
Exploiting Lod-Based
Similarity Personalization

Strategies for
Recommender Systems

Gabriela Oliveira Mota da Silva

Tese de Doutorado

Universidade Federal da Bahia

Programa de Pós-Graduação em
Ciência da Computação

Setembro | 2023

Linked Open Data (LOD) is a cloud of freely accessible and interconnected datasets
encompassing machine-readable data. These data are available under open Seman-
tic Web standards, such as RDF and SPARQL. One notable example of a LOD set is
DBpedia, a crowd-sourced community effort to extract structured information from
Wikipedia and make this information openly available on the Web. The semantic con-
tent of LOD and the advanced features of SPARQL has opened unprecedented oppor-
tunities for enabling semantic-aware applications. LOD-based Recommender Systems
(RSs) usually leverage the data available within LOD datasets such as DBpedia to rec-
ommend items such as movies, places, books, and music to end-users. These systems
use a semantic similarity algorithm that calculates the degree of matching between
pairs of resources in the RDF graph, by counting the number of direct and indirect links
between them, the length of the path between them, or the hierarchy of classes. Con-
versely, calculating similarity in RDF graphs could be difficult because each resource
can have hundreds of links to other nodes. Not all of them are semantically relevant
or can be applied to all resources in the graph. This can lead to the well-known ma-
trix sparsity problem. Nevertheless, some effort has been made to select subsets of
features, i.e., links, which are more helpful to computing similarity between items of
a graph dataset, reducing the matrix dimension. Despite several studies in this field,
there is still a lack of solutions applied to the personalization of feature selection tasks.
In this context, we propose personalized strategies to improve semantic similarity
precision in LOD-based Recommender Systems, including i) applying a feature selec-
tion approach to filter the best features for a particular user; ii) personalizing the RDF
graph by adding weights to the edges, according to the user’s previous preferences;
and iii) exploiting the similarity of literal properties as well as the links from the user
model. The evaluation experiments used combined data from DBpedia and MovieLens
and DBpedia and LastFM datasets. Results indicate significant increases in top-n rec-
ommendation tasks in Precision@K (K=5, 10), Map, and NDCG over non-personalized
baseline similarities methods such as Linked Data Semantic Distance (LDSD) and Re-
source Similarity (ReSim). The results show that the strategies proposed in this work
can be effective in improving semantic recommendation systems in various knowl-
edge domains, as the solution is scalable to any LOD-based databases.
Keywords: Recommender Systems; Linked Open Data; Semantic Similarity; Personal-
ization; Feature Selection

PGCOMP - Programa de Pós-Graduação em Ciência da Computação
Universidade Federal da Bahia (UFBA)
Av. Milton Santos, s/n - Ondina
Salvador, BA, Brasil, 40170-110

https://pgcomp.ufba.br
pgcomp@ufba.br

U
FBA

D
SC

|
044

|
2023

Exploiting
Lod-Based

Sim
ilarity

Personalization
Strategies

forRecom
m

enderSystem
s

G
abriela

O
liveira

M
ota

da
Silva

Universidade Federal da Bahia
Instituto de Computação

Programa de Pós-Graduação em Ciência da Computação

EXPLOITING LOD-BASED SIMILARITY
PERSONALIZATION STRATEGIES FOR

RECOMMENDER SYSTEMS

Gabriela Oliveira Mota da Silva

TESE DE DOUTORADO

Salvador
28 de setembro de 2023

GABRIELA OLIVEIRA MOTA DA SILVA

EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION
STRATEGIES FOR RECOMMENDER SYSTEMS

Esta Tese de Doutorado foi apresen-
tada ao Programa de Pós-Graduação
em Ciência da Computação da Uni-
versidade Federal da Bahia, como
requisito parcial para obtenção do
grau de Doutor em Ciência da Com-
putação.

Orientador: Frederico Araújo Durão

Salvador
28 de setembro de 2023

Ficha catalográfica elaborada pela Biblioteca Universitária de
Ciências e Tecnologias Prof. Omar Catunda, SIBI – UFBA.

S586 Silva, Gabriela Oliveira Mota da

Exploiting Lod-Based Similarity Personalization Strategies
for Recommender Systems/ Gabriela Oliveira Mota da Silva. –
Salvador, 2023.

126 f.

Orientador: Prof. Dr. Frederico Araújo Durão

Tese (Doutorado) – Universidade Federal da Bahia. Instituto
de Computação, 2023.

1. Recommender Systems. 2. Linked Open Data. 3.
Semantic Similarity. 4. Personalization. 5. Feature Selection. I.
Durão, Frederico Araújo. II. Universidade Federal da Bahia. III.
Título.

CDU 004

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DA BAHIA

INSTITUTO DE COMPUTAÇÃO
PGCOMP - Programa de Pós-Graduação em Ciência da Computação

http://pgcomp.ufba.br

Gabriela Oliveira Mota da Silva

Exploiting Lod-based Similarity Personalization Strategies for
Recommender Systems

Esta tese foi julgada adequada à obtenção do
título de Doutor em Ciência da Computação e
aprovada em sua forma final pelo Programa de
Pós-Graduação em Ciência da Computação da
UFBA.

Salvador, 28 de setembro de 2023

Prof. Dr. Frederico Araújo Durão (Orientador - UFBA)

Profa. Dra. Natasha Correia Queiroz Lino (UFPB)

Prof. Dr. Rosalvo Ferreira de Oliveira Neto (UNIVASF)

Profa. Dra. Daniela Barreiro Claro (UFBA)

Profa. Dra. Laís do Nascimento Salvador (UFBA)

I dedicate this thesis to my mother, who always encouraged

my sister and me to study and pursue our dreams. Her

love and dedication have now turned into precious achieve-

ments.

ACKNOWLEDGEMENTS

I’d like to begin my acknowledgments by apologizing in advance for being so long, but it is
necessary to put the circumstances in which this work was completed into context. Many
might say that it took too much time, but I say that it took strictly the necessary time.
Shortly after my return from my PhD stay in Canada, the pandemic began. During this
terrible period, I suffered the irreparable losses of my maternal grandfather, my father,
and my paternal grandmother. These sudden losses triggered a series of emotional factors
that were sufficient to destabilize me and take my focus off my academic life.

Having said that, I would like to acknowledge my advisor Professor Frederico Araujo
Durão. It is no overstatement to say that it is thanks to his effort in not giving up on me
that this thesis exists and can add a spark to the scientific knowledge of humanity. Even
at times when I was furthest away from my duties as a PhD student, he was understanding
enough to give me the time I needed to get back on track emotionally.

He was also responsible for awakening in me a love for teaching and research. All of
this has built a relationship of respect and admiration in me, not only for his technical
work but also for his character and humanity. Thank you, Fred, for guiding me along this
path and making me a better researcher and person. You are such an inspiration to me
and to so many others who dream of making a difference in the lives of other students.

I could not fail to thank my partner José Diógenes Pereira Torres, who pulled me
out of the depths I had sunk into and gave me the greatest gift of my life, our little
baby daughter. Thank you for being my source of daily care, emotional support, and
love. Thank you for being my home! And to my daughter Diana Maria, thank you for
choosing me as your mother and giving me the opportunity for a new beginning. I love
you both more than anything!

I am deeply grateful to all the PGCOMP professors at UFBA’s Institute of Computing
for their teaching and daily inspiration. I am also very grateful to my colleagues in the
RECSYS Research Group, who actively participated in the development of my thesis and
throughout my academic life. My special thanks go to Diogo Vinícius, João Paulo Dias,
and the German exchange student Marian "João", my constant companions on conference
trips and kind support in difficult times. I want to acknowledge the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for funding the project. Special
thanks to Professor Miriam Capretz, Professor of Software Engineering in the Department
of Electrical and Computer Engineering at Western University, who looked after me
during my PhD stay (2019) in London, Canada.

I dedicate a special acknowledgment to my mother Auristela Oliveira Mota, who
strongly believes in the power of education. She never spared any effort to guarantee me
the best possible education. She encouraged me to read from an early age and molded
me to seek knowledge. She also fought with me, encouraged me and gave me strength.

vii

viii ACKNOWLEDGEMENTS

For that, I will be eternally grateful. As well as my mother, I would like to thank my
younger sister, Gisele Oliveira Mota da Silva, for all her unconditional love and support.
It has always been the three of us against the world!

“Begin at the beginning”, the King said gravely, “and go on till you come

to the end: then stop.”

—LEWIS CARROLL (Alice in Wonderland)

RESUMO

Dados Abertos Conectados (Linked Open Data - LOD, em Inglês) é uma nuvem de bancos
de dados interconectados, de livre acesso e legíveis por máquina, pois estão disponíveis
em padrões abertos da Web Semântica, como RDF e SPARQL. Um exemplo relevante
de banco LOD é a DBpedia, uma iniciativa comunitária para extrair informações estru-
turadas da Wikipedia e disponibilizá-las abertamente na Web. O conteúdo semântico
disponibilizado pelos dados abertos conectados e os recursos avançados da linguagem
SPARQL permitiram o desenvolvimento de aplicativos sensíveis à semântica. Os sistemas
de recomendação (em Inglês: Recommender Systems - RS) baseados em LOD geralmente
aproveitam os dados de bancos LOD, e.g. DBpedia, para recomendar itens como filmes,
lugares, livros e músicas aos usuários finais. Esses sistemas usam um algoritmo de sim-
ilaridade semântica que calcula o grau de correspondência entre pares de recursos do
grafo RDF, contando o número de links diretos e indiretos entre eles, o comprimento do
caminho entre eles ou analisando a hierarquia de suas classes. Por outro lado, calcular
a similaridade em grafos RDF pode ser difícil porque cada recurso pode ter centenas
de links para outros nós e nem todos eles são semanticamente relevantes ou podem ser
aplicados a todos os recursos do grafo. Isso pode levar ao conhecido problema de esparsi-
dade da matriz. No entanto, é possível selecionar subconjuntos de características que são
mais úteis para calcular a semelhança entre itens de um grafo, reduzindo a dimensão da
matriz. Apesar de vários estudos nesse campo, ainda faltam soluções aplicadas à person-
alização da etapa de seleção de características (Feature Selection - FS, em Inglês). Nesse
contexto, propomos estratégias personalizadas para melhorar a precisão da similaridade
semântica em sistemas de recomendação baseados em LOD, incluindo i) a aplicação de
uma abordagem de seleção de características para filtrar as melhores propriedades para
um usuário específico; ii) a personalização do grafo RDF adicionando pesos às arestas,
de acordo com as preferências anteriores do usuário; e iii) a exploração da similaridade
das propriedades literais do modelo do usuário. Os experimentos de avaliação usaram
dados combinados dos bancos de dados MovieLens e LastFM com os dados semânticos da
DBpedia. Os resultados indicam aumentos estatisticamente significativos nas recomen-
dações top-n em todas as métricas testadas: Precision@K (K=5, 10), Map e NDCG,
em relação aos métodos de similaridade de referência não personalizados, como Linked
Data Semantic Distance (LDSD) e Resource Similarity (ReSim). Os resultados mostram
que as estratégias propostas neste trabalho podem ser eficientes para aprimorar sistemas
de recomendação semânticos em diversos domínios do conhecimento, pois a solução é
escalável para quaisquer bancos de dados baseados em LOD.

Palavras-chave: Sistemas de Recomendação, Dados Abertos Conectados, Similaridade
Semântica, Personalização, Seleção de Características.

xi

ABSTRACT

Linked Open Data (LOD) is a cloud of freely accessible and interconnected datasets
encompass machine-readable data. These data are available under open Semantic Web
standards, such as Resource Description Framework (RDF) and SPARQL Protocol and
RDF Query Language (SPARQL). One notable example of a LOD set is DBpedia, a
crowd-sourced community effort to extract structured information from Wikipedia and
make this information openly available on the Web. The semantic content of LOD and
the advanced features of SPARQL has opened unprecedented opportunities for enabling
semantic-aware applications. LOD-based Recommender Systems Recommender Systems
usually leverage the data available within LOD datasets such as DBpedia to recommend
items such as movies, places, books, and music to end-users. These systems use a seman-
tic similarity algorithm that calculates the degree of matching between pairs of resources
in the RDF graph, by counting the number of direct and indirect links between them,
the length of the path between them, or the hierarchy of classes. Conversely, calculating
similarity in RDF graphs could be difficult because each resource can have hundreds of
links to other nodes. Not all of them are semantically relevant or can be applied to all
resources in the graph. This can lead to the well-known matrix sparsity problem. Never-
theless, some effort has been made to select subsets of features, i.e., links, which are more
helpful to computing similarity between items of a graph dataset, reducing the matrix
dimension. Despite several studies in this field, there is still a lack of solutions applied
to the personalization of feature selection tasks. In this context, we propose personalized
strategies to improve semantic similarity precision in LOD-based Recommender Systems,
including i) applying a feature selection approach to filter the best features for a par-
ticular user; ii) personalizing the RDF graph by adding weights to the edges, according
to the user’s previous preferences; and iii) exploiting the similarity of literal properties
as well as the links from the user model. The evaluation experiments used combined
data from DBpedia and MovieLens and DBpedia and LastFM datasets. Results indicate
significant increases in top-n recommendation tasks in Precision@K (K=5, 10), Map, and
NDCG over non-personalized baseline similarities methods such as Linked Data Semantic
Distance (LDSD) and Resource Similarity (ReSim). The results show that the strategies
proposed in this work can be effective in improving semantic recommendation systems in
various knowledge domains, as the solution is scalable to any LOD-based databases.

Keywords: Recommender Systems, Linked Open Data, Semantic Similarity, Person-
alization, Feature Selection.

xiii

CONTENTS

Chapter 1—Introduction 1

1.1 Motivation . 3
1.2 Problem Statement . 5

1.2.1 Research Questions . 7
1.3 Goal . 7

1.3.1 Specific Goals . 8
1.4 Methodology . 8
1.5 Statement of the Contributions . 9
1.6 Thesis Structure . 10

Chapter 2—The Semantic Web 13

2.1 Introduction . 13
2.2 Resource Description Framework (RDF) 14

2.2.1 RDF Literals . 16
2.3 SPARQL . 16
2.4 Ontologies . 17
2.5 Linked Open Data - LOD . 20

2.5.1 DBpedia . 22
2.6 Summary . 24

Chapter 3—Recommender Systems 27

3.1 Introduction . 27
3.2 Recommendation Tasks . 28
3.3 User Modeling . 29

3.3.1 Implicit feedback . 29
3.3.2 Explict feedback . 30

3.4 Recommendation techniques . 30
3.4.1 Content-Based Filtering . 31
3.4.2 Collaborative Filtering . 31

3.4.2.1 Memory-based . 32
3.4.2.2 Model-Based . 34

3.4.3 Hybrid Filtering . 34
3.5 Recommendation Problems . 34

3.5.1 The Cold-Start Problem . 34

xv

xvi CONTENTS

3.5.2 The Matrix Sparsity Problem . 35
3.6 Evaluation of Recommender Systems . 35

3.6.1 Predictive Accuracy Metrics . 36
3.6.2 Classification Accuracy Metrics 37
3.6.3 Ranking Metrics . 38

3.7 LOD-based Recommender Systems . 40
3.7.1 Semantic Similarity Measures . 42

3.7.1.1 Linked Data Semantic Distance (LDSD) 42
3.7.1.2 Vector Space Model (VSM) 43
3.7.1.3 Resource Similarity (ReSim) 43

3.8 Feature Selection and Feature Ranking 44
3.9 Summary . 45

Chapter 4—Related Work 47

4.1 LOD-based Similarity Measures . 48
4.2 Feature Selection . 50
4.3 Summary . 51

Chapter 5—Exploiting Lod-Based Similarity Personalization Strategies for Rec-
ommender Systems 53

5.1 Solution Overview . 53
5.2 Background and Notations . 55

5.2.1 The Linked Data Graph . 55
5.2.2 The User Model . 55
5.2.3 The Rating Scale . 56
5.2.4 The data returned by ABSTAT 56

5.3 Step 1: Feature Selection . 57
5.3.1 Filtering (filterBy) . 58
5.3.2 Selecting Distinct Properties (selectDistinct) 58
5.3.3 Sorting (orderBy) . 59
5.3.4 Selecting the top k properties Algorithm (selectTopK) 60
5.3.5 Running Example . 60

5.3.5.1 Features Preprocessing 60
5.3.5.2 Features Preprocessing application 62

5.4 Step 2: Graph Personalization . 64
5.4.1 Running Example . 64

5.5 Step 3: Recommendation Model . 66
5.5.1 Personalized Linked Data Semantic Distance (PLDSD) 67
5.5.2 Personalized Similarity of Literals 67

5.5.2.1 Similarity of String Literals 68
5.5.2.2 Similarity of Numeric Literals 69
5.5.2.3 The Combined Similarity Function for Literals 69

CONTENTS xvii

5.5.2.4 Penalizing Sparsity . 70
5.5.2.5 The Literals Similarity (LiSim) 71

5.6 Summary . 71

Chapter 6—Experimental Evaluation 73

6.1 Introduction . 73
6.2 Datasets Setup . 74
6.3 Hardware Setup . 74

6.3.1 Software tools . 75
6.3.2 Limitations . 75

6.4 Methodology . 75
6.5 Metrics . 76
6.6 E1: Literals Similarity (LiSim) . 76

6.6.1 Results from the Movie domain 77
6.6.2 Results from the Music domain 78
6.6.3 Discussion and Contributions . 79

6.7 E2: Personalized Linked Data Semantic Distance (PLDSD) 80
6.7.1 Results from the Movie domain 80
6.7.2 Discussion and Contributions . 82

6.8 E3: Summarization . 83
6.8.1 Results from the Movie domain 83
6.8.2 Results from the Music domain 84
6.8.3 Discussion and Contributions . 84

6.9 Summary . 86

Chapter 7—Final Remarks 87

7.1 Conclusion . 87
7.2 Limitations and Points of Improvement 88
7.3 Future Work . 89
7.4 Dissemination . 91
7.5 Summary . 91

Bibliography 93

LIST OF FIGURES

1.1 The Linked Open Data Cloud (MCCRAE, 2023). 2
1.2 RDF structure example. 2
1.3 RDF example showing a node-to-node relationship. 6

2.1 Example of an RDF graph describing a person. 15
2.2 An ontology graph representing concepts and relationships between concepts. 18
2.3 Five Star Scheme for Linked Open Data. (KIM, 2019) 22
2.4 The Cross-Domain Linked Open Data Cloud from lod-cloud.net. Wikipedia-

related LOD datasets are highlighted (MCCRAE, 2023) 23

3.1 Recommendation techniques (ISINKAYE; FOLAJIMI; OJOKOH, 2015). 30
3.2 Collaborative filtering process (SARWAR et al., 2001). 32
3.3 LOD sub-cloud showing some of the highly used DBpedia-related datasets

(HOLZE, 2023). 41
3.4 Example of relationships in a semantic-aware recommender system. Adapted

from Piao, Ara e Breslin (2016). 41
3.5 Feature selection model with ABSTAT with source type dbo:Film. Adapted

from Noia et al. (2018). 45

4.1 Timeline of work on LOD-based Similarity Measures. 47
4.2 Timeline of work on Feature Selection. 48

5.1 The solution overview. 54
5.2 RDF graph example. 55
5.3 The ABSTAT adapted algorithms flowchart. 58
5.4 Dataset D: a portion of the DBpedia dataset, describing a movie domain. 64
5.5 Dataset D weighted. 66

6.1 LISIM+LDSD evaluation results grouped by metrics from the movie domain. 77
6.2 LISIM+RESIM evaluation results grouped by metrics from the movie do-

main. 77
6.3 LISIM+LDSD evaluation results grouped by metrics from the music domain. 78
6.4 LISIM+RESIM evaluation results grouped by metrics from the music do-

main. 79
6.5 NDCG and MAP results versus the k value of pre-selected features from

the movie domain. 85

xix

xx LIST OF FIGURES

6.6 NDCG and MAP results versus the k value of pre-selected features from
the music domain. 85

LIST OF TABLES

3.1 Users × Itens Evaluation Matrix. 32
3.2 Classification of the possible outcome of a recommendation. 37

5.1 Adopted rating system summarization. 56
5.2 Example of elements that belong to the data set returned by ABSTAT. . 57
5.3 Elements returned from the ABSTAT API. 61
5.4 Data returned from the filterBy method. 61
5.5 Data resulting from the selectDistinct method. 62
5.6 Data returned from orderBy e selectTopK methods, considering k = 4. . 62
5.7 Model of a movie rated by a given user. 62
5.8 Data model for the recommendation. 63
5.9 Properties that will be evaluated on each film. 63
5.10 Collection of triples t′

i from graph S ′ describing one sample user model. . 65
5.11 Collection of triples ti from graph S showing one running example on

weights calculation. 65
5.12 Some properties of the cities São Paulo and Rio de Janeiro. 68
5.13 Minimum and maximum values of some properties. 68
5.14 Normalized values of some properties presented in Table 5.12. 70
5.15 Similarity scores of each property from the examples in Table 5.12. . . . 70

6.1 Results from each metric of PLDSD for user #1 who has rated 40 movies.
LDSD is used as the baseline method. 81

6.2 Results from each metric of PLDSD for user #2 who has rated 130 movies.
LDSD is used as the baseline method. 81

6.3 Results from each metric of PLDSD for user #3 who has rated 246 movies.
LDSD is used as the baseline method. 81

6.4 Results from the movie dataset considering diverse scenarios. 84
6.5 Results from the music dataset considering diverse scenarios. 84

xxi

ABBREVIATIONS

API Application Programming Interface 56
CF Collaborative Filtering . 35
FR Feature Ranking . 44
FS Feature Selection . 56
FOAF Friend of a Friend . 15
HTTP HyperText Transfer Protocol . 21
KG Knowledge Graph . 48
LDSD Linked Data Semantic Distance . 87
LiSim Literals Similarity . 88
LOD Linked Open Data . 49
MAE Mean Absolute Error . 37
MAP Mean Average Precision . 76
MRR Mean Reciprocal Rank . 38
NDCG Normalized Discounted Cumulative Gain 76
OKG Open Knowledge Graph . 1
OWL Web Ontology Language . 13
PLDSD Personalized Linked Data Semantic Distance 89
RDF Resource Description Framework . 40
RDFS Resource Description Framework Schema 14
ReSim Resource Similarity . 87
RS Recommender System . 9
RSs Recommender Systems . 27
RMSE Root Mean Square Error . 36
RR Reciprocal Rank . 38
SPARQL SPARQL Protocol and RDF Query Language 1
URI Uniform Resource Identifier . 56
VSM Vector Space Model
W3C World Wide Web Consortium . 20

xxiii

Chapter

1
INTRODUCTION

While the World Wide Web has provided means for creating a Web of human-readable
documents, the Web of Data (also referred to as Linked Data) has paved the way for a
Web of structured and machine-readable data. Linked Open Data (LOD) — which graph
is illustrated in Figure 1.1 — is a powerful blend of Linked Data that provides access
to a large and increasing amount of diverse data structured under open Semantic Web
standards, such as Resource Description Framework (RDF)1 and SPARQL Protocol and
RDF Query Language (SPARQL)2, the query language for retrieving and manipulating
RDF data (BERNERS-LEE, 2009). The LOD cloud currently contains 1,594 datasets
with more than 20,000 links (as of May 2023). These datasets are organized by colors
in 9 categories, as Figure 1.1 shows, according to the type of knowledge they describe,
which are: Cross Domain, Geography, Government, Life Sciences, Linguistics, Media,
Publications, Social Networking, and User Generated.

One notable example of a LOD set is DBpedia, a crowd-sourced community effort
to extract structured information from Wikipedia3 and make this information openly
available on the Web in a machine-readable form as a giant Open Knowledge Graph
(OKG) (LEHMANN et al., 2015). DBpedia is classified as a cross-domain LOD knowledge
base, as are all the other light brown-coloured datasets in the Figure 1.1. In 2020, the
English version of the DBpedia dataset described 7.62 million entities (HOLZE, 2023).

The semantic content of LOD datasets and the advanced features of SPARQL has
opened unprecedented opportunities for the development of semantic aware applica-
tions, including Recommender Systems. LOD-based Recommender Systems (RSs) usu-
ally leverage the data available within Linked Open Data datasets, such as DBpedia, to
recommend items — for example, movies, books, and music — to the end users (PAS-
SANT, 2010; NOIA et al., 2012; PIAO; BRESLIN, 2016). These systems use a semantic
similarity algorithm that calculates the degree of matching between pairs of Linked Data
resources. Because RDF represents data as a graph, these algorithms, in general, count

1https://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-sparql-query/
3https://www.wikipedia.org/

1

2 INTRODUCTION

Figure 1.1: The Linked Open Data Cloud (MCCRAE, 2023).

the number of direct and indirect links — i.e., the edges in the graph —, count the length
of the path between two resources, or their place in the hierarchy of classes (PASSANT,
2010; PIAO; ARA; BRESLIN, 2016; CHENIKI et al., 2016).

Figure 1.2: RDF structure example.

1.1 MOTIVATION 3

What semantic-aware applications have in common is that they rely on an RDF graph
architecture. The RDF statement (also known as triples) appears in the form of subject-
predicate-object as shown in Figure 1.2. Subjects, predicates, and objects are uniquely
identifiable using Uniform Resource Identifiers (URIs). The subject corresponds to the
resource to which the statement refers. The predicate indicates a property that the re-
source possesses, which could be one of two types: object property, when the property
links one resource to another, and datatype property, when the property links one re-
source to a literal, such as a string or a number. Objects, therefore, are the resources or
literals that correspond to values of properties. Moreover, considering that a subject can
be connected to several objects to express various statements and that each object (from
each statement) can also be the subject of another statement, the RDF graph represen-
tation creates a vast dataset of interconnected nodes. In the Linked Open Data (LOD)
project, several of those RDF datasets are interconnected in a huge network of structured
knowledge, as seen before in Figure 1.1.

1.1 MOTIVATION

Recommender Systems (RSs) are software tools and techniques that solve the information
overload problem by suggesting items most likely interesting to a particular user (RICCI;
ROKACH; SHAPIRA, 2015). The growing importance of the Internet as a platform for
digital and commercial transactions has driven the development of recommender system
technology. One of the main factors behind this trend is the easy way users can express
their preferences over the Internet. Take Netflix, for example. Users can conveniently
provide feedback with the click of a mouse. The standard feedback mechanism is usually
in the form of ratings, where users assign numerical values from a predefined system, such
as a five-star system, or binary values, such as in a like/dislike system, to describe their
preferences for different items (AGGARWAL, 2016).

The basic principle underlying recommendation algorithms’ work is that significant
dependencies exist between user- and item-centric activity. For example, a user interested
in a historical documentary is likelier to be interested in another historical documentary
or an educational program than in an action movie. These algorithms are called content-
based recommendation methods. According to Aggarwal (2016), one problem with this
approach is that most users would have viewed only a small fraction of the large universe
of available movies. As a result, most of the ratings are unspecified. This leads to a
known RS problem: the cold-start problem, mainly when a new item or user is added to
the system.

Another approach for calculating recommendations is through collaborative filtering
methods, in which the basic idea is that these unspecified ratings can be imputed because
the observed ratings are often highly correlated across various users and items (AGGAR-
WAL, 2016). For example, consider two users, Alice and Bob, who have similar tastes. If
the ratings, which both have specified, are very similar, then the system can infer Alice’s
missing ratings based on Bob’s ratings of the same items. Most of the methods that
have been proposed in the literature to deal with the cold start problem are related to
collaborative filtering systems (LAM et al., 2008; ZHANG et al., 2010; GUO, 2012).

4 INTRODUCTION

Usually, when describing an item, its attributes are extracted from metadata associ-
ated with it. However, the content extracted from metadata is often too brief to accurately
define user interests, while the use of textual features involves a number of complications
due to natural language ambiguity. In an attempt to overcome these challenges, recent
research has introduced semantic techniques that changes from a keyword-based approach
to a concept-based approach for representing items and user profiles (GEMMIS et al.,
2015). These are semantic-aware systems, also known as LOD-based recommendation
systems, in which the structure of the RDF graph is used to calculate semantic similarity
and recommend items to the user, instead of analysing textual metadata.

There are various approaches in the literature for dealing with the task of accounting
for semantic similarity, such as developing algorithms that count the number of direct
and indirect links — i.e., the edges in the graph — (PASSANT, 2010); count the length of
the path between two resources — i.e., the nodes — (PIAO; ARA; BRESLIN, 2016); and
count the place of the resources in the hierarchy of classes (CHENIKI et al., 2016), among
others. However, calculating similarity in RDF graphs is a complex task, as a single node
can have hundreds of links to other nodes, and not all are semantically relevant. Also,
those properties are not applied to all the resources of the graph. It leads the system to
the well-known sparsity problem of Content-Based Recommender Systems. Some effort
has been made minimize this problem by selecting subsets of links that seem more helpful
in computing the similarity between items of a graph dataset (CATHERINE; COHEN,
2016; MUSTO et al., 2016), reducing the matrix dimension. Recent studies cite several
methods to find and exclude or rank features based on diverse goals — see Section 3.8 in
Chapter 3 for examples.

Feature Selection (FS) is a critical task in recommender systems that aims to identify
the most relevant features or attributes of the items recommended. Although, none of
those mentioned above methods approaches from a user-personalized perspective. Fea-
tures are commonly filtered by classic methods such as i) Correlation analysis, which
involves examining the correlation between each feature and the target variable; ii) Infor-
mation Gain, which is a measure of how much the feature contributes to predicting the
target variable; and iii) Principal component analysis (PCA), that involves transforming
the original feature set into a lower-dimensional space that captures the most significant
variance in the data (GEMMIS et al., 2015). And although some work involves the au-
tomated feature selection (NOIA et al., 2018), most of the processes used to date require
manual curation of the database by experts in the domain of study.

To this point, the literature shows that there is still room for research into automatic
feature selection methods that combine with the personalization of features according to
the specific interests of the target user. Existing work poorly explores the role of the
user in the FS phase of a recommendation system, which is usually at the beginning
of the system’s operating flow. In addition, there is a lack of research that addresses
the cold-start and sparsity matrix problems through a content-centered vision of system
items, using a personalization strategy based on the user’s previous choices.

1.2 PROBLEM STATEMENT 5

1.2 PROBLEM STATEMENT

One common characteristic shared by previous works on LOD similarity measures is
that they consider all the links in an RDF graph as having similar importance. At the
most, they perform a FS method to rank the main features based only on the system’s
domain in a domain knowledge-driven way. This means domain-specific knowledge about
the items can be used to select the most relevant features. For example, artist, genre,
and album are important characteristics in the music domain, but irrelevant in a book
recommendation system.

This standardized way of classifying features does not take advantage of the unique
semantic vision of a particular user. Personalization of features in content-based user
models is still poorly exploited in the literature. Taking the movie context as an example,
most existing methods select features based on the semantics they represent in the movie
domain. Thus, features such as the movie genre, the release date, the director, the persons
starring in the movie, among others, are chosen as the subset of relevant features and are
considered to be of similar importance to the user.

For example, a user named Bob watches movies of various genres - he has eclectic
taste - but he only watches the latest released movies. The release year is often excluded
from datasets by FS tasks either because it is not considered a relevant characteristic or
because it is represented by a property of type literal instead of a link. Following this
reasoning, it means that a movie that is a new release will possibly not be recommended to
Bob. This leads to the following questions: Can the recommendation algorithms consider
all properties as having the same importance for all users? What difference would it make
in the recommendations for Bob if the movie genre was excluded from the set of relevant
characteristics and the release year was not?

In addition to the selection of features, diverse similarity measures were proposed to
operate recommendations through LOD-based systems (PASSANT, 2010; NOIA et al.,
2012; PIAO; BRESLIN, 2016). They can generally handle both the sparsity and the cold-
start problem well, when concerning to collaborative-filtering environment. Automated
content-based methods that focus on previous item-user interactions are necessary to
solve problems in the research area. Currently, none of the systems studied for this
research (see Chapter 4) manipulate features in a specific way for each user.

Meymandpour & Davis (2016) and Musto et al. (2016) reviewed existing semantic
similarity measures and developed feature-based methods and statistical approaches to
improve the performance of graph-based recommendation algorithms. Although they
explored various feature selection techniques, their methods could benefit from person-
alizing the user model to provide more accurate recommendations. Even more recent
works follow the same line of thought. Natarajan et al. (2022) calculate the closeness of
items between domains by exploiting the semantic relationship rather than the similarity
between the attributes of various resources. They proposed a model that provides per-
sonalized recommendations for the target new user with the user preferences obtained
from the source domain and by exploiting item semantic relatedness. Unlike our work,
they do not rank properties according to user preferences, but focus on solving the cold
start problem by looking into a general similarity model.

6 INTRODUCTION

Figure 1.3: RDF example showing a node-to-node relationship.

In LOD-based recommender systems, item features are expressed by links between
nodes - which represent the features’ properties - in the RDF graph. Thus, similarity
algorithms exploit the semantics of these links to determine the relations between pairs
of nodes in the graph. Many semantic relationships are expressed by a node-to-node
connection as seen in Figure 1.3, where the triple ⟨ dbr:The_Avengers, dbo:director,
dbr:Joss_Whedon ⟩ express who is the person — resource of class dbo:person — that
directed that film. Although, features also can be expressed by literal values, as text or
numbers, like in the triple ⟨ dbr:Sao_Paulo, dbo:foundingDate, 1954-01-25(xsd:date) ⟩,
shown in Figure 1.2. State-of-the-art work in literature poorly explores the semantics
present on the literal values. This ends up excluding potentially important properties
for the user from the recommendation calculations, as in another example of a user who
hates watching long films. For her, the dbo:runtime property is very important when
deciding which film to watch. As current algorithms don’t consider literal properties,
triples formed by ⟨ dbo:Film, dbo:runtime, xsd:double ⟩ are not computed, causing a
semantic loss.

The semantic loss caused by excluding literal properties from recommendation cal-
culations becomes more relevant if we analyse the proportion between object properties
and literal properties within DBpedia. According to statistics4, the DBpedia 2015-10
ontology encompasses 1,596 properties with typed literal values against 1,099 properties
with reference values, i.e. object properties. This gives a ratio of approximately 45%
more literal properties present in the database. A significant amount of work on seman-
tic recommender systems using DBpedia could benefit from an algorithm that takes into
account literal properties. For instance, Durão & Bridge (2018) propose a Linked Data
browser powered by an iterative classification algorithm. They model the user’s profile
with Linked Data to personalize the recommendations within a given neighbourhood of
a Linked Data graph. If the system were able to capture the semantics of the literal
properties, the recommendations could be more assertive from the user’s point of view.

4The most recent statistics found are from the 2015 version of DBpedia. Source: <https://download
s.dbpedia.org/wiki-archive/dbpedia-dataset-version-2015-10.html>

1.3 GOAL 7

1.2.1 Research Questions

The gaps in the literature discussed above guided the development of the following re-
search questions:

• Q1: Can the system be more precise in recommending items to the user if it calcu-
lates the similarity using literal and link properties?

• Q2: Can the system recommend items better suited to the user’s taste by exploiting
her preferred properties?

• Q3: Can we automatically pick the properties that influence the user’s choices
regardless of the domain?

• Q4: Is the proposed link ranking method feasible to personalize the system?

• Q5: Can the system benefit from a preprocessing step that filters the domain-
relevant features before entering the user personalization method?

1.3 GOAL

Inspired by the aforementioned challenges, this thesis aims to exploit and propose
personalized methods for calculating Semantic Similarity in LOD-based Rec-
ommender Systems that lead to more accurate recommendations. This is made
through various automatized approaches to personalize the user model, such as i) as-
signing weights to the links in the LOD graph; ii) selecting the best features; and iii)
exploiting the similarity of literal properties as well as of the object properties.

These approaches aim to minimize the sparsity problem since we rank and select the
features that will be computed for recommendations. In addition, we aim to solve the
cold-start problem when a new item is added to the system, as the feature ranking task
is based on the user’s previous preferences about the features that both old items and
the new item share. This is possible because we use domain-specific semantic knowledge
graphs, i.e. all the triples in the main graph are formed by subjects of the same class
(rdf:type). For instance, if we are recommending films, then we capture a portion of
DBpedia to build a knowledge graph where all triples have subjects of type dbo:Film.
We explain better about the structure provided by the Resource Description Framework
Schema (RDFS) in Chapter 2.

The RDF graphs are personalized using the approaches described above to validate
if the goals were achieved. Then, the personalized user models are combined in a Rec-
ommender System with non-personalized baseline similarity methods, such as the Linked
Data Semantic Distance (LDSD) (PASSANT, 2010), the Summarization FS (NOIA et al.,
2018), and the Resource Similarity (ReSim) (PIAO; ARA; BRESLIN, 2016). In addition,
we explain our generic recommender model in which other existing LOD-enabled seman-
tic measures can be combined to achieve the goals of recommender systems in diverse
knowledge domains.

8 INTRODUCTION

The evaluation shows whether using these personalization strategies impacts ranking
accuracy in the context of LOD-based Recommender Systems. We use a movie dataset
from MovieLens and a music dataset from Last.FM., both mapped through DBpedia
resources into Resource Description Framework (RDF) graphs.

1.3.1 Specific Goals

The general goal mentioned above has been broken down into 4 specific goals to be
achieved in this thesis:

• SG1: Propose a feature selection approach to filter relevant properties according to
the domain.

• SG2: Propose a personalization methodology that weighs links in a LOD graph
based on the user’s past ratings on the items in a recommender system.

• SG3: Propose a user profile modeling from the personalized graph obtained in the
previous step.

• SG4: Propose methods to leverage the semantics of literals properties in LOD-based
semantic similarity.

The specific goals are mentioned throughout chapters 5 and 6 whenever the steps of
the developed solution are explained, to clarify which part of this work is responsible for
achieving each of the objectives.

1.4 METHODOLOGY

This work investigates and proposes diverse approaches to personalize LOD-based Rec-
ommender Systems. The research protocol is composed of the following steps:

1. Literature review: Initially, we conducted a literature review to understand the
state-of-the-art for LOD-based Recommender Systems and some common personal-
ization methods, such as Feature Selection based on summarization of RDF proper-
ties. The literature review provides a solid background to the research, presenting
different points of view about the research topics.

2. Mapping research opportunities: We identified two techniques to improve
LOD-based RS using the knowledge obtained from the literature review. Our re-
search suggests that combining links personalization and literal similarity would
result in improved recommendations compared to baseline semantic similarity mea-
sures.

3. Prototype implementation: We modeled a prototype to test the proposed ap-
proach. We developed an automated personalization engine capable of accessing
LOD datasets and calculating the degree of importance that each property whether
it is an object property or a datatype property- has to the user, based on her past
choices within the RS, regardless of the domain.

1.5 STATEMENT OF THE CONTRIBUTIONS 9

4. Experimental evaluation: In this step we implement and evaluate the proposed
methods by comparing results using the personalized user model versus results using
only the baseline methods. The experiments are implemented under two datasets:
i) the first one in the movie domain and; ii) the second one in the music domain.

5. Evaluating the results obtained: Finally, we employ ranking evaluation metrics
described in Section 3.6 to assess the quality of the results. The metrics scores are
analyzed, and we discuss the results and suggestions for future improvements.

1.5 STATEMENT OF THE CONTRIBUTIONS

This research aims to contribute to the LOD-based Recommender Systems research area
in multiple ways. We describe the contributions in the following:

1. Literature review: The fundamentals offer an exploratory study in the Seman-
tic Web and Recommender Systems research areas. Then, we present the specific
background knowledge for working with semantic LOD-based Recommender Sys-
tems. This study encompasses a critical analysis of recent research combined with
an investigation of study cases on the problem discussed.

2. Solution Proposal: After analyzing the last studies conducted in the research
area, we propose a novel approach to personalize recommendations in LOD-based
Recommender Systems. We develop diverse branches of algorithms to improve the
precision of existing or novel semantic similarity measures. Some algorithms are
purely novel, as the Literal Similarity measure, others are a new form of applying
algorithms, adapted to databases or personalization strategies, as in the PLDSD
method, which is a new personalizing approach applied before the LDSD stage of
the Recommender System (RS).

3. Literal Similarity (LiSim): We developed a novel Literal Similarity measure that
can set the degree of matching between two literal properties — such as strings or
numbers. The development of this measure provides a way to leverage the neglected
datatype properties, augmenting the accuracy of the system and thus improving the
results. Existing LOD-based similarity methods only focus on the object properties
— i.e., links to other resources in the RDF graph.

4. Personalized Linked Data Semantic Distance (PLDSD): We also developed
a personalization method that analyzes the graph features according to the user’s
preferences. This research uses SPARQL to access LOD datasets and calculate the
weights of properties for a target user of the system by means of a function called
W. These weights are used in future recommendations to give more importance to
the properties that appear frequently in the items already evaluated by the user.

5. Personalized Summarization: The solution includes a preprocessing step that
filters the most important features given a specific domain. As implementation of
this feature selection step, we adapted the Summarization method (NOIA et al.,

10 INTRODUCTION

2018) to the personalized model. We also have made sure to allow for the use of
other feature selection methods combined to the model.

6. Generic Architecture: Our solution architecture presented at the beginning of
Chapter 5 translates the needs of technical research into a practical solution. Our
architecture is designed to allow the addition of new semantic similarity or feature
selection algorithms at specific points in the implementation. Although this research
has prioritised a few algorithms as the basis for experiments, future work that
may continue this research could include other algorithms and databases. Thus,
the solution’s generic architecture establishes rules and instructions for the proper
implementation and conduct of experiments

7. Mathematical formalism: For a better understanding of this work, we have
developed a mathematical formalism that clearly and objectively describes the LOD
datasets involved in user profile modeling and in the personalization stages of the
algorithms (See Chapter 5). This formalism include notations to represent any
dataset that follows the Linked Data principles, their resources, properties and
triples that they form. The mathematical notations made it possible to mix in the
same operation data collected from simple textual databases of user evaluations
with Linked Data Information extracted from DBpedia, since the representation
was standardized to a graph format. Thus, it was possible to formalize functions and
equations and implement them later as part of the semantic similarity algorithms
that run in the experiments in this work. The formalism developed in this work can
contribute to the dissemination of the research and also to other scientists of any
area who use LOD databases in their investigations, as they can benefit from the
notations to represent their own algorithms involving resources and relationships in
RDF.

8. Data curation and code made openly available: We used two user rating
databases available on the web to conduct experiments that approximate the func-
tioning of an online recommendation system: MoviLens and Last.fm. The sub-
ject of the research is recommendations in LOD-enriched semantic systems, so we
mapped the films and artists in these two databases to DBpedia resources, making
the databases semantic. We have made the complete project available under the
Github URL: <https://github.com/gbrlamota/lodweb-pldsd>. The coding uses
exclusively open source technologies, with the intention of being available to any
researcher who wants to reuse or evolve the code.

1.6 THESIS STRUCTURE

This chapter introduces the research topic along with the motivation and possible solu-
tions. Moreover, we expose the objectives, the applied methodology, and the expected
contributions of this research. Chapters 2 and 3 discuss the literature review of the main
subjects of this work. They present an overview of the fundamental concepts that guide
this proposal, such as Linked Open Data (LOD) principles, Resource Description Frame-

1.6 THESIS STRUCTURE 11

work (RDF), and Recommender Systems (RSs) concepts. More specifically, we describe
how LOD-based Recommender Systems work and discuss some feature selection methods
to reduce the matrix dimension. Chapter 4 lists classical and recent research in the two
main fields approached by this work: LOD-based RS and Feature Selection. Chapter 5
introduces and describes in detail the branch strategies to personalize the user model to
improve the precision of LOD-based RSs. It presents the proposed solution and the algo-
rithms developed with this goal. We describe the experiments in Chapter 6 together with
the selected datasets, the evaluation methodology, and the metrics used. Then, we detail
the experiment parameters and plot the results for graphical visualization. This chapter
also includes a discussion of the results of each of the experiments. Finally, Chapter
7 concludes the work, provides information about points of improvement, and suggests
opportunities for future work.

Chapter

2
THE SEMANTIC WEB

This chapter aims to present concepts related to the Semantic Web. The chapter consists
of the following sections: Section 2.1 introduces the chapter. Section 2.2 presents the
basics of Resource Description Framework (RDF); Section 2.3 presents the SPARQL
query and illustrates how to use it; Section 2.4 presents the concepts of ontologies; and
Section 2.5 introduces the Linked Open Data (LOD), and Section 2.6 concludes the
chapter.

2.1 INTRODUCTION

In 2001, Tim Berners-Lee stated: “Most of the Web’s content today is designed for hu-
mans to read, not for computer programs to manipulate meaningfully” (BERNERS-LEE
et al., 2001). Indeed, web applications can parse a webpage for layout and text process-
ing. For example, it is possible to identify a header, or a link, to extract information
about the content on the page. However, they have no reliable way to process the se-
mantics. The Semantic Web brings structure to the meaningful content of web pages,
enabling web applications to answer sophisticated user queries without using complex
artificial intelligence solutions. The Semantic Web is an extension of the World Wide
Web that improves data sharing, discovery, integration, and reuse. The Resource De-
scription Framework (RDF) and the Web Ontology Language (OWL) are employed to
achieve these goals. RDF describes knowledge graphs, while OWL expresses type logics
(called ontologies) attached to these graphs (SARKER et al., 2017).

Along with these new data models, it arises the need for a new query language to
extract the information. Since the RDF release, several query languages have been pro-
posed (see (HUTT, 2005) for further description). In 2004, the RDF Data Access Working
Group released the first draft of SPARQL — a recursive acronym for SPARQL Proto-
col and RDF Query Language — a query language for RDF. In essence, SPARQL is a
graph-matching query language where the query consists of a pattern matched against
a data source. The values obtained from this matching are processed and generate the
answer to the user (PÉREZ; ARENAS; GUTIERREZ, 2009).

13

14 THE SEMANTIC WEB

The advantages of SPARQL are its expressivity and its scalability for large RDF
stores thanks to highly optimized SPARQL engines (e.g., Virtuoso, Jena) (FERRÉ, 2014).
Query expressiveness determines the type of queries a user can pose and how complex is
the evaluation of this query. SPARQL has an expressive power equivalent to Relational
Algebra (ANGLES; GUTIERREZ, 2008). This proposal uses SPARQL to access LOD
datasets to find the most important features for a particular user of a Recommender
System.

2.2 RESOURCE DESCRIPTION FRAMEWORK (RDF)

The Resource Description Framework (RDF) is a framework for representing information
on the Web. It has an abstract syntax and formal semantics that allow deductions
about the RDF data. RDF represents information in a minimalist and flexible way,
which is essential for sharing information between applications that have individual design
configurations. This structure increases the value of information as it becomes accessible
to more applications across the Internet (KLYNE; CARROLL, 2006).

The RDF structure is a collection of triples, each of them structured as a subject,
a predicate, and an object. A set of such triples is called an RDF graph. Figure 2.1
illustrates an RDF graph a diagram formed of nodes and directed-edges between them.
In this graph, each triple is represented as a node-edge-node link (for this reason, the
term “graph” is employed) (KLYNE; CARROLL, 2006; PAN, 2009).

A Uniform Resource Identifier (URI) is employed to identify the resources described
in RDF. When an RDF node has a URI label (like the gray ones in Figure 2.1), the URI
identifies the resource the node represents. Consequently, RDF assumes that nodes with
the same URI represent the same resource (GARSHOL, 2003).

Each triple expresses a statement of a relationship between the pair of linked nodes.
Each triple has three parts:

1. a subject;

2. an object, and;

3. a predicate (also known as property) that denotes a relationship.

The nodes of an RDF graph are the subjects and objects of triples, while edges are
the predicates. The edge always points toward the object. For instance, Figure 2.1
exemplifies an RDF graph describing a Person identified by <http://www.w3.org/a
nimal/EM/contact#me> (subject), whose name is Gabriela, whose email address is
gabrielaoms@ufba.br, and whose title is Msc. The predicates are the URIs near the edges
(e.g., <http://www.w3.org/2000/10/swap/pim/contact#mailbox>), and the objects are
the values inside the rectangles or ellipses. An object can be a literal (e.g. Gabriela), or
an RDF URI reference (<http://www.w3.org/2000/10/swap/pim/contact#Person>),
or a blank node.

Resource Description Framework Schema (RDFS) is the most basic schema language
commonly used in the Semantic Web technology stack. In fact, many vocabularies are

2.2 RESOURCE DESCRIPTION FRAMEWORK (RDF) 15

Figure 2.1: Example of an RDF graph describing a person.

written in RDFS, as is in the Friend of a Friend (FOAF) vocabulary. RDFS defines the
classes of the resources, the subclasses of classes, the properties of relations, the domain
and range of properties, among other metadata of RDF graphs (GUO; ALAMUDUN;
HAMMOND, 2016). A typical example of an rdfs:Class is foaf:Person in the Friend of
a Friend (FOAF) vocabulary (BRICKLEY; MILLER, 2004). An instance of foaf:Person
is a resource that is linked to the class foaf:Person using the rdf:type property. For
instance, if the graph in Figure 2.1 were using FOAF, the following formal expression of
the natural-language sentence: “Gabriela is a Person” could be represented by the triple:
⟨ <http://www.w3.org/animal/EM/contact#me>, rdf:type, foaf:Person ⟩, or simple ⟨
ex:Gabriela, rdf:type, foaf:Person ⟩ if we shorten the URI using an “ex” prefix.

In essence, an RDF triple denotes some relationship, indicated by the predicate, be-
tween the things denoted by the subject and the object of the triple. Subjects and objects
are of certain Class, defined by an rdf:type. Predicates are of class rdf:Property, and have
classes defined for their rdfs:domain and rdfs:range. For example, the following triples
are used to express that the property ex : employer relates a subject, which is of type
foaf:Person, to an object, which is of type foaf:Organization: ⟨ ex:employer, rdfs:domain,
foaf:Person ⟩ and ⟨ ex:employer, rdfs:range, foaf:Organization⟩. Given the previous two
declarations, from the triple: ⟨ ex:Gabriela, ex:employer, ex:UFBA ⟩ can be inferred that
ex:Gabriela is a foaf:Person, and ex:UFBA is a foaf:Organization.

According to Klyne e Carroll (2006), asserting an RDF graph is equivalent to asserting
all of its triples. Therefore, the meaning of an RDF graph is the conjunction (logical AND)

16 THE SEMANTIC WEB

of the statements corresponding to all the triples it contains, along with the inferences
that can be made from the relationships and metadata behind them.

2.2.1 RDF Literals

Literals are special nodes in an RDF graph that identify values such as Strings, numbers,
and dates through a lexical representation. In RDFS, a Datatype Property is a special
type of property that has its rdfs:range for an rdfs:Datatype instead of for an object
(rdfs:Datatype is a subclass of rdfs:Literal). For example, in Figure 1.2 from Chapter 1,
the dbo:foundingDate property has as its object the literal 25-01-2954 (xsd:date).

Literals may be plain or typed. A plain literal is a String combined with an optional
language tag. It is considered to denote itself, so it has a fixed meaning. A typed literal is
a String combined with a datatype URI (BERNERS-LEE, 2009). It denotes the member
of the identified datatype’s value space obtained by applying the lexical-to-value mapping
to the literal String. For instance, the typed literal representations bring the data itself
(25-01-2954), and also the datatype identified by URI (<http://www.w3.org/2001/XM
LSchema#date>), as shown in Figure 1.2.

Some of the various existing datatypes are XML standards, while others are defined
by the user/application. DBpedia, for instance, defines various datatypes to describe
many of the existent units of measure, including area, currency, pressure, speed, voltage,
and volume. Although, most of the existing semantic similarities discard this priceless
information in the literals. Thus, one of the goals of this work is to include the se-
mantics represented by literals in the methods for calculating similarity in LOD-based
recommender systems.

2.3 SPARQL

SPARQL is a query language that can express queries across diverse data sources. The
data queried using SPARQL might be stored natively as RDF or viewed as RDF via
middleware. A SPARQL endpoint enables users to query a knowledge base via the
SPARQL query language. DBpedia and LinkedGeoData endpoints can be accessed at
<http://dbpedia.org/snorql/> and <http://linkedgeodata.org/sparql>. Listing 2.1
introduces a SPARQL query to obtain features within 200 m from the point of interest.
In Listing 2.1, objectURI is a URI to the point of interest.

2.4 ONTOLOGIES 17

PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?resource ?label ?location
WHERE {
objectURI geo:geometry ?sourcegeo.
?resource geo:geometry ?location;
rdfs:label ?label.
FILTER(bif:st_intersects(?location, ?sourcegeo, 0.2)).
}

Listing 2.1: SPARQL query to obtain objects within 200 m from a point of interest.

SPARQL contains capabilities for querying graph patterns along with their conjunc-
tions and disjunctions. A SPARQL query consists of a pattern matched against a data
source, and the values obtained from this matching are processed to answer. The results
of SPARQL queries can be result sets or RDF graphs. Listing 2.2 introduces a SPARQL
query to obtain objects within a 20 km radius of New York City.

PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT ?resource ?label ?location
WHERE {
dbr:New_York_City geo:geometry ?sourcegeo.
?resource geo:geometry ?location;
rdfs:label ?label.
FILTER(bif:st_intersects(?location, ?sourcegeo, 20)).
}

Listing 2.2: SPARQL query to obtain objects within 20 km radius of New York city.

The predicate geo:geometry is defined at Geo-SPARQL (PERRY; HERRING, 2012), an
ontology that represents features and geometries. In Listing 2.1, the variable location
matches the spatial coordinates of objects around a point of interest. The function
bif:st_intersects() returns true if there is at least one point in common between the spa-
tial coordinates location and sourcegeo. The tolerance for the matching in linear distance
units is supplied at the third parameter of bif:st_intersects(). The tolerance is 200 m as
illustrated at Listing 2.1.

2.4 ONTOLOGIES

Ontology provides a foundation for the common understanding of some areas of interest
among people. Even if the people do not know each other or have different traditions and
languages, the ontology may be enough to make them understand each other (DIETZ,
2006). In other words, an ontology is a formal specification of a shared conceptualization
(GRUBER, 1995). Conceptualization stands for the concept meaning and its relationships
in a domain of knowledge, while specification stands for the formal, declarative, and
explicit definition of this concept and its relationships.

The Web Ontology Language (OWL) is used in the Semantic Web to formally de-

18 THE SEMANTIC WEB

scribe relationships between concepts. In effect, machines and humans can understand
ontologies represented by OWL. Ontologies provide a common concept structure where
shareable and reusable LOD datasets are built. Therefore, ontologies facilitate interop-
erability and data incorporation. In addition, OWL enables applications to make precise
inferences like class or instance inferences without requiring the description of all concept
relationships.

Figure 2.2: An ontology graph representing concepts and relationships between concepts.

Ontology classifies things in terms of semantics or meaning. OWL achieves this
through classes, subclasses, and instances (individuals). Figure 2.2 illustrates an on-
tology graph describing classes and subclasses. Usually, the root node in the ontology
graph is owl:Thing. In essence, every concept is a subclass of this root node. We can
observe that this ontology defines Cat and Mouse as subclasses of Animal, and Tree and
Grass as subclasses of Plant. The individuals are members of a given OWL class, so that
we can define “Tom” as a member of the Cat class. This way, we can infer that “Tom”
is an animal too because Cat is a subclass of Animal in the ontology graph.

There are two types of property in OWL to which an individual are related: i) object
properties (owl:ObjectProperty) relate individuals of two OWL classes, and ii) datatype
properties (owl:DatatypeProperty) relate individuals (instances) of OWL classes to literal
values. For instance, it is possible to create an object property to describe that Cat eats
Mouse as described in Listing 2.3 and 2.4. First, it is defined the relationship eats using
<owl:ObjectProperty> (Listing 2.3), then <owl:Class> defines the class Cat while the
<owl:Restriction> defines that every instance of Cat eats an instance of Mouse Listing
2.4. Therefore, it is possible to infer that Tom eats Jerry. The relationship eats is
represented by the yellow edge, while the relationship eaten_by is described by the red
edge in Figure 2.2.
<!-- http://semantic.org/people#eats -->

2.4 ONTOLOGIES 19

<owl:ObjectProperty rdf:about="http://semantic.org/animal#eats">
<rdfs:domain rdf:resource="http://semantic.org/animal#animal"/>
<rdfs:comment></rdfs:comment>
<rdfs:label>eats</rdfs:label>

</owl:ObjectProperty>

Listing 2.3: Object property representing the relationship “eats”.

<!-- http://semantic.org/animal#cat -->

<owl:Class rdf:about="http://semantic.org/animal#Cat">
<rdfs:subClassOf rdf:resource="http://semantic.org/animal#Animal"/>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="http://semantic.org/animal#eats"/>
<owl:allValuesFrom rdf:resource="http://semantic.org/animal#

Mouse"/>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:comment></rdfs:comment>
<rdfs:label>Cat</rdfs:label>

</owl:Class>

Listing 2.4: Cat class definition including that Cat eats Mouse.

Similarly, it is possible to create a datatype property defining the number of legs of
an animal, as described in Listing 2.5. First, it is set the property using <owl :Datatype-
Property>; then the property is used to relate the individual Jerry with the literal value
4 representing his number of legs.
<!-- http://semantic.org/animal#legs -->

<owl:DatatypeProperty rdf:about="http://semantic.org/animal#legs">
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>

</owl:DatatypeProperty>

<!-- http://semantic.org/animal#Jerry -->

<owl:NamedIndividual rdf:about="http://semantic.org/animal#Jerry">
<rdf:type rdf:resource="http://semantic.org/animal#Mouse"/>
<legs rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">4</legs>

</owl:NamedIndividual>

Listing 2.5: Datatype property describing the number of legs in an animal.

It is important to realize that RDF defines the data structure, while OWL describes
semantic relationships. RDF allows the user to link concepts together, so it is possible to

20 THE SEMANTIC WEB

describe that the contact’s (concept) name is Gabriela (another concept), as described in
Figure 2.1. In brief, the triples describe a single fact: “contact#me fullName Gabriela”.
However, it is not possible to classify objects using RDF. For example, it is impossible to
infer that a Person is a subclass of human-being.

OWL is a more expressive knowledge representation than RDF. It categorizes proper-
ties (relationships) into object and datatype properties, enabling the user to add restric-
tions on properties. For example, it is possible to define Tom as a Cat and infer that Tom
eats Jerry because every Cat eats every Mouse in the Class definition. This information
is not possible to obtain using RDF.

OWL is in its second version (OWL 2), which extends OWL 1 to facilitate ontology
development and sharing. OWL 2 has a similar overall structure to OWL 1 but adds
new functionality like new constructs for properties, extended support for datatypes, and
extended annotations.

2.5 LINKED OPEN DATA - LOD

The Web has evolved into a space where documents and data are linked (BIZER; HEATH;
BERNERS-LEE, 2009). To support this new Web, a set of practices for publishing and
connecting structured data has been proposed by Berners-Lee (BERNERS-LEE, 2011).
This set of practices is known as Linked Data because it enables users to start browsing
in one data source and then navigate along with links into related data sources. In
addition, Linked Data is published so that the data is machine-readable, enabling new
possibilities for applications. Berners-Lee (BERNERS-LEE, 2011) defines the following
set of practices to create Linked Data:

1. Use Uniform Resource Identifiers (URIs) as names for things;

2. Use HTTP URIs to publish your data;

3. Provide useful information using the standards (RDF, SPARQL);

4. Include links to other URIs so that users can discover more things.

The LOD project is formed from many datasets1 that encompass a vast collection of
statements related to entities — also called resources — as persons, places, songs, movies,
schools, and diseases, in different domains, including Social Networking, Arts, Govern-
ment, and Life Sciences. Some of the LOD standards to link the data include making
resources and their connections available in a common format — for example, RDF —
and making resources available through a SPARQL endpoint using unique identifiers
(BERNERS-LEE, 2009).

The World Wide Web Consortium (W3C) is the institution responsible for providing
technology patterns, including RDF and SPARQL, for accessing, using, and manipulating
the content of LOD datasets. Therefore, Linked Data relies on these three technologies:

1The LOD cloud diagram contains 1,314 datasets with 16,308 links, as of September 2023 (MCCRAE,
2023).

2.5 LINKED OPEN DATA - LOD 21

Uniform Resource Identifier (URI) (BERNERS-LEE; FIELDING; MASINTER, 2005),
the HyperText Transfer Protocol (HTTP) (FIELDING et al., 1999), and the Resource
Description Framework (RDF) model. A simple way to create linked data is using one
RDF file with a URI that links to another. A supposed RDF file, named <http://exam
ple.org/Hotels>, where hotels around the world are described. Local identifiers (Venice,
Italy, and Hotel_Danieli) describe one hotel (resource). In Listing 2.6, hotel Danieli is
described with RDF. An HTTP URI <http://example.org/Hotels/Hotel_Danieli> can
be assigned, enabling anyone on the Web to access the hotel’s description.
<rdf:Description about="Hotel_Danieli"
<rdf:type rdf:Resource="Italy">
<rdf:type rdf:Resource="Venice">

</rdf:Description>

Listing 2.6: Description of hotel Danieli in an RDF file.

There is another example RDF file (listing 2.7) containing the description of Hotels
in Venice. Hotel Danieli is in Venice; however, describing it again in Listing 2.7 is
unnecessary. Hotel Danieli is described by its HTTP URI, which points to its description.
When released under an open license, these files are called Linked Open Data (LOD).
This work uses two domains from the LOD source DBpedia: movie and music. These
datasets are described in Chapter 6, Section 6.2.
<rdf:Description about="Hotels_in_Venice"
<rdf:type rdf:Resource="http://example.org/Hotels/Hotel_Danieli">

</rdf:Description>

Listing 2.7: Description of hotels in Venice in a RDF file.

Tim Berners-Lee Berners-Lee (2011) suggested a 5-star rating system for Linked Open
Data, illustrated in Figure 2.3. The more stars the data has, the more shareability “power"
it contains. Below, we describe what is necessary to achieve each star:

• 1 star - Data available on the Web under an open license. Even a PDF or image
scan is allowed whether the information is public.

• 2 stars - Data delivered as structured (machine-readable) data. For example, an
Excel file instead of an image scan of a table.

• 3 stars - Data available in a non-proprietary open format, like using CSV instead
of Excel.

• 4 stars - All requirements above plus using open standards from W3C (e.g., RDF
and SPARQL) to identify things and properties. Following this standard, users can
point their data at other data.

• 5 stars - All requirements above plus link your data to other data to provide
context.

22 THE SEMANTIC WEB

Figure 2.3: Five Star Scheme for Linked Open Data. (KIM, 2019)

A notable example of LOD usage is the Linked Open Data (LOD) Project that started
in 2007 to offer public access to LOD datasets. In 2019, this project connected 1,239
datasets with 16,147 links between them (MCCRAE, 2023), resulting in more than 31
billion items (FRESSATO, 2019). This collection of datasets is known as the LOD cloud.
As a result, web search engines can use HTTP URIs to access data within different LOD
datasets, effortlessly generating new (and possibly more precise) information. Moreover,
applications obtain other benefits from LOD, such as facilitating data reutilization, ex-
tension, and shareability (TRIPERINA et al., 2015).

2.5.1 DBpedia

The central node in the LOD cloud is the DBpedia dataset. It has derived its data corpus
from Wikipedia, a heavily visited and under constant revision online encyclopedia. The
DBpedia Association maintains the dataset and provides an HTTP service endpoint to
execute queries. One must submit a query using SPARQL language to query LOD data.
For this reason, the endpoint usually is called the SPARQL endpoint (LEHMANN et al.,
2015). One can ask queries against DBpedia using the OpenLink Interactive SPARQL
Query Builder (iSPARQL)2, the SNORQL query explorer 3, or any other SPARQL-aware
client. In this research, we use ARQ4 to access DBpedia. ARQ is a SPARQL processor
for Jena - a free, open-source framework for building Semantic Web and Linked Data
applications.

DBpedia is in the Cross Domain category of the LOD cloud, shown in Figure 1.1 of
Chapter 1. We can see where DBpedia is situated in Figure 2.4, which illustrates the

2http://dbpedia.org/isparql
3http://dbpedia.org/snorql
4https://jena.apache.org/documentation/query/service.html

2.5 LINKED OPEN DATA - LOD 23

cross-domain LOD sub-cloud highlighting DBpedia and the related datasets (MCCRAE,
2023).

Figure 2.4: The Cross-Domain Linked Open Data Cloud from lod-cloud.net. Wikipedia-
related LOD datasets are highlighted (MCCRAE, 2023)

The DBpedia ontology is the heart of DBpedia and it is continuously improved by
the community contributions to the DBpedia ontology schema and the DBpedia infobox-
to-ontology mappings (CONTRIBUTORS, 2022). The most recent Snapshot Release
(December 2022) encompasses a total of 55 thousand properties, whereas 1,377 of these
are defined by the DBpedia ontology. The English version of the DBpedia knowledge base
describes 7.62 million entities, including 1.79 million persons, 7.48 million places, 610,589
creative works (music albums, films, and video games), 345,523 organizations (companies
and educational institutions), 1.93 million species, 77,180 plants, and 10,591 diseases.
In addition, DBpedia encompass 62 million community-contributed cross-references and

24 THE SEMANTIC WEB

owl:sameAs links to other linked data sets on the Linked Open Data (LOD) Cloud,
“that allow to effectively find and retrieve further information from the largest, decentral,
change-sensitive knowledge graph on earth that has formed around DBpedia since 2007”
(HOLZE, 2023).

DBpedia has several advantages over existing knowledge bases, such as i) wide do-
main coverage; ii) information generated from real community agreements; iii) automatic
evolution as Wikipedia changes, and; iv) it is multilingual (LEHMANN et al., 2015). At
this point, it is necessary to clarify that the term domain is used in two forms in this
thesis. The first and most constant form refers to the knowledge domain of a graph.
When we said in the sentence above that “DBpedia has a wide domain coverage”, we are
saying that within the DBpedia graph there are countless subgraphs on various subjects,
such as personalities, places, films, music, books etc. For the experiments in this work,
we curated two subgraphs, one in the Movie Domain and the other in the Music Domain.

The second form in which the term domain is employed in this work is when we are
discussing an ontology in OWL or RDFS. The DBpedia ontology is built using these two
metalanguages. Each DBpedia property is an instance of the rdf:Property class, which
has a domain (rdfs:domain) and a range (rdfs:range) (GUHA; BRICKLEY, 2014):

• The rdfs:domain of an rdf:Property declares the class of the subject in a triple whose
predicate is that property;

• The rdfs:range of an rdf:Property declares the class or datatype of the object in a
triple whose predicate is that property.

In other words, in this context, the term domain refers to the rdfs:Class that a subject
can assume in that triple. Back to the example in Figure 1.3, we have the following
RDFS structure for the property dbo:director: ⟨ dbo:director, rdfs:domain, dbo:Film ⟩
and ⟨ dbo:director, rdfs:range, dbo:Person ⟩.

Both domain concepts intersect when we observe that a knowledge graph for a given
domain has, if not all, most of its triples starting from the same domain for different
ranges. For example, in DBpedia’s Movie Domain, the rdfs:domain of properties are
from the dbo:Film class, as is in Figure 1.3, whose subject of the triple corresponds
in RDFS to ⟨ dbr:The_Avengers, rfd:type, dbo:Film ⟩. In the experiments, the Movie
Domain database has indeed all its triples starting from the OWL dbo:Film domain.
However, in the Music Domain database, the triples originate from two OWL domains:
dbo:MusicalArtist and dbo:Band. Therefore, we were able to include a larger number
of triples in the graph. This is because the music universe in DBpedia is smaller in
comparison to the Movie Domain.

2.6 SUMMARY

This chapter presented an overview of the Semantic Web. Firstly, it started by introducing
the Resource Description Framework (RDF) structure in Section 2.2 and then presenting
the query language SPARQL in Section 2.3. It describes how to use SPARQL to find
resources and properties in a search space used as an example. The concepts of ontologies

2.6 SUMMARY 25

were discussed in Section 2.4. Section 2.5 presented the Linked Open Data (LOD) as one
of the core concepts of the Semantic Web and also explained the DBpedia dataset, which
is the semantic dataset used in this work.

Chapter

3
RECOMMENDER SYSTEMS

This chapter discusses a literature review in Recommender Systems (RSs). Firstly, we
present an introduction about general RSs, followed by concepts about recommendation
tasks, user modeling, recommendation techniques and recommendation problems. Then,
we discuss the various types of evaluating a Recommender System, and how RSs can
take advantage of using the data openly available in Linked Open Data databases and
present the particularities of those types of RSs. Finally, we point the characteristics and
advantages of Feature Selection and Feature Ranking tasks in a LOD-based RS.

3.1 INTRODUCTION

Always making choices and making decisions are tasks that are part of the daily life of
individuals, such as buying a product, listening to music, and watching movies. However,
having enough previous knowledge about several subjects in the most varied contexts,
despite the many options available, is a characteristic of our society, making it difficult to
find what is of real interest. Naturally, individuals search for recommendations manually
at all times in several domains. Friends and/or close acquaintances are consulted to get
suggestions/opinions about where to travel, which car to buy, which electronic device,
which restaurant has the best food, etc.

People have different preferences and not always the suggestions/opinions of others
are the same or similar to their interests. Therefore, if the recommendations come from
a reliable source, the process of assisting in decision-making can be greatly improved.
García et al. (2017) define the RSs as intelligent systems that have the purpose of helping
individuals to find the information they need simply and efficiently. According to Ricci,
Rokach & Shapira (2015), RSs are software tools and techniques that aim to solve the
information overload problem by suggesting items most likely of interest to a particular
user.

Recommender Systems are widely used in e-commerce sites such as Amazon.com1,
1http://www.amazon.com

27

28 RECOMMENDER SYSTEMS

Mercadolivre.com2, Ebay.com3, among others. They are intended to help users find
products that interest them according to their preferences within the range of products
available (RICCI; ROKACH; SHAPIRA, 2015). The Social Web has provided new types
of RSS. One of the most important is the recommendation of individuals, given that it has
many unique characteristics and challenges within the broader domain of social RSs, i.e.,
RSs that segment the social media domain, for example, Facebook, Twitter, Instagram
(GUY, 2018).

A simple way to generate recommendations to users would be to select in the system
the best-selling products in the domain of electronic commerce or the most popular people
in the domain of social networks, for example. In such cases, all users will receive the same
recommendations, which may be useful in some contexts. However, the area of research in
RSs is particularly interested in custom recommendations. Such recommendations tend
to have a higher degree of satisfaction by individuals since they are generated according
to the preferences of each one.

Generally, some RSs need users to provide a score or evaluate a recommended item
using some evaluation method in addition to other metadata. Some of these methods
consist of collecting information about user interests implicitly or explicitly. Next, we will
discuss techniques covered in the literature that highlight ways to collect this information
to better identify a user’s preferences.

3.2 RECOMMENDATION TASKS

Recommender Systems have the main task of helping users to find information that is
relevant according to their interests. But still, according to Ricci, Rokach & Shapira
(2015), Aggarwal (2016) many other recommendation tasks can be defined for various
purposes, for example:

• Recommend a sequence: The main objective is to recommend items that im-
prove the user experience. For example, in the music context, a sequence of songs
composing a playlist with various artists and music genres from the user’s preference
could be recommended.

• Improve the profile: The system should receive information from the user about
his likes and dislikes. The user’s contributions will improve the quality of the
recommendations;

• Recommend a bundle: Recommend a group of related items that might be
interesting to the user and also fits well together, e.g. recommend a list of attractions
and hosting services to a user who is traveling to a certain destination;

• Increase user satisfaction: A combination of precise recommendations and a
well-designed interface will increase the user’s subjective evaluation of the system.
This will increase the usability and likelihood of recommendations being accepted.

2http://www.mercadolivre.com
3http://www.ebay.com

3.3 USER MODELING 29

• Increase user loyalty: A user must be loyal to a website that recognizes her as
an old customer and treats her as a valuable visitor. This is a common feature in
RSS as they calculate recommendations by evaluating information acquired from
the user in previous interactions;

• Annotation in context: Given a list of items in a context, highlight some ac-
cording to user preferences. For example, suggest other products related to those
that the user has searched for before (clothes, books, cars, etc.) on an e-commerce
website;

• Find some good items: A ranked list of items is retrieved, and the K most
relevant items to be suggested to the user, known as Top-K items, are selected;

• Find all good items: In some cases, it is not sufficient to find some good items.
All retrieved items are then sorted by relevance and presented to the user.

This work proposes an approach that focuses on the "find some good items" and
"improve the profile" tasks since we personalize the user model and make the recommen-
dations more suited to the user’s taste.

3.3 USER MODELING

Intelligent systems that adapt their content taking into consideration the interests and
personal needs of each user are expressed by the user model – User Model. The user
model is a data structure used to capture certain characteristics about a specific user,
and a user profile is the actual representation of a user model. Thus, the process for
obtaining the user profile is known as User Modeling (PIAO; BRESLIN, 2018).

Some techniques are discussed in the literature, for example, explicit and implicit feed-
back. Both techniques aim to collect information about the personal preferences of each
individual and thus try to model the profile of a user. User feedback is an indispensable
part of most RSs, so its absence directly impacts the process of recommendation and the
understanding of the user (JAWAHEER; WELLER; KOSTKOVA, 2014). In this study,
it is used implicit feedback using the history of user activities based on their interactions
in microblog Twitter.

3.3.1 Implicit feedback

The term implicit feedback encompasses evidence that users give through their natural
behavior, from which their interests can be deduced. Of course, in many real-world
situations, implicit feedback is much more available and requires no extra effort on the
part of the user. For example, on a web page, it is easy to register users who have
visited a URL or clicked on an ad. The system can treat these actions as a form of
positive feedback for the items displayed. It makes sense for information about these
past actions to contain highly relevant information to predict future actions (RICCI;
ROKACH; SHAPIRA, 2015; REUSENS et al., 2017).

30 RECOMMENDER SYSTEMS

3.3.2 Explict feedback

The approach to explicit feedback as a source of information is more reliable for inferring
user preferences than implicit feedback since the user is expressing his/her opinion on the
recommendation generated. Typically, RSs use ratings – assessments to collect informa-
tion about a user’s interests and generally use a Likert scale4 of N points to measure this
assessment (JAWAHEER; WELLER; KOSTKOVA, 2014). For example, Amazon.com
offers a 1-5 star rating system in its book catalog so that individuals can express their
opinions so that their preferences can be analyzed. Unfortunately, components for col-
lecting explicit feedback are not always available on a system.

3.4 RECOMMENDATION TECHNIQUES

Recommender Systems need to analyze information about items, users, and a particular
context to suggest items that are of real interest to a specific user. As mentioned earlier,
users have different interests, for example, in the context of music: some may like the
pop genre, others the rock genre, etc. Therefore, for recommendations to be generated
based on the preferences of each user it is necessary to use various techniques to obtain
a better prediction (RICCI; ROKACH; SHAPIRA, 2015).

Figure 3.1: Recommendation techniques (ISINKAYE; FOLAJIMI; OJOKOH, 2015).

Several recommendation techniques were proposed in the literature as a basis for a
4https://en.wikipedia.org/wiki/Likert_scale

3.4 RECOMMENDATION TECHNIQUES 31

RS as illustrated in Figure 3.1. The use of them is very important so that the system
can provide recommendations that are of real interest to a user, among them are Col-
laborative Filtering, Content-Based Filtering, Knowledge-Based Filtering, Demographic
and Hybrid Filtering, which is a combination of the first two mentioned (THORAT;
GOUDAR; BARVE, 2015), and will be discussed in detail below.

3.4.1 Content-Based Filtering

Naturally, individuals already make a selection of what they are only interested in, for
example, they select which sections they want to read in a newspaper, the songs they like
best in a playlist with various genres and artists, usually movies are searched by genre
(action, fiction, adventure, etc.) (BARMAN; TEWARI, 2017).

Content-Based Filtering aims to analyze a set of documents and/or descriptions of
items previously evaluated by a user, in order to create a model or profile of user in-
terests based on the characteristics of the items evaluated by the user. The profile is a
structured representation of user interests, adopted to recommend new relevant items.
The recommendation process basically consists of combining the attributes of the user’s
profile with the attributes of a given item.

3.4.2 Collaborative Filtering

It’s the most popular recommendation technique. Its predictions are based on evaluations
or the behavior of other similar users in the system. The collaborative filtering technique
works by creating a database (matrix of user items) of preferences for items by users. It
then associates users with relevant interests and preferences by calculating the similarities
between their profiles to generate recommendations (ISINKAYE; FOLAJIMI; OJOKOH,
2015).

In a scenario where one movie RS uses this technique, the predictions are made
about the possible films that the user would watch, taking into account their evaluations
submitted to previously watched films. Unlike content-based methods, without any ex-
tra information (metadata) about the users (location, genre) or items (type, category,
size) collaborative filtering can build personalized recommendations (RICCI; ROKACH;
SHAPIRA, 2015). The fundamental assumption behind this method is that the opinions
of other users can be selected and aggregated to provide a forecast of the preference of
active users (TERÁN; MENSAH; ESTORELLI, 2018).

Figure 3.2 illustrates the diagram of the Collaborative Filtering scheme. This algo-
rithm represents the input data of the user’s items as a matrix m × n of evaluations
denoted as Λ. Each ai,j entry in Λ represents the score of the user’s preference i with
the j item. As well as each individual rating is within a numerical scale and can be 0
indicating that the user has not rated that item.

Table 3.1 illustrates an example of a matrix User × Item in a movie context. In
this example, the user Paul rated the movies Titanic and The Avengers at 5 and 2
respectively. However, the movie Hard to Kill 4.0 was not watched and it is necessary to
estimate the favorable opinion of Paul about it. Verifying the similarity with the other

32 RECOMMENDER SYSTEMS

Figure 3.2: Collaborative filtering process (SARWAR et al., 2001).

users, Fred is the profile that most resemble that of Paul. Therefore, it can be noted that
the assessments of Titanic and Hard to Kill 4.0 follow the same pattern, demonstrating
that people who liked the former may also like the latter (LÜ et al., 2012; THORAT;
GOUDAR; BARVE, 2015).

Table 3.1: Users × Itens Evaluation Matrix.
XXXXXXXXXXXXMovies

Users Fred Joe Paul

Titanic 5 1 5
The Avengers 1 5 2
Hard to Kill 4.0 4 2 ?

There are two approaches that this technique adopts as a way to improve its pre-
dictions, which are Memory-Based which is based on data similarity (user-item); and
Model-Based, which uses machine learning techniques to adjust a parameterized model
as illustrated in Figure 3.1 (KLUVER; EKSTRAND; KONSTAN, 2018). In collaborative
memory-based filtering, the user-item evaluations stored in the system are used directly
to predict new items. This can be done in two known ways: user-based recommendation
or item-based recommendation (BURKE, 2002; RICCI; ROKACH; SHAPIRA, 2015),
which are discussed below.

3.4.2.1 Memory-based When using the memory-based approach we can focus on
the user or on the items to make recommendations.

• User-based: This technique attempts to estimate a user’s interest in a particular u
item, aiming to calculate the similarity between a set of users (known as neighbors)
Nu similar to u. This similarity is given by comparing user ratings for the same
item. As well, it aims to calculate the predicted assessment for an item given to an

3.4 RECOMMENDATION TECHNIQUES 33

active user, as a weighted average of the item assessments by users similar to the
active user, in which the weights are the similarities of these users with the item
of probable interest (RICCI; ROKACH; SHAPIRA, 2015; ISINKAYE; FOLAJIMI;
OJOKOH, 2015);

• Based on the item: This approach calculates predictions using the similarity
between items and not the similarity between users. This technique creates an item
similarity model by retrieving all items that were assessed by an active user from
the item matrix and determines how the retrieved items are similar to the item of
interest, then it is by selecting the k most similar items and their corresponding
similarities are also determined (RICCI; ROKACH; SHAPIRA, 2015; ISINKAYE;
FOLAJIMI; OJOKOH, 2015).

There are several models proposed in the literature to perform the calculation of
similarity between users. According to Adomavicius, Tuzhilin e Alexander (2005), the
most popular metrics to perform this calculation are the Pearson Correlation and Cosine
Similarity equations that will be discussed below:

• Pearson’s Correlation: In equation 3.1, sim(u1, u2) denotes the similarity be-
tween two users u1 and u2, ru1,i is the valuation assigned to the item i by the user
u1, ru1 is the average valuation given by the user u1 while n is the total number
of items in the user-item space. In addition, the prediction for an item is made
from the weighted combination of the selected neighbor’s assessments, which is cal-
culated as the weighted deviation of the neighbor’s mean values (SARWAR et al.,
2001; ISINKAYE; FOLAJIMI; OJOKOH, 2015).

sim(u1, u2) =

n∑
i=1

(ru1,i − ru1)(ru2,i − ru2)√
n∑

i=1
(ru1,i − ru1)2

√
n∑

i=1
(ru2,i − ru2)2

(3.1)

• Cosine Similarity: This equation is different from Pearson’s correlation in that it
is a vector space model based on linear algebra and not on the statistical approach.
This similarity metric calculates the angle between two n−dimensional vectors (u1
and u2), and it is widely used in the fields of information retrieval and text mining
in order to compare two documents, in which case the documents are represented
as term vectors (ISINKAYE; FOLAJIMI; OJOKOH, 2015). The similarity between
two users u1 and u2 can be defined according to Equation 3.2.

sim(u1, u2) = cos(u⃗1, u⃗2) = u⃗1.u⃗2∥∥∥u⃗1
∥∥∥

2
×

∥∥∥u⃗2
∥∥∥

2

=

n∑
i=1

ru1,iru2,i√
n∑

i=1
r2

u1,i

√
n∑

i=1
r2

u2,i

(3.2)

34 RECOMMENDER SYSTEMS

3.4.2.2 Model-Based This technique uses the previous assessments to learn a model
in order to improve the performance of the collaborative filtering technique. The model-
building process can be done using either machine learning or data mining techniques.
These techniques can quickly recommend a set of items because they use a preprocessing
model and have proven to produce recommendation results similar to neighborhood-based
recommendation techniques (ISINKAYE; FOLAJIMI; OJOKOH, 2015). The model-
based technique is not explored in this work.

3.4.3 Hybrid Filtering

The hybrid filtering technique combines a combination of two or more recommenda-
tion techniques in order to achieve better performance than Collaborative Filtering and
Content-Based Filtering. This combination can be achieved in different ways in order to
produce multiple outputs (KUMAR; THAKUR, 2018). According to Burke (2002) col-
laborative filtering is often combined with some other technique in an attempt to avoid
the cold-start problem.

The Hybrid Filtering technique can help solve some of the problems associated with
Collaborative Filtering and Content-Based recommenders, for example. However, regard-
less of type, every recommender technique will always have to deal with the cold-start
problem — which will be discussed in the following Section 3.5 — since it requires a
previously built set of evaluation data. Although, hybrid techniques are very popular
because, in many situations, these evaluations already exist or can be inferred from data.

3.5 RECOMMENDATION PROBLEMS

3.5.1 The Cold-Start Problem

The cold-start problem is one of the main recognized problems involving RSs. Given the
large number of online platforms publishing hundreds or thousands of new items every
day, effective recommendation is essential for such platforms in order to keep their users
continuously more engaged.

For an RS to have a good ability to suggest accurate items to a user, it is necessary to
have previous information about what is of interest to them. Therefore, when new users
and or items are registered in a system it might have no evaluation — implicit/explicit
feedback — already stored in it. Thus, the accuracy of recommendations for these user-
s/items is affected. It happens, for instance, when a new user has never given ratings to
any item and a new item has never been rated by any user before.

Several methods have been proposed in the literature to deal with the cold start
problem, mainly regarding Collaborative Filtering RS (LAM et al., 2008; ZHANG et al.,
2010; GUO, 2012). According to Ricci, Rokach e Shapira (2015), Saveski e Mantrach
(2014), Sedhain et al. (2014), Kumar e Thakur (2018) the cold-start problem is related
to how to deal with the sparseness in the data matrix User × Item and can be identified
by three different types: i) recommendation for new users; ii) recommendation for new
items; iii) recommendation of new items for new users.

In the literature, there are techniques proposed as a solution to this problem, known

3.6 EVALUATION OF RECOMMENDER SYSTEMS 35

as matrix factorization, which is mentioned in the following subsection. Other studies use
Linked Open Data datasets to add semantics to the system to help address the cold-start
problem (NOIA et al., 2012; GEMMIS et al., 2015; JOSEPH; JIANG, 2019).

3.5.2 The Matrix Sparsity Problem

In numerical analysis and scientific computing, a sparse matrix is a matrix in which most
of the elements are zero. Large sparse matrices often appear in scientific or engineering
applications, especially when solving machine learning problems. Conceptually, sparsity
corresponds to systems with few pairwise interactions.

In a recommender system, the rows and columns of the matrix are the users and the
items; and the element in each position corresponds to whether or not the user gave a
rating to the item — if it is a binary representation — or, sometimes, it is the rating
itself. This matrix is often called the User × Item matrix. Thus, the matrix sparsity
problem arises from the phenomenon that users, in general, rate only a limited number
of items (GUO, 2012).

Especially in Collaborative Filtering (CF), as the dimensionality of data grows, the
matrix becomes more sparse, that is, there are many missing data not evaluated by the
user that needs to be predicted. In the literature, there are several proposed methods
that address the high dimensionality and sparseness of data, such as Matrix Factorization
(RICCI; ROKACH; SHAPIRA, 2015). Another approach to resolve this issue in CF
recommender systems is to address the problem through the user modeling task. Guo
(2012) proposes a method that utilizes trust to find more similar users whose ratings can
be aggregated to generate recommendations.

Another solution that addresses the User × Item matrix sparsity problem is using
semantic data from other datasets, such as LOD datasets. These systems are called
semantic aware Recommender Systems. Codina, Ricci e Ceccaroni (2013) describe an
approach based on the intuition in which not only the ratings provided by the users in a
specific situation can be considered as relevant, but also the ratings provided in similar
situations.

3.6 EVALUATION OF RECOMMENDER SYSTEMS

Evaluating the quality of an RS is important to verify its ability to accurately predict
user choices. In many applications, people use an RS for more than exact anticipation of
their interests. Users may also be interested in discovering new items, quickly exploring
multiple items, preserving their privacy, quick system responses, and many other prop-
erties of the recommendation engine interaction. Therefore, it is essential to identify the
properties that can influence the success of an RS in the context of a specific application.

Several evaluation metrics are available in the literature, and choosing among them
depends on the recommendation technique used. Another aspect that influences the
evaluation metrics is the type of experiments, which are offline, online, or based on user
studies (SHANI; GUNAWARDANA, 2011; RICCI; ROKACH; SHAPIRA, 2015). These
types are discussed below:

36 RECOMMENDER SYSTEMS

• Offline: An offline experiment is performed using a set of collected data from users
who have chosen or evaluated items. Using this data set as a start, the behavior of
these users is then simulated. It is assumed that the behavior of users during the
experiments is similar enough to the behavior when the data was collected so that
reliable decisions are made based on the simulation;

• User studies: A user study is conducted by recruiting a set of test subjects and
asking them to perform various tasks that require an interaction over the RS. While
the tasks are performed, their behaviors are observed and recorded by collecting
quantitative data. For example, which part of the task was completed, the accuracy
of the task results, or the time spent to perform it. In many cases, it is necessary
to ask qualitative questions before, during, and/or after the completion of the task.
These questions can collect data that is not directly observable. For example, how
much the individual liked the interface or whether the task was easy or difficult to
complete;

• Online: In an online experiment, the RS tries to influence the user’s behavior.
They also aim to collect information about their behavior, such as: whether or not
they liked a movie when evaluating it according to a numerical scale and if they
were interested in similar products based on what they bought previously, among
others. Thus, an online experiment has the possibility and at the same time the
challenge of building the user’s model based on their behavior and evaluations.

In this work, we perform offline experiments that are described in Chapter 5.
After selecting the user tasks to be supported by a system and implementing the

chosen type(s) of experimentation it is necessary to perform repeatable evaluations in
order to measure the recommender system utility. According to Herlocker et al. (2004),
the metrics that evaluate RSs can be broadly classified into the following categories:
predictive accuracy metrics, classification accuracy metrics, and ranking metrics.

3.6.1 Predictive Accuracy Metrics

Predictive accuracy metrics measure how close a user’s predicted ratings are to the true
user’s ratings. These metrics are very important and can be used to measure the ability
of an RS to evaluate items related to user preferences (HERLOCKER et al., 2004).

• Root Mean Square Error (RMSE): This metric became very popular as it was
used as the standard metric for the Netflix Prize5. A feature of RMSE is that it
tends to disproportionately penalize large errors because of the term squared within
the summation (AGGARWAL, 2016). It is be given by Equation 3.3 below,

RMSE =
√∑n

i=1(ri − pi)2

n
(3.3)

5The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict
user ratings for films, based on previous ratings. See more at <https://www.netflixprize.com/>.

3.6 EVALUATION OF RECOMMENDER SYSTEMS 37

where n is the total number of ratings on all users, pi is the expected valuation for
the user i in the item p, and ri is the actual valuation again. RMSE amplifies the
contributions of absolute errors between forecasts and actual values;

• Mean Absolute Error (MAE):
This metric, on the other hand, does not disproportionately penalize larger errors
and aims to average the absolute difference between predictions and true rankings.
It is given by Equation 3.4 below,

MAE =
∑n

i | ri − pi |
n

(3.4)

where n is the total number of ratings on all users, pi is the expected rating for the
user i on the p item, and ri is the actual rating. The lower the MAE, the better
the prediction.

3.6.2 Classification Accuracy Metrics

In many applications, the RS does not predict the ratings a user would give to items,
such as movie ratings. The system sometimes tries to recommend items that the users
can like. For example, when a user selects a movie, Netflix suggests a set of other movies
that can also be interesting according to the selected movie. In this case, we are not
interested in knowing if the system correctly predicts the ratings of these films, but if
the system correctly predicts whether the user would select these films, that is if these
suggested items are really of her interest (RICCI; ROKACH; SHAPIRA, 2015).

Classification accuracy metrics measure how often an RS makes correct or incorrect de-
cisions about whether or not an item is good. These metrics are, therefore, appropriate for
tasks such as "find good items" when users have true binary preferences (HERLOCKER
et al., 2004). The following Table 3.2 illustrates the possible result of a recommendation
of an item to a user.

Table 3.2: Classification of the possible outcome of a recommendation.

Recommended Not recommended
Of Interest True Positive (TP) False Negative (FN)
No Interest False Positive (FP) True Negative (TN)

Some of the most known classification accuracy metrics are presented below.

• Precision: It consists in calculating the proportion of positive examples correctly
classified among all those predicted as positive. It is shown in Equation 3.5.

Precision = #TP

#TP + #FP
(3.5)

38 RECOMMENDER SYSTEMS

• Recall: Corresponds to the hit rate in the positive class, as shown in Equation 3.6.

Recall = #TP

#TP + #FN
(3.6)

• F1: This metric combines the two previous metrics, which is their harmonic mean,
and is shown in Equation 3.7 below.

F1 = 2× Precision×Recall

Precision + Recall
(3.7)

3.6.3 Ranking Metrics

In this section, we discuss the ranking metrics, which have the purpose of measuring in
which position are the recommendations considered relevant within a ranked list presented
to users. Below, we show some of these metrics.

• Mean Reciprocal Rank (MRR): The MRR metric is intended to calculate the
accuracy of a recommended item of a ranked list of items for one user. The MRR
is the average of the Reciprocal Rank (RR) in all queries for each user and is a
particularly important measure for domains that generally provide users with only
a few but valuable recommendations. For example, referrals from friends on social
networks where of the top 3 or 5 recommendations are most important (SHI et al.,
2012). This metric is given in Equation 3.8:

MRR = 1
|Q|

|Q|∑
i=1

1
ranki

(3.8)

where |Q| is the number of queries and ranki is the position of the first relevant
item in query |Q| of candidate items;

• Precision at n (P@n): The number of recommended items in a list for a user
can vary depending on the method of recommendation used and on the amount of
data available. Thus, for a number of recommended items in a ranked list to be
evaluated, the P@n metric presented in Equation 3.9 uses n as the cut-off point and
considers the n first retrieved items, called Top-N recommendations (DAVOODI;
KIANMEHR; AFSHARCHI, 2013).

P@n = r

n
(3.9)

where n is the quantity of items returned and r is the quantity of items considered
relevant up to the n position of the list;

• Mean Average Precision (MAP): The MAP metric is responsible for generating
a single value, which is obtained by averaging the average precision of each user’s

3.6 EVALUATION OF RECOMMENDER SYSTEMS 39

list of recommendations (PARRA; SAHEBI, 2013). It is presented in Equation
3.10, as follows:

MAP =
N∑

n=1

AveP (n)
N

(3.10)

where AveP (n) is the average precision of the user n, i.e., the average of the preci-
sion values obtained given a set of Top-N recommendations (P@n) after each rele-
vant recommendation is retrieved (MANNING; RAGHAVAN; SCHÜTZE, 2008);

• Normalized Discounted Cumulative Gain (NDCG):
NDCG is a metric based on the notion that items in a rank have varying degrees
of relevance. Besides, it considers not only that notion, but once relevant items
in a certain rank position may also be less valuable to the users than a less rel-
evant one in a greater position (JäRVELIN; KEKäLäINEN, 2002). Thereby, the
gained value (without discounts) is obtained as the relevance score of each item
is progressively summed from the rank position 1 to n. Discounted Cumulative
Gain (DCG) is then obtained through Equation 3.11, which penalizes highly rel-
evant documents appearing lower on a search result list as the graded relevance
value is logarithmically reduced proportionally to the result’s position — sharper
or smoother discounts can be computed to model the user’s behavior by varying
the base of the logarithm, b.

DCG[i] =

CG[i], if i < b

DCG[i− 1] + G[i]/ logb i, if i ≥ b.
(3.11)

DCG values can be compared to the theoretically best possible score vector. This
ideal vector is represented by Equation 3.12 for relevance scores 0 and 1, where m
is the number of relevant items.

BV [i] =

1, if i ≤ m

0, otherwise.
(3.12)

In order to compare the two techniques being evaluated using DCG, we need to
normalize their values. The DCG vectors are normalized by dividing them by
the corresponding ideal DCG vectors (iDCG). The NDCG is then calculated us-
ing Equation 3.13, which, likewise Precision@K, only evaluates the top k results
(MANNING; RAGHAVAN; SCHüTZE, 2008).

NDCG(k) = DCG(k)
iDCG(k) (3.13)

This work uses the following ranking metrics to evaluate our RS approach: P@n,
MAP, and NDCG.

40 RECOMMENDER SYSTEMS

3.7 LOD-BASED RECOMMENDER SYSTEMS

The data that describe items in a Recommender System can come from many sources,
most usually private databases belonging to the company that owns a website or service.
Nevertheless, the availability of open knowledge sources is growing, increasing the emer-
gence of semantics-based applications, for example, Semantics-Aware RSs (GEMMIS et
al., 2015). Linked Open Data (LOD) is a widely known project that aims to connect open
datasets through the Web and to facilitate their use by applications (BIZER; HEATH;
Berners-Lee, 2009).

The LOD project is formed from many datasets encompassing a vast collection of
such as persons, places, songs, movies, schools, and different domains. These entities are
connected to others by links, making the datasets interconnected with the whole LOD
diagram. This characteristic makes LOD datasets a natural source of information that
can enrich diverse recommender systems engines, for example, when systems leverage
information from the DBpedia dataset — already presented in Chapter 2.

Figure 3.3 shows a LOD sub-cloud with the DBpedia dataset centered. DBpedia is a
multipurpose project that aims to make Wikipedia content openly available in Resource
Description Framework (RDF) format and also incorporates links to other datasets on
the Web, such as FOAF6, Geonames7, MusicBrainz8 and BBC datasets, for instance,
BBC Programmes9. As these extra links are provided — in terms of RDF statements
— applications may exploit knowledge from interconnected datasets, thus facilitating
various possibilities for developing semantic applications. For this reason, DBpedia is
often considered the linking hub of the LOD project. For example, in Kobilarov et al.
(2009), the authors describe how Linked Data technologies were applied within the British
Broadcasting Corporation (BBC) and how DBpedia and MusicBrainz are used in that
process as both are interlinking vocabulary and a data provider.

One example of a semantics-aware application is when a Knowledge Graph (KG) is
used to provide better recommendations to the users (CATHERINE; COHEN, 2016). In
most of the works that follow this line of research, authors enrich the content of benchmark
databases with semantics given from interconnections between nodes on the KG. Another
example is found in Musto et al. (2016), which studies the impact of using knowledge
from the LOD cloud on the overall performance of a graph-based recommendation algo-
rithm. They use a uniform formalism to represent both collaborative and content-based
features and then investigate whether the integration of LOD-based features improves
the algorithm’s effectiveness and to what extent the choice of different feature selection
techniques influences its performance in terms of accuracy and diversity.

This work focuses on Content-Based Recommender Systems, which compute the sim-
ilarity between items in the system by comparing their characteristics (also called fea-
tures). For instance, in a movie RS, algorithms reason about the degree of similarity
between two movies by comparing their directors, actors, the main subject, and so on.

6http://xmlns.com/foaf/spec/
7https://www.geonames.org/
8https://musicbrainz.org/
9https://lod-cloud.net/dataset/bbc-programmes

3.7 LOD-BASED RECOMMENDER SYSTEMS 41

Figure 3.3: LOD sub-cloud showing some of the highly used DBpedia-related datasets
(HOLZE, 2023).

The more a pair of movies share features, the greater their similarity. Figure 3.4 shows
an example of relationships between resources in a music recommender system. We can
see that both Ariana_Grande and Selena_Gomez are musicalguests of List_of_the_-
tonight_show_with_Jay_Leno_episodes, and also they both are subject of the category
21st-century_American_singers. This could indicate that these two LOD resources are
similar.

Figure 3.4: Example of relationships in a semantic-aware recommender system. Adapted
from Piao, Ara e Breslin (2016).

Although several studies address different ways to build recommendations in LOD-
based environments, researchers are still discussing some problems, as shown in Section

42 RECOMMENDER SYSTEMS

3.5. For example, the sparsity problem, when there are feedback data in comparison to the
whole data matrix size, or the cold-start problem, which happens when a new item or a
new user is added to the system, making it hard to provide personalized recommendations,
since interactions are not present yet.

3.7.1 Semantic Similarity Measures

LOD datasets are often used to add semantics to the system to help address those well-
known RS problems (NOIA et al., 2012; GEMMIS et al., 2015; JOSEPH; JIANG, 2019).
Therefore, these enriched systems use a semantic similarity algorithm that calculates the
degree of matching between pairs of Linked Data resources. Because RDF represents
data as a graph, these algorithms, in general, count the number of direct and indirect
links — i.e., the edges in the graph —, the length of the path between two resources, or
their place in the hierarchy of classes (PASSANT, 2010; PIAO; ARA; BRESLIN, 2016;
CHENIKI et al., 2016). We discuss some of the existing semantic similarity measures in
the next subsections.

3.7.1.1 Linked Data Semantic Distance (LDSD) LDSD is one of the pioneers’
approaches for measuring the semantic distance between two resources on LOD datasets,
such as DBpedia (PASSANT, 2010). The complete LDSD function is shown in Equation
3.14, and it is composed of four smaller functions, C(pj, ra, rb), that computes whether
there is a link pj between resources ra and rb. They return 1 in case there is 0 otherwise.
Whenever there is an n, the function calculates the total number of links between a
resource ra or rb to all other resources.

simLDSD(ra, rb) =
1

1 + ∑
j

Cd(pj ,ra,rb)
1+log Cd(pj ,ra,n) + ∑

j
Cd(pj ,rb,ra)

1+log Cd(pj ,rb,n) + ∑
j

Cii(pj ,ra,rb)
1+log Cii(pj ,ra,n) + ∑

j
Cio(pj ,ra,rb)

1+log Cio(pj ,ra,n)
(3.14)

The function Cd only considers direct links from resource ra to resource rb — the first
function of the equation. Once the graph is directed, reverse links, from resource rb to
resource ra, count as different links — second function of the equation. For example, the
triple ⟨Ariana_Grande, influences, Selena_Gomez⟩, taken from Figure 3.4, represents a
direct link influences between the resources Ariana_Grande and Selena_Gomez. The
inverse situation does not exist in Figure 3.4, since there is not a link influences between
the resources Selena_Gomez and Ariana_Grande.

The function Cii represents indirect incoming links and returns 1 only if there is a
resource rc that satisfies both ⟨pj, ra, rc⟩ and ⟨pj, rb, rc⟩, 0 if not — third function of
the equation. It is exemplified in Figure 3.4 by the triples ⟨Ariana_Grande, subject,
Category:21st-century_American_singers⟩, and ⟨Selena_Gomez, subject, Category:21st-
century_American_singers⟩. In this example, a virtual (indirect) link between Ari-

3.7 LOD-BASED RECOMMENDER SYSTEMS 43

ana_Grande and Selena_Gomez is created through the subject links incoming to the
Category:21st-century_American_singers resource.

Finally, function Cio, in its turn, represents indirect outgoing links and equals to 1
only if there is a resource rc that satisfies both ⟨pj, rc, ra⟩ and ⟨pj, rc, rb⟩, 0 if not — fourth
and last function of the equation. It is exemplified in Figure 3.4 by the triples ⟨List_-
of_the_tonight_show_with_Jay_Leno_episodes, musicalguests, Ariana_Grande⟩, and
⟨List_of_the_tonight_show_with_Jay_Leno_episodes, musicalguests, Selena_Gomez⟩.
In this example, a virtual (indirect) link between Ariana_Grande and Selena_Gomez
is created through musicalguests links outgoing from List_of_the_tonight_show_with_-
Jay_Leno_episodes.

3.7.1.2 Vector Space Model (VSM) VSM is also employed to calculate the simi-
larity of two concepts/resources in the Linked Data (NOIA et al., 2012). The approach
represents the RDF graph as a 3-dimensional matrix. Each matrix slice represents an
ontology property p. A cell in the matrix is not null only if there is a relation, through
p, from a subject (on the rows) to an object (on the columns). As they use the movie
domain, each movie is seen as a vector, and their components correspond to a version of
TF-IDF in which the terms are resources, and the documents are movies. The similarity
between the two movies is then the correlation between their vectors. The cosine of the
angle between them quantifies this similarity. All nodes of the graph are represented on
both rows and columns.

Properties are considered independent, and the similarity is only calculated for re-
sources of the same type. The bigger matrix is divided into smaller ones, each corre-
sponding to a property, having their domain as the rows and range as the columns. The
weights are computed using TF-IDF. The TF(fn,i,p) part is the frequency of a node n
as being the object of an RDF triple having p as the property and the movie i as the
subject. The values it can assume are 0 or 1. The IDF part is the logarithm of the ratio
between M , the total number of movies in the collection, and an,p, the number of movies
linked to n by means of p. The similarity is then calculated using Equation 3.15:

simDiNoia(Ci, Cj) =
∑t

n=1 wn,i,p.wn,j,p√∑t
n=1 w2

n,i,p.
√∑t

n=1 w2
n,j,p

(3.15)

3.7.1.3 Resource Similarity (ReSim) The ReSim measure extends Linked Data
Semantic Distance (LDSD) to satisfy three fundamental word similarity axioms that are
violated, including “equal self-similarity”, “symmetry” or “minimality”. According to
Piao e Breslin (2016), the following axioms must be resolved:

• Equal self-similarity: sim(A, A) = sim(B, B), for all stimuli A and B;

• Symmetry: sim(A, B) = sim(B, A), for all stimuli A and B;

• Minimality: sim(A, A) > sim(A, B), for all stimuli A ̸= B.

44 RECOMMENDER SYSTEMS

The similarity measure Resource Similarity (ReSim) aims to calculate the similarity
of two resources in DBpedia, considering the similarity of the properties of these resources
and satisfying the fundamental axioms pointed out above.

It is important to point out that the similarity measures presented so far and most
of the other measures in the literature do not consider the information carried out by
RDF literals. Along the remainder of this work, we refer as pure linked-based method to
any measure that discards RDF literals and calculates the similarity of resources relying
solely on the links (direct or indirect) that interconnect them.

Another branch of this work is to investigate ways to automatically select and rank
the items’ features to provide better recommendations to the user. We will discuss next
some ways of ranking features regarding a given RS context and/or selecting the best
combination of properties that fits a particular RS.

3.8 FEATURE SELECTION AND FEATURE RANKING

In machine learning, feature selection has been used in research areas for which datasets
with hundreds or thousands of variables are available. Studies about this issue focus
mainly on two branches of research: i) constructing and selecting subsets of useful features
to build a good predictor, and; ii) finding and ranking all potentially relevant variables
in a context (GUYON; ELISSEEFF, 2003). Both Feature Selection (FS) and Feature
Ranking (FR) can be used as a filter method, i.e., a preprocessing step, independent of
the choice of the predictor (GUYON; ELISSEEFF, 2003). This preprocessing work helps
the system to lead with the high sparsity characteristic of the matrix User × Item.

In a LOD-based system, one common way of performing an FS task is through hand-
crafted work, i.e., manual selection of the most relevant LOD-based features, according
to simple heuristics or the domain knowledge (MUSTO et al., 2016). In a LOD-Based
Recommender System, properties can be considered as features of a given node of the
knowledge graph. Even though most recommender models consider links as having equal
importance to compute similarity, FS and FR have been applied to increase the accuracy
of RSs. For example, Musto et al. (MUSTO et al., 2016) assess the impact of several
feature selection techniques on recommendations accuracy, such as Principal Component
Analysis (PCA), Information Gain Ratio (GR), PageRank (PR), and Support Vector
Machines (SVM).

In a different approach, Noia et al. (2018) shows how LOD-based summarization can
drive FS and FR tasks by comparing an automated feature selection method based on
ontology data summaries with more classical ones, like manual selection. Summarization
is an FS method based on a group of descriptors from the graph model. It automatically
extracts the top-k properties deemed more important to evaluate the similarity between
instances of a given class on top of data summaries built with the help of an ontology.
The method uses frequency and cardinality descriptors computed over schema patterns
such as ⟨dbo:Film, dbo:starring, dbo:Actor⟩ extracted from the data (NOIA et al., 2018).

The FS task is performed by Noia et al. (2018) though the ABSTAT framework, which
provides two statistics: the pattern frequency and the cardinality descriptors for feature
selection. The process exemplified in Figure 3.5 shows a subset of Π with class dbo:Film as

3.9 SUMMARY 45

Figure 3.5: Feature selection model with ABSTAT with source type dbo:Film. Adapted
from Noia et al. (2018).

the source type. The first step of this approach (FILTERBY) filters out properties based
on the local cardinality descriptors. Mre specifically, it filters only properties for which
the average number of distinct subjects associated with unique objects is more than one
(avgS > 1), i.e, it consider only those properties connecting one target type with many
source types. In the example, patterns π4 and π8 with dbo:wikiPageExternalLink and
owl:sameAs property, respectively, are removed because there exists, on average only
one subject of type dbo:Film associated with a distinct object. The second step of the
process (SELECTDISTINCTP) selects all properties of the patterns in Π by applying
the maximum of the pattern frequency (# in the figure). Then, the properties are ranked
(ORDERBY) in descending order on pattern frequency, and then k properties (TOPK)
are selected (with k = 2 in this example).

In the present work, we perform an FS task in a personalized way by adapting the
work of Noia et al. (2018) to the proposed personalization strategies. We select the most
domain-relevant features (links) from the LOD graph using an implementation of the
ABSTAT framework. After that, we rank the filtered links by adding weights to each
link according to the user model (see Chapter 5 for further details). Differently of Noia
et al. (2018) that use the Jaccard index as the similarity measure, we combine the FS
task with personalized versions of Linked Data Semantic Distance (LDSD) and Resource
Similarity (ReSim). In other words, we aim to prove that ranking features according to
their relevance to the user, instead of considering just the semantics of domain, increases
the accuracy of the RS as we show in Chapter 6.

3.9 SUMMARY

The recommendation algorithms approach different ways of making recommendations.
This chapter presented a formal definition of RSs in Section 3.1. Then, user feedback
techniques were addressed to collect information regarding their interest in Section 3.3

46 RECOMMENDER SYSTEMS

and the main recommendation algorithms discussed in Section 3.4. After that, the tasks
that a given RS performs to improve the user experience were described in Section 3.2 and,
in Section 3.5, we discussed some problems that we need to deal with when developing
an RS.

In addition, in Section 3.6, we presented metrics for RS accuracy evaluation. In
Section 3.7, we discussed LOD-based Recommender Systems by putting together concepts
that were previously discussed in Chapter 2, with the RS concepts that have been shown
in this chapter. Finally, we presented LOD-based techniques for RS as semantic similarity
measures and feature selection in Section 3.8.

The main idea of this chapter was to present important concepts for the understanding
of RS techniques used in the development of this work. Next, in Chapter 5 we will
introduce how we used the concepts discussed in this chapter to personalize the user
model and thus recommend items better suited to the user’s taste.

Chapter

4
RELATED WORK

This research aims to improve recommendations in LOD-based systems through user
model personalization techniques. This chapter lists works in the two research areas re-
lated to this thesis: i) LOD-based Similarity Measures; and ii) Feature Selection. Figures
4.1 and 4.2 help us to understand the timeline in which the main works were developed.
This visual organization shows that the development of research in the two areas has
had a similar temporality, which can be explained by the fact that feature selection and
recommender systems are connected themes. The following sections provide more details
about the related work.

Figure 4.1: Timeline of work on LOD-based Similarity Measures.

47

48 RELATED WORK

Figure 4.2: Timeline of work on Feature Selection.

4.1 LOD-BASED SIMILARITY MEASURES

This work addresses the problem of building a recommender system over a LOD dataset
where resources’ properties are considered items’ features. Several related works draw on
a semantic definition of RS, such as Catherine & Cohen (2016), which asset a semantics-
aware application where a Knowledge Graph (KG) is used to provide better user recom-
mendations. In most works following this line of research, the authors enrich benchmark
databases with semantics given from the interconnections between KG nodes.

Meymandpour & Davis (2016) propose a generalized information content-based ap-
proach with systematic semantic similarity assessment between entities. They extensively
reviewed existing semantic similarity measures and developed a hybrid method made of
feature-based and statistical approaches. Musto et al. (2016) studies the impact of using
knowledge coming from LOD on the overall performance of a graph-based recommen-
dation algorithm. Following the line of Meymandpour & Davis (2016), they enrich a
graph environment with semantics and test several feature selection techniques against
two datasets. Chhatwal & Deepak (2022) incorporate semantic frame matching and en-
tities enriched by the generation of Resource Description Framework and background
knowledge from the Linked Open Data cloud.

Natarajan et al. (2022) propose a new measure that calculates the closeness of items
across domains. The authors calculate the semantic relatedness instead of similarity
because the cross-domain item attributes of semantic resources are diverse. The authors
claim that the proposed model provides relevant, personalized recommendations for the
target new user with the user preferences gained from the source domain and by exploiting
item semantic relatedness. Unlike our work, they focus on solving a cold start problem by
looking into a general similarity model considering various entities simultaneously. Our
work, like others, is more turned to investigating one-to-one relationships.

4.1 LOD-BASED SIMILARITY MEASURES 49

In Singh, Sahu & Sharma (2018), user-based collaborative filtering generates recom-
mendations using items and user preferences based on splitting criteria for movie recom-
mendation applications. Based on contextual values, every item and user is split into two
virtual items and two virtual users. The recommender technique is then applied to the
new dataset of split items and users.

Du et al. (2022) reaffirm that Semantic web resources such as Linked Open Data
(LOD) and KG are useful tools for enhancing posthoc recommendation explanations
as they are capable of representing facts and domain knowledge in a formal, machine-
readable way. The authors claim that existing LOD-based explanation approaches rely
mainly on overlapping features (i.e., the KG’s entities) between user-liked and recom-
mended items. However, the main drawback of existing methods is that neither the KG’s
hierarchy nor the hierarchical relationships among entities are considered carefully, which
may lose the inference power of knowledge graphs and lead to irrelevant or redundant ex-
planations. To address these issues, the authors propose a generic method that efficiently
exploits the entire entity hierarchy and selects the most relevant entities for explanations.
Our work does not address the explanation issue but recommendations. However, the
concern regarding exploiting hierarchy is relevant and sounds like an interesting approach
to enhance our similarity models.

In an effort to improve the human exploitation of this data, Durão & Bridge (2018)
propose a Linked Data browser that is enhanced with recommendation functionality.
Based on a user’s profile, also represented as Linked Data, the authors propose a tech-
nique called LDRec that chooses in a personalised way which resources within a certain
neighbourhood in a Linked Data graph to recommend to the user. An Iterative Classi-
fication Algorithm inspires the novel recommendation technique. This particular work
could benefit from our similarity models as they use DBpedia, and they must experience
the concerns raised in this thesis.

Yi, Huang & Qin (2018) approach combines the tasks of rating prediction from a
rating-based system with a review-based RS. In this manner, they made a user-item
rating relation from latent feature representations of the user and item. They extracted
the user-item review relation from the user’s review content to the item. Then, to fuse
these two relations, they proposed extractors represented by auto-encoders based on
adversarial learning. The difference between these two relations is minimized according
to the more the encoders learn. It is a very interesting approach that can personalize the
model but is not fitted to LOD-based environments.

The main difference between the related work cited above and our approach is that
none leverage past interactions to build the user model by personalizing the links. We
start from the idea that features appearing on positively ranked items have more im-
portance to the similarity engine. This leads to a list of the recommended items more
accurate to the users’ taste. Some studies have been conducted in this line of user-based
personalization. However, most approaches do not encompass Linked Open Data (LOD)
systems.

50 RELATED WORK

4.2 FEATURE SELECTION

This work addresses the problem of building a recommender system over a LOD dataset,
where resources’ properties are considered as items’ features. This type of system suffers
from the matrix sparsity problem, which refers to the issue of having a large amount
of data with very few ratings or interactions. This can make it difficult for the system
to make accurate recommendations because it may not have enough information about
a user’s preferences. Meymandpour & Davis (2016) do a consistent literature review
of semantic similarity measurements. The classical feature-based similarity measures
inspired our search for methods to lead to the sparsity problem through a feature selection
approach.

Musto et al. (2016) reduced the matrix dimension by testing several feature selection
techniques against two datasets. They investigate whether the integration of LOD-based
features improves the algorithm’s effectiveness and to what extent the choice of different
feature selection techniques influences its performance in terms of accuracy and diversity.
Furthermore, Noia et al. (2018) show how LOD-based summarization can drive feature
selection tasks by proposing a fully automated method based on semantics provided by
the ontology. They evaluate the accuracy of each strategy used and compare it with
classic methods such as manual selection and statistical distribution methods. Finally,
they aggregate diversity to the recommender system by exploiting the top-k selected
features.

In the inverse direction, Van Rossum & Frasincar (2019) investigate the incorporation
of graph-based features into path-based similarities. They proposed two normalization
procedures that adjust user-item path counts by the degree of centrality of the nodes
connecting them. It is based on the idea that a user liking one movie tells us more about
the popularity of this movie than the particular user. Our approach has similar premises.
However, the methodology diverges as we exploit the link information from each user’s
perspective.

Some studies cover the field of user-based personalization. However, most of the
approaches do not embrace LOD-based systems. In Singh, Sahu & Sharma (2018), a
user-based collaborative filtering system generates recommendations by utilizing items
and user preferences based on splitting criteria for movie recommendation applications.
Considering contextual values, every item and user is split into two virtual items and
two virtual users. The recommender technique is then applied to the new dataset of split
items and users. A new approach is proposed by Yi, Huang & Qin (2018) by combining
the tasks of rating prediction from a rating-based system with a review-based RS. In this
manner, they made a user-item rating relation from latent feature representations and
fused it to the user-item review relation extracted from users’ reviews.

The latest research addresses new approaches to improve the user experience in RS, as
in Blanco, Ge. & Pitner. (2021). They propose a recommender recovery solution with an
adaptive filter to deal with the failed recommendations. After a recommendation failure,
this solution filters out all items similar to the one disliked by the user. The objective
is to keep the user engaged and allow the recommender system to become a long-term
application. Like in Yi, Huang & Qin (2018), this approach is not adapted to LOD-based

4.3 SUMMARY 51

systems.
Gan et al. (2021) propose an EM-model that alternates between a general item di-

versity learning and knowledge graph embedding learning for user and item represen-
tation, which helps to achieve better results in comparison to the state-of-art baselines
on datasets MovieLens and Anime. Although this work takes advantage of auxiliary
information and historical interactions between user and item from knowledge graphs,
it does not cover a personalization method. Another approach is exploited by Zhang
et al. (2020), which applies User clustering to recommendations on sparse data for Col-
laborative filtering systems. Unlike other works, they use user clustering to reconstruct
the user-item bipartite network to improve the network density. The recommendation
made on this dense network thus can achieve much higher accuracy than on the original
sparse network (ZHANG et al., 2020). Cao et al. (2019) proposed a research based on
the idea that a KG commonly has missing facts, relations, and entities. Thus, they argue
that it is crucial to consider the incomplete nature of KG when incorporating it into the
recommender system.

Among the related works, this is the one that most approach our research because
they explore the KG trying to understand why a user likes an item. They provide an
example that if a user has watched several movies directed by (relation) the same person
(entity), it is possible to infer that the director relation plays a critical role when the user
makes the decision, thus helping to understand the user’s preference at a finer granularity
(CAO et al., 2019).

Finally, the main difference between the related works cited above and our approach
is that neither leverages the user model (KG) knowledge to make personalized recom-
mendations. We started our research from this idea and developed a weighting algorithm
that ranks properties by importance from the user’s perspective. Thus, before the rank-
ing step, we also address the concept of KG completion, although we use the rationale
of direct and indirect links coming from Passant (2010). We generate the missing direct
links by counting the indirect links between the items the user has interacted with, as
demonstrated in Chapter 5.

4.3 SUMMARY

In this chapter, we discussed some related research works that cover the scope of LOD-
based RS in a context of personalizing the recommendation models. For each group of
works, a comparison has been made with the present work, highlighting the differences
in focus and strategies.

Chapter

5
EXPLOITING LOD-BASED SIMILARITY
PERSONALIZATION STRATEGIES FOR

RECOMMENDER SYSTEMS

This chapter is dedicated to explaining how our proposed solution works. It begins with
an overview of the generic solution and follows with background information supporting
the proposal branches, encompassing some built notation and formalism. Then, in the
following subsections, we present the details about each step of our solution, making
correlations with the Specific Goals proposed in Chapter 1.

5.1 SOLUTION OVERVIEW

This work explores personalization strategies for calculating Linked Data Semantic Sim-
ilarity in LOD-based Recommender Systems. We develop automatized approaches to
personalize the user model, such as assigning weights to the links in the LOD graph, se-
lecting the best features, and exploiting the similarity of literal properties and links. This
research aims to improve the precision of recommendations in LOD-based environments
of diverse domains.

That being said, Figure 5.1 shows the solution overview, which illustrates the main
branches — or steps — of our proposal and how these steps work together to achieve
personalized user recommendations. In the following list, we summarize these steps.

1. Feature Selection: The first step plays the role of selecting a subset of the most
predictive features to increase the performance of the recommendations. Baseline
datasets are enriched with DBpedia resources, and an RDF-based Feature Selection
algorithm is performed. The output from this phase of the architecture is a Filtered
LOD Database. However, most existing feature selection methods select only a fixed
subset of features according to the system’s domain. This is why we perform the
personalization step after the FS step.

53

54EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

2. Graph Personalization: This is a preprocessing step in which we automatically
weigh the features by analyzing the user’s previous preferences, independent of
domain. Thus, this step generates a database of ranked features by combining the
user model and the input LOD database, where features that are influenced better
by the user’s choices receive a heavier weight.

3. Recommender Model: It goes through how the weighted user model is applied
with similarity measures, turning them into personalized semantic similarity mea-
sures for recommending items to the user. Our solution creates a personalized
recommender system that supports similarity measures based on links and literals.
The outputs from this last step are the recommendations themselves.

(a) Similarity of Links: Refers to the similarity measures developed to calculate
how similar items in an RDF graph are based on the distance between their
links. These measures consider only links between two resources, i.e., object
property links. For example, the dbo:director property links a movie to the
person who directed it.

(b) Similarity of Literals: This Is a set of methods that leverage the semantics
contained in the literal properties of the RDF resource. In other words, it
calculates the similarity between two LOD resources based on the semantics
of the shared datatype properties. This step is applied when the user desires
to leverage the semantics of the text in an RDF graph. For example, the
dbo:abstract property from a movie.

Figure 5.1: The solution overview.

In the experimental phase, we apply the adapted Summarization FS method (NOIA
et al., 2018) in step 1; the authorial weighting personalization method (SILVA; DURãO;
CAPRETZ, 2019) in step 2; and the baseline methods Linked Data Semantic Distance

5.2 BACKGROUND AND NOTATIONS 55

(LDSD) (PASSANT, 2010) and Resource Similarity (ReSim) (PIAO; ARA; BRESLIN,
2016) in step 3. However, the solution proposed in this work is generic enough to allow
for any other measure or technique that suits each stage of the model.

5.2 BACKGROUND AND NOTATIONS

This section is dedicated to clarifying the mathematical formalism created to clearly and
objectively describe this proposed research solution. This formalism, hereafter referred
to as background notations, will be introduced as the solution steps are presented. To
simplify understanding, Figure 5.2 will be used as an illustration for most of the usage
examples shown in the following subsections.

Figure 5.2: RDF graph example.

5.2.1 The Linked Data Graph

We developed a mathematical notation, similar to Passant (PASSANT, 2010), to repre-
sent any dataset that follows the Linked Data principles: A LOD graph is a directed graph
G = (R, P, T), in which R = {r1, r2, ..., rn} is a set of resources identified by their URI;
P = {p1, p2, ..., pn} is a set of properties identified by their URI; and T = {t1, t2, ..., tn}
is a set of triples — instances of properties linking pairs of resources. Thus, as an RDF
triple is a statement in the format ⟨subject, predicate, object⟩, then ti = ⟨ra, pj, rb⟩ ∈ T
means that there is an instance of a property pj ∈ P linking the subject ra ∈ R to
the object rb ∈ R, like in ⟨dbr:The_Avengers, dbo:director, dbr:Joss_Whedon⟩, back to
Figure 1.2.

5.2.2 The User Model

A user model is how a recommender system represents users’ preferences about items, as
discussed in Chapter 3 Section 3.3. In this work, we model it as part of the same Linked
Data graph. Therefore, we assume a set of users U = {u1, u2, ..., un} in which each uk is
also itself a resource in the LOD graph, i.e., U ⊂ R. We also assume the existence of prop-
erties that represent how much the users like items on a scale from 1 to 5, wrapped in the
set P ′ = {p′

1, p′
2, p′

3, p′
4, p′

5} = {hasRatedAs1, hasRatedAs2, hasRatedAs3,
hasRatedAs4, hasRatedAs5}, with P ′ ⊂ P . Having said this, we bring to light the
set T ′ formed by triples in the format t′

i = ⟨uk, p′
l, ra⟩ ∈ T ′. For example, a triple

t′
1 = ⟨u1, hasRatedAs5, r1⟩ means that user u1 ∈ U has rated the item r1 ∈ R as 5 stars.

56EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

Thus, we can define the total reach of our modeling as G∪G′. In other words, the union
between graph G = (R, P, T) and the user model graph G′ = (R, P ′, T ′).

5.2.3 The Rating Scale

Ratings in recommender environments are positive or negative explicit feedback given
by the users according to how much they like or dislike the items (RICCI; ROKACH;
SHAPIRA, 2015). In our model, we use a 1 to 5 stars Likert scale. However, at the
weight calculation step, we convert the stars to an integer scale that emphasizes lower
feedback by assigning negative values to them. This scale functions as follows: 5 stars
mean that the user likes the movie, so we count this movie times 3; rating 4 means that
the user likes the movie, so we count it times 2; rating 3 means that the user does not
like the movie nor dislike it, so this movie counts times 1; rating 2 means that the user
dislikes the movie, so we count this movie times -2; and, finally, rating 1 means that the
user really dislikes the movie and then we count it times -3. Thereby, the lowest star
ratings — 2 and 1 — are considered negative user feedback. Table 5.1 summarizes the
above rating system.

Table 5.1: Adopted rating system summarization.

5-Star rating Property name Integer value
⋆ hasRatedAs1 -3
⋆⋆ hasRatedAs2 -2
⋆⋆⋆ hasRatedAs3 1
⋆⋆⋆⋆ hasRatedAs4 2
⋆⋆⋆⋆⋆ hasRatedAs5 3

5.2.4 The data returned by ABSTAT

To perform the Feature Selection (FS) preprocessing step, which will be discussed in 5.3,
we use the ABSTAT API1 from Noia et al. (2018). These tools process a linked database
and extract relevant summarized information, with statistics about each ontology ele-
ment used in the dataset. The summarized data consist of an aggregate of triples, their
frequencies, and local and global cardinality descriptors. Among the data returned by
ABSTAT Application Programming Interface (API), we use:

• T - Summarized data set, including the triples (s, p, o), the frequencies (f), and
the averages of distinct subjects associated with a single object (avgS). Table 5.2
demonstrates an example of the elements contained in T;

• (s, p, o) - RDF triple, where s, p, and o are considered subject, property, and ob-
ject, respectively. Each element of the triple is represented by a Uniform Resource

1http://abstat.disco.unimib.it/

5.3 STEP 1: FEATURE SELECTION 57

Table 5.2: Example of elements that belong to the data set returned by ABSTAT.

s p o F avgS
dbo:Film dbo:wikiPageWikiLink foaf:Person 12k 10
dbo:Film purl:subject skos:Concept 99k 7

Identifier (URI). For example, in the triple (dbo:Film, dbo:wikiPageWikiLink,
foaf:Person), there is a subject of type dbo:Film connected to an object of type
foaf:Person through the dbo:WikiPageWikiLink property;

• avgS - Cardinality describing the average of distinct subjects associated with a
single object in the dataset extension. That is, if for a triple of type (dbo:Film,
dbo:wikiPageWikiLink, foaf:Person) we have that avgS = 10, then we have the
average of 10 distinct subjects of type dbo:Film connected to a single object of type
foaf:Person via the dbo:WikiPageWikiLink property.

• f - Represents the frequency pattern of each triple, i.e., reports the number of in-
stances times (instances) a pattern (s, p, o) was found in the database extension. For
example, if f = 12k for the triple (dbo:Film, dbo:wikiPageWikiLink, foaf:Person),
there are 12 thousand occurrences of that triple pattern in the database.

Besides the values returned by ABSTAT, we also use the variable k to indicate the
number of properties that should be selected in the pre-processing stage.

5.3 STEP 1: FEATURE SELECTION

This section explains our approach to achieve specific goal SG1: Propose a feature selec-
tion approach to filter relevant properties according to the domain (as defined in Chapter
1). We developed the first step of the architecture model (as seen in Figure 5.1) to
be a preprocessing step for Feature Selection, which will feed into the next step (the
personalization step).

Noia et al. (2018) proposed the filtering algorithms used in this work to automatically
extract the k properties considered most important for evaluating the similarity between
instances of a given class. We adapted the agorithms of the ABSTAT framework to eval-
uate the similarity between DBpedia instances of type dbo:Film and dbo:MusicalArtist,
through three experiments described in Chapter 6.

The proposed feature selection uses two statistics provided by the ABSTAT framework
API (NOIA et al., 2018). Among these, we use the value of a cardinality descriptor, rep-
resenting the averages of distinct subjects associated with a single object in the analyzed
database extension and the frequencies of each RDF triple pattern. The proposed pre-
processing algorithm is divided into four distinct steps: i) filtering the properties through
the averages of distinct subjects associated with a single object; ii) selecting the distinct
properties through the highest frequencies; iii) sorting these properties; and iv) selecting
the k most relevant properties. The Summarization (Algorithm 1) represents the union
of these steps and Figure 5.3 demonstrates the order in which they occur.

58EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

Algorithm 1: The Summarization Algorithm
Input: T, K
Output: topKProperties

1 Function summarization(T, K):
2 filteredT ←− filterBy(T);
3 maxDistinctP ←− selectDistinct(filteredT);
4 orderedProperties←− orderBy(maxDistinctP);
5 topKProperties←− selectTopK(orderedProperties, K);
6 return topKProperties;
7 End Function

Figure 5.3: The ABSTAT adapted algorithms flowchart.

The aforementioned steps have been incorporated into this project in the feature
selection preprocessing engine, which aims to reduce the feature matrix dimension and
consequently improve the system’s performance. Each algorithm in this approach will be
discussed in the following subsections.

5.3.1 Filtering (filterBy)

The Filtering step (Algorithm 2), represented by the filterBy method, selects, from
the dataset extent, the RDF triples in which the average number of distinct subjects
associated with a single object is greater than one. Thus, the filterBy method receives
the set T as a parameter, in which each element of T represented by t contains a triple
(s, p, o), a frequency f , and an average avgS. For each t, the method checks whether
avgS is greater than one. If so, t is added to the list filteredT that will be returned by
the method. The notations used here have been discussed in more detail in 5.2.4. The
filtering results are passed as parameter to the next step: Select Distinct Properties.

5.3.2 Selecting Distinct Properties (selectDistinct)

The selectDistinct method (Algorithm 3) is used in this step to remove duplicated prop-
erties, keeping only those that appear once in the set of triples or those with the highest
frequency. This method receives the filtered dataset with properties and their respective
frequencies and checks whether each property is unique. If the property is not unique, the
one with the highest associated frequency value is selected. The function returns a list
of distinct properties and their frequencies, which are used in the sorting process (refer

5.3 STEP 1: FEATURE SELECTION 59

Algorithm 2: The Filtering Algorithm
Input: T
Output: filteredT

1 Function filterBy(T):
2 filteredT ←− [];
3 foreach t ∈ T do
4 if t.avgS() > 1 then
5 filteredT ←− filteredT + t;
6 end
7 end
8 return filteredT ;
9 End Function

to Algorithm 4).

Algorithm 3: The Select Distinct Properties Algorithm
Input: filteredT
Output: maxDistinctP

1 Function selectDistinct(filteredT):
2 maxDistinctP ←− [];
3 foreach t ∈ filteredT do
4 if t.p ∈ maxDistinctP then
5 pElement←− maxDistinctP [t.p];
6 if t.p.getF () > pElement.getF () then
7 maxDistinctP [t.p]←− t.p;
8 end
9 else

10 maxDistinctP ←− maxDistinctP + t.p;
11 end
12 end
13 return maxDistinctP ;
14 End Function

5.3.3 Sorting (orderBy)

This step is responsible for sorting the properties according to their frequencies in de-
scending order. This way, the properties with the highest frequency values will be at
the top of the list and prioritized in the k top properties selection step, as in Algorithm
4. The orderBy method is responsible for performing this ordering. The data from this
method will be used in the top k properties selection step.

60EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

Algorithm 4: The Sorting Properties Algorithm
Input: maxDistinctP
Output: orderedProperties

1 Function orderBy(maxDistinctP):
2 orderedProperties←− sort(maxDistinctP);
3 return orderedProperties;
4 End Function

5.3.4 Selecting the top k properties Algorithm (selectTopK)

In this step (Algorithm 5), the selectTopK method receives as parameters the set of
properties ordered previously and the number of properties to be selected for later use
in calculating the similarity metrics. The first k items in the list of sorted properties are
then returned.

Algorithm 5: The Select Top K Algorithm
Input: orderedProperties, k
Output: topKProperties

1 Function selectTopK(orderedProperties, k):
2 topKProperties←− [];
3 for i←− 0, i < k do
4 topKProperties←− topKProperties + orderedProperties[i];
5 end
6 return topKProperties;
7 End Function

5.3.5 Running Example

To exemplify the recommendation proposed in this research, this section is divided into
two subsections, where the first one will demonstrate an example of the preprocessing
of features presented in Section 5.3 (using notations and methods described in such sec-
tion), and the second one will demonstrate an example of the application of this FS
preprocessing in the recommendation process.

5.3.5.1 Features Preprocessing To select the best properties, we firts need to query
the ABSTAT framework API to retrieve the list of distinct subject properties, objects,
frequencies, and averages associated with a single object in the database extension. Con-
sider that a query is made, and the elements of Table 5.3 are returned. Thus, after the
API query, the filterBy method will select only elements whose avgS > 1, as shown in
Table 5.4.

The return of filterBy method will then be used by the selectDistinct method to
select the distinct properties with the highest frequencies. The result of running this

5.3 STEP 1: FEATURE SELECTION 61

Table 5.3: Elements returned from the ABSTAT API.

P O F avgS
dbo:wikiPageWikiLink foaf:Person 12k 10

purl:subject skos:Concept 99k 7
dbp:wikiPageUsesTemplate owl:Thing 93k 7

dbo:starring dul:Agent 28k 3
dbp:title dbo:Single 2k 3

dbp:music dbo:MusicalArtist 57k 1
dbo:wikiPageWikiLink owl:Thing 55k 5

purl:subject owl:Thing 1k 4
dbo:starring dbo:Actor 12k 2
dbp:footer rdf:langString 266 1

dbp:distributor dbo:Company 44k 1

Table 5.4: Data returned from the filterBy method.

P O F avgS
dbo:wikiPageWikiLink foaf:Person 12k 10

purl:subject skos:Concept 99k 7
dbp:wikiPageUsesTemplate owl:Thing 93k 7

dbo:starring dul:Agent 28k 3
dbp:title dbo:Single 2k 3

dbo:wikiPageWikiLink owl:Thing 55k 5
purl:subject owl:Thing 1k 4
dbo:starring dbo:Actor 12k 2

62EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

method can be seen in Table 5.5.

Table 5.5: Data resulting from the selectDistinct method.

P F
purl:subject 99k

dbp:wikiPageUsesTemplate 93k
dbo:starring 28k

dbp:title 2k
dbo:wikiPageWikiLink 55k

After the execution of selectDistinct, the orderBy method will sort the properties
according to their frequencies, and this sorted list will be used by the selectTopK method.
This method will return the k properties from the top of the list. The return of these
last two methods can be seen in Table 5.6, considering k = 4.

Table 5.6: Data returned from orderBy e selectTopK methods, considering k = 4.

P
purl:subject

dbp:wikiPageUsesTemplate
dbo:wikiPageWikiLink

dbo:starring

5.3.5.2 Features Preprocessing application As a example of usage, it is supposed
that a given user has rated a movie with 5 stars and its properties are represented in Table
5.7 as follows.

Table 5.7: Model of a movie rated by a given user.

Movie 1
dbo:wikiPageWikiLink

dbo:producer
dbo:wikiPageExternalLink

dbo:wikiPageID
dbp:producer
dbo:starring

dbp:title
dbp:wikiPageUsesTemplate

dct:subject
dbp: lengt

Thus, considering the movies in Table 5.8 (Movie 2 and Movie 3), we want to know
which one should be recommended to the user. To do this, we will analyze which of

5.3 STEP 1: FEATURE SELECTION 63

them is most similar to Movie 1, which was previously rated by the user. We will use
the Feature Selection methods to automatically pre-select the best properties to calculate
the similarity of the items involved. Thus, using the preprocessing example, presented in
5.3.5.1, we reach the configuration shown in Table 5.9, which represents the intersection
of the four pre-selected properties of Table 5.6, with Tables 5.7 and 5.8.

Table 5.8: Data model for the recommendation.

Movie 2 Movie 3
dbo:wikiPageWikiLink dbo:wikiPageWikiLink

dbo:producer dbo:producer
rdfs:comment dbo:wikiPageExternalLink

dbo:wikiPageID dbp:screenplay
dbp:title dbo:starring

dbo:distributor dbo:wikiPageLength
dbo:musicComposer dbp:country

dct:subject dbp:footer
dbo:editing dbp:music
dbo:starring dbp:productionCompanies

Table 5.9: Properties that will be evaluated on each film.

Movie 1 Movie 2 Movie 3
dbo:wikiPageWikiLink dbo:wikiPageWikiLink dbo:wikiPageWikiLink

dct:subject dct:subject -
dbp:wikiPageUsesTemplate - -

dbo:starring dbo:starring dbo:starring

After that, we have excluded the properties considered irrelevant for calculating the
similarity between movies. Now we are able to apply the personalization step, as seen
in Section 5.4, in which the weights of the remaining properties are calculated according
to the user’s preferences. Thus, considering all the movies evaluated by the user, we
hypothetically will have the personalization step ordering the four properties of Movie 1
as follows, from the most important to the least important to the user: i) dct:subject; ii)
dbo:starring; iii) dbo:WikiPageWikiLink; iv) dbp:WikiPageUsesTemplate.

In the next step, the similarities between Movie 1 and Movie 2 and between Movie 1
and Movie 3 are calculated using LDSD with and without the weights of its properties.
It is not possible to assume which film would be recommended to the hypothetical user
by the LDSD just by looking at Table 5.9. However, it is very likely that if Movie 1 and
Movie 2 have the same value of dct:subject, Movie 2 will be recommended by PLDSD
instead of Movie 3 because dct:subject was ranked as the most important property to the
user in the personalization step — and is also missing in Movie 3.

Although the example given in this section is hypothetical, at the end of each ex-
periment performed in Chapter 6, the results will be statistically evaluated to verify the

64EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

impact of applying the proposed strategy in a near-real recommendation system.

5.4 STEP 2: GRAPH PERSONALIZATION

Figure 5.4: Dataset D: a portion of the DBpedia dataset, describing a movie domain.

The second step in the architecture model (as seen in Figure 5.1) is the Graph Per-
sonalization step. We developed the method stated in SG2: Propose a personalization
methodology that weighs links in a LOD graph based on the user’s past ratings on the
items in a recommender system (Chapter 1). This method analyzes the previous prefer-
ences made by a user in a given recommender system, and weights are assigned to the
graph’s edges/links according to it.

After running the personalization step, the resultant graph accomplishes the specific
goal SG3: Propose a user profile modeling from the personalized graph obtained in the
previous step (see Chapter 1).

5.4.1 Running Example

The following scenario is taken as a running example: a portion of the DBpedia dataset
describing a movie domain, called dataset D ⊂ (G ∪G′) — see Figure 5.4.

Figure 5.4 shows the dataset D divided into two subsets. The uppermost set S ′ is
a subgraph of graph G′, representing the user model. Thus, graph S ′ wraps the user,
colored in yellow — which means that the rdf:type is dbo:User — and the main content
resources, colored in pink — which means that the rdf:type is dbo:Film. Hence, only
the movies previously rated by the user are elements of S ′. The lowermost set S is a
subgraph of graph G and shows, besides elements from the user model S ′, other content
resources that are linked to the movies. Those resources are colored in green, which
means that they have other rdf:type than dbo:Film.

Each arrow in the model means one property, or predicate, that links two resources

5.4 STEP 2: GRAPH PERSONALIZATION 65

composing one triple in the format ⟨subject, predicate, object⟩. We have then tabulated
all the triples from S ′ on Table 5.10 using the notation t′

i = ⟨uk, p′
l, ra⟩ ∈ T ′. Thus, Table

5.10 summarizes the user model for user u1. We also added one last column that shows
Ratukra : The rating value on ra given by uk, which is equal to the property p′

l converted
to an integer value using Table 5.1. For instance, triple t′

1 = ⟨u1, p′
4, r1⟩ = ⟨dbr:user1,

dbp:hasRatedAs4, dbr:The_Amazing_Spider-Man⟩ has a Ratukra value equal to 2.
Similarly, all the triples from S have been tabulated on Table 5.11 using the notation

ti = ⟨ra, pj, rb⟩ ∈ T . Thus, Table 5.11 wraps a collection of triples ti from graph S, which
are all and only the triples that are linked to movies from set S ′ (the user model for
u1), such as triple t1 = ⟨r1, p1, r2⟩ = ⟨dbr:The_Amazing_Spider-Man, dbo:related, dbr:
The_Avengers⟩. In addition, we remark that one resource can play the subject role as
dbr:The_Avengers in t3 = ⟨r2, p2, r4⟩ = ⟨dbr:The_Avengers, dct: subject, dbc:American_-
action_films⟩ and, at the same time, can play the object role as in t5 = ⟨r6, p3, r2⟩ =
⟨dbr:Walt_Disney_Studios, dbo:product, dbr:The_Avengers⟩. For the sake of simplic-
ity, we invert the triples where movies are objects and make them always the subject
of statements. Table 5.11 shows those statements already as inverted triples — t5 is
represented as ⟨r2, p3, r6⟩, for instance.

Table 5.10: Collection of triples t′
i from graph S ′ describing one sample user model.

Triple — t′
i Subject — uk Predicate — p′

l Object — ra Ratukra

t′
1 u1 — dbr:user1 p′

4 — dbp:hasRatedAs4 r1 — dbr:The_Amazing_Spider-Man 2
t′
2 u1 — dbr:user1 p′

5 — dbp:hasRatedAs5 r2 — dbr:The_Avengers 3
t′
3 u1 — dbr:user1 p′

1 — dbp:hasRatedAs1 r3 — dbr:Toy_Story -3

Table 5.11: Collection of triples ti from graph S showing one running example on weights
calculation.

Triple — ti Subject — ra Predicate — pj Object — rb Freq(rb) Ratukra W (pj, uk)
t1 r1 — dbr:The_Amazing_Spider-Man p1 — dbo:related r2 — dbr:The_Avengers 1 2 0.4
t2 r1 — dbr:The_Amazing_Spider-Man p2 — dct:subject r4 — dbc:American_action_films 2 2 1.0
t3 r2 — dbr:The_Avengers p2 — dct:subject r4 — dbc:American_action_films 2 3 1.0
t4 r1 — dbr:The_Amazing_Spider-Man p3 — dbo:product r5 — dbr:Columbia_Pictures 1 2 0.13
t5 r2 — dbr:The_Avengers p3 — dbo:product r6 — dbr:Walt_Disney_Studios 2 3 0.13
t6 r3 — dbr:Toy_Story p3 — dbo:product r6 — dbr:Walt_Disney_Studios 2 -3 0.13
t7 r2 — dbr:The_Avengers p4 — dbo:director r7 — dbr:Joss_Whedon 1 3 0
t8 r3 — dbr:Toy_Story p4 — dbo:director r8 — dbr:John_Lasseter 1 -3 0

We will keep using Figure 5.4 and tables 5.10 and 5.11 to explain how the rating system
described before is used to personalize graph D according to one user uk ∈ U , turning it
into a weighted graph. Please refer to Equation 5.1 while we explain the process as follows.
We first calculate Freq(rb) from graph S by iterating over triples ti = ⟨ra, pj, rb⟩ ∈ T ,
with i varying from 1 to n (see Table 5.11). While iterating, we count how many times
each resource appears in the object column in Table 5.11, i.e., how many times it takes
the position of rb in ti triples. Results are represented in Table 5.11 as Freq(rb). Having
done that, we do an iterated summation over triples ti = ⟨ra, pj, rb⟩ ∈ T , with i varying

66EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

from 1 to n. In each iteration, we find the Ratukra value associated with ra and multiply
the object frequency Freq(rb) by it, as shown in Equation 5.1.

After repeating this process for every ti = ⟨ra, pj, rb⟩ ∈ T , we calculate the mean value
for each property pj. Additionally, if the same property pj appears linked to more than
one object rb in graph S, values are summed up before calculating the mean. Similarly, if
the same property pj appears for more than one movie ra in graph S, values are summed
up. Finally, we normalize the values, finding W (pj, uk), the normalized average weight
value for each property pj given a user uk (see Equation 5.1). W (pj, uk) values for the
running example — for user u1 — are shown in the last column of Table 5.11. Figure
5.5 shows the resulting weighted graph D, including the virtual links created by sharing
indirect incoming and outgoing links.

W (pj, uk) = 1

1 +
∑

ti
F req(rb).Ratukra

n

(5.1)

where ti = ⟨ra, pj, rb⟩ ∈ T .
This whole graph personalization process is based on the notion that the more a given

object is associated with movies that one user liked, the greater property’s importance
is in calculating the next recommendations for the user. For instance, user u1 has liked
two movies whose subject is American action films (The Amazing Spider-man and The
Avengers). Thus, we assume that the property dct:subject is an important criterion to
user u1, just as is dbo:related, and rank these properties with a greater weight. We will
discuss next, how these weights are used to recommend new movies to the user.

Figure 5.5: Dataset D weighted.

5.5 STEP 3: RECOMMENDATION MODEL

The third step in the architecture model (as seen in Figure 5.1) is the Recommendation
Model. The proposed model relies on a similarity measure that combines the personal-

5.5 STEP 3: RECOMMENDATION MODEL 67

ization methods previously described with one or more LOD-based semantic methods.
By assigning weights to the graph, we represent more accurately the user’s preferences
under a given content-based RS. Also, we leverage the semantic contained in the datatype
properties — i.e. those linked to literal objects — of the graph by adding the Literals
Similarity (LiSim) step to the algorithm.

All of this means that our approach can be applied to any LOD-enabled CB Recom-
mender System where both domain knowledge and user personalization play an important
role. As we use previous information to feed the user model — i.e. ratings given by the
user to items in the past —, our approach helps the system to handle the well-known
cold-start problem when a new item is added to it. Nevertheless, our proposal still faces
the cold-start problem every time a new user is added. However, as we rely on content
information at first, this problem is easily overcome by assigning the same weight to all
links in the model. Having said that, we will describe next, how the personalization step
integrates with two different semantic similarity measures to recommend items to a user.

5.5.1 Personalized Linked Data Semantic Distance (PLDSD)

The classic Linked Data Semantic Distance (LDSD) measure explained in Chapter 3,
Subsection 3.7.1, considers every link pj as having the same weight on calculations. In
order to make the recommender system personalized to one user uk, we have added
the function W (pj, uk) to Equation 3.14, resulting in Equation 5.2 — the calculus of
W (pj, uk) has been shown before in Equation 5.1. As W (pj, uk) represents the weight to
one property pj given one user uk, its value is multiplied by every C(pj, ra, rb) function
from Equation 3.14, as shown in Equation 5.2.

simP LDSD(ra, rb, uk) =
1

1 + ∑
j

Cd(pj ,ra,rb).W (pj ,uk)
1+log Cd(pj ,ra,n) + ∑

j
Cd(pj ,rb,ra).W (pj ,uk)

1+log Cd(pj ,rb,n) + ∑
j

Cii(pj ,ra,rb).W (pj ,uk)
1+log Cii(pj ,ra,n) + ∑

j
Cio(pj ,ra,rb).W (pj ,uk)

1+log Cio(pj ,ra,n)
(5.2)

5.5.2 Personalized Similarity of Literals

The second Similarity Method of our approach is a lexical similarity based on literal values
that we developed to accomplish the specific goal SG4: Propose methods to leverage the
semantics of literal properties in LOD-based semantic similarity defined in Chapter 1. It
is called Personalized Similarity of Literals because it is applied after the personalization
step. In this Subsection, we first describe how the similarity of string literals is calculated
and then how the similarity of numerical literals is calculated. For clarity, a running
example using the DBpedia resources dbr:São_Paulo and dbr:Rio_de_Janeiro is used
along this Subsection.

From this point forward, please consider dbr: as the prefix for <http://dbpedia.org/
resource/> and dbo: as the prefix for <http://dbpedia.org/ontology/>. For example,
dbr:São_Paulo is the shortened form for <http://dbpedia.org/resource/Sao_Paulo> and
dbo:populationMetro is the shortened form for <http://dbpedia.org/ontology/populatio

68EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

n_Metro>. Also, another well-known prefix is used in this text to shorten URIs of Linked
Data elements: rdfs: is the prefix for the RDF schema at <https://www.w3.org/1999/02
/22-rdf-syntax-ns>; dbc: is the prefix for <http://dbpedia.org/resource/Category>, and
dct: is the prefix for <http://purl.org/dc/terms/> — from the Dublin Core Metadata
Initiative at <http://dublincore.org/>.

Table 5.12: Some properties of the cities São Paulo and Rio de Janeiro.

Property Value
URI dbr:São_Paulo dbr:Rio_de_Janeiro
rdfs:label São Paulo Rio de Janeiro

dbo:abstract

São Paulo is a
municipality located in
the southeast region of

Brazil[...]

Rio de Janeiro, or simply
Rio, is the second-most

populous[...]

dbo:populationMetro 21,090.791 12,280.702
dbo:PopulatedPlace/areaMetro 7,943.752 4,557.343
dbo:PopulatedPlace/areaTotal 1,522.913 1,260.029
dbo:foundingDate 25-01-1554 01-03-1565

Table 5.13: Minimum and Maximum values of some properties.

Property Min Value Max Value
dbo:populationMetro 0 66,400.000
dbo:PopulatedPlace/areaMetro 0 12,012.600
dbo:PopulatedPlace/areaTotal -1.0 101,475.000
dbo:foundingDate 02-03-0001 01-06-2994

5.5.2.1 Similarity of String Literals As previously discussed, plain literals are
usually represented by Strings. They describe resources to which they belong. In Table
5.12, the property dbo:abstract connects the resource dbr:São_Paulo to its object (the
RDF literal of type String) “São Paulo is a municipality located...”.

For the similarity calculation, Strings are treated as bags of words, which means
that the order of words is forsaken and only their frequencies, i.e. the number of times
they appear in the String, are relevant. These Strings are represented as vectors that
store the importance of each word, thus creating the Vector Space Model (MANNING;
RAGHAVAN; SCHüTZE, 2008). The similarity between vectors is calculated using the
Cosine Similarity measure as shown in Equation 5.3,

simstring(Ai, Bi) =
∑n

j=1 AijBij√∑n
j=1 A2

ij

√∑n
j=1 B2

ij

(5.3)

Where the numerator corresponds to the dot product of the vectors Ai and Bi, which
represent the value of some property i of the resources A and B; and the denominator

5.5 STEP 3: RECOMMENDATION MODEL 69

is the product of their Euclidean Length (MANNING; RAGHAVAN; SCHüTZE, 2008),
where Aij and Bij are the terms that compose Ai and Bi.

5.5.2.2 Similarity of Numeric Literals Numeric literals in Linked Data are num-
bers or dates stored in character Strings. They are used to quantify or date a particular
property of one resource. Examples include a movie run time, the population of a city,
and the publication date of a book. In Table 5.12, the property dbo:populationMetro
connects the resource dbr:São_Paulo to a numeric literal of value 21,090.791.

Because numeric literal values may vary in scale and magnitude, it is necessary to
normalize them among the range values 0 to 1. A movie run time, for instance, can be
10 minutes if the movie is a short take or 3 hours if it is a documentary. For instance,
animals’ height may vary from a few centimeters to 4 meters. In order to ensure that
properties assigned with higher numeric values will not bias the calculation of similarities
over smaller ones, we normalize them.

As an example, for the property dbo:populationMetro in Table 5.12 to be normalized,
we need to retrieve the min and max values of all occurrences of the property. We do
this work through a simple SPARQL query. Proceeding with the example, the values
retrieved for property dbo:populationMetro are 0 and 66,400.000 respectively, as seen in
Table 5.13. With these min and max values, a linear normalization process can be applied
to each numeric property p through Equation 5.4,

normalize(p) = p−minp

maxp −minp

(5.4)

Where minp and maxp represent the minimum and maximum extreme values of a
certain property p. Applying Equation 5.4 to the values of dbo:populationMetro showed
in Table 5.12 and Table 5.13, the resulting normalized values are 0.3176 and 0.1849 for
São Paulo and Rio de Janeiro respectively (as shown in Table 5.14). Similarly, we can
apply the same process to other quantifiable values. However, some data types require
extra steps to be normalized. For instance, dates must first be converted to type double
to undergo the same normalization process. After normalization, the similarity of two
numeric literals is equal to the absolute value of the difference between them, subtracted
from 1, as shown in Equation 5.5,

simnumeric(Ai, Bi) = 1− |Ai −Bi| (5.5)

where A and B are resources and Ai and Bi are the normalized values of property i
for each of them, respectively.

5.5.2.3 The Combined Similarity Function for Literals Having shown how to
calculate the similarity of String and numeric literals, we combine them in a single simi-
larity function. Before, we must remember that the similarity only applies to properties
that are shared by two resources. It makes no sense, for instance, to compare the age
of a person to a country area. Formally, and for the sake of simplicity, we summarise
Equations 5.5 and 5.3, i.e. the similarity of one particular property i shared by resources

70EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

Table 5.14: Normalized values of some properties presented in Table 5.12.

Property Normalized Value
URI dbr:São_Paulo dbr:Rio_de_Janeiro
dbo:populationMetro 0.3176 0.1849
dbo:PopulatedPlace/areaMetro 0.0006 0.0003
dbo:PopulatedPlace/areaTotal 0.0001 0.0001
dbo:foundingDate 0.5188 0.5225

A and B in Equation 5.6,

simproperty(Ai, Bi) =

simnumeric(Ai, Bi)
simstring(Ai, Bi)

(5.6)

where simnumeric(Ai, Bi) is calculated if Numeric, and simstring(Ai, Bi) if String.
The combined similarity for all shared properties of two resources A and B is then

given by Equation 5.7,

simcombined(A, B) =
∑N

i=1 simproperty(Ai, Bi)
N

(5.7)

where N is the number of shared properties between the resources A and B. Given the
similarity scores obtained for each property, shown in Table 5.15, the combined similarity
score obtained in Equation 5.7 is 0.926.

Table 5.15: Similarity scores of each property from Table 5.12.

Property Similarity Score
rdfs:label 0
dbo:abstract 0.767
dbo:populationMetro 0.867
dbo:PopulatedPlace/areaMetro 0.999
dbo:PopulatedPlace/areaTotal 0.999
dbo:foundingDate 0.996

5.5.2.4 Penalizing Sparsity The information available in the LOD cloud is not
always complete. The same triples may not describe resources of the same type. For
example, the property dbo:ethnicGroupsInYear in the triple <dbr:Brazil,dbo:ethnicGr
oupsInYear,2010-01-01^^(xsd:date)> does not apply for dbr:Chile but dbr:Peru, being
all three countries of the same type dbo:PopulatedPlace. As a consequence, resources
may be compared unfairly. It turns out that the similarity score of two resources that
compare several properties is likely to be lower than two other resources sharing one single
property, considering here the worst-case scenario. It seems unfair therefore to penalize
a resource that is highly described over those which share only a few properties.

5.6 SUMMARY 71

For instance, in a scenario where the similarities of items A, B, and C are being
estimated, and A and B share three properties, while B and C share five. If those three
properties shared by A and B are closely related, while B and C also have those same
properties having the same similarity score, but another two with very different values,
then A and B would be deemed more similar then B and C, even though their similarities
regarding three of their attributes are identical.

In order to avoid such an inconvenience, the combined similarity function is penalized
according to Equation 5.8,

penalty(A, B) = |A ∩B|
|A|+ |B| (5.8)

where |A∩B| is the number of shared properties of A and B, and |A| and |B| are the
number of properties of the most specific class of A and B, respectively. The penalization
is weighed by the similarity score obtained in the Equation 5.7,

simliterals(A, B) = simcombined(A, B) · penalty(A, B) (5.9)

The most specific class of the resources in the running example is <http://dbpedia.or
g/ontology/PopulatedPlace>, which has 112 associated datatype properties. Given that
only five were used in the example, the final similarity score based on literals is 0.041, a
big difference from the unpenalized score of 0.926.

5.5.2.5 The Literals Similarity (LiSim) Literals Similarity (LiSim) combines the
similarity score obtained from comparing literals with a pure link-based method LB.
This step of the metric can be done by using any LOD-based similarity measure. In
Chapter 6, after calculating all the literal similarities, we combine the outcomes with two
link-based baseline methods: LDSD and ReSim, which means that LB is substituted by
LDSD or ReSim equations. The final LiSim structure is shown in Equation 5.10,

HSLD(A, B) = α · simliterals(A, B) +
(1− α) · (1− LB(A, B))

(5.10)

Where α is a coefficient between 0 and 1, which determines the percentage of influence
of each similarity method on the final similarity score. This means that an α = 0 is equal
to use only LB, and an α = 1 is equal to use only the similarity of literals. When LB is
a distance function, it is subtracted from 1. Otherwise, no subtraction is needed.

5.6 SUMMARY

This chapter explains the proposed solution, starting with the background information
supporting the proposed branches and expounding each branch individually. Figure 5.1
showed each branch as a step in the whole process, and the following sections detailed each
step. Step 1 refers to a feature selection strategy that filters a subset of the most predictive
properties to a particular knowledge domain. In Step 2, we enrich the user model with
DBpedia resources and automatically weigh the features by exploring the user’s previous

72EXPLOITING LOD-BASED SIMILARITY PERSONALIZATION STRATEGIES FOR RECOMMENDER SYSTEMS

preferences. Finally, Step 3 runs a recommendation model using a link or literal-based
similarity measure over the input personalized dataset, resulting in recommendations that
fit user preferences.

The next chapter describes the implementations and execution of the experiments
which objective is to evaluate the proposed methods, by comparing results using the
personalized user model versus results using only the baseline methods.

Chapter

6
EXPERIMENTAL EVALUATION

This chapter presents the experiments that evaluate our proposal. We highlight the char-
acteristics of the datasets, methodologies employed, and results obtained. In addition,
we discuss the results considering the Research Questions proposed in Chapter 1.

6.1 INTRODUCTION

The evaluation phase of this research is composed of three experiments as follows:

• E1: The first experiment is called the Literals Similarity (LiSim) experiment and
consists of analyzing the similarity between two resources in a LOD graph, consider-
ing the literal properties instead of only the link properties. We compare the LiSim
measure to pure-link approaches using two baseline methods, Linked Data Semantic
Distance (LDSD) and Resource Similarity (ReSim). Also, we test our methodol-
ogy against two diverse domains: movies and music. Considering the information
stored in RDF literals, we expect comparisons between Linked Data resources to
be estimated more precisely.

• E2: The second experiment is called Personalized Linked Data Semantic Distance
(PLDSD), in which we personalize the user model by weighting the properties
according to the user’s past choices in the system. We describe a generic model and
use LDSD as the baseline method to compare it with our personalized approach.
Moreover, any semantic measure based on links can be used with this personalized
method by only modifying the last step of the architecture (see Section 5.1), where
the baseline semantic similarity metric is added to the recommendation model.

• E3: The third experiment is called Summarization, and its goal is to validate the hy-
pothesis that filtering the most relevant links before the step of user model personal-
ization can lead to more effective recommendations in Linked Data-based systems.
To prove this, we implement a Feature Selection (Step 1 in Figure 5.1) strategy
that filters the K most relevant properties and subsequently weighs and ranks each
property in the personalization step with the PLDSD method.

73

74 EXPERIMENTAL EVALUATION

The complete project has been available on an Anonymous Github under the URL
<https://anonymous.4open.science/r/lodweb-pldsd-40BD/>. Researchers interested
in replicating and conducting further comparative studies can find the necessary doc-
umentation at this location. In the next sections, we describe the setups of datasets,
methodology, and metrics used, and then we discuss each experiment in detail.

6.2 DATASETS SETUP

We use two databases in the experiments: the Movielens 1M dataset1 and the Last.fm
dataset2. Movielens 1M has 1 million ratings from 6000 users on 4000 movies (1-5 stars
rating). The density of ratings in the dataset is 4.26%. Based on it, we model one data
model capable of storing the user model, i.e., users, movies, and user ratings over movies,
and also can store the content of movies. Then, we import MovieLens data mapped
to DBpedia into the database using MappingMovielens2DBpedia3, which provides RDF
identifiers — URIs — for each movie on MovieLens 1M. Therefore, this initial setup allows
us to access the resources and all their connections from DBpedia through SPARQL
queries online. While the algorithm is running, property weights per user and results of
similarity measures are also stored. This allows us to set up parameters and to compare
results.

The second dataset is the Last.FM Million Song4. It contains listening information
from almost 2 thousand users, about approximately 1 million songs. Nonetheless, we take
the listening data summarized by the user-artist for this work rather than considering
the songs played. For this reason, during the dataset setup step, we used another set of
data released during the HETRec 2011 Workshop and published as another project of
raw data mapping to Linked Data5. As is in the movie mapping project, this one provides
DBpedia URIs for each musical artist or band in the Last.FM dataset.

6.3 HARDWARE SETUP

The experiments were carried out on a machine with the following configuration.

• CPU: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 1.99 GHz

• Memory: 16.0 GB

• Storage: Kingston 512 GB SSD

• Operating System: Windows 10 Home 64 bits

1https://grouplens.org/datasets/movielens/1m/
2https://www.last.fm/
3https://github.com/sisinflab/LODrecsys-datasets/blob/master/Movielens1M/MappingMovielens2DBpedia-

1.2.tsv
4<http://millionsongdataset.com/lastfm/>
5<https://github.com/sisinflab/LinkedDatasets/blob/master/last_fm/mappingLinkedData.tsv>

6.4 METHODOLOGY 75

6.3.1 Software tools

On top of the aforementioned hardware configuration we use the following software tools.

• JAVA and JENA: According to W3C 6 “Apache Jena is a Java framework to con-
struct Semantic Web Applications. It provides a programmatic environment for
RDF, RDFS and OWL, SPARQL, and includes a rule-based inference engine.”

• MySQL: Relational database management system

• Apache Jena Fuseki: open-source RDF graph database (triplestore) that complies
with the SPARQL 1.1 specification and supports SPARQL query

• Apache Tomcat: Free and open-source HTTP web server environment

6.3.2 Limitations

The 8th Generation Intel® Core™ i7 Processor used in the experiments has 4 cores
with an 8 simultaneous threads capability. The Processor base frequency is 1.80 GHz
with 4.00 GHz of Turbo Boost technology frequency. Although this seems to be an
acceptable hardware configuration, the online SPARQL queries executed by JENA against
the DBpedia database are heavy and require more power from the processor. Having said
that, I would point out that, for example, each round of experiments in experiment 2
took three days to be completed.

6.4 METHODOLOGY

For each experiment, we simulate Movie and Music Recommender Systems that retrieve
Top-N recommendations to the user on the respective domains.

Given that the user preferences on the MovieLens dataset are expressed in a 5-star
Likert scale, some research that uses these datasets put effort into making the user ratings
binary (NOIA et al., 2012; MUSTO et al., 2016). In the first experiment (E1: LiSim),
for simplification, we also adopted the binary representation of the user profile. That
means we build the training set based on all the items the user liked (has given positive
feedback).

Although, in the second experiment (E2: PLDSD), we decided to maintain the original
5-star scale and consider 3 different scenarios to represent the users’ positive feedback:
PLDSDrat=5 means that only ratings equal to 5 are considered; PLDSDrat>=4 considers
besides movies rated 5, those which the user has rated 4; and PLDSDrat>=3 takes ratings
equal to 5, 4 and 3 as positive feedback. This strategy allows us to compare results and
adjust our methodology better.

Due to this configuration, we perform the PLDSD experiment 3 rounds for each
user in the dataset. First, we isolate the user model according to the current strategy
— PLDSDrat=5, PLDSDrat>=4, PLDSDrat>=3. In other words, we take the positively

6<https://www.w3.org/2001/sw/wiki/Apache_Jena>

76 EXPERIMENTAL EVALUATION

rated movies, according to what positive feedback means, and build the training or known
data dataset. Then, we randomly take a subset of 200 movies (discarding those already
in the user model subset) and build the test dataset.

Similarly, in the Last.FM dataset, user preferences about artists are expressed through
the number of times each user has listened to their songs. Consequently, the concept of
positive feedback for this work had to be constructed by isolating an expressive number
representing a user listening to a well-liked artist throughout her daily routine. After
statistical analysis, we chose the number 500 to represent positive feedback; therefore,
artists’ tracks heard less than 500 times are considered negative feedback was given by
a user. Based on this premise, we built user models from the set of items positively
evaluated by each user.

For the third experiment (E3: Summarization), we considered only 5-star movies to
calibrate the MovieLens training dataset. The previous experiment demonstrated that
the PLDSDrat=5 strategy performed the most accurate results for all scenarios. For this
reason, we adapted our methodology to consider rating 5 as positive feedback and all
the other ratings — 1, 2, 3, and 4 — as negative feedback. However, we perform tests
several times where we vary the k parameter to verify the extent to which the quantity
of features filtered influences the personalization results.

After running the training steps, we perform the testing step by running the algorithms
according to which experiment is being tested (E1, E2, or E3). We also run the same
dataset configuration using two baseline methods — LDSD and ReSim — to compare
the improvements achieved. The user model also plays the role of validation dataset to
which we compare the ranked result list coming from the recommendation method.

Moreover, we performed some statistical tests to assess the significance of the results.
First, we run the chi-squared goodness-of-fit test over the ranked list of movies. As this
test revealed the normal distribution of the data, we opted to apply a paired T-test using
a p-value << 0.0001 to which each method is tested against its correspondent baseline
method (LDSD or ReSim) results from the sample. As the sample length varies according
to how many movies or artists the user has rated, we ran the statistical tests for each
user tested.

6.5 METRICS

Having the ranked list of recommended items (movies / musical artists and bands) and
the predefined training dataset of liked items, three evaluation metrics are applied to
assess the quality of the generated ranks. These metrics consider how well the similarity
algorithm can predict the desired set of similar items. Precision@K, Mean Average Preci-
sion (MAP), and Normalized Discounted Cumulative Gain (NDCG) are chosen metrics.
They were explained in Chapter 3.

6.6 E1: LITERALS SIMILARITY (LISIM)

We first present the results in the movie domain and then in the music domain. Fig-
ures 6.1 and 6.3 present the evaluation results of LiSim in each domain using LDSD

6.6 E1: LITERALS SIMILARITY (LISIM) 77

(LISIM+LDSD) with variations of α. Results for α = 0 mean that LDSD is the only
similarity measure applied. Alternatively, α = 1 indicates the plain analysis of literals.
Figures 6.2 and 6.4, present the evaluation results of LiSim using ReSim (LISIM+RESIM)
with variations of α. Results for α = 0 means that RESIM is the only similarity measure
applied, while α = 1 means that the literal similarity is considered. The values high-
lighted in all the graphs are the highest statistically significant ones (see Section 6.4 for
more details on the statistical tests).

6.6.1 Results from the Movie domain

Figure 6.1: LISIM+LDSD evaluation results grouped by metrics from the movie domain.

Figure 6.2: LISIM+RESIM evaluation results grouped by metrics from the movie domain.

Figure 6.1 presents the LISIM+LDSD results while Figure 6.2 presents LISIM+RESIM
results. Considering the P@10 results, which are represented by the yellow bars, we can
observe that LISIM+LDSD outperforms LISIM+RESIM where 0.2 ≤ α ≤ 0.6. On the
other hand, LISIM+RESIM outperforms LISIM+LDSD for 0.7 ≤ α ≤ 0.9. With α = 0,

78 EXPERIMENTAL EVALUATION

i.e. when the literal analysis is not considered, the ReSim method slightly outperforms
LDSD.

The highest precision values for both approaches occur when α = 0.5. This means
precision at the top 10 results is higher when both literals and links are considered
equally. Moreover, when α = 0.5, the LiSim measure outperforms LDSD in 13% and also
outperforms ReSim in 5.5%. It is important to point out that even for lower values of α,
the P@10 rates outperform the ones achieved by each pure link-based measure (α = 0)
in both combinations LISIM+LDSD and LISIM+RESIM.

In Figure 6.1, all results in the interval 0.1 ≤ α ≤ 0.7 are higher than α = 0 value,
i.e., LDSD = 0.54; and in Figure 6.2, this interval is even greater, 0.1 ≤ α ≤ 0.8, if we
consider the values greater than or equal to α = 0 value, i.e., ReSim = 0.55.

As to the MAP results, as shown in Figures 6.1 and 6.2, we observe similar findings
as P@10. In particular, the highest MAP results occur when α = 0.5, where LiSim
outperforms LDSD in 12.2% and outperforms ReSim in 11.6%. The NDCG results shown
in Figures 6.1 and 6.2 also report similar remarks to those observed in MAP and P@10
results. The best NDCG results are also observed when α = 0.5, where they outperform
the link-based methods. In particular, LiSim outperforms LDSD in 5.9%, and LiSim
outperforms ReSim in 5.2%.

6.6.2 Results from the Music domain

Figure 6.3: LISIM+LDSD evaluation results grouped by metrics from the music domain.

The results shown in Figures 6.3 and 6.4 point out the highest P@10 values for both
LISIM+LDSD and LISIM+RESIM occur when α = 0.6. This indicates that literals can
have greater influence than the movie domain. There, the best results are evidenced when
both literals and links are considered equally, i.e. when α = 0.5. In particular, for α =
0.6, LiSim outperforms LDSD in 21.8% and outperforms ReSim in 16.1%, both greater
than the in the movie domain.

As to the MAP and NDCG results, shown in Figures 6.3 and 6.4 , we also observe that
the results are similar to the results achieved in the movie domain. The highest MAP
results occur when α = 0.6, where LiSim outperforms LDSD in 16.7% and outperforms

6.6 E1: LITERALS SIMILARITY (LISIM) 79

Figure 6.4: LISIM+RESIM evaluation results grouped by metrics from the music domain.

ReSim in 15.5%. Considering the NDCG results, for α = 0.6, LiSim outperforms LDSD in
2.4% and outperforms ReSim in 5.2%. These increases are lower than the ones evidenced
in the movie domain. This can be explained because when NDCG reaches 90%, it becomes
more difficult to augment the already high results. It was an expected behavior of the
NDCG metric observed empirically while running our experiments with different setups.

6.6.3 Discussion and Contributions

This experiment intended to respond to Q1: Can the system be more precise in recom-
mending items to the user if it calculates the similarity using both literal properties and
link properties?

The evaluation results show that the precision of the movie and music recommenda-
tions improves when the similarity of literals is considered. The Literals Similarity (LiSim)
performs better when both link and literal-based similarities are considered. This high-
lights the potential of other LOD-based approaches using the information in RDF literals.

As to the similarity measures, we have evidence that both the similarity measures,
LDSD and ReSim, benefit from using literals. In the movie domain, the ReSim measure
achieves slightly better results than the LDSD when α = 0, i.e., when literals are not
considered. On the other hand, in the music domain, we observe that LDSD achieves the
best results for MAP and NDCG metrics. This analysis, however, is based solely on the
object properties, i.e., the links between resources.

We also note that the results behave differently when the link-based similarity mea-
sures are combined with LiSim. The results show that LISIM+LDSD slightly outperforms
LISIM+RESIM in both domains. In the scenario when α = 0.5, LISIM+LDSD outper-
forms LISIM+RESIM in 5.2% for P@10 and in 1.6% for MAP in the movie domain. Like-
wise, in the music domain, when α = 0.6, LISIM+LDSD outperforms LISIM+RESIM in
3.1% for P@10; in 9.4% for MAP, and in 3% for NDCG.

This is more evident when we compare the results in both domains regarding α vari-
ations. For instance, the distribution of the curves’ growth rate for the music graphics is
smoother than those in the movie domain. We ran exploratory SPARQL queries better

80 EXPERIMENTAL EVALUATION

to know the graph characteristics of the RDF datasets. Thus, the difference between the
α optimum values might be explained because resources from the music domain have
several links and literals more balanced than those from the movie domain. For instance,
the difference between the number of links and literals in the music domain is 121, and
in the movie domain is 152.

The overall outcome shows that the highest ranking results occur when α = 0.6 in
the music domain (Figures 6.3 and 6.4), and when α = 0.5, for the movie domain.
This suggests that the ranking quality of the music recommender system suffered more
influence of literals than the links. This can be explained by the average number of
object properties (links) from the resources comprised in the music candidate dataset
(226) against the average number of datatype properties (105). For the resources of
the movie dataset, these numbers are 184 for links and 32 for literals, a more widely
distance, denoting a less balanced dataset. Hence, the distribution of the results in the
music domain is expected to differ from the movie domain, as the ignored properties (the
literals) amount varies from one domain to another.

Considering the aforementioned considerations, we conclude that Q1: Can the system
be more precise in recommending items to the user if it calculates the similarity using
both literal and link properties?, was positively answered, and the Specific Goal SG1:
Propose a feature selection approach to filter relevant properties according to the domain,
was achieved.

6.7 E2: PERSONALIZED LINKED DATA SEMANTIC DISTANCE (PLDSD)

This section presents the results of each previously chosen precision metric on the graph
personalization methodology discussed in Chapter 5, Section 5.4. The values highlighted
in all the results tables are the highest statistically significant ones (see Section 6.4 for
more details on the statistical tests).

6.7.1 Results from the Movie domain

In this experiment, we use only the movie dataset and test the three taken user model
strategies: PLDSDrat=5, PLDSDrat>=4 and PLDSDrat>=3. We also show results on
LDSD as a baseline method of comparison. As results are different for each user, we
take 3 of them who have given different quantities of ratings to movies and summarize
their results in Tables 6.1, 6.2 and 6.3. The goal is to show examples of outcomes and to
provide a source of comparison.

Table 6.1 shows results from User #1, who has previously given 40 ratings on movies.
Results demonstrate that PLDSD using only movies rated as 5 stars performs better in
modeling the user’s preferences than PLDSD using ratings greater than or equal to 4
and 3, for every metric analyzed. Also, both PLDSDrat=5 and PLDSDrat>=4 values
overcome the baseline method LDSD. We ran a paired T-test using p << 0.0001 and
found a significant improvement considering ratings equal to 5, and ratings greater than
or equal to 4. We observed that even ratings greater than or equal to 3 have statistical
significance compared to the baseline method LDSD.

6.7 E2: PERSONALIZED LINKED DATA SEMANTIC DISTANCE (PLDSD) 81

Table 6.1: Results from each metric of PLDSD for user #1 who has rated 40 movies.
LDSD is used as the baseline method.

Precision@5 Precision@10 MAP NDCG
LDSD 0.520 0.504 0.608 0.801
PLDSDrat=5 0.776 0.700 0.729 0.859
PLDSDrat>=4 0.698 0.666 0.608 0.853
PLDSDrat>=3 0.281 0.266 0.320 0.556

Table 6.2: Results from each metric of PLDSD for user #2 who has rated 130 movies.
LDSD is used as the baseline method.

Precision@5 Precision@10 MAP NDCG
LDSD 0.514 0.516 0.700 0.824
PLDSDrat=5 0.710 0.788 0.731 0.873
PLDSDrat>=4 0.654 0.699 0.600 0.802
PLDSDrat>=3 0.274 0.257 0.318 0.551

Table 6.3: Results from each metric of PLDSD for user #3 who has rated 246 movies.
LDSD is used as the baseline method.

Precision@5 Precision@10 MAP NDCG
LDSD 0.444 0.432 0.667 0.831
PLDSDrat=5 0.813 0.813 0.764 0.889
PLDSDrat>=4 0.722 0.753 0.623 0.867
PLDSDrat>=3 0.300 0.298 0.320 0.588

82 EXPERIMENTAL EVALUATION

In a similar analysis, Table 6.2 corroborates the previous results by investigating User
#2, who has given 130 ratings on movies. Likely, the best picture is when only 5-star
rated movies are considered by the user model. Here we can notice some variation in
which the k value of Precision performs better. Despite Precision@5 performs better
overall, at PLDSDrat=5 and PLDSDrat>=4, Precision@10 overcomes it. Comparing
results’ values in Table 6.2 to Table 6.1, we conclude that augmenting movies in the user
model can be related to better results. Results from paired T-tests using p << 0.0001
also showed statistical significance.

Finally, Table 6.3 shows the results from User #3, who has given more movie ratings:
246. Similar analysis as the previous tables about User #3, including the statistical
significance, can be done. As expected, PLDSDrat=5 results overcome other strategies.

6.7.2 Discussion and Contributions

In this experiment, we validate the hypothesis that LOD-based Recommender Systems
can benefit from a personalized feature ranking method. This was stated in Chapter 1
by Q2: Can the system recommend items better suited to the user’s taste by exploiting
her preferred properties from past choices?

A statistically significant improvement (p << 0.0001, assessed through paired T-tests)
was obtained for every user model strategy. In other words, it shows that leveraging the
users’ past ratings as criteria to rank the more significant features to recommend items to
the user is statistically significant (it did not occur randomly) compared to the baseline
method LDSD.

The overall picture leads us to conclude that the proposed method overcomes the
baseline method on PLDSDrat=5 and PLDSDrat>=4 to every metric. The same conclu-
sion cannot be made when we take ratings equal to 3 to compose the training dataset:
all results are lower than the baseline method in this picture. Although, the advantage
of taking ratings equal to 3 into account is that it expands the user model with more
movies. For example, in Table 6.3, from a set of 246 rated movies, we go to a set of 206
when we take ratings 5, 4, and 3, to a set of 136 movies when we take ratings 5 and 4 and
to only 52 movies when we take just ratings equal to 5. Nonetheless, as a consequence,
the training set becomes too diverse that it is hard to find a model that fits a particular
user. Thus, this explains the weak results found for PLDSDrat>=3 in every table.

Another conclusion is that the more the user has rated movies, the better the results
will be on each metric (comparing highlighted values among tables). It occurs because the
number of properties analyzed increases according to the number of liked movies. Taking
the PLDSDrat=5 model as example, User #1, has given positive feedback to 7 movies;
User #2, to 42 movies; and User #3 to 52 movies. Hereupon, User #1 had 33 properties
analyzed, against 56 from User #2 and 87 from User #3. Due to this 164% increase
in the number of properties between User #1 and User #3, metrics also had significant
increases: Precision@10 increased by 16%, MAP increased by 5%, and NDCG increased
by 3%.

Finally, we find three research questions stated in Chapter 1 were positively responded
to by this experiment, which are Q2: Can the system recommend items better suited to

6.8 E3: SUMMARIZATION 83

the user’s taste by exploiting her preferred properties from past choices?; Q3: Can we
automatically pick the properties that most influence the user’s choices regardless of the
domain?; and Q4: Is the proposed link ranking method feasible to personalize the system?

In addition, we demonstrated that two Specific Goals were achieved in this experiment:
SG2: Propose a personalization methodology that weighs links in a LOD graph based on
the user’s past ratings on the items in a recommender system; and SG3: Propose a user
profile modeling from the personalized graph obtained in the previous step.

6.8 E3: SUMMARIZATION

This section presents and discusses the results from Experiment 3, considering the method-
ology and objectives proposed in this work. Before the tests, we built the user models
from the set of items positively evaluated by each user. The concept of positive rating
was constructed differently for each domain dataset, movies, and music, according to the
methodology explained in Section 6.4.

The personalization step results in lists of ranked properties used to feed the recom-
mender system, which runs two similarity algorithms: LDSD and Personalized LDSD
(PLDSD). A k value may limit the ranked lists due to the feature selection preprocessing
step. As we consider 3 k values for each strategy in addition to the turn without limit-
ing the value of k, and 2 similarity strategies, the experimental evaluation consists of 8
rounds of testing for each user on the movie dataset and another 8 rounds for each user
on the music dataset.

In order to facilitate the understanding of the results tables, we use the acronym LDSD
to represent the recommender model built under plain LDSD, and the acronym PLDSD to
represent the recommender model that considers our personalized approach, as presented
in Section 5.4. Tests that consider the feature selection step are identified by the value
assigned to k in the result tables: Table 6.4 and Table 6.5. For example, PLDSD k=10
means that results encompass the personalization method and the preprocessing step that
selects the 10 most relevant properties. On the other hand, LDSD k=0 demonstrates the
results from when neither customization nor feature summary is applied.

6.8.1 Results from the Movie domain

Table 6.4 summarizes the average (Avg) results of a hundred users from the movie dataset,
considering the LDSD scenarios with and without feature selection and PLDSD with and
without feature selection. In the movie scenario, each of the 100 user models comprises
at least 7 and, at most 52 positively rated movies. The test set is composed of 200 not
evaluated movies. The value of k varies from 10 to 535, which is the maximum number
of properties for the movie domain in DBpedia. LDSD and PLDSD without feature
selection (k=0) are used for comparison purposes.

Table 6.4 shows a statistically significant increase (see Section 6.4 for more details on
the statistical tests) on all metrics when applying the PLDSD with k=10. The LDSD
approach presents worse results than personalized and filtered rounds.

84 EXPERIMENTAL EVALUATION

Table 6.4: Results from the movie dataset considering diverse scenarios.
Strategy Precision@5 Precision@10 MAP NDCG
LDSD k=0 0.450 0.450 0.501 0.743
LDSD k=10 0.500 0.450 0.565 0.798
LDSD k=100 0.450 0.425 0.550 0.751
LDSD k=535 0.450 0.425 0.499 0.744
PLDSD k=0 0.450 0.450 0.511 0.757
PLDSD k=10 0.550 0.450 0.582 0.809
PLDSD k=100 0.550 0.450 0.581 0.794
PLDSD k=535 0.550 0.425 0.504 0.783

6.8.2 Results from the Music domain

Table 6.5 summarizes the average (Avg) results of a hundred users from the music dataset,
considering LDSD scenarios with and without feature selection and PLDSD with and
without feature selection. Each of the 100 user models in the music scenario consists
of at least 14 and at most 50 positively rated artists. The test set is composed of 200
other not evaluated artists. The value of k varies from 10 to 512, the maximum number
of properties for the music domain in DBpedia. LDSD and PLDSD without feature
selection (k=0) are used for comparison purposes.

As with the movie domain, the results from the music context shown in Table 6.5
also achieved higher significant values (see Section 6.4 for more details on the statistical
tests) when applying PLDSD with k=10. And again, the results from LDSD without
personalization and filters show worse values among the rounds of experiments.

Table 6.5: Results from the music dataset considering diverse scenarios.
Strategy Precision@5 Precision@10 MAP NDCG
LDSD k=0 0.433 0.450 0.491 0.622
LDSD k=10 0.462 0.450 0.520 0.671
LDSD k=100 0.425 0.425 0.503 0.621
LDSD k=512 0.420 0.425 0.488 0.603
PLDSD k=0 0.436 0.450 0.509 0.635
PLDSD k=10 0.470 0.556 0.535 0.731
PLDSD k=100 0.451 0.445 0.508 0.647
PLDSD k=512 0.450 0.440 0.500 0.620

6.8.3 Discussion and Contributions

This experiment was intended to respond to Q5: Can the system benefit from a preprocess-
ing step that filters the domain-relevant features before entering the user personalization
method? These experiments have tested the baseline method LDSD and the personalized
approach PLDSD varying the number of resultant features k. Results show significant
improvements, as shown below.

Results from the movie dataset experiments reveal that MAP and NDCG metrics
obtained the best values. Additionally, those values are higher when the similarities are
calculated using the feature selection step. Figure 6.5 presents the MAP and NDCG
values for both LDSD and PLDSD approaches with different values of k. This graphi-

6.8 E3: SUMMARIZATION 85

cal representation emphasizes the significant growth of approximately 7% in NDCG for
LDSD values and of 8% in the NDCG for PLDSD values. Concerning the MAP metric,
experiments achieved 13% growth in the LDSD rounds and 14% in the NDCG for PLDSD
values when applying the feature selection step.

The results of Precision@5 and Precision@10 from the movie experiments show posi-
tive and negative oscillations between values, highlighting a positive gain of Precision@5
when calculating PLDSD with the feature selection. Furthermore, all metrics values are
higher when the number of properties is reduced in the pre-selection step, both for LDSD
and PLDSD, especially when k = 10.

Figure 6.5: NDCG and MAP results versus the k value of pre-selected features from the
movie domain.

Figure 6.6: NDCG and MAP results versus the k value of pre-selected features from the
music domain.

86 EXPERIMENTAL EVALUATION

The results from the music dataset also showed improvements, although not as expres-
sive as the movie domain, especially for the MAP metric. Figure 6.6 shows a growth of
8% in the NDCG for LDSD values and 15% in the NDCG for PLDSD values. Regarding
the MAP metric, experiments achieved 6% growth in the LDSD rounds and 5% in the
NDCG for PLDSD values when applying the feature selection step.

Originally, the ABSTAT method behaved differently depending on the selected knowl-
edge domain (NOIA et al., 2018). A comparative analysis leads us to conclude that AB-
STAT summaries are strongly grounded in the ontological nature of the knowledge graph.
At the same time, our approach emphasizes user preferences drawn from their previous
interactions with the system. This means that PLDSD applied to different domains will
perform similarly, although it may vary slightly. Nevertheless, the combined use of the
two techniques is more efficient than either one separately.

However, further analysis is required to investigate if the nature of the music subject
does not allow an accurate prediction of its properties and weights. The maximum number
of properties retrieved from DBpedia is similar to domains — 535 and 512 — although
the modeling is very different. A musical artist can be linked to many different songs
by the property dbo:artist of, while an actor is apt to be linked to fewer movies by the
property is dbo:star of. For example, the band The Rolling Stones is linked to over 300
songs, while Anthony Hopkins, the actor with one of the most solid careers, could act in
only 137 movies so far.

Conversely, the system’s overall performance significantly reduces the processing time,
both for the movie and song datasets, since the number of properties being computed
is reduced by approximately 80% when considering K = 10. Taking the example of the
user #1 — who positively rated 246 artists — the computation time was reduced from
240 to 67 minutes by adding the selection step, a reduction of 72%.

This section concludes that Q5: Can the system benefit from a preprocessing step
that filters the domain-relevant features before entering the user personalization method?,
was positively responded to and that SG4: Propose methods to leverage the semantics of
literals properties in LOD-based semantic similarity was successfully achieved.

6.9 SUMMARY

This chapter elucidated how the research accomplished the Specific Goals defined in
Chapter 1. Experimental evaluation is the last step of the methodology and it encompass
the implementation and evaluation of the proposed methods by comparing results using
the personalized user model versus results using only the baseline methods. We described
the datasets, methodology, and metrics employed in three experiments. It also discusses
the results obtained, addressing the challenges and the main contributions of each ex-
periment. Next chapter concludes the thesis by describing the improvement points and
future work suggestions.

Chapter

7
FINAL REMARKS

This chapter summarizes the main arguments and findings of the research. We also
critically reflect on the work’s outcomes, highlight the limitations, and suggest areas for
future research.

7.1 CONCLUSION

In this work, we proposed personalization strategies for LOD-based recommender sys-
tems. The proposal’s main goal was to develop methods for calculating Linked Data
Semantic Similarity, leading to more accurate recommendations. Throughout this the-
sis, we show how the specific goals defined in Chapter 1 was implemented and achieved
through solution models that led to more accurate recommendation systems.

A solution architecture (see Chapter 5) was developed as a product of the research.
It comprises all the thesis proposal steps, starting with the feature selection method.
It reduces the database to the properties that most imprint semantics to the knowledge
domain in concern (Step 1). Then it is followed by the user model personalization method,
which analyses the user’s past interactions with the system to rank the properties used in
the recommender model (Step 2). Finally, a recommendation model unites the previous
steps with one or more similarity measures, either link- or literal-based, to calculate the
rank of items for future user recommendations (Step 3).

Our generic architecture allows different semantic approaches to be applied to the
recommender system. For example, in the first step, it is possible to use different feature
selection techniques, whether based on statistics or expert supervision. In the experiments
we built to validate the results of the research, we used the following methods: the
Summarization automatized FS method (NOIA et al., 2018) in step 1; the authorial
weighting personalization method (SILVA; DURãO; CAPRETZ, 2019) in step 2; and
the baseline methods Linked Data Semantic Distance (LDSD) (PASSANT, 2010) and
Resource Similarity (ReSim) (PIAO; ARA; BRESLIN, 2016) in step 3.

Before testing, we enriched two well-known recommendation datasets, MovieLens and
Last.FM, with linked data from DBpedia. After that, we implemented and ran three

87

88 FINAL REMARKS

experiments intending to respond to the Research Questions defined in Chapter 1. They
all compared personalized strategies with baseline methods from state-of-the-art literature
to validate the premises of this research.

Experiment 1 was called Literals Similarity (LiSim) and computed the similarity be-
tween two resources in a LOD graph, considering the literal properties instead of the link
properties. We compared the LiSim measure to pure-link approaches using two baseline
methods, LDSD and ReSim. We concluded that the information stored in RDF literals
enhanced the recommendations.

Experiment 2 was called Personalized Linked Data Semantic Distance (PLDSD) be-
cause it defines a generic method that personalizes the user model by weighing properties
according to the user’s past choices and then combines the personalized user model with
the baseline LDSD measure. Results showed that the personalization approach increased
the accuracy of recommendations in the context of the experiment.

Experiment 3 was called Summarization, and its goal was to validate the hypothesis
that was filtering the most domain-relevant links to more effective recommendations in
Linked Data-based systems. To accomplish this, we implemented a feature selection
method based on statistics that filters the K most relevant properties before submitting
the dataset to the personalization step (PLDSD method). The evaluation results show
the best values for PLDSD combined with a k = 10 choice of feature selection strategy,
outperforming the unweighted and unfiltered baseline method LDSD.

The results from the three experiments indicate that the specific goals defined in
Chapter 1 were successfully achieved (see Chapter 6 for further details).

7.2 LIMITATIONS AND POINTS OF IMPROVEMENT

This section communicates the challenges involved in the research and ways for future
developments. It explains how the limitations may affect the accuracy or applicability of
the work and outlines the opportunities for future studies.

One limitation of this work is the size of the databases used to run the experiments.
To perform a more comprehensive evaluation, it is suggested to use broader datasets.
Even though the DBpedia dataset provides more than 4 million resources and more than
3 billion RDF triples, building high-quality training sets is not easy. For this work,
we manually executed this task using exploratory SPARQL queries and made decisions
based on common sense. This is considered a good strategy, although it leads to a reduced
dataset.

In Experiment 1, despite the promising results, several precautions must be taken
regarding literals containing more than one value. In the current development, we con-
sider only the first value retrieved, which limits our work, as the other values are missed.
Another issue is the pair of literals that may denote the same value. For instance, both
<15^^xsd:byte> and <15.0^^xsd:decimal> denote the same value, fifteen. Although
the intended meaning of the underlying literals is fifteen, our approach does not compute
them because the data types are different.

Because of the inherently open nature of LOD, values stored in literals may not be
properly formatted. Therefore, filtering out invalid values is a major concern when dealing

7.3 FUTURE WORK 89

with this type of information. For instance, in the following RDF statement from Figure
2.6: <dbr:Sao_Paulo,dbo:foundingDate,25-01-1554^^xsd:date>, the object value could
also be found as “16th centur” of type String, which would be troublesome for someone
interested in a quantifiable value of that particular property. However, this issue is not
addressed in our approach. All these observed issues will be revised and resolved in future
work.

Regarding Experiment 2, one great advantage of our personalization model is that it
is generic enough to be applied to any LOD-based database. Although, we did not test
it against a domain other than the movie domain. Experiments using the Personalized
Linked Data Semantic Distance (PLDSD) with the music dataset is a current work-in-
progress. Another limitation reported during the experimentation phase is about using
the personalization method together with different semantic similarity measures; for each
new measure to be aggregated to the model, we need to study a new function and find
the best way to insert the W (pj, uk) function in it. However, we plan future work to do
at least one more experiment using other similarity measures than the LDSD.

Finally, regarding Experiment 3, one difficulty was to define the number of properties
that should be used in the pre-selection process, that is, to define the value of k. Due
to this, the tests were performed considering three distinct values for k. We defined the
values so that the algorithm could explore a low (k = 10), a medium (k = 100), and a
high (k = max) value of k for feature selection. The highest value of k is the maximum
number of properties returned by the pre-selection step with the dataset used in the tests,
which is k = 535 for movies and k = 512 for music. Although most of the results were
more relevant when k = 10, both for LDSD and PLDSD, it is necessary to establish a
method that identifies the optimal amount of properties for each data set.

7.3 FUTURE WORK

In future work, we aim to resolve the aforementioned limitations, which are:

• Solve the problems concerning invalid values and different data types in numeric
typed literals of the LiSim method. For instance, the two values: <5.0^^(xsd:
double)> and <5^^(xsd:integer)> are interpreted as different values, although
they are the same in semantic terms;

• Perform new experiments integrating the LiSim method with the Personalized
Linked Data Semantic Distance (PLDSD) method to incorporate as many resource
features as possible to the recommendation algorithm. At this point in the re-
search, the personalization step only integrates with similarity measures based on
links, and does not take advantage of the semantics of literals in the user model
personalization step;

• Include other LOD-based similarity measures in the personalization step to compare
with PLDSD and determine which of them is best performing. The architecture of
the solution presented in chapter 5 allows the addition of new semantic similarity

90 FINAL REMARKS

or feature selection algorithms at specific points in the implementation, as long as
the rules written in chapter 5 are followed.

• Conduct further studies on the feature selection task by comparing other LOD-
driven approaches to the baseline methods used (NOIA et al., 2018; SILVA; DURãO;
CAPRETZ, 2019);

• Regarding k optimal value issue, one suggestion is to apply the Elbow Curve, a
popular method for finding the optimal number of clusters when working with the
K-Means classification algorithm (KAUFMAN; ROUSSEEUW, 1990). We propose
to investigate the possibility of finding the ideal value to K by adapting the Elbow
Method to improve the results from this work.

Besides the suggestions from research limitations, we also identified opportunities
for expanding this work by incorporating state-of-the-art research fields in LOD-based
Recommender Systems. One possible future work is to evaluate the whole model of
personalization strategies proposed by this thesis using a cross-domain dataset. This
will enable the development of multi-domain recommendations for general use in linked
datasets with a personalization approach. For instance, instead of recommending movies
based only on past-rated movies, the system can recommend movies by analyzing songs
or books rated by the user.

Regarding the pre-steps of dataset cleaning and enriching, we suggest developing semi-
automatic methods to extract and gather DBpedia resources to enhance data semantics.
In the present stage of work, we combine two previously mapped datasets available on
the web with our raw data. We also undertake manual cleaning and ensure that links are
not duplicated or missing. In addition, we plan to improve our cached query methods so
that the algorithms have less access to the SPARQL endpoints on the Web, thus reducing
the computational resources needed to process such a large amount of data.

The concern regarding exploiting hierarchy emerged during our research, as mentioned
in Chapter 4. This sounds like an interesting approach to enhance our similarity models
in future work. We suggest a method that exploits the entire entity hierarchy and selects
the most relevant classes for retrieving and integrating links into the user model. In this
way, it will be possible to calculate the semantic distance between resources considering
all the semantic characteristics from their class hierarchy.

Another promising research field that could be incorporated into our work is RS
explanations. A recommender system that provides explanations for its recommendations
can benefit in the following ways: i) Increase user trust; ii) Improve user satisfaction; iii)
Better system transparency and accountability; iv) Potential for user feedback; and v)
Enhance domain knowledge acquisition by learning from users’ feedback and preferences
expressed through explanations.

Finally, we have made the complete project available under the Github URL: <ht
tps://github.com/gbrlamota/lodweb-pldsd>. Researchers interested in replicating
and conducting further comparative studies can find the necessary documentation at
this location. We also intend to make the data and coding available as an Application
Programming Interface (API) for facilitating further extension and reuse.

7.4 DISSEMINATION 91

7.4 DISSEMINATION

The D.Sc. study described in this thesis originated from the publications listed below.

• DA SILVA, GABRIELA ; DO NASCIMENTO, LARA ; DURAO, FREDERICO.
Exploiting Linked Data-based Personalization Strategies for Recommender Sys-
tems. In: 18th International Conference on Web Information Systems and Tech-
nologies, 2022, Valletta. Proceedings of the 18th International Conference on Web
Information Systems and Technologies, 2022. p. 226.

• SILVA, GABRIELA OLIVEIRA MOTA DA; SOUZA, PAULO ROBERTO DE ;
DURAO, FREDERICO ARAUJO ; O, N.A. HSLD: a hybrid similarity measure for
linked data resources. INTERNATIONAL JOURNAL OF METADATA, SEMAN-
TICS, AND ONTOLOGIES (PRINT), v. 14, p. 16-25, 2020.

• DA SILVA, GABRIELA OLIVEIRA MOTA; CAPRETZ, MIRIAM; ARAUJO DU-
RAO, FREDERICO. PLDSD: Personalized Linked Data Semantic Distance for
LOD-Based Recommender Systems. In: The 21st International Conference on In-
formation Integration and Web-Based Applications Services, 2019, Munich. New
York: ACM, 2019. p. 294-303.

• RODRIGUES, MARIVALDO BISPO; DA SILVA, GABRIELA O. MOTA; DU-
RAO, FREDERICO ARAUJO. User Models Development Based on Cross-Domain
for Recommender Systems. In: the 22nd Brazilian Symposium, 2016, Teresina.
Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web - Web-
media ’16. New York: ACM Press, 2016. p. 363.

• DA SILVA, G. O. M.; CUNHA, M. V. ; DURAO, FREDERICO ARAUJO ;
PEREIRA, H. B. B. . RDFREE: Um modelo computacional para analisar redes
a partir de dados da Web Semântica. In: XIX Encontro Nacional de Modelagem
Computacional e VII Encontro de Ciência e Tecnologia de Materiais, 2016, João
Pessoa - PB. Anais do XIX Encontro Nacional de Modelagem Computacional e VII
Encontro de Ciência e Tecnologia de Materiais, 2016. v. 1. p. 1-10.

7.5 SUMMARY

This chapter concludes the work by presenting the final remarks regarding general con-
tributions (specific contributions of each experiment were presented in Chapter 6), points
for improvement, and suggestions for future work.

BIBLIOGRAPHY

ADOMAVICIUS, G.; TUZHILIN; ALEXANDER. Toward the next generation of recom-
mender systems: a survey of the state-of-the-art and possible extensions. IEEE Transac-
tions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engi-
neers (IEEE), v. 17, n. 6, p. 734–749, jun 2005.

AGGARWAL, C. C. Recommender systems: the textbook. [S.l.]: Springer International
Publishing, 2016.

ANGLES, R.; GUTIERREZ, C. The expressive power of sparql. In: SPRINGER. Inter-
national Semantic Web Conference. [S.l.], 2008. p. 114–129.

BARMAN, A.; TEWARI, A. S. Collaborative recommendation system using dynamic
content based filtering, association rule mining and opinion mining. International Journal
of Intelligent Engineering and Systems, The Intelligent Networks and Systems Society,
v. 10, n. 5, p. 57–66, oct 2017.

BERNERS-LEE, T. Linked-data design issues. w3c design issue document. The World-
Wide Web Consortium W3C, 2009.

BERNERS-LEE, T. Design issues: Linked data (2006). URL
http://www.w3.org/DesignIssues/LinkedData.html, 2011.

BERNERS-LEE, T.; FIELDING, R.; MASINTER, L. Rfc 3986. Uniform Resource Iden-
tifier (URI): Generic Syntax, InternetEngineering Task Force, 2005.

BERNERS-LEE, T. et al. The semantic web. Scientific american, New York, NY, USA:,
v. 284, n. 5, p. 28–37, 2001.

BIZER, C.; HEATH, T.; Berners-Lee, T. Linked data - the story so far. Int. J. Semantic
Web Inf. Syst., v. 5, n. 3, p. 1–22, 2009.

BIZER, C.; HEATH, T.; BERNERS-LEE, T. Linked data-the story so far. Semantic
services, interoperability and web applications: emerging concepts, p. 205–227, 2009.

BRICKLEY, D.; MILLER, L. FOAF Vocabulary Specification. [S.l.], 2004.
Http://xmlns.com/foaf/0.1/. Disponível em: <http://xmlns.com/foaf/0.1/>.

BURKE, R. Hybrid recommender systems: Survey and experiments. User Modeling and
User-Adapted Interaction, Kluwer Academic Publishers, Hingham, MA, USA, v. 12, n. 4,
p. 331–370, nov. 2002. ISSN 0924-1868.

93

94 BIBLIOGRAPHY

CAO, Y. et al. Unifying knowledge graph learning and recommendation: Towards a
better understanding of user preferences. In: The World Wide Web Conference. New
York, NY, USA: Association for Computing Machinery, 2019. (WWW ’19), p. 151–161.
ISBN 9781450366748. Disponível em: <https://doi.org/10.1145/3308558.3313705>.

CATHERINE, R.; COHEN, W. Personalized recommendations using knowledge graphs:
A probabilistic logic programming approach. In: Proceedings of the 10th ACM Conference
on Recommender Systems. New York, NY, USA: ACM, 2016. (RecSys ’16), p. 325–332.
ISBN 978-1-4503-4035-9.

CHENIKI, N. et al. Lods: A linked open data based similarity measure. 2016 IEEE
25th International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), p. 229–234, 2016.

CODINA, V.; RICCI, F.; CECCARONI, L. Exploiting the Semantic Similarity of Con-
textual Situations for Pre-filtering Recommendation. [S.l.]: Springer, Berlin, Heidelberg,
2013.

CONTRIBUTORS, D. How to edit the dbpedia ontology. In: . DBpedia Mappings.
DBpedia.org, 2022. Disponível em: <https://mappings.dbpedia.org/index.php/How_
to_edit_the_DBpedia_Ontology/>. Acesso em: March 9th, 2022.

DAVOODI, E.; KIANMEHR, K.; AFSHARCHI, M. A semantic social network-based
expert recommender system. Applied Intelligence, Springer Nature, v. 39, n. 1, p. 1–13,
oct 2013. ISSN 1573-7497.

DIETZ, J. L. What is Enterprise Ontology? [S.l.]: Springer, 2006.

DU, Y. et al. Post-hoc recommendation explanations through an efficient exploitation of
the dbpedia category hierarchy. Knowledge-Based Systems, v. 245, p. 108560, 2022. ISSN
0950-7051. Disponível em: <https://www.sciencedirect.com/science/article/pii/S09507
05122002490>.

FERRÉ, S. Sparklis: a sparql endpoint explorer for expressive question answering. In:
ISWC posters & demonstrations track. [S.l.: s.n.], 2014.

FIELDING, R. et al. Hypertext transfer protocol–HTTP/1.1. [S.l.], 1999.

FRESSATO, E. P. Incorporação de metadados semânticos para recomendação no cenário
de partida fria. 105 p. Tese (Doutorado) — Universidade de São Paulo, 2019.

GAN, L. et al. Emdkg: Improving accuracy-diversity trade-off in recommendation
with em-based model and knowledge graph embedding. In: IEEE/WIC/ACM Inter-
national Conference on Web Intelligence and Intelligent Agent Technology. New York,
NY, USA: Association for Computing Machinery, 2021. (WI-IAT ’21), p. 17–24. ISBN
9781450391153. Disponível em: <https://doi.org/10.1145/3486622.3493925>.

BIBLIOGRAPHY 95

GARCÍA, C. G. et al. Social recommender system: A recommender system based on
tweets for points of interest. In: Proceedings of the 4th Multidisciplinary International
Social Networks Conference on ZZZ - MISNC '17. New York, NY, USA: ACM Press,
2017. (MISNC ’17), p. 28:1–28:7. ISBN 978-1-4503-4881-2.

GARSHOL, L. M. Living with topic maps and rdf. Online only, Citeseer, v. 13, 2003.

GEMMIS, M. de et al. Semantics-aware content-based recommender systems. In: RICCI,
F.; ROKACH, L.; SHAPIRA, B. (Ed.). Recommender Systems Handbook. Boston, MA:
Springer US, 2015. p. 119–159. ISBN 978-1-4899-7637-6.

GRUBER, T. R. Toward principles for the design of ontologies used for knowledge shar-
ing? International journal of human-computer studies, Elsevier, v. 43, n. 5-6, p. 907–928,
1995.

GUHA, R.; BRICKLEY, D. W3C Recommendation, RDF Schema 1.1. 2014. Disponível
em: <http://www.w3.org/TR/2014/REC-rdf-schema-20140225/>.

GUO, G. Resolving data sparsity and cold start in recommender systems. In: MAS-
THOFF, J. et al. (Ed.). User Modeling, Adaptation, and Personalization. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012. p. 361–364. ISBN 978-3-642-31454-4.

GUO, S.; ALAMUDUN, F.; HAMMOND, T. Résumatcher: A personalized résumé-job
matching system. Expert Systems with Applications, Elsevier, v. 60, p. 169–182, 2016.

GUY, I. People recommendation on social media. In: . Social Information Access:
Systems and Technologies. Cham: Springer International Publishing, 2018. p. 570–623.
ISBN 978-3-319-90092-6.

GUYON, I.; ELISSEEFF, A. An introduction to variable and feature selection. J. Mach.
Learn. Res., JMLR.org, v. 3, p. 1157–1182, mar. 2003. ISSN 1532-4435.

HERLOCKER, J. L. et al. Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems, Association for Computing Machinery (ACM),
v. 22, n. 1, p. 5–53, jan 2004.

HOLZE, J. Dbpedia snapshot 2022-12 release. In: . DBpedia Archive: Announce-
ment. DBpedia.org, 2023. Disponível em: <https://www.dbpedia.org/blog/dbpedia-sna
pshot-2022-12-release/>. Acesso em: March 27th, 2023.

HUTT, K. A comparison of rdf query languages. In: Proc. of 21th Computer Science
Seminar, Hartfort, Connecticut. [S.l.: s.n.], 2005. p. 1–7.

ISINKAYE, F.; FOLAJIMI, Y.; OJOKOH, B. Recommendation systems: Principles,
methods and evaluation. Egyptian Informatics Journal, Elsevier BV, v. 16, n. 3, p. 261–
273, nov 2015.

96 BIBLIOGRAPHY

JäRVELIN, K.; KEKäLäINEN, J. Cumulated gain-based evaluation of ir techniques.
ACM Trans. Inf. Syst., ACM, New York, NY, USA, v. 20, n. 4, p. 422–446, out. 2002.
ISSN 1046-8188.

JAWAHEER, G.; WELLER, P.; KOSTKOVA, P. Modeling user preferences in recom-
mender systems: A classification framework for explicit and implicit user feedback. ACM
Transactions on Interactive Intelligent Systems, Association for Computing Machinery
(ACM), v. 4, n. 2, p. 1–26, jun 2014.

JOSEPH, K.; JIANG, H. Content based news recommendation via shortest entity dis-
tance over knowledge graphs. In: Companion Proceedings of The 2019 World Wide Web
Conference. New York, NY, USA: ACM, 2019. (WWW ’19), p. 690–699. ISBN 978-1-
4503-6675-5.

KAUFMAN, L.; ROUSSEEUW, P. J. Finding Groups in Data: An Introduction to Clus-
ter Analysis. [S.l.]: John Wiley, 1990. ISBN 978-0-47031680-1.

KIM, M. H. J. G. 5(star) open data. In: . 5stardata.info. Content freely available
under the CC0 Public Domain Dedication, 2019. Disponível em: <https://5stardata.in
fo/en/>. Acesso em: June 6th, 2019.

KLUVER, D.; EKSTRAND, M. D.; KONSTAN, J. A. Rating-based collaborative filter-
ing: Algorithms and evaluation. In: . Social Information Access. [S.l.]: Springer
International Publishing, 2018. cap. 10, p. 344–390. ISBN 978-3-319-90092-6.

KLYNE, G.; CARROLL, J. J. Resource description framework (rdf): Concepts and ab-
stract syntax. 2006.

KOBILAROV, G. et al. Media meets semantic web - how the bbc uses dbpedia and linked
data to make connections. In: ESWC. [S.l.: s.n.], 2009.

KUMAR, P.; THAKUR, R. S. Recommendation system techniques and related issues: a
survey. International Journal of Information Technology, Springer Nature, v. 10, n. 4, p.
495–501, apr 2018.

LAM, X. N. et al. Addressing cold-start problem in recommendation systems. In: Pro-
ceedings of the 2Nd International Conference on Ubiquitous Information Management
and Communication. New York, NY, USA: ACM, 2008. (ICUIMC ’08), p. 208–211. ISBN
978-1-59593-993-7.

LEHMANN, J. et al. DBpedia - a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web Journal, v. 6, n. 2, p. 167–195, 2015. Disponível em:
<http://jens-lehmann.org/files/2015/swj_dbpedia.pdf>.

LÜ, L. et al. Recommender systems. Physics Reports, Elsevier BV, v. 519, n. 1, p. 1–49,
oct 2012.

BIBLIOGRAPHY 97

MANNING, C. D.; RAGHAVAN, P.; SCHÜTZE, H. Introduction to Information Re-
trieval. New York, NY, USA: Cambridge University Press, 2008. ISBN 0521865719,
9780521865715.

MANNING, C. D.; RAGHAVAN, P.; SCHüTZE, H. Evaluation in information retrieval.
In: . Introduction to Information Retrieval. [S.l.]: Cambridge University Press,
2008. p. 139–161.

MCCRAE, J. P. The linked open data cloud. In: . The Linked Open Data Cloud.
Insight Centre for Data Analytics, 2023. Disponível em: <https://lod-cloud.net/>.
Acesso em: September 3rd, 2023.

MUSTO, C. et al. Semantics-aware graph-based recommender systems exploiting linked
open data. In: Proceedings of the 2016 Conference on User Modeling Adaptation and
Personalization. New York, NY, USA: ACM, 2016. (UMAP ’16), p. 229–237. ISBN 978-
1-4503-4368-8.

NATARAJAN, S. et al. Cd-semmf: Cross-domain semantic relatedness based matrix
factorization model enabled with linked open data for user cold start issue. IEEE Access,
v. 10, p. 52955–52970, 2022. Disponível em: <https://doi.org/10.1109/ACCESS.2022.31
75566>.

NOIA, T. D. et al. Using ontology-based data summarization to develop semantics-
aware recommender systems. In: GANGEMI, A. et al. (Ed.). The Semantic Web. Cham:
Springer International Publishing, 2018. p. 128–144. ISBN 978-3-319-93417-4.

NOIA, T. D. et al. Linked open data to support content-based recommender systems. In:
Proceedings of the 8th International Conference on Semantic Systems. New York, NY,
USA: ACM, 2012. (I-SEMANTICS ’12), p. 1–8. ISBN 978-1-4503-1112-0.

PAN, J. Z. Resource description framework. In: Handbook on ontologies. [S.l.]: Springer,
2009. p. 71–90.

PARRA, D.; SAHEBI, S. Recommender systems: Sources of knowledge and evaluation
metrics. In: . Advanced Techniques in Web Intelligence-2: Web User Browsing
Behaviour and Preference Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
p. 149–175. ISBN 978-3-642-33326-2.

PASSANT, A. Measuring semantic distance on linking data and using it for resources rec-
ommendations. In: AAAI Spring Symposium: Linked Data Meets Artificial Intelligence.
[S.l.]: AAAI, 2010.

PÉREZ, J.; ARENAS, M.; GUTIERREZ, C. Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS), ACM, v. 34, n. 3, p. 16, 2009.

PERRY, M.; HERRING, J. Ogc geosparql-a geographic query language for rdf data.
OGC Implementation Standard. Sept, 2012.

98 BIBLIOGRAPHY

PIAO, G.; ARA, S. s.; BRESLIN, J. G. Computing the semantic similarity of resources
in dbpedia for recommendation purposes. In: QI, G. et al. (Ed.). Semantic Technology.
Cham: Springer International Publishing, 2016. p. 185–200.

PIAO, G.; BRESLIN, J. G. Measuring semantic distance for linked open data-enabled
recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing. New York, NY, USA: ACM, 2016. (SAC ’16), p. 315–320. ISBN 978-1-4503-
3739-7.

PIAO, G.; BRESLIN, J. G. Inferring user interests in microblogging social networks:
a survey. User Modeling and User-Adapted Interaction, Springer Nature America, Inc,
v. 28, n. 3, p. 277–329, aug 2018.

REUSENS, M. et al. A note on explicit versus implicit information for job recommenda-
tion. Decision Support Systems, Elsevier BV, v. 98, p. 26–35, jun 2017.

RICCI, F.; ROKACH, L.; SHAPIRA, B. Recommender systems: introduction and chal-
lenges. In: Recommender systems handbook. [S.l.]: Springer International Publishing,
2015. p. 1–34.

SARKER, M. K. et al. Explaining trained neural networks with semantic web technolo-
gies: First steps. Proceedings of the Twelveth International Workshop on Neural-Symbolic
Learning and Reasoning, 2017.

SARWAR, B. et al. Item-based collaborative filtering recommendation algorithms. In:
Proceedings of the tenth international conference on World Wide Web - WWW '01. [S.l.]:
ACM Press, 2001. (WWW ’01), p. 285–295. ISBN 1-58113-348-0.

SAVESKI, M.; MANTRACH, A. Item cold-start recommendations: learning local collec-
tive embeddings. In: Proceedings of the 8th ACM Conference on Recommender systems
- RecSys '14. [S.l.]: ACM Press, 2014. p. 89–96.

SEDHAIN, S. et al. Social collaborative filtering for cold-start recommendations. In:
Proceedings of the 8th ACM Conference on Recommender Systems. New York, NY, USA:
ACM, 2014. (RecSys ’14), p. 345–348. ISBN 978-1-4503-2668-1.

SHANI, G.; GUNAWARDANA, A. Evaluating recommendation systems. In: . Rec-
ommender Systems Handbook. Boston, MA: Springer US, 2011. p. 257–297. ISBN 978-0-
387-85820-3.

SHI, Y. et al. Climf: Learning to maximize reciprocal rank with collaborative less-is-more
filtering. In: Proceedings of the sixth ACM conference on Recommender systems - RecSys
'12. New York, NY, USA: ACM Press, 2012. (RecSys ’12), p. 139–146.

SILVA, G. O. M. da; DURãO, F. A.; CAPRETZ, M. Pldsd: Personalized linked data
semantic distance for lod-based recommender systems. In: Proceedings of the 21st In-
ternational Conference on Information Integration and Web-Based Applications and Ser-
vices. New York, NY, USA: Association for Computing Machinery, 2019. (iiWAS2019),

BIBLIOGRAPHY 99

p. 294–303. ISBN 9781450371797. Disponível em: <https://doi.org/10.1145/3366030.33
66041>.

TERÁN, L.; MENSAH, A. O.; ESTORELLI, A. A literature review for recommender
systems techniques used in microblogs. Expert Systems with Applications, Elsevier BV,
v. 103, p. 63–73, aug 2018.

THORAT, P. B.; GOUDAR, R. M.; BARVE, S. Survey on collaborative filtering, content-
based filtering and hybrid recommendation system. International Journal of Computer
Applications, Foundation of Computer Science, v. 110, n. 4, p. 31–36, jan 2015.

TRIPERINA, E. et al. Creating the context for exploiting linked open data in multidimen-
sional academic ranking. International Journal of Recent Contributions from Engineering,
Science & IT (iJES), v. 3, n. 3, p. 33–43, 2015.

ZHANG, F. et al. Alleviating the data sparsity problem of recommender systems by clus-
tering nodes in bipartite networks. Expert Systems with Applications, v. 149, p. 113346,
2020. ISSN 0957-4174. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S0957417420301718>.

ZHANG, Z.-K. et al. Solving the cold-start problem in recommender systems with social
tags. EPL (Europhysics Letters), IOP Publishing, v. 92, n. 2, p. 28002, oct 2010.

