briefly describes how GraspNet works. For more details refer to Mousavian,
Eppner and Fox (2019).

84
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Figure 4.4: Some figures part of the dataset automatically generated in Webots using
real images as background. This dataset was used to train the Mask R-CNN.

GraspNet is a 6D grasping CNN based on Variational Autoencoders (VAE) (KINGMA;
WELLING, 2013). VAEs are deep generative models developed based on classic Autoen-
coders. This network consists of an encoder and decoder that map the input data to a
latent space of reduced dimensionality. The encoder and decoder use the PointNet++
(QI et al., 2017) network architecture to extract spatial characteristics from each point
of the object’s point cloud and the robot’s end effector for each grasp generated, whether
successful or not.

This network has two modules: generator and evaluator. The generator module relies
on different samples of a latent space and the object and gripper’s partial point cloud
to produce several grasps. The evaluator module accepts or rejects the grasps based on
their probability of success. GraspNet was trained from grasps obtained in the software
FleX (VICENT et al., 2016). The dataset comprises 2 million successful grasps generated
from 10.8 million grasps sampled using SGTs. The grasp reconstruction cost function is
given by

L(g, ĝ) = 1

n

∑
∥T (g; p)− T (ĝ; p)∥1, (4.1)

where T (·; p) represents the transformation of a set of predefined points p on the robot
gripper, g is the ground-truth grasp position and orientation, ĝ is the grasp generated by
the decoder, and n is the number of grasps generated.

Considering the latent space z, the point cloud of the object Nf , and the generated

4.6. COLLISION CHECK 85

Figure 4.5: Detection examples performed using real object images.

grasp ĝ, the encoder is responsible for mapping each pair (Nf , ĝ) to a latent space z and
the decoder reconstructs the grasp ĝ through z. To guarantee a normal distribution of the
latent space, the Kullback-Leibler divergence defined by DKL is used between the output
of the encoder Q(·|·) and a normal distribution N (0, I), such that the cost function is
given by

Lvae =
∑

z∼Q,g∼G̃

L(ĝ, g)− αDKL[Q(z | Nf , g),N (0, I)]. (4.2)

The Kullback-Leibler divergence, denoted DKL(P∥Q), is a statistical distance, and
measure how the probability distribution P is different from the probability distribution
Q.

The GraspNet evaluator module associates a probability of success to each grasp,
observing the partial point cloud of the object Nf such that P (S | g,Nf). It was trained
using successful and failed grasps. The cost function applied in the training of this module
is given by

Levaluator = −(y log(S) + (1− y) log(1− S)), (4.3)

where S is the success probability of the inferred grasp and y is the binary label repre-
senting the ground-truth.

In addition, there is a grasp refinement process, which applies a grasp shift, given by
∆g, to increase the chances of successful grasps, so that

P (s = 1 | g +∆g) > P (s = 1 | g). (4.4)

During grasp inference, the encoder Q is removed, and the latent values z are sampled
from N (0, I).

4.6 COLLISION CHECK

It is important to note that the 6D grasping generator was trained using Simulated Grasp
Trials (SGTs), considering objects of simple geometry such as bowls, mugs, and boxes.

86
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Nevertheless, the objects employed for testing this grasp generator in this work were more
complex, although it is still possible to achieve good grasping results as it generalizes well
for new objects. Therefore, the 6D grasping generator applied in the grasping pipeline is
not optimized to generate grasps for small objects. Consequently, it may take seconds to
find a grasp for small objects.

The 6D grasp generator applied is not capable of analyzing the workspace around the
selected object to avoid collisions. To mitigate this problem, a new collision detection
system was developed to discard grasps in collision with the environment by using the
point cloud of the objects in the workspace. A simplified mesh of the Robotiq 2F-140
(Figure 4.7b) was created to verify collisions with the workspace. Simplified meshes are
preferred to reduce the computational cost of the collision check. For every new grasp
generated by GraspNet it is verified if this mesh collides with the point cloud of any object
in the workspace. To check for collisions, it is calculated the signed distance between each
point of the workspace’s point cloud and the boundaries of Robotiq 2F-140 collision mesh
in the metric space, such that

f(x) =

{
d(x, ∂Ω) if x ∈ Ω
−d(x, ∂Ω) if x ∈ Ωc , (4.5)

where ∂Ω denotes the boundary of Ω for any x ∈ X. The function f(x) takes on different
values depending on whether x is inside Ω or in its complement Ωc. The distance is
defined as the infimum

d(x, ∂Ω) := inf
y∈∂Ω

d(x, y). (4.6)

where d(x, y) defines the distance d(x, ∂Ω) from a point x to the boundary ∂Ω of a set Ω
as the infimum infy∈∂Ω of the distances d(x, y) between x and all points y in the boundary
∂Ω. This formula essentially calculates the shortest distance from x to any point on the
boundary of the set Ω.

Figure 4.6 exemplifies this statement. Figure 4.7 shows the workspace used for testing
(Figure 4.7a), a collision-free grasp (Figure 4.7b), and a identified collision between the
gripper collision mesh and the workspace point cloud (Figure 4.7c).

Figure 4.6: Signed distance used to verify collisions between the point cloud and the
Robotiq 2F-140 collision mesh.

4.7. GRASPING PIPELINE 87

(a) Workspace. (b) Grasp without collision.

(c) Grasp with collision.

Figure 4.7: Collision check system in an additive manufacturing system. (a) Workspace
configuration used for testing (b) There are no points inside the gripper collision mesh
(c) There are points of the 3D printer or the object point cloud inside the collision
mesh of the gripper.

The point cloud of the workspace, considering the robot pose in front of the printer,
has in average 10.000 points in simulation. It is required 0.8 s to calculate the signed
distance for this number of points. Figure 4.8 shows the time required to calculate the
signed distance for different number of points. For each grasp generated, it is necessary
to verify the collision with the environment. Therefore, the collision check system can
take considerable time to execute if the point cloud is not downsampled.

4.7 GRASPING PIPELINE

The proposed grasping pipeline comprises each one of the following 13 stages (Figure
4.9):

1. The initial state of the robot Ga is stored.

2. The image Ci is obtained by positioning the gripper in the front of the 3D printer.

3. The Mask R-CNN receives an image Ci as input and generate a mask Mr.

88
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

0 0.2 0.4 0.6 0.8 1

·104

0

0.2

0.4

0.6

0.8

1

Number of points

T
im

e
to

ch
ec
k
co
ll
is
io
n
(s
)

Figure 4.8: Relationship between the number of points of the workspace point cloud
and the time required to verify the collision. It is required 0.8s to calculate the signed
distance for 1 · 104 points.

4. The mask Mr is copied to the depth image I.

5. The pixels of the image I are selected by using the mask Mr. The point cloud Nr

is generated by using a backprojection algorithm in the selected pixels of the image
I.

6. A statistical outlier removal filter (ZHOU; PARK; KOLTUN, 2018) is applied in
the point cloud Nr to generate a new point cloud Nf .

7. The printer point cloud Kr is acquired.

8. Kr is downsampled to generate a new point cloud Kd.

9. Nf is used as input to GraspNet to generate a set of 6D grasps G̃g.

10. Ggf is selected from G̃g considering the grasps with a score greater than 80% and
Ogf closer to Oa, so:

Ggf = Oa − Õ < Om (4.7)

in which Ggf is a set of grasps next to Ga taking into account a predetermined
interval Om.

4.8. EXPERIMENTAL SETUP 89

Figure 4.9: Grasping pipeline using GraspNet (MOUSAVIAN; EPPNER; FOX, 2019),
Mask R-CNN (HE et al., 2017), and a collision check system based on point clouds
and collision meshes. The simulation is performed in Webots (WEBOTS, 2021) using
the virtual model of the UR5 robot manipulator, Robotiq 2F-140 and Intel Realsense
D435.

11. Each grasp of Ggf is rejected if any point of the point cloud Kd lies inside the
Robotiq 2F-140 gripper mesh.

12. The grasp without collision Go is obtained.

13. The final grasp Gfb is reached by using a quintic polynomial trajectory planning.

Summarizing, after a detection of an object of interest, a pixel-wise segmentation
algorithm is applied to create a mask of the objects using RGB images. This mask is
used to segment the object in the depth image and then generate a point cloud by using a
back-projection algorithm. The point cloud of the object is used to generate a 6D grasp,
and the point cloud of the environment is used to check if the generated grasp collides
with obstacles. Besides this, each grasp is discarded if it is not kinematic viable. Finally,
the final grasp is reached by using a quintic polynomial trajectory planning.

4.8 EXPERIMENTAL SETUP

In this work, real and simulated experiments were performed to evaluate the proposed
system. The simulated experiments were conducted in Webots (WEBOTS, 2021) inte-

90
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

grated to ROS (Robot Operating System) (QUIGLEY et al., 2009) Noetic version. The
UR5 robot from Universal Robots (ROBOTS, 2019) fitted with a Robotiq Gripper 2F-140
was used to perform the grasping trials. The Intel Realsense D435 camera was mounted
to the wrist of the robot, approximately 23 cm above the fingertips, and inclined 14°
towards the gripper. The computations were performed on a desktop running Ubuntu
20.04 with a 2.9 GHz Intel Core i5-10400F, 32 GB RAM, and NVIDIA GeForce RTX
3060 graphic card with 12 GB VRAM.

The object classes used to test the grasping method are shown in Figure 4.2. A grasp
is considered successful if the object is moved out of the printer without slipping through
the gripper. To obtain the joint angles, given the grasp pose, the TRAC-IK (BEESON;
AMES, 2015) was applied. Fig 4.10 shows the real UR5 at the Laboratory of Robotics
(UFBA) and the simulated UR5 in Webots.

(a) UR5 robot arm manipulator. (b) Simulated UR5 robot arm.

Figure 4.10: Real UR5 at the Laboratory of Robotics (UFBA) and simulated UR5 in
Webots.

4.9 EXPERIMENTAL RESULTS AND ABLATION STUDY

Some experiments were conducted to better understand the benefits of the integration of
the proposed heuristics and the point cloud collision check into the 6D grasping genera-
tor. The objects of Figure 4.2 were used in these experiments, and only one object was
randomly placed on the 3D printer bed per grasp. In the ablation study, the 6D grasp
generator and instance segmentation network are employed in each one of the following
cases:

1. Using only stages 1 to 6 of the grasping pipeline of Figure 4.9. The highest score
grasp is chosen in this case;

2. Considering stages 1 to 10 of the grasping pipeline of Figure 4.9. A heuristic to
filter the generated grasps is applied. The highest score grasp is chosen between
the filtered grasps;

3. Employing the complete grasping pipeline of the Figure 4.9.

4.9. EXPERIMENTAL RESULTS AND ABLATION STUDY 91

Figure 4.11: Successful and failed grasps generated in each step of the ablation study
using the simulated environment.

Figure 4.11 shows examples of successful and failed grasps. Since GraspNet only takes
the object point cloud as input and does not see the environment around, it generates
grasps that often collide with the printer. When an orientation constraint is added to
GraspNet (stage 10 of the grasping pipeline), the grasp feasibility is improved but it does
not guarantee that the robot will not collide with the environment, as clearly seen in
Figure 4.11. Nevertheless, grasps that are closer to the current end-effector orientation
are considered, and grasps far away are ignored. For that, a heuristic already explained
in Section 4.7 is applied. When a collision check algorithm using the point cloud of the
environment is applied, the successful grasps are considerably improved as seen in Figure
4.12.

To analyze the performance of the proposed method, 20 pick attempts were performed
per object. Figure 4.12 shows each grasp trial in simulation, considering the referred ab-
lation study. From the experiments, it can be inferred that GraspNet does not effectively
generate a grasp for small objects such as part 1, nozzle, and gear box. Larger objects
such as vase, part 3, and bar clamp lead to more stable grasps.

In the ablation study, 20 grasp attempts were performed per object. Table 4.1 shows
the performance obtained in simulation for each case of the ablation study. Only 8 (or
7%) grasps were successful when employing the grasping pipeline from stage one to six.

92
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

When applying the grasping pipeline from stage one to 10, 18 (or 15%) grasps were
successful. Considering the entire grasping pipeline, 74 (or 62%) grasps were successful.

Table 4.1: Successful and failed grasping comparison of the ablation study using the
simulated environment.

Grasp
Success

Grasp
Fails

Entire grasping pipeline 62% 38%
Stage 1 to 10 15% 85%
Stage 1 to 6 7% 93%

It can be noted through Figure 4.13 that GraspNet and Mask R-CNN are fast enough
to generate a grasp from 2.6 to 3.4 seconds using the hardware mentioned in Section
4.8. Despite this lower grasping planning time, the grasping success rate is low. When
the grasp collision check using the point cloud is employed, the grasp planning time is
increased as well as the success rate as described in Figure 4.12.

Despite the success rate of the entire grasping pipeline (62%), the time consumed to
generate a grasp is considerably high, as shown in Figure 4.13. Besides that, the time
required to generate a grasp highly depends on the object’s geometry. Small objects such
as part 1 demand a significant time to find a feasible grasp, and for bigger objects such
as the vase, a grasp is generated faster. The reason is that GraspNet was not trained
with small objects as seen in Mousavian, Eppner and Fox (2019). Despite this, Figure
4.14 shows that if we set a time threshold to generate a grasp we would still get a high
success rate for some objects. The lower the time threshold is, the lower the success rate
because the grasp planner has less time to explore the 6D space.

4.10 COMPARATIVE STUDY

The grasping pipeline presented in this chapter is compared to the grasping pipeline
proposed in Chapter 3. In order to perform a fair comparison, the grasping pipeline
using GraspNet was modified to integrate the same object recognition CNN used with
the GG-CNN in Chapter 3. Therefore, the SSD512-ResNet50-COCO is integrated in
series with GraspNet as well. The consequent grasping pipelines for both GraspNet and
GG-CNN are shown in Figure 4.15.

Although the GG-CNN and GraspNet differ in terms of grasp orientation restrictions,
the environment in which these techniques are contrasted provides fair comparability.
The reason is that the test environment does not have space constraints, such as inside a
3D printer. It gives a fair comparison since GG-CNN can only generate grasp in planar
surfaces, considering the gripper orthogonal to the surface. The adapted grasping pipeline
shown in Figure 4.15 comprises the following stages:

1. The image Ci is obtained from the Intel Realsense D435 virtual camera in Webots.

2. It executes an attempt to detect the selected object using the image Ci as an input
to the SSD512-ResNet50-COCO.

4.10. COMPARATIVE STUDY 93

2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Bar Clamp

1
2
3

Ideal

2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

Grasp trial
S
u
cc
es
sf
u
l
p
ic
k
s

Gear Box

1
2
3

Ideal

2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Nozzle

1
2
3

Ideal

2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Part 1

1
2
3

Ideal

2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Part 3

1
2
3

Ideal

2 4 6 8 10 12 14 16 18 20
0
2
4
6
8

10
12
14
16
18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Vase

1
2
3

Ideal

Figure 4.12: Grasps performed in simulation by employing the ablation study referred
in Section 4.9. (1) Grasping pipeline from stages 1 to 6, (2) Grasping pipeline from
stages 1 to 10, and (3) Complete grasping pipeline. The objects employed in the ex-
periments are shown in section 4.5. The curve 1 for the part Nozzle is under the curve
2. In other words, there were no successful grasps in the 20 attempts.

3. If the object is detected, the bounding box generated by SSD512-ResNet50-COCO
is obtained.

4. The bounding box obtained in stage 3 is copied to the depth image I.

From stage 4, the grasping pipeline is divided into two parts. One part is related
to the grasping pipeline presented in this chapter and the other is the grasping pipeline
presented in Chapter 3. The grasping pipeline 1 (using GraspNet - from stages A1 to
F1) comprises the following stages:

A1: The region inside the bounding box in the depth image I is transformed to
point cloud using a back projection algorithm.

B1: The point cloud Nr of the detected object is obtained.

C1: The point cloud Nr obtained from stage B1 is used as input to the GraspNet.

D1: A set of grasps G̃g is obtained from stage C1.

94
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

2.6 2.8 3

1

2

3

4

5

6

Time (seconds)

Stages from 1 to 6

2.6 2.8 3 3.2 3.4

1

2

3

4

5

6

Time (seconds)

Stages from 1 to 10

0 50 100 150 200 250 300 350

1

2

3

4

5

6

Time (seconds)

Entire Grasping Pipeline

Figure 4.13: Time to generate a grasp for each object used in the experiments. (1) Bar
clamp, (2) Gear Box, (3) Nozzle, (4) Part 1, (5) Part 3, (6) Vase. The processing times
were based on the ablation study referred in Section 4.9. It is noticed that the entire
grasping pipeline is time consuming due to the collision check with the point cloud.
However, grasp success is considerably increased as shown in Figure 4.12. Note that the
x axis of the graphs have different scales.

E1: From G̃g, it is possible to select Gfb that has the highest score generated by
GraspNet. Nevertheless, it was noticed that not always a successful grasp has a
high score. Therefore, it was developed an heuristic to select Gfb, considering the

grasp set G̃g that has a score higher than 70% and that Of is close to Oa.

Φ̃ = |Oa − Õf |, (4.8)

where Φ̃ is the vector differences between the actual gripper orientation Oa and the
target gripper orientation Õf .

The grasp Gfb is obtained as

id = max(i(1− sign(Φ̃i −min(Φ̃)))); i = 0 . . . p, (4.9)

where id is index of the lowest vector difference Φ and p is the number of grasps
generated. Therefore,

Gf = G̃(id). (4.10)

F1: It is verified if any point of the point cloud Kd lies inside the collision mesh of
the Robotiq 2F-140 gripper, considering each grasp of Ggf .

The grasping pipeline 2 (using GG-CNN - stages A2 and B2) is applied using the same
steps mentioned in Chapter 3 excluding the trajectory planning step to align the object
in the GG-CNN area if it is outside this area. The difference between both methods in
terms of grasp orientation constraint can be clearly observed in stages D1 and B2. In
stage D1, there are multiple 6D grasps generated by the GraspNet. In stage B2, there is

4.10. COMPARATIVE STUDY 95

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

Time threshold (Seconds)

S
u
cc
es
s
ra
te

(%
)

Time threshold versus success rate (%)

Bar Clamp
Gear Box
Nozzle
Part 1
Part 3
Vase

Figure 4.14: Relationship between time threshold and success rate. The lower the time
threshold is, the lower is the success rate due to the time consumed by the entire grasp-
ing pipeline presented in Section 4.9.

only one planar grasp generated by GG-CNN. Finally, in stage 5, Gfb is acquired through
a sequence of homogeneous transformations such as

Gfb = tRC(Gf), (4.11)

where tRC represents the homogeneous transformation from the camera’s coordinate sys-
tem and the robot’s coordinate system.

It was performed 20 grasp attempts for each object. After each attempt, the objects
were randomly placed in the environment. Figure 4.16 reveals some grasps generated by
Graspnet and GG-CNN using the pipeline presented in Figure 4.15.

It is verified that GraspNet fails when trying to grasp a small object such as part 1,
nozzle, and gear-box. This fact can be clearly observed in Figure 4.12 since the failed
grasps for part 1, nozzle, and gear-box are higher. GraspNet achieved a higher success
when considering the bar clamp. The GG-CNN had lower performance when considering
this object. For part 3, both networks had an equivalent performance.

As shown in Table 4.2, from the 120 grasps performed, GraspNet achieves a grasp
success rate of 64%. The SSD512-ResNet50 failed in 9% of these grasp attempts. From
the executed grasps, 68% were successful when considering the GG-CNN as a grasp

96
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Figure 4.15: Comparison between GraspNet and GG-CNN using two different grasping
pipelines. The SSD512-ResNet50-COCO was employed to detect the object of interest
in both pipelines. The images depict a simulation performed in Webots.

generator. 11% of the grasps failed due to the SSD512-ResNet50. Regarding processing
time, GG-CNN is faster than GraspNet, as shown in Figure 4.17. Nevertheless, GG-
CNN only generates a single planar grasp, but GraspNet explores the 6D space and
generates a set of grasps instead of a single one. Therefore, GraspNet requires more time
to generate a grasp. This is because Graspnet has more network parameters and its
performance is directly related to this (MORRISON; CORKE; LEITNER, 2018). Since
GG-CNN performs only planar grasps, it cannot be applied in constrained spaces such
as the interior of a 3D printer. GraspNet takes advantage of this limitation because it
processes the object’s point cloud and generates 6D grasps. Figure 4.18 shows the grasp
success rate for each object.

4.10.1 Real hardware implementation

The experiments were also performed using the real UR5 robot arm as shown in Figure
4.19. The UR5 robot arm was equipped with the camera Intel Realsense D435 and robotiq
gripper 2F-140. As in the simulated experiments, 20 picks were performed per object.

To investigate the grasp repeatability, two poses were determined empirically for each
object, see Figure 4.20, and 15 grasp attempts were performed for each pose for each
object, see Figure 4.21. It is important to point out that this repeatability test does
not have a statistical value, but an empirical analysis. We can infer that the pose of
the object’s point cloud Nf in relation to the visual sensor generates different levels of

4.10. COMPARATIVE STUDY 97

Figure 4.16: Grasps executed by the GraspNet and GG-CNN, employing SSD512-
ResNet50 to identify the objects. It was applied the grasping pipeline detailed in Fig-
ure 4.15.

Table 4.2: GraspNet and GG-CNN comparison

GraspNet GG-CNN

Grasp type 6D Planar

Grasp width
inference

Does not infer the grasp width Infer the grasp width

Network Input Point Cloud Depth Image

Grasp Success
Rate

64% 68%

Working
Environments

Any Environment Planar Surfaces

98
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

0 15 30 45 60 75 90 105

1

2

3

4

5

6

Time (seconds)

GraspNet

10 20 30 40 50 60 70 80

1

2

3

4

5

6

Time (milliseconds)

GG-CNN

Figure 4.17: Time to generate a grasp for each object used in the experiments. It is
important to note the different time scales in the x-axis for the GraspNet (seconds) and
GG-CNN (milliseconds). In the graph, the objects are represented as (1) Bar clamp,
(2) Gear Box, (3) Nozzle, (4) Part 1, (5) Part 3, (6) Vase. It is important to note that
GraspNet requires more time because it generates a set of grasps rather than a single
one like GG-CNN does. Besides that, GraspNet has more parameters than GG-CNN
and explore the entire 6D space to generate non-planar grasps.

graspability, and consequently the grasping generator produces a set of different grasps,
except in cases of objects with a high degree of symmetry (e.g. balls, cubes, rectangles,
cylinders, etc).

4.10.2 Failure mode

The failure modes can be classified into the following categories:

� The grasp algorithm (GraspNet) is not optimized to generate grasps for small ob-
jects.

� Since the bounding box of the RGB image is transformed to the depth image, it is
required to align the RGB and Depth image precisely. Misalignments lead to wrong
grasping generation.

� If the environment has low-light conditions, the object cannot be recognized well
by the object detector algorithm since it uses RGB images as input. The grasp gen-
erator does not suffer from low-light conditions since it uses the object point cloud.
Despite that, the grasping algorithm depends on the object recognition network to
generate a grasp. Therefore, low-light conditions highly affect the system.

4.10. COMPARATIVE STUDY 99

2 4 6 8 10 12 14 16 18 20

2
4

6

8
10

12
14

16

18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Bar Clamp

GraspNet
GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2
4

6
8

10

12
14
16

18
20

Grasp trial
S
u
cc
es
sf
u
l
p
ic
k
s

Gear box

GraspNet
GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2
4

6
8

10

12
14

16

18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Nozzle

GraspNet
GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2
4

6
8

10

12
14

16

18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Part 1

GraspNet
GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2
4

6
8

10

12
14

16

18
20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Part 3

GraspNet
GG-CNN
Ideal

2 4 6 8 10 12 14 16 18 20

2

4
6
8

10

12
14
16
18

20

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Vase

GraspNet
GG-CNN
Ideal

Figure 4.18: Comparison between Graspnet and GG-CNN using the grasping pipeline
of the Figure 4.15.

100
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

Figure 4.19: Grasps performed in printed objects inside a 3D printer. Video link:
youtube.com/watch?v=APXHeSNuZYU

4.10. COMPARATIVE STUDY 101

Figure 4.20: Poses S and F for each object.

3 6 9 12 15
0

3

6

9

12

15

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Bar Clamp

S
F

3 6 9 12 15
0

3

6

9

12

15

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Gear Box

S
F

3 6 9 12 15
0

3

6

9

12

15

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Nozzle

S
F

3 6 9 12 15
0

3

6

9

12

15

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Part 1

S
F

3 6 9 12 15
0

3

6

9

12

15

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Part 3

S
F

3 6 9 12 15
0

3

6

9

12

15

Grasp trial

S
u
cc
es
sf
u
l
p
ic
k
s

Vase

S
F

Figure 4.21: Grasps performed by GraspNet using Mask R-CNN as the object detector.
To analyze the repeatability, the objects position were kept the same. S means the ob-
ject pose that is easier to grasp and F is the object pose harder to grasp. These poses
were randomly determined.

102
SELECTIVE 6D ROBOTIC GRASPING USING CONVOLUTIONAL NEURAL

NETWORKS

4.11 CONCLUSION

This thesis has proposed a selective grasping pipeline to generate 6D grasps. It was accom-
plished by the integration of an object recognition and instance segmentation method,
a 6D grasping generator, and a collision detection system based on point clouds. An
extensive analysis of experimental results is provided, involving an ablation study, com-
putational cost for collision detection, and repeatability, applied to additive manufactured
objects in a complex environment.

The proposed grasping pipeline generates multiple feasible grasps per object. The
variety of grasps produced makes it possible to analyze several viable kinematic solutions,
and eliminate those that are in collision in the robot’s volumetric space.

The main advantage of this solution comes from the integration of important func-
tionalities for grasping systems: (i) selective grasp, the system can grasp and identify
the target objects; (ii) segmentation and statistical outlier removal filter to generate ob-
ject’s point cloud in complex environments; (iii) generation of ranked collision-free grasps.
The system with such functionality can be easily adapted to other applications, such as
selective pick and place in unstructured environment, selective bin picking, among others.

In future work we consider a detailed investigation of the grasping efficiency in small
printed objects and the object recognition training process improvement. The 6D grasp
generator had lower performance when considering small objects. This is even more
noticeable when considering a constrained space such as inside the 3D printer. In view
of the application mentioned in this chaper, we do not perceive a significant issue with
allocating additional time to compute the optimal grasp, given that we possess the 3D
shape of all printed objects as well as the 3D printers and the grasp computation can
occur concurrently with the parts’ printing. Nevertheless, incorporating a pre-processing
step to optimize the voxel representation prior to inputting it into the grasping network
is an interesting prospect.

Chapter 5

CONCLUSION

This thesis is dedicated to the review of the state-of-the-art grasping methods and the
development of new grasping pipeline strategies using Deep Learning. Recent research
shows the scalability of these methods in the real world with a good confidence level.
Despite that, there are still many issues to be addressed until it can be reliably deployed
in real scenarios.

Chapter 2 presents a deep review of robotic grasping methods by analyzing each
aspect of the distinct methods since it can highly affect grasping performance. For each
aspect, a comparison is made, and further considerations are given. This comprehensive
review serves as the foundation for understanding the state-of-the-art in robotic grasping,
providing valuable insights into the strengths and weaknesses of different approaches. By
dissecting the key components of these methods, readers can gain a clear understanding
of the factors that influence the success of robotic grasping systems.

Chapter 3 presents a two-stage cascade system using the GG-CNN (MORRISON;
CORKE; LEITNER, 2018), and modified versions of the SSD (LIU et al., 2016). The
proposed system is comprised of both GG-CNN and SSD integrated in series. It is
assumed that the objects are located on a flat surface, and the grasping is performed by
a parallel-jaw gripper mounted with an RGB+D camera. The proposed grasping pipeline
is able to perform grasp on objects of interest. Simulation results have proven the high
scalability of this method in real-world scenarios. Despite the results, this method is not
able to perform grasps in six dimensions, and only generates a single grasp per object.

Chapter 4 introduces a novel selective grasping pipeline for generating six-dimensional
(6D) grasps through the integration of object recognition, instance segmentation, 6D
grasping generation, and collision detection based on point clouds. Extensive experi-
mental analyzes, including ablation studies, computational cost assessments for collision
detection, and repeatability tests, are conducted on additive manufactured objects within
complex environments. The pipeline produces multiple feasible grasps per object, allow-
ing the analysis of various kinematic solutions while ensuring collision avoidance. Its key
strengths lie in selective grasping, object segmentation, statistical outlier removal, and
ranked collision-free grasp generation, making it adaptable to applications as selective
pick-and-place operations in unstructured settings and bin picking. Real experiments
were performed using an UR5 Robot Arm Manipulator, an RGB+D camera Intel Re-
alsense D435, and the gripper Robotiq 2F-140. A comparison between the pipeline pre-
sented in Chapter 3 and the proposed pipeline in Chapter 4 is also presented, highlighting
the advantages and disadvantages of each method, using the same set of objects.

5.1 MAIN CONTRIBUTIONS

� Development of a selective grasping pipeline designed to generate four-dimensional
(4D) grasps by integrating object recognition and 4D grasping generation based on

103

104 CONCLUSION

depth images;

� Development of a selective grasping pipeline designed to generate six-dimensional
(6D) grasps by integrating object recognition, instance segmentation, 6D grasping
generation, and collision detection based on point clouds;

� Extensive experimental analysis, including ablation studies, evaluation of compu-
tational cost for collision detection, and repeatability testing, applied to additive
manufactured objects within a complex environment;

� Potential adaptability to various applications, such as selective pick-and-place op-
erations in unstructured environments and selective bin picking; and

� Detailed comparison between 4D and 6D grasp generators using real hardware and
simulation environments.

5.2 FUTURE WORKS

The development of this thesis and further research in the robotic grasping field indicated
that it is worthwhile to extend the research in the following aspects:

� Conducting a more in-depth exploration of grasping efficiency, especially for small
printed objects. This includes refining the training processes for object recogni-
tion, with a specific emphasis on optimizing point cloud representations to enhance
performance. Special attention should be given to scenarios involving constrained
spaces like those found in 3D printing environments;

� Integrating gripper geometry as an input parameter for the grasping generator
network to facilitate precise collision avoidance with the environment. This consid-
eration can significantly improve the safety and accuracy of grasping actions;

� Investigating techniques for dimensionality reduction within the 6 degree-of-freedom
(6DOF) space to simplify network training;

� Exploring the application of shape completion methods to enhance grasping perfor-
mance, particularly when dealing with objects that are partially or fully occluded;

� Investigating the feasibility of direct point cloud segmentation, as opposed to relying
exclusively on masks generated from RGB or Depth images, without compromising
overall performance;

� Implementing orientation and reach constraints within the grasping generation pro-
cess, tailored to the specific requirements of the robot in use. This customization
can ensure that the grasping actions are aligned with the capabilities and limitations
of the robotic system.

BIBLIOGRAPHY

ARRAIS, R. et al. Application of the open scalable production system to machine tending
of additive manufacturing operations by a mobile manipulator. In: SPRINGER. EPIA
Conference on Artificial Intelligence. [S.l.], 2019. p. 345–356.

BADRINARAYANAN, V.; KENDALL, A.; CIPOLLA, R. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pattern anal-
ysis and machine intelligence, IEEE, v. 39, n. 12, p. 2481–2495, 2017.

BEESON, P.; AMES, B. Trac-ik: An open-source library for improved solving of generic
inverse kinematics. In: IEEE. 2015 IEEE-RAS 15th International Conference on Hu-
manoid Robots (Humanoids). [S.l.], 2015. p. 928–935.

BEKIROGLU, Y. et al. Benchmarking protocol for grasp planning algorithms. IEEE
Robotics and Automation Letters, IEEE, v. 5, n. 2, p. 315–322, 2019.

BOHG, J. et al. Data-driven grasp synthesis—a survey. IEEE Transactions on Robotics,
IEEE, v. 30, n. 2, p. 289–309, 2013.

BOTTAREL, F. et al. Graspa 1.0: Graspa is a robot arm grasping performance bench-
mark. IEEE Robotics and Automation Letters, IEEE, v. 5, n. 2, p. 836–843, 2020.

BRADSKI, G. The opencv library. Dr Dobb’s J. Software Tools, v. 25, p. 120–125, 2000.

BRADSKI, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

BREYER, M. et al. Volumetric grasping network: Real-time 6 dof grasp detection in
clutter. arXiv preprint arXiv:2101.01132, 2021.

CALLI, B. et al. Guest editorial: Introduction to the special issue on benchmarking
protocols for robotic manipulation. IEEE Robotics and Automation Letters, IEEE, v. 6,
n. 4, p. 8678–8680, 2021.

CALLI, B. et al. Yale-cmu-berkeley dataset for robotic manipulation research. The Inter-
national Journal of Robotics Research, SAGE Publications Sage UK: London, England,
v. 36, n. 3, p. 261–268, 2017.

CALLI, B. et al. Benchmarking in manipulation research: Using the yale-cmu-berkeley
object and model set. IEEE Robotics & Automation Magazine, IEEE, v. 22, n. 3, p.
36–52, 2015.

105

106 BIBLIOGRAPHY

CHANG, A. X. et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

CHEN, L.-C. et al. Semantic image segmentation with deep convolutional nets and fully
connected crfs. arXiv preprint arXiv:1412.7062, 2014.

CHONG, L.-Y.; TEOH, A. B. J.; ONG, T.-S. Range image derivatives for grcm on 2.5 d
face recognition. In: Information Science and Applications (ICISA) 2016. [S.l.]: Springer,
2016. p. 753–763.

CIOCARLIE, M. et al. Towards reliable grasping and manipulation in household envi-
ronments. In: SPRINGER. Experimental Robotics. [S.l.], 2014. p. 241–252.

COLLINS, J. et al. Benchmarking simulated robotic manipulation through a real world
dataset. IEEE Robotics and Automation Letters, IEEE, v. 5, n. 1, p. 250–257, 2019.

CORRELL, N. et al. Analysis and observations from the first amazon picking challenge.
IEEE Transactions on Automation Science and Engineering, IEEE, v. 15, n. 1, p. 172–
188, 2016.

COSTA, F. S. et al. Fasten iiot: An open real-time platform for vertical, horizontal and
end-to-end integration. Sensors, Multidisciplinary Digital Publishing Institute, v. 20,
n. 19, p. 5499, 2020.

DEPIERRE, A.; DELLANDRÉA, E.; CHEN, L. Jacquard: A large scale dataset for
robotic grasp detection. In: IEEE. 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). [S.l.], 2018. p. 3511–3516.

DIANKOV, R.; KUFFNER, J. Openrave: A planning architecture for autonomous
robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, v. 79, 2008.

DOWNS, L. et al. Google scanned objects: A high-quality dataset of 3d scanned
household items. In: IEEE. 2022 International Conference on Robotics and Automation
(ICRA). [S.l.], 2022. p. 2553–2560.

EPPNER, C.; MOUSAVIAN, A.; FOX, D. Acronym: A large-scale grasp dataset based on
simulation. In: IEEE. 2021 IEEE International Conference on Robotics and Automation
(ICRA). [S.l.], 2021. p. 6222–6227.

EVERINGHAM, M. et al. The pascal visual object classes (voc) challenge. International
journal of computer vision, Springer, v. 88, n. 2, p. 303–338, 2010.

EVERINGHAM, M. et al. The pascal visual object classes (voc) challenge. International
Journal of Computer Vision, v. 88, n. 2, p. 303–338, jun. 2010.

FANG, H. et al. Transcg: A large-scale real-world dataset for transparent object depth
completion and a grasping baseline. IEEE Robotics and Automation Letters, IEEE, v. 7,
n. 3, p. 7383–7390, 2022.

107

FANG, H.-S. et al. Graspnet-1billion: A large-scale benchmark for general object grasp-
ing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. [S.l.: s.n.], 2020. p. 11444–11453.

FUJITA, M. et al. What are the important technologies for bin picking? technology anal-
ysis of robots in competitions based on a set of performance metrics. Advanced Robotics,
Taylor & Francis, v. 34, n. 7-8, p. 560–574, 2020.

GIRSHICK, R. et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2014. p. 580–587.

GOSSOW, D. et al. RViz: ROS 3D Robot Visualizer. 2020. 3D visualizer for the
Robot Operating System (ROS) framework. Dispońıvel em: ⟨https://github.com/
ros-visualization/rviz⟩.

GUALTIERI, M. et al. High precision grasp pose detection in dense clutter. In: IEEE.
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
[S.l.], 2016. p. 598–605.

HARA, K.; VEMULAPALLI, R.; CHELLAPPA, R. Designing deep convolutional neural
networks for continuous object orientation estimation. arXiv preprint arXiv:1702.01499,
2017.

HE, K. et al. Mask r-cnn. In: Proceedings of the IEEE international conference on com-
puter vision. [S.l.: s.n.], 2017. p. 2961–2969.

HE, K. et al. Deep residual learning for image recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. [S.l.: s.n.], 2016. p. 770–778.

HERNANDEZ, C. et al. Team delft’s robot winner of the amazon picking challenge 2016.
In: SPRINGER. Robot World Cup. [S.l.], 2016. p. 613–624.

HOLSCHNEIDER, M. et al. A real-time algorithm for signal analysis with the help of
the wavelet transform. In: Wavelets. [S.l.]: Springer, 1990. p. 286–297.

HSU, D.; LATOMBE, J.-C.; MOTWANI, R. Path planning in expansive configuration
spaces. In: IEEE. Proceedings of International Conference on Robotics and Automation.
[S.l.], 1997. v. 3, p. 2719–2726.

INTEL. Intel Robotics Open Source Project. 2019. Accessed: 2020-06-16. Dispońıvel em:
⟨http://wiki.ros.org/IntelROSProject⟩.

JAUHRI, S.; LUNAWAT, I.; CHALVATZAKI, G. Learning any-view 6dof robotic grasp-
ing in cluttered scenes via neural surface rendering. arXiv preprint arXiv:2306.07392,
2023.

JIA, Y. et al. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

108 BIBLIOGRAPHY

JIANG, Y.; MOSESON, S.; SAXENA, A. Efficient grasping from rgbd images: Learning
using a new rectangle representation. In: IEEE. 2011 IEEE International Conference on
Robotics and Automation. [S.l.], 2011. p. 3304–3311.

JIANG, Z. et al. Synergies between affordance and geometry: 6-dof grasp detection via
implicit representations. arXiv preprint arXiv:2104.01542, 2021.

JOHNS, E.; LEUTENEGGER, S.; DAVISON, A. J. Deep learning a grasp function
for grasping under gripper pose uncertainty. In: IEEE. 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). [S.l.], 2016. p. 4461–4468.

KAPPLER, D.; BOHG, J.; SCHAAL, S. Leveraging big data for grasp planning. In:
IEEE. 2015 IEEE International Conference on Robotics and Automation (ICRA). [S.l.],
2015. p. 4304–4311.

KASPER, A.; XUE, Z.; DILLMANN, R. The kit object models database: An object
model database for object recognition, localization and manipulation in service robotics.
The International Journal of Robotics Research, SAGE Publications Sage UK: London,
England, v. 31, n. 8, p. 927–934, 2012.

KATZ, D.; KENNEY, J.; BROCK, O. How can robots succeed in unstructured envi-
ronments. In: CITESEER. In Workshop on Robot Manipulation: Intelligence in Human
Environments at Robotics: Science and Systems. [S.l.], 2008.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

KINGMA, D. P.; WELLING, M. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

KOBER, J.; PETERS, J. Imitation and reinforcement learning. IEEE Robotics & Au-
tomation Magazine, IEEE, v. 17, n. 2, p. 55–62, 2010.

KOENIG, N.; HOWARD, A. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: IEEE. 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). [S.l.], 2004. v. 3, p. 2149–2154.

KONIDARIS, G. et al. Robot learning from demonstration by constructing skill trees.
The International Journal of Robotics Research, SAGE Publications Sage UK: London,
England, v. 31, n. 3, p. 360–375, 2012.

KRAGIC, D.; CHRISTENSEN, H. I. Robust visual servoing. The international journal
of robotics research, Sage Publications Sage CA: Thousand Oaks, CA, v. 22, n. 10-11, p.
923–939, 2003.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing systems.
[S.l.: s.n.], 2012. p. 1097–1105.

109

KROEMER, O. B. Machine Learning for Robot Grasping and Manipulation. Tese
(Doutorado) — Technische Universität, 2015.

KUMRA, S.; KANAN, C. Robotic grasp detection using deep convolutional neural net-
works. In: IEEE. 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). [S.l.], 2017. p. 769–776.

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, Ieee, v. 86, n. 11, p. 2278–2324, 1998.

LEE, J. et al. DART: Dynamic animation and robotics toolkit. The Journal of Open
Source Software, The Open Journal, v. 3, n. 22, p. 500, Feb 2018. Dispońıvel em: ⟨https:
//doi.org/10.21105/joss.00500⟩.

LEITNER, J. et al. The acrv picking benchmark: A robotic shelf picking benchmark to
foster reproducible research. In: IEEE. 2017 IEEE International Conference on Robotics
and Automation (ICRA). [S.l.], 2017. p. 4705–4712.

LENZ, I.; LEE, H.; SAXENA, A. Deep learning for detecting robotic grasps. The Inter-
national Journal of Robotics Research, SAGE Publications Sage UK: London, England,
v. 34, n. 4-5, p. 705–724, 2015.

LEVINE, S. et al. Learning hand-eye coordination for robotic grasping with large-scale
data collection. In: SPRINGER. International Symposium on Experimental Robotics.
[S.l.], 2016. p. 173–184.

LIN, T.-Y. et al. Feature pyramid networks for object detection. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2017. p. 2117–
2125.

LIN, T.-Y. et al. Microsoft coco: Common objects in context. In: SPRINGER. European
conference on computer vision. [S.l.], 2014. p. 740–755.

LIN, T.-Y. et al. Microsoft COCO: Common Objects in Context. 2015.

LIU, W. et al. Ssd: Single shot multibox detector. In: SPRINGER. European conference
on computer vision. [S.l.], 2016. p. 21–37.

LIU, W.; HE, J.; CHANG, S.-F. Large graph construction for scalable semi-supervised
learning. 2010.

LIU, Z. et al. Ocrtoc: A cloud-based competition and benchmark for robotic grasping
and manipulation. arXiv preprint arXiv:2104.11446, 2021.

LONG, J.; SHELHAMER, E.; DARRELL, T. Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. [S.l.: s.n.], 2015. p. 3431–3440.

110 BIBLIOGRAPHY

LUNDELL, J. et al. Constrained generative sampling of 6-dof grasps. arXiv preprint
arXiv:2302.10745, 2023.

MAHLER, J. et al. Dex-net 2.0: Deep learning to plan robust grasps with synthetic point
clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312, 2017.

MAHLER, J. et al. Dex-net 3.0: Computing robust vacuum suction grasp targets in point
clouds using a new analytic model and deep learning. In: IEEE. 2018 IEEE International
Conference on Robotics and Automation (ICRA). [S.l.], 2018. p. 1–8.

MAHLER, J. et al. Learning ambidextrous robot grasping policies. Science Robotics,
Science Robotics, v. 4, n. 26, p. eaau4984, 2019.

MAHLER, J. et al. Guest editorial open discussion of robot grasping benchmarks, pro-
tocols, and metrics. IEEE Transactions on Automation Science and Engineering, IEEE,
v. 15, n. 4, p. 1440–1442, 2018.

MAHLER, J. et al. Dex-net 1.0: A cloud-based network of 3d objects for robust grasp
planning using a multi-armed bandit model with correlated rewards. In: IEEE. 2016 IEEE
international conference on robotics and automation (ICRA). [S.l.], 2016. p. 1957–1964.

MAITIN-SHEPARD, J. et al. Cloth grasp point detection based on multiple-view geo-
metric cues with application to robotic towel folding. In: IEEE. 2010 IEEE International
Conference on Robotics and Automation. [S.l.], 2010. p. 2308–2315.

MIAO, Z. et al. Insights and approaches using deep learning to classify wildlife. Scientific
reports, Nature Publishing Group, v. 9, n. 1, p. 1–9, 2019.

MISHRA, B.; SCHWARTZ, J. T.; SHARIR, M. On the existence and synthesis of mul-
tifinger positive grips. Algorithmica, Springer, v. 2, n. 1, p. 541–558, 1987.

MNYUSIWALLA, H. et al. A bin-picking benchmark for systematic evaluation of robotic
pick-and-place systems. IEEE Robotics and Automation Letters, IEEE, v. 5, n. 2, p.
1389–1396, 2020.

MORGAN, A. S. et al. Benchmarking cluttered robot pick-and-place manipulation with
the box and blocks test. IEEE Robotics and Automation Letters, IEEE, v. 5, n. 2, p.
454–461, 2019.

MORRISON, D.; CORKE, P.; LEITNER, J. Closing the loop for robotic grasping: A
real-time, generative grasp synthesis approach. arXiv preprint arXiv:1804.05172, 2018.

MORRISON, D.; CORKE, P.; LEITNER, J. Multi-view picking: Next-best-view reaching
for improved grasping in clutter. In: IEEE. 2019 International Conference on Robotics
and Automation (ICRA). [S.l.], 2019. p. 8762–8768.

MORRISON, D.; CORKE, P.; LEITNER, J. Egad! an evolved grasping analysis dataset
for diversity and reproducibility in robotic manipulation. IEEE Robotics and Automation
Letters, IEEE, 2020.

111

MORRISON, D.; CORKE, P.; LEITNER, J. Learning robust, real-time, reactive robotic
grasping. The International Journal of Robotics Research, SAGE Publications Sage UK:
London, England, v. 39, n. 2-3, p. 183–201, 2020.

MOUSAVIAN, A.; EPPNER, C.; FOX, D. 6-dof graspnet: Variational grasp generation
for object manipulation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. [S.l.: s.n.], 2019. p. 2901–2910.

MURALI, A. et al. 6-dof grasping for target-driven object manipulation in clutter. In:
IEEE. 2020 IEEE International Conference on Robotics and Automation (ICRA). [S.l.],
2020. p. 6232–6238.

NATARAJAN, S.; BROWN, G.; CALLI, B. Aiding grasp synthesis for novel objects
using heuristic-based and data-driven active vision methods. Frontiers in Robotics and
AI, Frontiers Media SA, v. 8, 2021.

NEWBURY, R. et al. Deep learning approaches to grasp synthesis: A review. IEEE
Transactions on Robotics, IEEE, 2023.

NI, P. et al. Pointnet++ grasping: learning an end-to-end spatial grasp generation al-
gorithm from sparse point clouds. In: IEEE. 2020 IEEE International Conference on
Robotics and Automation (ICRA). [S.l.], 2020. p. 3619–3625.

OLSON, E. Apriltag: A robust and flexible visual fiducial system. In: IEEE. 2011 IEEE
International Conference on Robotics and Automation. [S.l.], 2011. p. 3400–3407.

PAS, A. ten et al. Grasp pose detection in point clouds. The International Journal of
Robotics Research, SAGE Publications Sage UK: London, England, v. 36, n. 13-14, p.
1455–1473, 2017.

PINTO, L.; GUPTA, A. Supersizing self-supervision: Learning to grasp from 50k tries
and 700 robot hours. In: IEEE. 2016 IEEE international conference on robotics and
automation (ICRA). [S.l.], 2016. p. 3406–3413.

PRATTICHIZZO, D.; TRINKLE, J. C. Grasping. Springer handbook of robotics,
Springer, p. 671–700, 2008.

QI, C. R. et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric
space. arXiv preprint arXiv:1706.02413, 2017.

QUIGLEY, M. et al. Ros: an open-source robot operating system. In: KOBE, JAPAN.
ICRA workshop on open source software. [S.l.], 2009. p. 5.

REDMON, J.; ANGELOVA, A. Real-time grasp detection using convolutional neural
networks. In: IEEE. 2015 IEEE International Conference on Robotics and Automation
(ICRA). [S.l.], 2015. p. 1316–1322.

112 BIBLIOGRAPHY

REDMON, J. et al. You only look once: Unified, real-time object detection. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2016.
p. 779–788.

REN, S. et al. Faster r-cnn: Towards real-time object detection with region proposal
networks. In: Advances in neural information processing systems. [S.l.: s.n.], 2015. p.
91–99.

RIBEIRO, E. G.; GRASSI, V. Fast convolutional neural network for real-time robotic
grasp detection. In: International Conference on Advanced Robotics (ICAR). [S.l.: s.n.],
2019.

RIBEIRO, E. G.; MENDES, R. de Q.; GRASSI, V. Real-time deep learning approach to
visual servo control and grasp detection for autonomous robotic manipulation. Robotics
and Autonomous Systems, Elsevier, v. 139, p. 103757, 2021.

ROBOTIQ. Robotiq Gripper. 2020. Accessed: 2020-06-16. Dispońıvel em: ⟨https://
robotiq.com/products/2f85-140-adaptive-robot-gripper⟩.

ROBOTS, U. UR5 collaborative robot arm — flexible and lightweight robot arm. 2019.
Accessed: 2019-10-15. Dispońıvel em: ⟨https://www.universal-robots.com/products/
ur5-robot/⟩.

SATISH, V.; MAHLER, J.; GOLDBERG, K. On-policy dataset synthesis for learning
robot grasping policies using fully convolutional deep networks. IEEE Robotics and Au-
tomation Letters, IEEE, v. 4, n. 2, p. 1357–1364, 2019.

SCHULMAN, J. et al. Motion planning with sequential convex optimization and convex
collision checking. The International Journal of Robotics Research, SAGE Publications
Sage UK: London, England, v. 33, n. 9, p. 1251–1270, 2014.

SCHULMAN, J. et al. Finding locally optimal, collision-free trajectories with sequential
convex optimization. In: CITESEER. Robotics: science and systems. [S.l.], 2013. v. 9,
n. 1, p. 1–10.

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale im-
age recognition. arXiv preprint arXiv:1409.1556, 2014.

SINGH, A. et al. Bigbird: A large-scale 3d database of object instances. In: IEEE. 2014
IEEE international conference on robotics and automation (ICRA). [S.l.], 2014. p. 509–
516.

SPONG, M. W. et al. Robot modeling and control. [S.l.: s.n.], 2006.

SUN, J. et al. A model-free 6-dof grasp detection method based on point clouds of local
sphere area. Advanced Robotics, Taylor & Francis, p. 1–12, 2023.

SUN, Y. et al. Robotic grasping and manipulation competition: Task pool. In:
SPRINGER. Robotic Grasping and Manipulation Challenge. [S.l.], 2016. p. 1–18.

113

SUN, Y. et al. Research challenges and progress in robotic grasping and manipulation
competitions. IEEE robotics and automation letters, IEEE, v. 7, n. 2, p. 874–881, 2021.

SUNDERMEYER, M. et al. Contact-graspnet: Efficient 6-dof grasp generation in clut-
tered scenes. In: IEEE. 2021 IEEE International Conference on Robotics and Automation
(ICRA). [S.l.], 2021. p. 13438–13444.

TOBIN, J. et al. Domain randomization for transferring deep neural networks from sim-
ulation to the real world. In: IEEE. 2017 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). [S.l.], 2017. p. 23–30.

VICENT, J. et al. Flex end-to-end mission performance simulator. IEEE Transactions
on Geoscience and Remote Sensing, IEEE, v. 54, n. 7, p. 4215–4223, 2016.

VIERECK, U. et al. Learning a visuomotor controller for real world robotic grasping
using simulated depth images. arXiv preprint arXiv:1706.04652, 2017.

WANG, Z. et al. Robot grasp detection using multimodal deep convolutional neural
networks. Advances in Mechanical Engineering, SAGE Publications Sage UK: London,
England, v. 8, n. 9, p. 1687814016668077, 2016.

WEBOTS. http://www.cyberbotics.com. 2021. Open-source Mobile Robot Simulation
Software. Dispońıvel em: ⟨http://www.cyberbotics.com⟩.

WENG, T. et al. Neural grasp distance fields for robot manipulation. In: IEEE. 2023
IEEE International Conference on Robotics and Automation (ICRA). [S.l.], 2023. p. 1814–
1821.

WOHLKINGER, W. et al. 3dnet: Large-scale object class recognition from cad models.
In: IEEE. 2012 IEEE international conference on robotics and automation. [S.l.], 2012.
p. 5384–5391.

WU, Z. et al. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2015. p.
1912–1920.

XIE, S. et al. Aggregated Residual Transformations for Deep Neural Networks. 2017.

YANG, J. et al. Object contour detection with a fully convolutional encoder-decoder net-
work. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
[S.l.: s.n.], 2016. p. 193–202.

YU, F.; KOLTUN, V. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015.

ZHANG, H. et al. Regrad: A large-scale relational grasp dataset for safe and object-
specific robotic grasping in clutter. IEEE Robotics and Automation Letters, IEEE, v. 7,
n. 2, p. 2929–2936, 2022.

114 BIBLIOGRAPHY

ZHOU, Q.-Y.; PARK, J.; KOLTUN, V. Open3D: A modern library for 3D data process-
ing. arXiv:1801.09847, 2018.

