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fé em ti tem me feito galgar percursos ainda maiores e superar todos os obstáculos em
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RESUMO

Embora as Linha de Produto de Software (LPS) ofereçam o potencial de melhorias de
ordem de magnitude no desempenho da engenharia de software, custo inicial, ńıvel de
esforço, risco assumido e a latência necessários para fazer a transição para a LPS são
barreiras proibitivas à adoção por muitos organizações que poderiam se beneficiar da re-
utilização de seus sistemas existentes. A adoção de uma estratégia extrativa a partir de
um processo de reengenharia de sistemas existentes em um LPS é um tópico de pesquisa
ativo com benef́ıcios reais na prática. Ela permite que as empresas de desenvolvimento de
software preservem seus investimentos e agreguem o conhecimento obtido durante o de-
senvolvimento de seu portfólio de sistemas desenvolvidos individualmente. Apesar desses
benef́ıcios, adotar uma abordagem extrativa de adoção de linha de produtos ainda requer
um investimento inicial considerável e é mais complexo de evoluir do que sistemas únicos.
Por causa dessas desvantagens, as empresas de software evitam ou atrasam a adoção de
LPS, recorrendo a uma prática ad-hoc de clonagem de código. Para acelerar a conversão
e a manutenção de SPL, apresentamos o FOUNDRY, uma abordagem de transplante de
software (TS) que orienta o processo de transplante e mesclagem de recursos de diferentes
sistemas em uma linha de produtos. É a primeira abordagem com suporte ferramental
para LPS que automatiza todos os estágios da construção de uma linha de produtos uti-
lizando a técnica de TS. Automatizamos Foundry no prodScalpel, uma ferramenta
de TS para LPS que automatiza o processo de identificação, adaptação e transferência
de recursos de sistemas existentes para uma base comum de produtos. Seu mecanismo de
transferência de código entre distintos sistemas permite que a mesma seja utilizada não
somente para a geração de linhas de produto, mas também como alternativa à técnica de
clonagem de código para a especialização de sistemas. Comparamos nossa proposta com
as soluções existentes a fim de demonstrarmos evidências de que o TS é uma alternativa
com potencial de aplicação no campo de reengenharia de sistemas em LPS. Na busca
por evidências mais concretas, avaliamos Foundry em dois estudos de caso em que dois
produtos foram criados a partir do transplante de código de três sistemas do mundo real.
Além disso, conduzimos um experimento comparando a migração automática de recursos
utilizando Foundry com esforço manual realizado por especialistas em LPS. Mostramos
que o Foundry migrou automaticamente recursos entre bases de código 4,8 vezes mais
rápido, em média, do que o tempo médio que um grupo de participantes levou para
realizar a tarefa. Embora preliminar, nossa avaliação fornece evidências para apoiar a
afirmação de que TS para Engenharia de Linha de Produto de Software (ELPS) é uma
direção de pesquisa nova, promissora, e viável.

Palavras-chave: Transplante de software; Engenharia de software baseada em busca;
Melhoramento genético; Programação genética; Linhas de produtos de software; Reuso
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ABSTRACT

Although Software Product Lines (SPL) offer the potential for order-of-magnitude im-
provements in software engineering performance, the up-front cost, level of effort, assumed
risk, and latency required to make the transition to SPL are prohibitive adoption barriers
for many organizations that could otherwise benefit from reusing of their existing systems.
The SPL adoption from an extractive model based on a reengineering process of exist-
ing systems into SPL is an active research topic with real benefits in practice. It allows
software development companies to preserve their investment and aggregate knowledge
obtained during the development of their portfolio of systems individually developed.
Despite these benefits, adopting an extractive product line approach still requires a con-
siderable upfront investment and is more complex to evolve than single systems. Because
of these drawbacks, software companies refrain or delay the adoption of SPL, resorting
to an ad-hoc practice of clone-and-own. To speed conversion to and maintenance of SPL,
we present Foundry, a Software Transplantation (ST) approach that guides the process
of transplanting and merging features in a product line from existing systems. It is the
first approach for SPL that automates all stages of product line construction using the
ST technique. We realized Foundry in prodscalpel, a software transplantation tool for
SPL that automates the process of identifying, adapting and transferring features from
existing systems to a common product base. Its code transfer mechanism between dif-
ferent systems allows it to be used not only for the generation of product lines but also
as an alternative to the clone-and-own technique for system specialization. We compared
our proposal with the existing reengineering solutions to demonstrate evidence that the
ST is an alternative with potential for application in the field of reengineering of existing
systems to SPL. In the search for more concrete evidence, we evaluated prodscalpel on
two case studies where two products were generated by transplanting of features from
three real-world systems. Moreover, we conducted an experiment comparing Foundry’s
feature migration with manual effort. We show that Foundry automatically migrated
features across codebases 4.8 times faster, on average, than the average time a group of
SPL experts took to accomplish the task. Although preliminary, our evaluation provides
evidence to support the claim that ST for Software Product Line Engineering (SPLE) is
a feasible and, indeed, promising new research direction.

Keywords: Automated software transplantation; Autotransplantation; Search-based
Software Engineering; Genetic improvement; Software product lines; Software reuse; Reengi-
neering of systems into software product lines;
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Chapter

1
INTRODUCTION

Software reuse is an important approach for companies interested in increasing their
productivity, minimizing development costs, and improving time-to-market [1]. SPL has
emerged as a systematic way to achieve reuse based on a strategy that plans the use of
assets in several products rather than conventional ad-hoc reuse approaches [2, 3].
Despite its benefits, in general, adopting SPL requires a considerable upfront invest-

ment before its benefits can be obtained. The cost of migrating existing products to SPL
is lower than adopting SPL from scratch, making extractive adoption more common, es-
pecially in companies with many software system variants in production [4]. Two factors
motivate this preference: (1) it is often hard to determine the upfront investment that
will be needed because related products often emerge from a small set of initial products,
and (2) starting from scratch discards considerable knowledge and investment in existing
codebases when they exist [5, 6].
To re-engineer existing products, companies must solve four problems: they must

analyze their products to (1) identify and (2) extract the features these products share,
(3) learn their inter-dependencies, and finally, (4) define a variability mechanism for
combining these features, subject to their inter-dependency constraints [7]. Currently,
reengineering to adopt SPL remains largely manual [7] and costly [8]. Indeed, because
of its cost, software companies delay or even refrain from adopting SPL[9]. Automating
these tasks remains an open challenge [7].
In his keynote paper during the SPLC Conference, Harman demonstrated the poten-

tial application of search-based techniques, such as Genetic Improvement (GI) for SPL
development [10], for instance, in feature model selection, architectural improvement,
refactoring, and SPL testing [11]. Since then, the search for solutions to SPL problems
has sparked a surge of research and application at the intersection of Search Based Soft-
ware Engineering (SBSE) and SPL, which has manifested with an increasing number of
papers connecting both research communities [12].
In 2013, Harman et al. [13] introduced ST as a new research direction and laid out

its implications for SPL reengineering. Harman et al. defined ST as “the adaptation of
one system’s behaviour or structure to incorporate a subset of the behaviour or structure

3
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of another” [13]. In terms of automated ST, Petke et al. [14, 15] were the pioneers in
transplanting code snippets from different versions of a system to enhance its perfor-
mance using genetic improvement [16]. A year later, Barr et al. [17] introduced a theory,
algorithm, and tool that could automatically transplant a feature from one program to
another successfully. Another tool, CodeCarbonCopy (CCC), was proposed by Sidiroglou-
Douskos et al. [18] which automatically transfers code from a donor to a host codebase
by utilizing static analysis to identify and eliminate irrelevant functionalities that are not
pertinent to the host system.
The idea of ST has the potential to be exploited as an alternative approach to the

optimization of the reengineering process to obtain SPL reusing existing systems. The
powerful essence of this idea is the focus on deriving new products automatically from
the transplant features from different systems in a product line without each feature has
been initially created to be reusable.
Inspired by that idea, we introduce Foundry, the first ST approach for SPL reengi-

neering. Foundry is independent of the programming language and supports SPL’s
domain engineering and application engineering [19] processes at the code level. It tack-
les each SPL reengineering task, easing some and automating others. Foundry does not
eliminate the manual labour of feature identification but reduces it to the task of anno-
tating the entry points (the interface) of a feature, or its “organ” using transplantation
nomenclature. Foundry amortises this manual step across a sequence of transplanta-
tions. Foundry automates feature extraction using slicing to overapproximate feature
dependencies. It leverages transplantation to automate the variability mechanism and,
simultaneously, tackle slice-imprecision.
Key to Foundry is the mapping software transplantation’s “over-organs”, a conser-

vative over approximates an organ [17], to became assets, or features of a product line.
The use of Program slicing [20] to organ extraction means that Foundry does not need
specially prepared donors; the donor programs can even be unaware that they are par-
ticipating in an SPL. A product line via ST is composed of multiple over-organs and a
“product base”, a host that contains all features are shared across all products within
the product line, so constructing a product entails transplanting a set of organs into a
product base.
Because over-organs are conservative, self-contained slices, two organs may share fea-

tures. For example, in an editor, two different features, like a spell checker or a plugin
manager, might share a memory-resident database feature. Foundry uses clone-aware
genetic improvement [16] to adapt and specialise an over-organ to its implantation point
and to detect and remove cross organ redundancies.
We implement Foundry in prodScalpel, a tool that transplants multiple organs

(i.e., a set of interesting features) from donor systems into an emergent product line.
It is the first ST tool that can automatically produce product lines from existing sys-
tems implemented in C. We implemented prodScalpel to automate the ST idea [13]
for reengineering of systems into SPL. Our solution exploits Program slicing [20], SPL
reengineering, GP [21], and Clone analysis techniques for extracting, transforming, and
implanting multiple features’s implementation from existing systems with the aim of
generating product lines.
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prodScalpel also can be configured to support the use of existing variability mech-
anisms based on feature toggle [22], such as feature flags and preprocessor directives [23].
It can automatically encapsulate the code associated with each feature transplanted by
surrounding it feature flags or preprocessor directives to control which features are ac-
tive at compile or runtime. This allows product line to take advantage of the benefits of
both techniques, while minimizing their drawbacks. Furthermore, Foundry can also be
exploited as an alternative to clone-and-own approach to optimise the product variants
development process. Consequently, our solution brings a new way for software reuse by
providing both a faster and automatic way of reuse of features from existing codebases.
By using ST, software companies also could opt for an initial strategy of generating new
products and then, based on the market demand, towards a product line adoption, both
strategies possible by transplanting functionalities from existing products. That way, new
products might be assembled from existing software only at the moment that there is a
demand for them, reducing the up-front investment, one of the main barriers to SPL
adoption.
We evaluate Foundry as a feasible approach to the reengineering process for ex-

tracting SPL, by conducting a comparative study (Chapter 6), thereby demonstrating
the potential of ST to address open issues in the current reengineering practices in com-
parison with existing automated solutions.
To evaluate prodScalpel, we conducted two case studies and a controlled experi-

ment (Chapters 7 and 8). We first generate products by transplanting features from three
real-world systems — Kilo1, VI2 and CFLOW3 — into two product bases generated from
VI and VIM4, used as hosts for the target transplantations. Next, we asked twenty SPL
experts to conduct an experiment of feature migration to a product line. We provided to
them the same inputs as those prodScalpel requires. In all cases, prodScalpel out-
performed our experiment’s participants in the time taken to complete feature migration.
On average, prodScalpel automatically migrated features across codebases 4.8 times
faster, on average, than the average time a group of SPL experts took to accomplish the
task.
Our results show that ST does successfully automate SPL reengineering, by combining

features extracted from existing, possibly unrelated, systems.

1.1 MOTIVATION

The most common scenario of reuse in practice is based on ad-hoc techniques [7]. For
example, when there to demand for a new product that has some similar functionalities
to an existing product, commonly, developers fork the new product from other already
existing software and then adapt it to fit the new requirements. Seeking to minimize this
rework effort, reuse techniques, such as reengineering of existing systems to SPL emerged
as a systematic way to synthesize a set of systems in a product line.

1https://github.com/antirez/kilo
2http://ex-vi.sourceforge.net/
3https://www.gnu.org/software/cflow/
4https://www.vim.org/
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Numerous legacy systems, with a long history of versions and local variations, can be
targets for reengineering, as highlighted in the work of Bayer et al. [24] on SPL. However,
simply recovering existing assets from single systems and trying to reuse them for new
developments is not sufficient for systematic reuse [25]. Reengineering can help in extract-
ing reusable components from existing systems, but the efforts needed for understanding,
extraction and adaptation of assets should be considered.
Many reengineering approaches with focus on SPL have been proposed in order to

minimize the adoption barrier [7]. Some are based on the use of generic reengineer-
ing techniques [26, 27]. Others have focused on model and code transformation ap-
proaches [28, 29]. However, recovering assets from existing systems and trying to assemble
new systems from them is not totally possible using the existing SPL reengineering prac-
tices [7]. Most of the existing solutions provide support for specific tasks such as feature
detection and analysis, rather than the whole SPL generation process. In additional, they
are not fully automated and lack the means to consolidate different features present in
more than one system into a product line [7]. Even solutions like ECCO [9] that consol-
idates different features present in more than one product requires that these products
must be based on the same family of products which limits the capacity of reusing assets.
The proposition of autonomously transferring features among unrelated codebases

has the potential to establish ST as a burgeoning and promising trend in future software
development, with minimal human intervention. The application of search-based tech-
niques to automate the ST process can be leveraged to migrate existing features into a
product line. Using ST, software companies can contemplate an initial strategy of gener-
ating product variants and subsequently transitioning towards a product line as market
demand dictates. This adaptable approach enables the assemblage of new products when
needed, thereby curbing upfront investments.

1.2 PROBLEM DEFINITION

Automated transplantation aims to identify and extract an organ (interesting behaviour
to transplant), all code associated with the feature of interest, then transform it to be
compatible with the namespace and context of its target site in the host [17]. The au-
tomatic transplantation of a single organ already faces significant challenges. The code
from different systems is unlikely to compile, execute and pass test cases when relocated
into an unrelated foreign system without extensive modification.
The utilization of ST as a means to successfully automate the reengineering of product

lines presents even greater challenges. Firstly, the code’s extraction involves the identifi-
cation of all semantically relevant code to maintain the organ functional even outside the
donor environment. The codebase of the donor may have been developed using diverse
architectures, dependencies, and implementation details, which necessitates the analysis
of considerable amount of code and identification of all dependencies and interactions
across the organs present in their respective codebases.
Secondly, adapting the extracted features to work with the host system can also be

challenging. The host system may have different architectures or dependencies than the
donor system, which can require significant modifications to the extracted organs. This
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adaptation process needs to be done carefully to ensure that the feature behavior is
preserved and that the organ can be integrated with the host system without causing
conflicts or errors.
Thirdly, the successful implantation of the extracted organ into an emergent new

product is hindered by potential dependencies among it and other transplanted organs.
A single feature in a program may interact with another feature or a set of features,
resulting in complex interactions that must be taken into account during the Automated
Software Transplantation (AutoST) process to achieve new products that incorporate a
set of useful features from a product line. Upon successful implementation and overcoming
all challenges, ST for SPL reengineering can be adopted as an approach to meet the
demands of the software industry.

1.3 OBJECTIVES

Face to the additional challenges described in the previous section; our general goal
is to propose an approach and a tool that can be used for optimizing the process of
generating both product lines as new products from existing codebases with minimal
human involvement.
From this general goal, the following specific research goals are defined:

Research Goal 1: Define which transplantation stages are necessary to identify, ex-
tract, transform, and implant features from a set of donors programs to a product
line;

Research Goal 2: Implement an AutoST tool for generating product lines and product
variants from the transplant of multiple features;

Research Goal 3: Demonstrate the potential of automated ST to address the gaps and
limitations in the existing SPL reengineering practices; and

Research Goal 4: Evaluate the proposed approach and tool regarding successful prod-
uct line and product variants generation by conducting two case studies with real-
world systems and a controlled experiment with SPL experts.

1.4 RESEARCH QUESTIONS

Based on such defined goals, we established the following research questions that guide
this investigation:

• How to evolve the current state of practices of the reengineering of ex-
isting systems to obtain an SPL?
Rationale: There is a variety of approaches that supports reengineering of systems
variants into SPL [7]. Thus, we need to discuss how our proposed approach sup-
ports the SPL reengineering process by considering existing solutions and their
limitations.



8 INTRODUCTION

• How does a multi-organ transplantation approach automate existing
reengineering practices for extracting an SPL from a codebase?
Rationale: As a recent idea in the SBSE field, the ST is emerging as a new research
area with many exciting opportunities for software reuse and SPL [13]. However,
although the idea of AutoST has been proposed, it has not been explored yet as an
alternative applied in the SPL reengineering process. Thus, a proposal that exploits
such potential is needed.

• Are the approach and tool effective to create software product lines?
Rationale: To achieve a comprehensive research rigor and relevance, the tool should
be empirically evaluated, and results have to be reported, detailing benefits and
drawbacks of the approach.

1.5 RESEARCH DESIGN

This section describes the research design employed in this work. We split this investiga-
tion in three main parts: Background ; Proposal ; and Evaluation studies. Figure 1.1 shows
a diagram with these macro parts and an overview of the sub-activities, which we detail
next.
Background. The first part presents an overview of the basic concepts that guide

this thesis, such as Software Product Lines Engineering (SPLE), reengineering for SPL,
SBSE, and ST.
We first present an overview on SPLE, basic concepts, essential activities, and models

for adopting. Then, we provide an overview on reengineering processes to migrate systems
to SPL. Next, we discuss an overview of SBSE. Finally, we present an overview of the
state-of-the-art of the ST main aspects, steps, the AutoST process, terminology, and a
summary of some promising application of ST that already been tried. Such concepts
provide the foundations for devising our research questions and narrowing down the
possibilities to be included in this investigation.
Proposal. The second part comprises the proposal of the AutoST approach for prod-

uct line generation. As a means of better understanding our approach (Foundry), we
first discuss the main implications of SPL reengineering via AutoST. Next, we introduce
the idea of using Foundry for reuse, including a motivating example for the illustra-
tion of the potential of application of ST for generating SPL.Then, we detail each stage
of the Foundry approach, including all techniques used. Finally, we give an overview
of prodScalpel’s features and describe how it automates the process of reengineering
of existing systems into product lines using ST. For each feature, we describe the main
challenges solved by our automated solution.
Evaluation studies. The third part encompasses three studies. Firstly, a comparative

study, comparing our AutoST solution with existing reengineering practices and their
limitations. Secondly, an empirical evaluation conducted from two case studies where
we generate products by transplanting features from three real-world systems into two
product bases, used as baselines for the target product lines. Thirdly, we conduct an
experiment that reflects a real-world process of product line migration from existing
codebases. The goal of this experiment is to analyse the effectiveness and efficiency of our
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Figure 1.1: Schematic overview of the thesis structure.
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approach compared with the manual process of generating a product line from existing
systems, performed by SPL experts.

1.6 STATEMENT OF THE CONTRIBUTIONS

We propose that employing ST for generating product lines can be a viable and promising
research direction in the field of SPL reengineering. We outline the main contributions of
this work as an initial step towards exploring this research direction. They are listed in
the following:

1. Foundry, a novel SPL reengineering approach that leverages ST to define a new
way of software reusing to the SPL area in which existing codebases can provide
features to a product line without they have been built to be reused;

2. Foundry’s implementation for C in prodScalpel, a tool that transplants multi-
file organs and uses clone detection to prevent implanting redundant features;

3. A set of evidence on how the ST process (as realised in Foundry) evolves the
existing reengineering practices for extracting an SPL by addressing the gaps and
limitations of existing approaches; and

4. An evaluation of prodScalpel in two case studies that demonstrates Foundry’s
promise. We use prodScalpel to generate two product lines, and two new prod-
ucts, composed of features transplanted from three different real-world codebases.

5. An experimental evaluation where prodScalpel was able to migrate features on
average 4.8 faster than SPL experts performing the same task.

1.7 OUT OF SCOPE

It is rather important to define the scope of this thesis proposal. Given all the described
before, we consider as out of the scope the following topics:

• Test case suite: there are several studies discussing how to obtain the best coverage
for a test case suite [30, 31, 32]. We do not address this issue in our investigation
to reduce the scope. We assume that we already have the test cases for the systems
used on the running example and evaluated systems;

• Automatic variability analysis : our approach introduces a variability analysis stage
to discover variability and commonality in the donor systems with the potential to
be reused in a target product line. However, the automatic creation of a variability
model, such as feature models, to express the valid combinations of features is out
of the scope of this thesis proposal;

• Implementation of a new GP algorithm: our tool uses the same GP algorithm imple-
mented by Barr et al. and reported in [17] that is well-recognized by the community
to execute organ adaptation. Thus, we assume it is reasonably well developed and,
could be evolved to support the adaptation and reduction of multiple organs.
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1.8 ORGANIZATION OF THE THESIS

This PhD thesis is structured into six parts. Figure 1.1 shows a schematic overview of
the thesis structure. Apart from the Introduction part, the remainder can be outlined in
the following way:

Part II - Background. It presents the underlying concepts involving the key research
areas of this thesis, as introduced in the Section 1.5.

Chapter 2 presents the underlying concepts involving the key research areas of
this thesis proposal: SPLE and reengineering for SPL, with special focus on
the reengineering process;

Chapter 3 provides an overview of the state-of-the-art of the ST, including a
briefly outlines related work.

Part III - Automated reengineering of systems into SPL via ST. This part mo-
tivates and defines in detail how Foundry handles SPL reengineering from existing
systems.

Chapter 4 It introduces our proposed approach and tool by giving details on how
new products can be incrementally derived with the support of our tool.

Chapter 5 It gives an overview of prodScalpel’s features and describe how it
automates the process of reengineering of existing systems into product lines
using ST.

Part IV - Empirical studies. This part presents evaluation studies conducted to col-
lect evidence regarding the usefulness of ST as a strategy to generate product line
from transplanting of features originally implemented in the existing systems.

Chapter 6 discusses how multi-organ transplantation (as realised in Foundry)
can be used to automate existing SPL reengineering practices.

Chapter 7 presents two validation case studies, including a discussion on the re-
sults and the threats to validity.

Chapter 8 describes and discusses the results of an experiment to analyses the
effectiveness and efficiency of our approach compared with the manual process
reengineering of SPL performed by SPL experts.

Part V - Conclusion and Future Work. This part concludes this work, with a sum-
mary and the main outlook on future research.

Chapter 9 The last chapter presents the concluding remarks of this work and
describes a research agenda to continue exploring the application of ST for
automating the SPLE area.
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Chapter

2
MAIN CONCEPTS AND FOUNDATIONS ON SPL
AND REENGINEERING OF SYSTEMS INTO SPL

SPL defines a set of systems that share common features and artefacts to achieve high
productivity, market agility, quality, low time to market, and cost [19]. SPLE strives to
achieve systematic reuse of a managed set of features satisfying the needs of a particular
market segment [19]. Consequently, in comparison to single system engineering, SPLE
requires a considerable initial investment to establish a product line [33].
An alternative to reduce such upfront investment is to use existing systems as a base-

line for building an SPL [34, 4] by using an extractive approach [35] to SPLE adoption.
From those systems, similarities are identified, and features are reused based on a reengi-
neering process to obtain an SPL. This process allows software companies to design core
assets starting from existing systems artefacts and compose a product line. The overall
approach is based on real-world system artefacts individually developed over the years,
whose combinations in a product line result in a huge number of possible product config-
urations.
The goal of this chapter is to present the basic concepts in the context of this thesis

proposal. Since the topics of the sections are broadly encompassing SPLE and reengi-
neering of systems into SPL, along with this chapter, we provide background information
rather than introducing all the existing literature. The remainder of this chapter consists
of three main sections. Section 2.1 provides an overview of the basic concepts from
SPLE. Section 2.2 presents the main idea of the reengineering process, as a mainstream
strategy to deliver SPL. Moreover, it describes challenges and limitations to be overcome
within current reengineering practices of systems into SPL. Section 2.3 presents the
chapter summary.

2.1 SOFTWARE PRODUCT LINE ENGINEERING (SPLE)

The need for faster development of software and for introducing new products into the
market led to the concept of reuse of software assets from the existing systems [36].
The software reuse process involves the use of assets from existing software, finding the

15
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appropriate ones that are needed at present for reuse and integrating them with a new
one [37].
An efficient software reuse process facilitates the increase of productivity, reliability,

and the decrease in costs and implementation time [38]. However, these benefits are not
assured by the application of ad-hoc reuse approaches. These are generally opportunistic
and not systematic reuse. For this reason, SPL emerges as a systematic way to achieve
reuse [2]. It applies a strategy that plans the use of assets in multiple products rather
than ad-hoc approaches that reuse assets only if they happen to be suitable [39]. Its basic
idea is the reuse of systems functionalities or domains that can be used by a family of
systems with similar needs [40].

2.1.1 Software Product Line Essential Activities

SPLE exploits commonalities and manages variabilities among related products, in which
it is possible to establish a common platform on top of software assets that can be sys-
tematically reused and assembled into different products. It covers processes for building,
managing, and using SPL by predicting two main life cycles: core asset development and
product development [19]; or domain engineering and application engineering [2]. In this
thesis, we refer to the SPL phases as domain engineering and application engineering.
Figure 2.1 illustrates the product line engineering framework representing the domain
and application engineering phases and their development disciplines, as defined by Pohl
et al. [2].

• Domain engineering corresponds to the process of establishing a reusable and
customizable platform, by defining what will be shared among the products, as
common parts, as well as by defining the variation points expressed in the artefacts,
that will enable customizations. This activity is iterative and should consider the
creation of assets that are generic enough to fit different environments and domains.
During domain engineering, the common platform is designed and implemented. It
also involves the evolution of the assets in response to product feedback, new market
needs, and so on [19];

• Application engineering corresponds to the phase where components previously
developed are assembled to compose a product. This is the phase where variability
is realized so that artefacts customizations come into place. According to to [2], “the
main goal of application engineering is to derive a SPL application by reusing as
many domain artefacts as possible”. This is achieved by exploiting the commonality
and variability of the product line established in domain engineering.

In practice, domain engineering focuses on the creation and maintenance of reuse
repositories of functional areas, while application engineering makes use of those reposito-
ries to implement new products. The separation into domain engineering and application
engineering enables the distinction between the platform building process and specific-
product building. However, these processes must interact in a way that is beneficial to
both.
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Figure 2.1: The software product line engineering framework [2].

The basic insight of SPL is that most software systems are not new. Rather they are
variants of systems that have already been built. Software companies repeatedly create
similar systems in a given domain, with variations to meet different customer needs.
Instead of creating each new system variant from scratch, significant savings can be
achieved by reusing parts of previous systems to build new ones belongs to a common
domain [41]. This insight can be used to improve the quality and productivity of the
software development process [42].

2.1.2 Strategies for Adopting Software Product Line

The transition to SPLE can be conducted using three software reuse adoption strategies:
proactive, reactive, and extractive [35]. The proactive approach aims to develop a product
line in a top-down approach, starting with the analysis and design activities and then
implementing a complete set of common and varying source code, feature declarations,
and product definitions. The adoption of a proactive approach is often assumed as a
cost-saving strategy since it aims to initially implement a complete set of reusable assets,
but that corresponds to a heavyweight adoption due to the required and massive up-front
investment [19, 2].
By adopting a reactive approach, the organization incrementally grows software mass

customization production line when the demand arises for new systems or new require-
ments on existing ones [43]. It offers a quicker and less expensive transition into an SPL.
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In particular, the extractive approach illustrated in Figure 2.2 takes advantage of
existing software systems by extracting the common and varying source code into a
single production line. Such a scenario enables an organization to quickly adopt software
mass customization, and it is appropriate when an existing collection of systems can be
reused [35]. It makes the extractive approach the most common way to systematize the
software reuse with SPL by encompassing the reengineering of existing systems, leading
to a systematic reuse [4].

Figure 2.2: Extractive model of software mass customization [44].

The risks associated with possible out-of-date analysis and design artefacts inherent to
adopt the proactive and reactive models, they are worth to consider the existing systems
source code as a starting point to develop the production line in a reengineering process.
Besides these technical benefits, the reengineering of existing systems into an SPL allows
companies to preserve their investment and aggregate knowledge obtained during the
development of individual systems. The preference for this approach is justified since the
existing systems represent considerable company knowledge and investment [5].
It is important to observe that these approaches are not necessarily mutually exclusive.

A common scenario, for instance, is to bootstrap building a product line effort adopting
the extractive model and then move on to a reactive model to incrementally evolve the
production line over time [35].

2.2 REENGINEERING OF SYSTEMS INTO SPL

Reengineering is “the examination and alteration of a subject system to reconstitute it
in a new form and the subsequent implementation of the new form” [45]. Unlike reverse
engineering, which is concerned with understanding a system to create representations
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of it in another form or at a higher level of abstraction, reengineering is concerned with
restructuring/refactoring the systems.
In the SPLE, however, the reengineering of systems into SPL (or extractive SPL

reengineering) has focused on transforming a set of existing products into an SPL. For
instance, exploiting reengineering techniques for identifying and extracting software com-
ponents from existing systems with the aim of populating repositories of reusable mod-
ules [46].
Extractive SPL reengineering is an active research topic with real benefits in prac-

tice [7]. It allows software development companies to preserve their investment and aggre-
gate knowledge obtained during the development of their portfolio of systems individually
developed. Because of this, the extractive approach realized from reengineering process
has attracted interest from companies, with a considerable number of systems in produc-
tion [47], and researchers in the SPLE field [7].
Reengineering has been the subject of constant studies, such demonstrated by La-

guna et al. [48] and Fenske et al. [49] works. These works provide an overview of the
reengineering activity, answering questions about existing approaches, techniques, open
challenges, and suggesting a taxonomy for existing approaches. More recently, Assunção
et al. [7] conducted a systematic mapping to provide an overview of the current research
on reengineering of existing systems to SPLs, identify the community activity in regard-
ing of venues and frequency of publications in this field, and highlight trends and open
issues that could serve as references for future researches. Together, these works provide
a coarse-grained overview of the reengineering activity and were used as the main source
of information for our overview of extractive SPL reengineering.

2.2.1 Reengineering process

In the context of SPL reengineering process, there is not an established or widely ac-
cepted set of phases [7]. The most closely initiative for this is the systematic mapping
of reengineering legacy applications into SPL performed by Assunção et al. [7]. In gen-
eral, the main tasks associated with the phases of the reengineering process considered
by the approaches are: (i) to identify the features existing in a set of systems or map
features to their implementation, (ii) to analyse the available artefacts and information
to propose a possible SPL representation, and (iii) to perform the modification in the
artefacts to obtain the SPL. These phases are respectively called detection, analysis, and
transformation, recalling the terminology proposed in [50, 7], and structured as presented
in Figure 2.3.

• Detection: the first phase of the process, it is responsible by detection of variabil-
ities and commonalities among existing systems. Such as illustrated in Figure 2.3,
the variabilities and commonalities are represented in terms of features. Relevant
information is extracted from the input artefacts, e.g. source code, to understand
the existing structure, data flow, relationships, existing features, etc. Common sup-
port in this phase is given by feature location techniques, which aim at locating the
artefacts responsible for implementing the system functionalities [7].
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Figure 2.3: SPL reengineering process, based on [7].
The solid arrow represents the entire reengineering process, however, it is usually

composed by phases, shown by dashed arrows.

• Analysis: this phase is devoted to the analysis and organization of discovered
variability and commonality. In this phase, the variability models are created. Such
model expresses the valid combinations of features of an SPL generally represented
by using a feature model [51].

• Transformation: the last phase of the process, transformations are performed on
the considered artefacts (such as source code) aiming at enabling the systematic
reuse [7]. Artefacts that implement the features and the variability model are used to
create the SPL, using a variability mechanism [52] or considering design models [53].

2.2.2 Strategies to Perform the Reengineering

In SPL reengineering, a strategy is defined as a technique or method applicated to obtain
an SPL from existing systems. They can be grouped into five categories [7]:

• Expert-driven: is a strategy based on the expertise of specialists such as software
engineers, developers, software architects, stakeholders, etc;

• Static analysis: relies on following or analysing structural information of static
artefacts, in other words, without their execution [54]. Clustering, Graph-based,
Heuristics,Overlaps, Structural Similarity,Model Transformation,Dependency Anal-
ysis, Rule-based, Aspect Programming, Data Flow Analysis, Program Slicing, Propo-
sitional Logic, and Reflection Method are example of static analysis strategies;

• Dynamic analysis: when the approach makes use of tools to collect and analyse
information about the artefact’s execution, in general considering a low-level of
abstraction, such as source code [55]. Execution Tracing and Data Access Tracing
are examples of dynamic analysis strategies used;

• Information retrieval: this strategy leverages the fact that identifiers and com-
ments represent domain knowledge. Commonly this strategy considers the textual



2.2 REENGINEERING OF SYSTEMS INTO SPL 21

similarity [56]. Formal Concept Analysis, Latent Semantic Indexing, Natural Lan-
guage Processing Techniques, Vector Space Model, Word Frequency, Data Mining,
and Ontology are example of information retrieval strategies;

• Search-based: this strategy applies search-based algorithms from the optimization
field [21]. Some example of search-based strategies are Genetic Algorithm, Genetic
Programming, Non-dominated Genetic Algorithm II, Hill Climbing, and Random
Search;

Most of the existing solutions use only one type of strategy, with static analysis being
the category with the largest attention [7]. However, a complete solution for re-engineering
process may require the use of a hybrid approach [57], i.e., the use of a combination of
different strategies. For instance, dynamic analysis can be combined with static analysis
such as suggested by Eisnbarth et al. [58] and Frenzel et al. [59] or static analysis combined
with information retrieval [28].
Hybrid approaches can improve the results when compared with the application of

only one type of strategy [7]. The lack of approaches that propose a combination of
strategies is one of limitations of the SPL re-engineering literature handled by using our
ST technique. We discuss it with more details on the Chapter 6 of this thesis proposal.

2.2.3 Input and Output Artefacts

Different types of artefacts provided as input and produced as output by existing ap-
proaches which can be grouped into four categories:

• Requirement artefacts: this type of artefacts encompass documents containing
feature descriptions, customer requests, test sets generated, implementation and
operation aspects, etc.

• Domain Information: an example of this category is a high-level description of
systems in specific domain and domain analysis. Products description, user com-
ments, documentation of systems in a specific domain, and domain analysis are the
most common artefact used.

• Design models: design artefacts include models such as class diagrams, state ma-
chines, or entity-relationship database model. Class diagrams, state machines, and
entity-relationship database models are examples of design models artefacts.

• Source code: corresponds to the system implementation in a programming lan-
guage. Java, C, C++, and C# are the programming languages generally used.

Regaring the most common type of artefacts produced as output during the process
we can group them as following:

• Features discovered: are in general outputs of the detection and analysis phases.
Features identified or mined from artefacts, where they are not well-modularized
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or spread in multiple implementation units. When the features are known and well
defined, it is only necessary to obtain the mapping of features to the elements,
commonly in source code. When these features are disorganized or spread across
many code units, it is necessary to discover the features and its elements.

• Features mapping: are often generated as traceability links between known fea-
tures and artefacts related with them, for example, from requirements to source
code.

• Reports: are reports generated with information such as the variability among the
systems, impact on the reengineering to SPLs, and potential reuse in legacy system
variants.

• Source code refactored: is the most common output of the transformation phase.
After generating a feature-to-code traceability, the source-code elements associ-
ated to a feature can be: clustered into a Java package (in case of object-oriented
programming, e.g. [60]), migrated to an aspect (in aspect-oriented programming,
e.g. [43]), or reformulated as components assets (e.g. [61]). Source code refactored is
an output provided to allow a better organization of the features with the SPLE [7].

2.2.4 Research Gaps and Limitations of Reengineering Approaches

The number of solutions available for evolving existing software into a SPL can be really
extensive, encompassing generic re-engineering techniques as well as model and code
transformation approaches [7]. However, automated solutions fail in automate in the entire
process of re-engineering of existing variants to an SPL [7]. Consequently, the current
state of the practice in obtaining a product line from a codebase ends by requiring that
developers employ a collection of tools for different stages of the process whose outputs
require manual composition, which is translated into an up-front investment that needs
to be considered in the SPL adoption process [8, 7].
The transformation phase, which enables systematic reuse of artifacts, has received

limited attention in the context of SPLs as highlighted in previous research [7]. Fur-
thermore, researchers point out the labour-intensive task of manually annotating feature
entry points to adapt it to the SPL to [60] context. Rubin et al. [62, 63] have emphasized
the need for sophisticated techniques for refactoring model variants to generate SPLs.
Maâzoun et al. [64] have identified the use of semantics in refactoring SPLs as a potential
area for future work. Therefore, new refactoring techniques should be proposed.
Additionally, researchers report limitation in the existing approaches such as pro-

vide an automation and tool support, exploiting multiple sources of information for re-
engineering, feature management, implementing hybrid approaches, using refactoring,
and provide a more robust empirical evaluation [7].

2.3 CHAPTER SUMMARY

In this chapter, we presented an overview of the basic concepts in the context of this
thesis. We started by introducing SPLE, its essential activities and adoption models. We
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also presented SPL reengineering from existing system as a common strategy to obtain
an SPL.
Next chapter introduces SBSE and provides an overview on ST, the challenges to

automate the process and describes some promising application of ST that already been
tried, including a brief outline related work.





Chapter

3
AN OVERVIEW OF SOFTWARE TRANSPLANTATION

Clone-and-own methodology was identified by [65] as the most common reuse scenario
in practice. It is a reuse method where new variants of a software family are created by
copying and adapting an existing variant [65, 9]. Clone-and-own offers companies with a
considerable number of systems in production a simple way to reuse its software artefact.
In many cases, artefacts of an existing product are cloned and modified to fit the new
requirements. For instance, when there is a demand for a new product that has some
similar functionalities to an existing product, developers usually fork the new product
from another already-existing program and then adapt it to fit the new requirements
The primary reason for transferring code from a pre-existing source to their own

project is to use it as a base for the new code [66]. All of this transferring process
occurs by copying, modifying and pasting the necessary portions of code, being this the
most common reuse process in practice. However, the process of manually searching for
necessary and relevant code is tedious, stressful, and time-consuming [67]. Moreover, since
code modification is performed manually by the developer, unexpected and simple errors
may occur, such as omitting some variables [68].
The idea of a ST process was introduced by Harman as a new research direction in the

field of SBSE. It was defined as the process of adaptation of one system’s behaviour or
structure to incorporate a subset of the behaviour or structure of another [13]. From this
idea, initiatives to automated the process have emerged with different application possi-
bilities [14, 69, 17, 18, 15]. Nevertheless, ST has not been explored yet as an alternative
to SPLE.
The goal of this chapter is describing the basis for understanding our proposal of

application of ST to achieve SPL reengineering, as well as, the related work linking
reengineering for SPL, clone-and-own, SBSE, and ST. The remainder of it is organized
as follows. Section 3.1 provides a brief summary of SBSE with focus on its application
in code transplantation. Section 3.2 provides an overview of state-of-the-art in ST.
Section 3.3 presents the AutST idea, including the terminologies, main challenges and
techniques proposed to automated the code extraction and transformation process and
some promising applications of ST that already been tried. Section 3.4 brings a brief
outline of related work. Section 3.5 presents the chapter summary.

25
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3.1 SEARCH BASED SOFTWARE ENGINEERING (SBSE)

Software Engineering (SE) often considers problems related to finding a proper balance
between competing and potentially conflicting goals [70]. There is often a massive set of
choices, and finding suitable solutions can be hard. In scenarios like that, perfect solutions
are often either impossible or impractical, and the nature of the problems often makes
the definition of analytical algorithms problematic [71]. It is precisely these factors which
make search-based optimization techniques readily applicable.
SBSE emerged as a discipline that focuses on the application of search-based opti-

mization techniques to SE problems. It converts an SE problem into a computational
search problem that can be tackled with a metaheuristic [72]. This involves defining a
search space or a set of possible solutions. Such search-based techniques can provide solu-
tions to the complex problems where perfect solutions are either theoretically impossible
or practically infeasible using an automated approach [71].
In [13], Harman et al. explored the possibilities for new directions in research using

search-based techniques with a particular emphasis on the exciting possibility of automat-
ing ST process by using GI [14, 69, 17, 15] to transfer code among different codebases.
Following this idea, the initial research performed by Barr et al. [17] has achieved an
interesting outcome demonstrating that search-based techniques may be used to achieve
a automated ST process.

3.2 SOFTWARE TRANSPLANTATION

Different systems can share many common resources. In fact, it is quite common for
software developers to copy a specific feature’s code from one codebase and paste it
into another. They perform this task by extracting the desired code, modifying it and
manually inserting it in the new location. Kim et al. [66] observed in their study that
an average of 16 code fragments per hour is copied by one program developer and pasted
into another, showing that code cloning is a widely used mechanism.
During the development of a new product using existing code as a baseline, the devel-

opers need to find the code fragments they are looking for in existing code base; extract
them from existing products that will be reused; compose the extracted code fragments to
form the new environment; and adjust them, if needed, by adding for instance features/in-
teractions that did not yet exist in any existing codebase. In practice, these activities are
proposed in an ad-hoc and undisciplined manner, but the real problem is that these steps
are presently done manually and are errors prone.
The manual extraction of relevant code is also a time-consuming task that requires

detailed knowledge of existing codebase. Code can be easily missed or misidentified-
leading to extracted code fragments with missing or unnecessary implementation. What
makes the extraction task especially difficult is the identification of code fragments that
are responsible for interactions among features. The composition is another particular
and complex aspect in code reuse from existing products. It requires the merging of
all relevant code with a new location while remaining faithful to structure and feature
dependencies.



3.2 SOFTWARE TRANSPLANTATION 27

The process of reusing code structure can offer benefits in terms of avoiding the need
for new development. However, the tasks involved in searching, extracting, composing,
and adapting relevant code are known to be laborious, stressful, time-consuming, and
error-prone [67]. Nonetheless, if it were possible to automatically integrate desired fea-
tures from one program into another, specifically transferring the precise code segments
required to ensure the functionality of the target feature in the recipient program’s en-
vironment, a significant advancement would be achieved. In 2013, Harman et al. intro-
duced the concept of ST as a novel research direction within the field of Search-Based
Software Engineering SBSE [13]. ST was defined as the process of adapting the behavior
or structure of one system to incorporate a subset of the behavior or structure of another
system [13].
In their initial insight, Harman et al. [13] introduced several steps that could be

taken into consideration when developing a transplantation algorithm [13]. They called
these seven-steps by LATIIV process: Localise, Abstract, Target, Interface, Instantiate
and Verify

1. Localise: identify the location of organ (interesting behaviour to transplant) in donor
system. Over the years, many approaches have been proposed for feature identifi-
cation [46, 73, 74]. Extracting [75, 76, 77] of system’s component, a component of
a system, given the identification of a suitable feature was also proposed, through
work on slicing and dependence analysis [78, 79, 80, 81].

2. Abstract : create a transplantation template for feature, a template that reflects
feature in its behaviour but which does not contain specific components related
to the donor. Component-based software engineering [82] provides the conceptual
idea of a transplantation template for organ abstraction since a component is built
as a self-contained portion of code that addresses or provides a focused amount of
functionality. By definition, it should contain everything it needs to work properly
and developed independently from each other or the target system.

3. Target : find candidate locations that can host the transferred feature. In theory,
this step could be completely automatic, with a search-based algorithm trying out
many possible locations in the target system to host the transplant. In practice,
feasibility will likely require a combination of test cases and manual annotations for
the host system, akin to those used to localise the feature in the source system [13].

4. Interface: create an interface between the transplant and the host that can con-
tain a candidate transplant, then add it into the host and evaluate the candidate
transplant. During the modification process, genetic programming can be used to
search for bindings from the host’s variable in scope at the implantation point to
the organ’s parameters.

5. Insert : apply the created template from the previous step into the target location
in the host system. Given a destination location and the abstract template for the
feature, we want to graft the template into an existing system. Barr et al. [17]
suggest the use of annotation to define an insertion context in the host in a way
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that can be possible to find the host’s variables at the implantation point from it.
Thus, GP can be applied, using the donor’s test suite, adapt the organ to execution
environment at implantation point and may be inserted.

6. Validate: validate the transplanted candidate and its compatibility with other func-
tions in the host. Harman et al. [13] highlighted some kind of tests which the quality
of a transplant might be evaluated during the validation stage. Following this idea,
Barr et al. [17] suggested three validation steps using Regression tests, Argumented
regression tests (a manually augmented version of the host’s regression test suite)
and Acceptance tests.

7. Repeat : if the transplanted candidate does not perform effectively, or if it causes
adverse side-effects with other functions, then it will be rejected, and the previous
steps will be repeated to find a transplant that the host can tolerate. These steps will
identify the overall challenges faced when building a transplant algorithm; however,
not all approaches need include every one of these steps [13].

According to Harman et al. [13], not every approach to ST necessarily needs to follow
the LATIIVR process. Nevertheless, it is important to highlight the challenges that will be
encountered in localization, abstraction, targeting, interfacing, insertion, and validation
tasks, all of which are likely to be critical to any such approach.

3.3 AUTOMATED SOFTWARE TRANSPLANTATION PROCESS

The transplantation process can be perceived as a distinctive variant of the common
copy and paste practice. What sets this process apart is the precision in which the copied
code, referred to as the ”organ,” is specified. In traditional copy and paste actions, the
developer’s focus might not necessarily be on the exact functionalities of the system. In
such cases, the developer could merely select and transfer a few lines of code, which may
or may not encompass a complete function. However, in the context of transplantation,
the code being transplanted invariably encapsulates a precise functionality within a sys-
tem. This distinction underscores the meticulous nature of the transplantation process in
capturing and transferring specific system functionalities.
There have already been some attempts at the AutoST process; Petke et al. [14] were

the pioneers in transplanting code snippets from different versions of a system to enhance
its performance using genetic improvement [16]. A year later, Barr et al. [17] introduced
a theory, algorithm, and tool that could automatically transplant a feature from one
program to another successfully. This process meant automatically extracting a function
from the donor, modifying it, and inserting it into the host. Using their technique, the
programmer needs to identify the donor, an entry point in which the function of interest
exists, the host, equality (equating the performance of the function in the donor and the
host) and the process of adapting the acceptance testing in the donor function to the
transplanted function in the host.
Barr et al. [17] proposed a new concept, organ, which refers to all code associated with

a feature of interest, bringing a new idea for software reuse. Different from components
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that highlight a relationship between several classes, organs emphasize on the integrity of
a functionality. Organs do not have to be several classes. It can be some lines of code, a
function, or one class, as long as it implements a specific functionality independently [83].
Besides the organ concept, they introduced some other terminologies to be used in the
AutoST process.

3.3.1 Terminology

Some concepts in the ST area are borrowed from the field of transplantation medicine.
As in medicine, a human–a developer in this case–performs the donation operation of an
organ from a donor to a host. Thus, we have the three basic concepts of ST: donor, organ
and host. The Donor is the program containing a functionality of interest called Organ.
Donor donates the organ to a host program. To clarify the process it is important to
define more terminologies stated in it. Following the concept defined by Barr et al. [17],
in this thesis, we use the following terminology regarding code transplantation process.

• Transplantation - is the process whereby all code related to a feature of interest is
transferred from one system into another system. Transplantation process consists
of the extraction of an organ and one of its veins from a donor followed by their
implantation into a host.

• Vein - a vein is a feasible execution path from a program’s entry to an organ’s entry
point. It builds and initializes an execution environment that the organ expects [17].

• Organ - an organ represents a specific and useful feature that also considers all
existing dependencies required to an organ could implement a useful functionality,
for example, the features Find that locate a specific fragment of text in a text
editor.

• Donor - is the program containing a feature of interest called the organ. Donor
donates the organ to the Host program.

• Host - is the target program that needs the functionality from the donor program
and accepts it.

• Organ’s entry - is the entry point of code that implements a feature of interest
provided by the programmer.

• Organ’s insert point - is the target location(s) in the host where the feature has
to be implanted. It also is supplied by the programmer.

3.3.2 Challenges to Automate the Software Transplantation Process

Barr et al. [17] automated some tasks needed to move a portion of code from a donor to a
host system. The automation process exposed many challenges and difficulties associated
with the process, which some were partially solved by them. These challenges are spread
across the different stages of the process: in the preliminary stage, we need to define the
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fragment of code to be transplanted; in the intermediate stage, we have to reduce and
adapt the extracted code; and, in the final stage, we have to implant it into a non related
system. These challenges are mainly related to organ extraction and organ modification
activities.

• Dependency Analysis: Identifying and capturing all dependencies of the ex-
tracted code organ is crucial. It requires a thorough understanding of the inter-
dependencies between different code components, such as libraries, functions, and
variables. Failure to capture all dependencies accurately can result in broken func-
tionality or compatibility issues when integrating the code organ into the host sys-
tem.

• Granularity Selection: Determining the appropriate level of granularity for code
extraction poses a challenge. Choosing a granularity that is too coarse may result
in unnecessary code being extracted, leading to bloated or inefficient transplanted
code. On the other hand, selecting a granularity that is too fine-grained may increase
the complexity of integration and reduce the reusability of the extracted code.

• Preservation of Semantics: Ensuring that the semantics of the extracted code
organ are preserved during the transplantation process is a critical challenge. The
extracted code should retain its intended behavior and functionality even after
modifications or adaptations are made to incorporate it into the host system. Failure
to preserve semantics can lead to errors, bugs, or unintended consequences.

• Compatibility with Host Environment: Adapting the extracted code organ
to work seamlessly within the host environment poses another challenge. The host
system may have different libraries, frameworks, or architectural constraints that
require modifications to the extracted code. Ensuring compatibility while main-
taining the desired functionality of the transplanted code can be complex and
time-consuming. This is a challenging vision of transplantation because code from
one system is unlikely to even compile and correctly execute when it is re-located
into an unrelated foreign system at least without an extensive modification [17].
Some organs will be simply untransplantable because the two systems are just too
different [13]. For example, we cannot meaningfully transplant a video encoding
functionality into a text editor; they are simply incompatible “species” of software.

Acording to Harman et al. [13], even “intra-species”, transplants might be rejected,
perform poorly or cause side effects by the host does not provide an execution
environment that the organ expects. A transplant is rejected if the resulting host-
plus-transplant simply fails to compile. The transplant performs poorly if it fails
some of the tests which check the new desired functionality. It causes side effects if
some regression test fails.

• Interactions and Side Effects: Consideration of the interactions and side effects
of the transplanted code organ with the existing system is essential. The integration
of the code organ should not disrupt the behavior of other features or introduce
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conflicts. Analyzing and resolving potential interactions or side effects is necessary
to ensure the overall stability and functionality of the host system.

Effectively addressing these challenges during the organ extraction stage is crucial to
ensure the successful integration of the extracted code organ into the host system. Many
of these challenges can be effectively tackled using well-established approaches [13]. For
instance, in the code extraction process, the utilization of program slicing and feature
extraction techniques [84, 17] can aid in identifying and extracting specific features from
the donor code. Additionally, modifying and re-implementing the code into the host
system can be facilitated by leveraging advancements in the GP field [13]. By leveraging
these established approaches, we can enhance the efficiency and efficacy of the organ
extraction stage in automated ST.

3.3.3 Program Slicing

Program slicing is a source code analysis technique proposed by Mark Weiser [85] for
automatic program decomposition. By focusing on the selected aspects of semantics, pro-
gram slicing is capable of automatically identifying the set of program statements, named
the slice, which might directly or indirectly affect the values of the selected variables at
a program point of interest, called the slicing criterion [86].
Technically, a slice is an executable subset of program statements that preserves the

original behaviour of the program in relation to a subset of variables of interest and at a
given point in the program [87]. Program slicing uses dependence analysis that examines
the source code to trace the flow of control and data to determine the statements that
belong to the slice. The process of slicing deletes parts of the program that can be
determined to have no effect on the semantics of interest [86].
Slicing has many application areas [88]. Basically, any area of SE and development in

which it is helpful to extract subprograms based upon semantic criteria have a potential
of application of slicing [88]. Harman et al. [13] relate SBSE and program slicing with ap-
plications in many areas of software engineering, including comprehension, reuse, testing
and reverse engineering.
There has also been work on locating dependence structures in a program using slicing

that may be of interest to the reverse engineering [89]. In particular, there have work on
the ST field [17, 15] that suggest the combination program slicing and GP techniques
for code extraction and transformation. The process of slicing discards those parts of the
donor program that can be determined to have no effect upon the feature. For instance,
Barr et al. [17] use a new kind of GP, augmented by a form of dynamic observational
slicing [17], guided by Test suite observation [90, 91]. Thus, it is possible to obtain an
executable subset of program statements that preserves the original behaviour of the
feature in its donor program.

3.3.4 Genetic Programming (GP)

Base on the model of biological evolution, GP is an evolutionary computation technique
that allows the exploration of the space of computer programs to generate programs [92].
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Its application in the software engineering process represents a way to automate one of
its most expensive and time-consuming aspects, the code development. GP extends Ge-
netic algorithm [93], wherein the population comprises not fixed-length character strings
encoding candidate solutions, but rather actual computer programs that serve as the
candidate solutions to the problem when executed.
Technically, GP is a special evolutionary algorithm in which the individuals in the

population are computer programs [94]. Similar to other evolutionary algorithms, GP
defines a quality criterion, typically referred to as fitness, which guides the evolution of
a population of candidate solutions (individuals), following the fundamental principles of
Darwinian evolution [92].
Each individual (program) in the population is assigned a fitness value based on its

interaction with the environment. The program’s input values are compared against the
expected response values, with a higher proximity to the desired outcome indicating a
better program. The fitness function determines how much a program will be able to
solve the problem.
GP breeds the solutions to problems using an iterative process involving the proba-

bilistic selection of the fittest solutions and their variation by means of a set of genetic
operation, usually selection, crossover and mutation.

• Selection: corresponds to the asexual reproduction process, which selects an in-
dividual according to his aptitude and copies him to the new generation without
modification;

• Crossing: corresponds to the process of sexual reproduction. Two programs are
selected and recombined to generate two other programs based on their fitness
values. A random crossing point is chosen in each parent program, and the agstract
trees below these points are exchanged;

• Mutation: corresponds to the process of generation of one new offspring program
by randomly changing a randomly chosen part of one selected program [95]. The
mutation process begins by selecting a point at random within the tree. This point
can be internal (function) or external (terminal). Then the selected point and the
one below it are removed, and a randomly generated subtree is inserted at this
point.

These genetic operations, performed iteratively, drive the evolution of solutions to
problems in GP. The fittest solutions are selectively preserved and combined through
crossover, while occasional random changes are introduced through mutation to explore
new areas of the solution space. By leveraging these genetic operations, GP enables
the generation of diverse and potentially superior computer programs to tackle complex
problems in software engineering. Figure 3.1 illustrates the GP process.
Initially, an initial population of randomly configured individuals is created. Then

a sequence of iterations then starts with the evaluation of the objective functions on
the individuals in the population. Based on their results, a relative fitness is assigned
to each solution candidate in the population. These fitness values are the criteria on
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Figure 3.1: GP process.

which selection algorithms operate to pick the most promising individuals for further
investigation while discarding the less successful ones. The solution candidates which
managed to enter the so-called mating are then reproduced, i. e., combined via crossover
or slightly changed by mutation operations. After this is done, the cycle starts again in
the next generation. Then, the programs are generated through continuous improvement
of an initially random population of programs [92]. Thus, generation by generation GP
iteratively transforms populations of programs into other one. The execution of the GP
algorithm usually ends when a criterion is satisfied. The most common is to limit the
maximum number of generations or to run until a satisfactory solution is found.
Since its idealization, GP has been attracting the interest of a lot of researchers around

the globe. The recent advances in Genetic Improvement (GI) field have been moving SBSE
researchers to explore new directions in research using GP to improve existing programs
rather than evolving them from scratch. Its versatility of use makes with the changes a
constant thing in this research area, as investigators discover new ways of doing things
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using GP [95]. One particular application was suggested by Harman et al. [13]. Where they
proposed the use of GP to achieve automated or semi-automated software transplants by
analyzing and combining all valid statements and variables of the desired functionality
from the donor into a host.

3.3.5 Using Program Slicing and GP Techniques for Automating ST Process

As discussed in Section ??, two of the most challenging aspects of automating the AutoST
process are extracting an organ and adapting its behavior or structure to incorporate and
bind a subset of the behavior or structure of another [17]. Barr et al. [17] developed a
tool for software transplanting called µScalpel that implements genetic programming,
extended by program slicing. Together, the program slicing and GP techniques, as imple-
mented in µScalpel, make the automatic transfer of functionality between two unrelated
systems possible.
In order to transplant code from a donor program to a different host, the tool captures

the code upon which the chosen functionality depends on the donor using program slic-
ing [17]. The extraction process (as implemented by Barr et al. [17]) is closer to dynamic
slicing [96], but it is guided by Test suite observation [90, 91], rather than dependence
analysis, and with only a limited form of Control dependence [91]. Their slices also only
capture the particular features of interest and not the entire computation on the slicing
criterion, thereby resembling ‘barrier’ slicing [97] and feature extraction.
To modify the organ, µScalpel re-constructs the extracted portion of code that im-

plements the functionality of interest to transplant and modify it to execute in the host
program. A set of tests are used to guide the search for feature code modifications required
to make it fully executable (and pass all test cases) when deployed in the host. During the
search process, GP selects a type compatible binding from the host’s variables in scope at
the implantation point to each of the organ’s parameters. Then, it selects one statement
from the organ, including its vein, and add it to the individual. GP also records which
statements have been selected and favours statements that have not yet been selected. At
the end of the process, the organ is implanted into the host environment that is tested.
As a quite recent field of study, much more work is required to develop the idea of

ST, but we argue in this thesis that it may be a valuable application for SPLE field.
The capability to automatically extract from an existing system the code implementing
a feature and transform it to execute in a distinct of its original code base environment
has an enormous value to developers of SPL [79], no explored yet.
As an initial step in this direction, we introduce Foundry, the first ST approach for

SPL re-engineering. Foundry is independent of the programming language, and supports
SPL’s domain engineering and application engineering [19] processes at the code level.
Thus, it is possible to generate a product line from the migration of features belong to
existing systems. We realise Foundry in prodScalpel, a tool that transplants multiple
organs from donor systems into an emergent product line for codebases written in C.
Our solution exploits Program slicing [20], GP [21], SPL reengineering [45], and Clone
analysis [65] techniques for identifying, extracting, transforming and implanting multiple
organs’ implementations from existing codebases with the aim of generating both product
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line and product variants. More details on how Foundry and prodScalpel automates
process of reengineering of existing systems into SPL are provided in Sections 4 and 5.

3.3.6 Software Transplantation Experiences

ST is an emerging research area with few research and empirical studies concerning the
transplantation process and its practical application. Being a relatively new field, the
exploration of ST presents opportunities for novel applications to emerge. By conducting
rigorous and effective empirical studies, researchers can attain consistent and plausible
conclusions, thereby facilitating improvements and guiding future research directions.
This iterative process of empirical investigation not only enhances our understanding
of the transplantation process but also uncovers potential avenues for innovation and
advancement in ST [98].
Although it is a relatively new field, it is possible to highlight some promising appli-

cations of ST that have already been tried:

Code Transplants to Specialise a C++ Program to a Problem Class :
Petke et al. [14] were the first one to implement and evaluate the AutoST process.
They did so by transplanting a code between two versions of the same system (Min-
iSAT). Their goal was to improve the execution time for a particular task (Com-
binatorial Interaction Testing). The results showed that their approach achieved
an improvement of 17% and proved faster than the versions written by human
experts [14].

Using SBSE to grow and graft entirely new functionality into a real-
world system : In 2014, Harman et al. [69] proposed a new approach called ”grow
and graft”to GI, which helped transplant new features into an existing system.
Two steps are required: grow and graft. In the first step, a new feature is grown in
isolation using GP and guidance from the developer. Then, at the grafting stage, the
created feature is inserted into the host system. Using this approach, the authors
successfully grew a linguistic translation feature ”Babel Fish” and inserted it into
the Pidgin instant messaging system [69].

Automated Software Transplantation : Recently, Barr et al. [17] introduced a
theory, algorithm, and tool that could automatically transplant a feature from one
system into another entirely unrelated system. This process meant automatically
extracting a function from the donor, modifying it, and inserting it into the host.
The algorithm they built was implemented to extract the organ and insert it into
the host. Barr et al. conducted a successful case study in which they extracted a
function for supporting H.264 media format from x264 encoder into a VLC media
player [17].

Genetic Improvement and Code Transplantation for Software Special-
ising : In the domain of software specialisation, Petke et al. [15] demonstrated the
application of genetic improvement techniques for automated program specialisa-
tion. Specifically, they employed genetic improvement to evolve optimized versions
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of a C++ program called MiniSAT, a Boolean satisfiability solver, as well as Im-
ageMagick, an image processing tool. They utilized code derived from Graphics-
Magick, an alternative image processing tool that originated from a fork of Im-
ageMagick. By leveraging genetic improvement, the authors successfully achieved
specialisation of the aforementioned programs for three distinct applications, each
possessing unique characteristics. This work showcases the potential of combining
GI with code transplantation techniques to tailor software towards specific use cases
and optimize its performance.

CodeCarbonCopy : Another tool, CodeCarbonCopy (CCC), was proposed by Ste-
lios Sidiroglou-Douskos et al. [18], which automatically transfers code from a donor
to a host codebase by utilizing static analysis to identify and eliminate irrelevant
functionalities that are not pertinent to the host system. They evaluated CCC on
eight transfers between six programs. Their results show that CCC can successfully
transfer donor functionality into recipient programs.

3.4 RELATED WORK

We position our work within the existing body of knowledge in areas of re-engineering of
systems into SPL, clone-and-own, variability in SPL and ST.

3.4.1 Re-engineering of Software Systems into SPL

Diverse academic proposals and industrial experience report addressing re-engineering of
legacy systems into SPL are present in the literature [7]. However, this number decreases
considerably when we are interested in proposals that automate the lifecycle of the re-
engineering process [99].
Martinez et al. [27] introduced But4Reuse, a generic and extensible open source tool

to facilitate extractive SPL adoption. But4Reuse is a tool that aims to extract SPLs from
legacy systems by identifying a set of reusable assets and representing them in a modular
way. The tool uses a variety of program analysis techniques, including clone detection
and feature location to identify commonalities and variabilities in the code. Once the
SPL is extracted, But4Reuse generates a set of variability models, which can be used to
configure the SPL for different product variants.
In contrast, Foundry does not assume an existing set of product variants. SPL can

be created from a single codebase, and only requires feature entry point annotation, and
a set of tests. The needed code is automatically extracted using slicing, and modified to
run in the given product base via automated over-organ adaptation.
IsiSPL [100] is a reactive approach [44] to SPL adoption. IsiSPL automates the inte-

gration of new products into an existing SPL and thus generation of a new SPL with the
new features. In particular, whenever a new product is added, a list of all features needs
to be provided. IsiSPL then analyses SPL to only insert new features, annotating them
with conditional directives. However, with a large number of products inserted over time,
the list of conditional directives will grow, hindering code comprehension, maintenance,
and ease of derivation of new products.
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In Foundry approach, the incorporation of directives for variability management
is not obligatory. Developers have the flexibility to automatically introduce conditional
directives within the evolved product line as they see fit. This flexibility allows them
to generate new products without the requirement of including preprocessor directives
in the product line. Instead, they can achieve this by transplanting organs from the
transplantation platform, affording them the freedom to introduce variability without
the explicit need for preprocessor directives. This approach grants developers greater
flexibility in customizing and expanding the product line while maintaining the overall
structure and integrity of the system.

3.4.2 Clone-and-own

Foundry can be exploited as an automated alternative to clone-and-own, where, in-
stead of creating a product line, products are cloned and amended, based on demand.
Although there exists automated support for feature detection using code clone detection,
its adaptation for reuse still requires manual work [101, 102].
Fischer et al. [9], for instance, present ECCO to enhance clone-and-own. The tool

finds the proper software artifacts to reuse and then provides guidance during manual
adaptation phase, by hinting which software artifacts may need to be migrated and
adapted. Moreover, ECCO requires that the features’ source code must be extracted
from the same family of products, which limits its ability to reuse assets. In contrast,
Foundry stores over-organs that can be automatically adapted to different product
bases. These do not need to come from the same family of products as the product
base. Once extracted, features implemented by stored over-organs can be adapted, and
implanted into a product base in a fully automated way.

3.4.3 Variability in SPL

The capacity of providing variability in a software development process is a key aspect of
modern software development, enabling software products to be customized and adapted
to meet the needs and requirements of different stakeholders.
Several work have already identified the frequent use of the variability mechanisms,

like preprocessor directives [103] and feature flags [104, 105], as strategies for allowing the
inclusion or exclusion of specific code blocks or features in the product line at compile time
or runtime. Both are annotation-based implementation techniques for SPL require explicit
annotations often scattered across multiple code units (e.g., preprocessor annotations such
as #IFDEFs) [106]. These annotations establish a mapping of code portions to features
defined in a variability model. This mapping serves as input to configurator tools, which
then uses the information to select and configure the appropriate features for a given
software product.
Despite its error-proneness and low abstraction level, the preprocessor directives are

still widely used in present-day software projects to implement variability, maintain,
evolve, reuse, or re-engineer a software system [104]. Liebig et al. [103] present a study
of 40 SPL that use preprocessor-based variability mechanisms. The study analyzes the
variability mechanisms used in the product lines and the impact of these mechanisms on
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the codebase, in terms of code size, complexity, and maintainability. Kästner et al. [107]
also discussed the concept of variability based on preprocessor directives in SPLs and
how it affects the granularity of features. They present a case study of the Linux kernel
to illustrate how the different levels of granularity in feature implementation can affect
product line evolution and maintenance.
Other authors, such as, Jezequel et al. [108] present a case study of how feature models

and feature toggles can be used in practice to manage variability in software systems.
The authors describe how they used feature models to capture the commonalities and
variabilities of a SPL and then translated them into feature toggles that could be used
to enable or disable specific features at runtime.
Although useful, these traditional variability mechanisms have limitations [109, 103].

Preprocessor directives can lead to code bloat and reduced maintainability, while feature
flags can add complexity and overhead to the codebase. Rahman et al. [22] analyzed
feature flag usage in the open-source code base behind Google Chrome, finding that
feature flags are heavily used but often long-lived, resulting in additional maintenance
and technical debt. Meinicke et al. [105] also discovered that despite the temporary nature
of feature toggles and developers’ initial intention to remove them, they tend to remain
in the codebase unless compelled by policy or technical measures.
Particularity, building an SPL, where the number of options can grow considerably

[110, 111], the use of feature flags and/or preprocessor directives can lead to a large
codebase in the emergent product line [105]. Foundry can be an interesting alternative
to those traditional variability techniques. In contrast to the existing approaches where
lots of annotations that are permanently added and their number increases over time,
our solution requires only an annotation of the feature entry point and its insertion
point in the product base. Thus, Foundry’s approach has the potential to reduce code
complexity and increased readability, as such any extra annotations are not required.
Furthermore, Foundry keeps all reusable features of a product line (so-called organs)
functional and physically separated, integrating them into the product base only when
required for composing a new product.
Overall, ST technique can potentially offer several advantages over the use of tradi-

tional feature toggles, including simplified maintenance, reduced code complexity, and
reduced risk of conflicts. Furthermore, it can be used in conjunction with existing vari-
ability mechanisms, such as preprocessor directives and feature flags, allowing developers
to take advantage of the benefits of both approaches such as the possibility of enabling
or disabling organs at runtime or compile-time.

3.4.4 Software Transplantation

Petke et al. [14, 15] were the first to transplant code snippets from various versions of
the same system to improve its performance, using genetic improvement [16]. One year
later, Barr et al. successfully transplanted a feature from one program into another [17].
Stelios Sidiroglou-Douskos et al. [18] proposed another tool, CodeCarbonCopy (CCC),

which can also transplant code automatically. CCC is a code-transferring tool from a
donor into a host codebase. It implements a static analysis that identifies and removes
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irrelevant functionalists that are irrelevant to the host system. It has performed well in
eight code transfers across six applications. However, the code redundancy problem still
persists. CCC is thus unable to handle multiple feature transplantation. Foundry on other
hand, addresses this significant problem by exploiting code clone detection. Additionally,
CCC inherits the limitations of its static analysis technique [112] to identify the feature
code. It typically only looks at the code in isolation and does not consider the broader
context in which the code is used, such as external dependencies or interactions with
other features [112, 113].
Liu et al. [114] introduced a method to transplant code from open source software.

The validation results indicated that their method can substantially reduce the workload
of programmers and is applicable to real-world open-source software. However their idea
is also based on program slicing, it does not support the transplant of multiple organs
to re-engineering of systems into SPL. Furthermore, they still not provide any tool that
support their method.
In contract to those work, we are the first one to use automated ST to automate SPL

engineering tasks. Our approach and tool can transplant multiple organs to compose an
SPL from existing donor systems. In the process, we have solved several issues, previously
not considered in the ST literature, such as code redundancy, multi-file organ transplanta-
tion, organ dependence and duplication. Furthermore, we provide a systematic approach,
independent of the programming language that supports SPL’s domain engineering and
application engineering processes at the code level.

3.5 CHAPTER SUMMARY

In this chapter, we presented an overview of the main areas in context of this thesis. We
started by summarizing SBSE as an emergent discipline that focuses on the application
of search-based optimization techniques to SE problems. Then, we present ST idea, some
steps, the main terminologies, the challenges to automated the process and discussed some
promising application of ST that already been tried. Moreover, we presented research that
address some related work in the areas of re-engineering of systems into SPL, clone-and-
own, variability in SPL and ST.
Next chapter introduces Foundry approach as realized by prodScalpel. We give

details on how each stage is performed, the required inputs, and outputs produced.
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Chapter

4
SOFTWARE TRANSPLANTATION APPROACH FOR

SPLE

The migration from legacy code to an SPL is a time-consuming process that still requires
a significant amount of expert manual effort, which hinders the broader adoption of
SPLE[115]. The goal of this chapter is to introduce Foundry, an ST approach for the SPL
reengineering process. It optimizes this process by automatically transforming existing
systems into a product line. Foundry is language-independent and supports the domain
engineering and application engineering processes of SPLs[19] at the code level.
The remainder of this chapter is organized, as follows. Section 4.1 provides a moti-

vation example. Section 4.3 presents the main concept of Foundry. In Section 4.4,
we introduce Foundry approach, giving details on how each stage in domain engineer-
ing and application engineering [19] processes is performed. Section 4.5 concludes the
chapter.

4.1 FOUNDRY FOR SOFTWARE REUSE

We have idealized Foundry as approach to guide the process of generating individual
product variants or SPLs. By using it, software companies could opt for an initial strategy
of generating variants of their products and then, based on the market demand, towards
a product line adoption. That way, new products might be assembled from other already
existing software only at the moment that there exists a demand for them, reducing the
up-front investment.
In the first scenario, product variants generation, features are transplanted and merged

into a product base on which the target product variant is assembled to compose an
individual product. As a result, faster time is expected in terms of time to market of
product variants generated, but the flexibility of the derived product decreases. This
strategy can help software development companies to balance the initial investment and
required variability. One practical example is to transplant only the features that are
required for the new variant. Afterwards, those features can be used as a base for a
product line that is incrementally expanded also using Foundry. Thus, a company can

43
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estimate the demand and cost for every feature separately and decide which are suitable
for composing a product line.
In the second scenario, the application of Foundry can be used to compose a product

line through the extraction and integration of organs. In this case, existing donor sys-
tems contribute over-organs that are extracted and maintained within a transplantation
platform, which acts as a repository of transplantation assets. Additionally, existing sys-
tems serve as product bases where organs are automatically integrated, resulting in the
derivation of new product variations. This approach enables the creation and evolution
of a product line by leveraging existing codebases.

4.2 MOTIVATING EXAMPLE

The open-source GNOME project1 encompasses a large portfolio of individual programs
that evolve as independently as possible from the rest. These programs share features,
but because they are separately developed, their constituent features cannot be easily
reused across its portfolio to provide mass customization, at least without much manual
effort. The combination of mass customization and a common platform, principles of
SPLE [2], would allows to GNOME team reuses a common base of technology and, at
the same time, to bring out products tailored individual customers. Without a common
platform and a software development process base on mass customisation, it may be more
difficult to the GNOME project provides customized products and effectively manage the
commonality and variability of its features.
The GNOME project is a natural candidate for SPL, but the significant re-engineering

investment of time and resources have prevented it from adopting SPL. Foundry is trans-
formative in this case because it can be used to reduce this cost. By using prodScalpel
for automated support, the GNOME team can iteratively and incrementally reengineer
the codebases of GNOME’s application portfolio for SPL.
Suppose project collaborators want to build a product line in the domain of text

editors. This product line would allow GNOME to produce text editors that augment its
current text editor, GEdit2, with additional features. Since they have decided to augment
Gedit, GNOME team would select it as the product base, the shared substrate of a
product line that, for Foundry, serves the host for transplanted features. Assume that
the GNOME team targets the following three features (1) side-panel, (2) split pane,
and (3) presentation. They then identify two donors from which to transplant these
features: NEdit3, a multi-purpose text editor that is not part of the GNOME portfolio,
and Evince4, a document viewer for multiple document formats that is part of GNOME,
not an editor.
Once defined all possible donors and a host, the GNOME engineers can start the

process. In the donors, they need to demarcate all feature entry points into transplant;
a single annotation is sufficient for prodScalpel to extract a feature. To prepare the

1https://wiki.gnome.org/Projects
2https://wiki.gnome.org/Apps/Gedit
3https://sourceforge.net/projects/nedit/
4https://wiki.gnome.org/Apps/Evince
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host, GNOME engineers use prodScalpel to extract a product base from GEdit by
removing all features not shared across all products within the built product line.
To demarcate the inserting point in the product base, the engineers must annotate it to

indicate the implantation point for each target feature, or “organ” using transplantation
nomenclature. GNOME engineers then run prodScalpel that automatically extracts
all of the specified feature’s source code and its dependencies, or “over-organ” using
transplantation nomenclature.
Section 4.2 illustrates all transplantation iterations performed to generate a new

product. It shows a new text editor derived from the transplant of features from dif-
ferent donors and using GEdit as a product base. Using feature models [51] to represent
each donor system and the product base evolution, prodScalpel first transplants the
side-panel feature, extracted from GEdit itself. This transplantation demonstrates that
prodScalpel can transplant features into a product base that comes from the same
codebase. Next, prodScalpel transplants the split pane feature from NEdit. It shows
how prodScalpel manages to transplant features from distinct codebases, which is
not possible without manual effort using the current state-of-art to SPL reengineering.
Finally, prodScalpel transplants the presentation feature from GNOME’s Evince
renderer.

Figure 4.1: Product derivation process using Foundry approach.
prodScalpel performs three sequential feature transplants into the GEdit’s product
base, resulting in a new text editor after three iterations of organ transplantation. The

gray boxes represent the features selected for transplantation.

Foundry facilitates transplanting features from any program into a product line,
opening the door to large scale feature reuse. Open-source projects, like GNOME, are an
especially promising source of code for Foundry, so long as the donors and target hosts
share compatible licenses.

4.3 THE FOUNDRY MAIN CONCEPT

In our idea of SPLE via ST, a feature in the code level is implemented by an over-organ
that implements a functional feature or attribute of a software product. For example, an
organ can be a specific functionality or a user interface element.
Based on ST idea, Foundry treats product base and over-organs (representing fea-

tures) as product line assets. A product base is a host that contains all features that
will be shared among the products. It is adapted from an existing system which already
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provides a set of solutions (features) so close to the target products that it can be used
as a baseline for the assembly of products. For example, a text editing program could
provide a baseline for new programs for text translation, presentation or rendering, since
they could have a considerable number of common features between them. The idea is to
take simultaneous advantage of commonality to reduce effort to maintaining the product
line and creating new products by transplanting only specific features on demand.
An over-organ, in turn, is a completely functional and reusable portion of code ex-

tracted from a donor system that conservatively over-approximates the target organ [17].
An over-organ can be specialized to became an organ that preserves the original behavior
of the feature in a different host codebase [17].
Conceptually, in Foundry, while the product base provides commonalities (i.e., com-

mon features) to the target product line, the variability (i.e., variant features) are provided
by the organs transplantation process, as illustrated in 4.2. This idea opens new ways
for SPLE area by automated construction of different products by transplanting multiple
organs into a product base.

Figure 4.2: An overview of how new products are derived from a product line based on
ST.

These concepts highlight how FOUNDRY leverages ST to facilitate the automated
construction of SPL, providing both commonalities and variabilities through the trans-
plantation process.

4.4 FOUNDRY

The Foundry approach is a novel method for reengineering systems into SPL based
on the principles of Software Transplantation (ST). It aims to automate and streamline
the process of transforming existing systems into SPLs, allowing for greater variability
and customization while minimizing the effort and complexity typically associated with
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traditional reengineering approaches.
Foundry is an approach independent of the programming language. In this way, it

can be applied to a wide range of programming languages, making it adaptable to various
software development contexts. Foundry offers two ways of creating products through
transplantation. The first approach involves using a pre-established transplantation plat-
form. The second approach allows for the direct extraction and transplantation of an
organ from a donor system into the product base, even if the corresponding over-organ is
not present in the transplantation platform. These two approaches can also be combined
to create specialized products.
Figure 4.3 provides an overview Foundry’s workflow. The approach provides support

to SPL’s domain engineering and application engineering [19] processes at the code level.
By supporting both domain engineering and application engineering processes at the code
level, FOUNDRY offers benefits throughout the SPL lifecycle. Here’s a breakdown of each
stage defined by the approach, detailing some challenges to be faced by an automated
solution.

Figure 4.3: Foundry lifecycle.
In the domain engineering phase, four over-organs (A, D, G, L) are extracted from three
donor systems and kept in the transplantation platform, with product base consisting of
2 features (P and Q) shared across all products (P and Q). In the application engineering
phase, a new product is derived from the product line after two ST iterations (organs G

and L).

4.4.1 Domain Engineering

In SPL’s lifecycle the domain engineering corresponds to the process of establishing a
reusable platform of core assets [19]. The process defines what will be shared among
the products derived from it, i.e., commonalities. It also specifies the possible variations
expressed as artefacts, that will enable the customization of product line applications,
i.e., products.
In Foundry, domain engineering refers to the process of establishing a product line

composed of a product base and a set of reusable over-organs. This process involves the ex-
traction and maintenance a set of over-organs, including the capture and management of
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commonalities and variabilities across the product line. Foundry provides a mechanism
to extract these over-organs into a transplantation platform, facilitating the automated
integration of shared functionalities and ensuring the consolidation and maintenance of
common aspects within the SPL. The transplantation platform plays an important role in
structuring the product line, bringing together the product base and reusable over-organs
to establish a foundation for creating specialized products.
In analogy to medical procedures for transplantation, Foundry encompasses two

stages preoperative and postoperative. The preoperative stage involves preparatory tasks
for both the donor and host systems in anticipation of the transplantation process, while
the postoperative stage focuses on evaluating the success of the transplantation procedure.
For a detailed exploration of the postoperative stage, please refer to Section 4.4.2.4,
specifically focused on the evaluation and assessment of the transplantation outcome.
Specifically, the preoperative stage encompasses essential pre-transplantation activi-

ties, including variability analysis, organ’s test suite establishment, and preparation of both
the donor and host systems . These tasks are integral to ensuring the smooth execution
and effectiveness of the transplantation process. The variability analysis process assists in
identifying and managing the variabilities inherent in the donor organs, contributing to
the customization and adaptation of features within the product line. The establishment
of the organ’s test suite for each organ make possible the automated adaptation of the
organ to different product bases environment.

4.4.1.1 Variability Analysis. The preoperative stage starts with a variability anal-
ysis process to identify and analyze the commonalities and variabilities among a set of
donor systems with potential to provide features to the product line. The goal of this
analysis is to discover features in existing systems that can be used to create a product
line with multiple variants extract from existing codebase. This process involves creating
a variability model that expresses the valid combinations of features that can be extracted
from donor systems. By creating a variability model, SPL engineers can better under-
stand the relationships between features and create a more efficient and effective software
development process.
The variability model can be represented using a feature model [51] that is a graph-

ical representation or formal structure that captures the relationships and dependencies
between features in an SPL, such as mandatory relationships, exclusive or inclusive re-
lationships, and cross-tree constraints. It typically consists of a tree-like structure where
features are organized based on their relationships .
Foundry augments the traditional feature model representation to incorporate the

input required for ST process. Thus, each over-organ representation in the feature model
is annotated with its corresponding entry point in the donor codebase or an organ’s
entry point [17], considering the code level. An organ’s entry point is a function in the
donor system that belongs to the organ, defines an execution environment expected for
its initialization, and provides access to the organ’s test suite.
In order to create a feature model, SPL engineers need to identify the common and

variable features across the donor systems. This can be done by analyzing the source code,
documentation, and user requirements of the donor systems. Once the features have been
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identified, they can be organized in the feature model.
In Foundry, the common features are represented in a feature model as mandatory

features that are shared across all product variants. These kind of features can be im-
plemented by one or more features present into the product base or incorporated into it
from the transplantation process. Variable features, on the other hand, are represented as
alternative or optional features implemented by one or more over-organs into the donor
systems that introduce variability among different product variants.
Determining the organ’s entry point requires the SPL engineer to provide the name of

the function implemented in the donor codebase. SPL engineers can use existing search
tools, ranging from basic tools like grep5 to advanced information-retrieval mechanisms
like SNIFF [116], FLAT3 [117], and Portfolio [118], as well as configuration analysis
tools [119], to aid in finding the appropriate function. Even tools such as Doxygen [120]
for generating source code documentation can be helpful.
We can, in the future, improve our approach with Dynamic Analysis technique [55]

specifically focused on identifying the entry point of features in software codebases. This
technique could be integrated with our automated solution and approach workflows to
provide SPL engineers with a more efficient and automated way to identify and analyze
feature entry points. Additionally, the technique could be extended to support the iden-
tification of interactions between features, which could further improve the efficiency of
ST process.

4.4.1.2 Donor Preparation. The organ in the donor code base can contain code
portions that will never be used in the target products. For example, codebases written
in C, in general, have code fragments guarded by #ifdef C-preprocessor directives [23],
commonly used to control code toggle or extensions related to features. Although useful
for the donor program, such code, if transplanted as part of the target organ, will generate
dead code [52] that will never be executed in any transplanted product.
Previous work [14, 17, 15, 18] with focus on transplantation of a single organ did not

concern donor clean-up. However, even when transplanting a single organ, dead code, if
not removed apriori, can lead to unnecessary bloat and lower efficiency of the over-organ
adaptation process (see Section 4.4.2.2).
The donor preparation task in the preoperative process consists of cleaning up the

donor codebases to remove any code that is not needed in the target product line. In
Foundry, the donor clean-up can be performed in a manual or automated way, since
the process maintains the source code structure of the program needs to be preserved
(indentation, spacing, number formats, etc.), to prevent future bugs and maintain the
organ’s long-term viability post-extraction.
One way to perform donor preparation is to use a combination of automated tools and

manual inspection to identify and remove potential dead code from the donor codebase.
Automated tools, such as static and dynamic code analysis tools, can be used to identify
potential dead code in the donor codebase. These tools can analyze the code and identify
fragments that are never executed or that are unreachable.

5https://www.geeksforgeeks.org/grep-command-in-unixlinux/
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The results of the analysis can be presented to the SPL engineer, who can then
manually inspect the code to confirm whether it is a dead code or not. An inspection
empowers the SPL engineer to validate the results produced by automated tools and
identify any portion of code that may not be necessary for the target products. During
the manual inspection process, it is of utmost importance for the SPL engineer to exercise
caution and preserve the original source code structure.
Our automated solution (prodScalpel) provides support to the donor preparation

process by using its Reconfigurator and a textual list of preprocessor directives provided by
the user. It avoids these collateral effects by cleaning up unused directives and associated
dead codes from the donors. Thus, conditional directives belonging to the target organs
are not transplanted to the host. This is done in a way that preserves as much of the
source code structure belonging to the organ.

4.4.1.3 Organ Test Suite Preparation. For product derivation, an SPL engineer
must supply test suites, called ice-box tests [17]. They are used to guide the GP algorithm
in the over-organ adaptation process to create an organ that is fully executable when
implanted in the product base, and that it satisfies the constraints and requirements of
the product line.
Ice-box tests are typically easy to be implemented, as proposed by [17], generated using

existing test generation tools, or even adapted from the donor’s unit tests, when available.
The SPL engineer must select or implement a set of ice-box tests that adequately cover
the functionality of the over-organ. Although easy, this process requires expertise and an
understanding of the donor and target systems. Once implemented, these tests must be
integrated into the transplantation platform to be used in new transplantation processes
of the target organ.

4.4.1.4 Host Preparation. This task can be performed before of after domain en-
gineering phase. The objective of it is to ensure that the host codebase is ready for the
transplantation process. This involves modifying the host codebase to its basic form by
removing all optional features and performing tasks such as dead-code removal. The host
preparation step sets the foundation for integrating the extracted organs from the donor
systems into the host codebase, facilitating the successful transplantation process and
enabling the generation of new product variants.
In the initial stage, the SPL engineer is tasked with selecting an appropriate product

base for the target product line. If required, the chosen product base can undergo a
feature removal process to reduce it to its fundamental form, retaining only the mandatory
features or those that are pertinent to all products derived from the target product line.
The reduction process entails the removal of code segments responsible for implementing
features that are not essential for creating the target product. In cases where removal
is necessary, extra care must be exercised to identify and eliminate all code portions
associated with each unwanted feature while ensuring the integrity and functionality of
the product base remain intact.
Although possible, doing it manually is not trivial. We advise assigning this task to
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an engineer with system-specific experience, if possible, as careful attention is required to
make sure that the remaining code base is properly adjusted and still executing correctly.
We have provided an automated solution in cases where the product base has been

implemented using C’s preprocessor directives. It uses the Reconfigurator module that
handles C’s preprocessor directives by using as input a list of all features directives which
must be kept or removed. By handling preprocessor directives, the reconfigurator removes
from the product base both directives and code that they delimit, while otherwise keeping
the source code structure belonging to the product base unchanged. Thus, it removes
optional features creating a product base ready to receive the transplanted organs. We
provide more details on how the re-configurator is implemented in Section 5.1.1.
The selection of an appropriate product base, combined with efficient removal of

unnecessary features, can significantly reduce the effort required for subsequent product
derivation from the target product line. Although its preparation may require considerable
effort for localising and removing all unnecessary code, it can be compensated with the
benefits achieved through using the product base as a baseline to build products belonging
to the same or similar domain, as illustrated in Figure 4.2.
It is important note that even though the preparation process may require manual

effort for identifying features of interest, localising and removing dead code from the
donor and preparing all test suites for the organ, it can be amortised across multiple
transplantation and reuse of a single over-organ more in than one software product.

4.4.1.5 Over-organ Extraction. Once the donor is prepared, it is possible to start
the automated transplantation process by construct an over-organ, a vein and an organ,
that contains all the code in the donor that implements the organ, given the organ’s entry.
An over-organs is a conservative, self-contained slices that over-approximates the actual
organ with but with all resource (code, files, library, components, etc) required to maintain
it functional [17]. An organ implements the functionality that is being transplanted. An
over-organ’s vein and, in turn, is a pathway in the donor codebase for building and
initializing the execution environment for the organ [17]. In order to ensure the successful
transplantation of an over-organ, it is crucial to capture all the relevant code associated
with both the organ and its vein. By carefully managing code structure, dependencies, and
adaptations, the over-organ extraction process enables the successful integration of donor
functionality into the product line, supporting the reengineering efforts and facilitating
the creation of specialized products within the SPL.
In practice, the over-organ extraction process can consist of several lines, one or more

classes, as long as they fully implement a specific functionality [13]. Thus, it can involve a
considerable amount of code at different levels of granularity, from moving required files
and libraries to entire functions and individual statements, both potentially not confined
to a single class, file or library [121]. For instance, the feature FEAT DIFF implemented in
VIM has more than 5k LOCs scattered across 33 of its 166 source files.
Here we have a challenge that needs special attention, ensuring the integrity of the

over-organ when the extracted code is distributed across multiple files, a concern also
acknowledged by Wang et al. [121]. In such cases, it becomes essential to preserve the
original multi-file structure of the extracted organ. Failing to do so could result in difficul-
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ties maintaining it functional outside of the donor’s environment, which can lead to errors
and failures in an SPL. Additionally, it can be challenging to propagate those changes
to all product line applications, if any changes need to be made to the transplanted
over-organ, such as bug fixes or enhancements,
Because over-organs are conservative, self-contained slices that over-approximates the

actual organ to maintain it still functional, an extracted over-organ may itself contain
multiple small features, which its functionality depends on. For example, a spell checker
feature might depend on a memory-resident database feature. Hence, the extraction pro-
cess has to implicitly learn the feature’s dependencies, by including them in its over-organ.
Program slicing technique implemented with System Dependence Graph (SDG) [81]

are promising solutions for automating the extraction process of features in ST [17]. They
can potentially address the challenge of preserving the original multi-file structure of the
extracted code. The process of slicing discards those parts of the donor program that
can be determined to have no effect upon the organ. Hence, it allows us to obtain an
executable subset of program statements that preserves the original behaviour of the
organ from its entry point in the donor program.
By using program slicing, the code can be extracted in a way that preserves the depen-

dencies between different parts of the code while SDG can help identify all the dependen-
cies between features and components in the donor codebase. However, it is important to
ensure that such techniques are used in conjunction with techniques for identifying code
duplication, tackling slice-imprecision, and automated test execution, ensuring that the
extracted feature performs as intended, even outside of the donor environment.
Our realization of Foundry in prodScalpel is able to handle all these issues. It uses

program slicing and clone-aware genetic improvement to extract, adapt and specialise an
over-organ to its implantation point, detecting and removing cross organ redundancies
(see Section 5.1.2).
Upon completion of the over-organ extraction process, the source code of the extracted

organ is preserved within the transplantation platform, alongside other over-organs that
constitute product line assets. By storing the extracted over-organs in the transplantation
platform, they become readily accessible for reuse during the application engineering
phase. This enables the software engineers to leverage the existing repertoire of over-
organs to integrate the desired functionality, implemented by a specifique over-organ,
into the target products

4.4.2 Application Engineering

In SPLE, application engineering corresponds to the phase where features are reused in
new products. This is the phase where the inherent variability of the SPL is realized,
facilitating the customization of artifacts to meet specific requirements.
In Foundry, the application engineering phase encompasses the development of cus-

tomized products using the organ transplantation process. Through multiple iterations
of organ transplantation, a new product emerges as additional organs are transplanted.
This dynamic process of transplantation enables the desired level of flexibility for prod-
uct customization. This flexibility is achieved by integrating extracted over-organs with a
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product base, thereby providing the necessary foundation for deriving products according
to specific needs and preferences.
As highlighted in ??, the application engineering process is supported by Foundry

through the execution of four stages of software transplantation: (i) over-organ selection,
(ii) over-organ reduction and adaptation, (iii) organ implantation and (iv) postoperative
stage.

4.4.2.1 Over-organ Selection. The application engineering process starts with the
target feature selection and the subsequent identification of the corresponding over-organ
from the transplantation platform. The selection process is guided by the feature model
generated during the earlier phase of variability analysis. The feature model provides a
systematic representation of the various features and their inter-dependencies within the
SPL, which helps the engineer make decisions which features to include in the target
product.
The selection process involves considering factors such as feature dependencies, com-

patibility with the product base, and the overall goals and requirements of the target
product. By aligning the target feature with the feature model, the over-organ that en-
capsulates the desired functionality can be traced and retrieved, facilitating its posterior
integration into the customized product.

4.4.2.2 Over-organ Reduction and Adaptation. During this stage, the over-
organ undergoes pruning and adaptation to ensure its compatibility with the host en-
vironment, specifically the chosen product base. The adaptation process involves the
specialization of the over-organ to align with the target product base, resulting in an
organ that can integrate into a specific implantation point within the product base.
An SPL engineer must select the target product base with an annotated implantation

point where a call to the organ will be grafted to initialize and execute it. An automated
solution must identify the insertion point within the target product base, where the over-
organ will be integrated. Then it needs to reduce and specialize the over-organ to initialize
and execute its functionality from the host command.
Barr et al. [17] automated the over-organ reduction and adaptation process using

a GP algorithm. Its GP algorithm reduces an over-organ and specialises it to the host
environment. By utilizing a context-insensitive slicing over the donor’s call graph and
implements observational slice [90] in GP, it reduces the organ, transform it to execute
in the host.
In the ST context for SPL, it becomes necessary to handle organs that consist of

multiple files. Hence, the GP algorithm also must be capable of creating multi-file indi-
viduals, allowing the donor code statements even scattered by multiple files is available
for mutation of the organ instance. However, Barr et al.’s approach does not support the
adaptation of an organ that contains multiple files. Moreover, it does not support organ
maintenance tasks but rather provides a one-off transplantation approach.
To address these limitations, Foundry introduces an innovative concept known as

the ”organ-host wrapper,” which functions as a type of organ-host interface. This wrap-
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per serves as an intermediary layer between the organ and the host, facilitating their
integration and maintenance. It is automatically constructed on demand by the GP al-
gorithm, utilizing the specified implantation point within the product base and the code
provided by the organ’s vein.
The automated organ-host wrapper construction frees developers from the burden of

manually writing the code to convert the host’s data structures into parameters to the
organ’s entry point whenever a new product is demanded from the product line.
We optimized the GP algorithm proposed by Barr et al. [17] to handle multi-file over-

organs. By combining the clone-aware genetic improvement for over-organ adaptation
and the use of the organ-host wrapper, Foundry offers a comprehensive and scalable
approach to SPLE. This approach automates the customization of organs within the
product line, providing flexibility in handling organs implemented in multiple files and
enabling maintenance and re-implant of transplanted organs.
In practice, prodScalpel uses the GP algorithm implemented in Barr et al.’s au-

tomated solution to prune one or more program elements within the boundaries of the
target organ while keeping the organ still functional and passing on the icebox tests.
In the wrapper, prodScalpel abstracts variable names so that GP can select a type-
compatible binding. It selects different combinations of all valid statements, variables and
function calls mapped from the organ’s vein to initialise an execution environment that
the organ expects before executing it.
prodScalpel then uses GP to search for matching between variables in the organ

and the product base. The matches found are inserted into the organ-host wrapper.
By a mutation operation, a new version of the organ (i.e., a new individual) is created
while prodScalpel makes several changes in the organ-host wrapper and pruning the
over-organ. Each such mutation operation is either an INSERT, REPLACE and DELETE
of code into the individual and the wrapper at the level of statements. prodScalpel
then synthesises a call to the extracted organ to execute and test it from the wrapper
constructed.
At the end of the adaptation process, an organ that successfully passes all the ice-

box tests is uniformly achieved and can be posteriorly implanted into the product base
during the implantation stage. The over-organ reduction and adaptation try to ensure
that the transplanted organ is fully functional and aligns with the desired behaviour
and requirements. We provide more technical details on how prodScalpel reduces and
adapts the over-organ in Section 5.1.3.

4.4.2.3 Organ Implantation. After the organ has been successfully adapted to con-
tinue functional in the host environment, it becomes ready for implantation into the
product base. So far, the existing ST literature has discussed the transplantation of a
single organ into a host system. However, to make the application of this technique in
SPLE feasible, we have to consider the transplantation of multiple organs into a single
host, a product base, including ones extracted from the same donor. As a consequence,
the process is no longer concerned with a single but multiple organs and its consequent
dependency and interactions.
Feature dependency is a well-known problem in software reuse [122]. Dependencies
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among features are established by means of structural dependencies in the source code
shared between elements of different features [123]. In practice, an organ implementing
a feature in a system often shares elements, such as variables and functions with one or
more organs that belong to the same donor. For instance, a structure that stores data
that are manipulated by more than one function or file; or a function call between the
code that belongs to organ A and B.
This situation can lead to the presence of overlapping organs within the postoperative

product base. Such overlapping organs can pose challenges in terms of code redundancy,
maintainability, and potential conflicts between different organs or versions of the same
one. Therefore, it is essential to carefully manage and reconcile these overlapping organs
during the transplantation process to ensure the integrity and coherence of the resulting
product base. This may involve identifying and resolving code conflicts, making decisions
about which version of a particular organ should be retained, and ensuring that the final
product base remains consistent and free from redundant or conflicting code.
Figure 4.4 shows a real-world example of two call graphs from the same donor, GEdit

text editor, sharing several functions. If we consider them as part of two unrelated or-
gans, all common functions (highlighted by blue boxes) will be duplicated during their
corresponding implantation processes. As a consequence, the transplantation process can
insert code that is duplicated from multiple organs transplantation. Such a problem, if it is
not managed, will lead to unwanted duplicated code, possibly breaking the postoperative
product.

Figure 4.4: Call graph extracted from GEdit text editor.
An example of connection points among call graphs from organs copy and

search next. Highlighted with blue boxes are functions belonging to both organs.

Although the significant part of these overlaps is pruned from over-organ during GP-
refinement, in the source code, one or more program elements within the boundaries of
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an organ depend on elements external to that organ, such as a function defined in one
organ and called by another organ. In other words, organ dependencies are established
through structural dependencies in the source code shared between elements of different
organs [123]. When this happens, the organ collision problem occurs, and our transplan-
tation process would add duplicated code. Thus, it is necessary to go beyond the simple
act of inserting foreign code (self-contained) into the product base without establishing
any connections among the organs previously transplanted or product base elements. The
objective is to enhance the functionalities of the postoperative product base by incorpo-
rating new behaviour that replicates the software organ extracted from the donor while
avoiding code duplication and facilitating the sharing of common code among the organs.
It is important to carefully identify and manage all shared code elements to handle

this challenge. This can be done through techniques such as code clone identification or
code refactoring, where redundant code is identified and consolidated. Another approach
is to use Program slicing implemented with SDG for identifying code redundancies and
facilitating code consolidation. By analyzing the dependencies between different code seg-
ments, program slicing can help identify areas of redundancy and facilitate the redundant
code consolidation.
To correctly work, the implantation process needs to identify all duplicated code

elements and insert them only once into the product base, avoiding code duplication.
Nevertheless, hosts tend to have large input spaces into which codes are inserted. In this
way, finding the conflict points in the host can be difficult. For instance, functions can
have the same namespace but not be identical. Thus, it is necessary to check whether a
specific code element is already present in the host, considering not only its namespace
but its structure and context at a fine level of granularity to make sure that two portions
of code are not clones.
Identifying code clones is still more complex than a simple code duplication. Organs

can have fragments of source code that are identical or very similar to those found in
another organ transplanted into the product base. Clones can occur at different levels of
granularity, ranging from individual lines or blocks of code to entire functions or modules.
They are typically the result of copy-and-paste programming or code duplication, com-
mon in donor systems that are part of the same portfolio of systems, such as existing in
the GNU Project - for example. Code clones can introduce maintainability issues, increase
the risk of bugs, and hinder target product line evolution and understanding. Detecting
and managing code clones during the transplant process is important to improve the
transplanted organ quality, promote its reusability, and facilitate maintenance and refac-
toring activities product line. Hence, it is also important to ensure that the implantation
technique is used in conjunction with techniques for code clone identification. Togheter
these techniques can help to guarantee that not only the code duplication is identified
but eventual code clones are effectively managed and potential errors are avoided.
The utilization of the clone detection technique is also valuable for managing the

evolution of SPLs. When a new version of a donor is introduced in the SPL, it may
provide organs already transplanted to the product line but with improvements or bug
fixes. Similarly, over-organs within the transplantation platform may undergo changes or
evolution during its life-cycle in the product line. When attempting to re-implant the new
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version of an organ into the product line, there may be a portion of code that remains
the same or exhibits minimal changes. To address this, clone detection techniques can be
employed during the transplantation process to identify these code fragments and replace
them with the updated code from the evolved organ. This helps ensure the consistency
and coherence of the products while accommodating changes and improvements in the
evolving SPL.
The presence of these specific aspects represents novel challenges in the application

of the ST idea in SPLE, which are addressed by prodScalpel. To overcome this chal-
lenge, we leverage code clone detection to prevent the insertion of duplicated code. We
augmented prodScalpel with a code clone detector, based on NiCad [124]. This clone
detector finds exact clones over arbitrary program fragments in the organ and host source
code by using Abstract Syntax Trees (AST). Thus, we exploit the benefits of Unix DIFF
command [125] and TXL [126] to identify and compare potential syntactic code duplica-
tion.
prodScalpel also supports the use of existing variability mechanisms [127] based on

feature toggle [22] or preprocessor directives to facilitate its integration into an existing
SPL codebase that uses them. To achieve this, prodScalpel can incorporates feature
flags surround implanted organs, allowing for the enablement or disablement of specific
features as required. By encapsulating the organ’s code within these conditional blocks,
the code becomes subject to variation based on the specific configuration settings.

4.4.2.4 Postoperative Stage. As in medicine, Foundry incorporates a postopera-
tive stage aimed at assessing the potential side effects of the transplantation operation.
Building upon the validation process proposed in previous works [13, 17], Foundry in-
troduces three distinct validation test suites, as illustrated in Figure 4.5. These suites,
namely Regression, Regression++, and Acceptance tests, serve as measures for evaluating
the quality and functionality of the transplant.

1. Regression: the test suite utilizes the host’s existing set of regression tests. This
suite aims to verify that the transplantation process does not introduce any defects
in the product base, ensuring the preservation of its pre-existing functionalities.

2. Regression++: it is the Regression test suite expanded to achieve broader test
coverage. Given the introduction of foreign code into the product base by the trans-
plantation process, it is unreasonable to rely solely on the host’s original test suite
for achieving high statement coverage. Therefore, in the Regression++ suite, addi-
tional tests are created and integrated into the host’s existing test suite, augmenting
its effectiveness in detecting potential issues.

3. Acceptance: This test suite is tailored specifically for the postoperative product,
focusing on testing the newly transplanted functionality. If the transplanted organ
already possesses a set of tests that adequately cover its intended behavior, those
tests can be reused as part of the acceptance test suite. On the other hand, if
the transplanted organ lacks comprehensive test coverage, new tests can be cre-
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Figure 4.5: Three validation steps.
The dashed boxes are test cases added into the host regression test suite after each

transplant iteration.

ated specifically for the acceptance test suite. These tests should target the desired
behavior of the organ in the context of the postoperative product.

The chosen approach depends on the availability and adequacy of existing tests
and the need for comprehensive evaluation of the transplanted functionality. At
the end of the process acceptance tests also are incorporated to the product base’s
regression tests.

By implementing these three test suites, Foundry establishes a robust postoperative
stage that addresses the various aspects of transplantation validation, safeguarding the
functionality and reliability of the transplant while identifying potential side effects.
Following the completion of the postoperative stage, the reengineering process can

continue with subsequent iterations of organ transplantation. In the application engi-
neering phase, the transplantation process enables the derivation of a new product as
organs are introduced into the product base. Through sequential organs transplantation,
the product base undergoes a gradual transformation, incorporating new features and
capabilities while preserving existing functionality.
The iterative nature of the approach in the domain engineering phase allows for a

controlled and manageable evolution of the product line, facilitating the systematic re-
finement and expansion of its offerings. By employing this methodology, the SPL reengi-
neering process remains flexible and adaptable to accommodate evolving requirements
and feature enhancements.
By comprehending the intricacies of each stage automation and the capabilities of

prodScalpel, researchers and practitioners can effectively employ Foundry for the
reengineering and evolution of SPL, ultimately enhancing their flexibility, maintainability,
and adaptability.
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4.5 CHAPTER SUMMARY

This chapter has provided an overview of the fundamental concepts and stages of Foundry
for reengineering existing codebases into SPL. Each stage of the approach was discussed,
highlighting the challenges that may arise and how prodScalpel, the support tool
of Foundry, addresses them. Among the challenges encountered in the application of
Foundry, we have emphasized donor and host preparation, the management of over-
organs, code duplication, extraction of multi-file over-organs, and the validation of post-
operative results.
For each challenge, prodScalpel’s capabilities were elucidated, illustrating how the

tool effectively addresses these issues through techniques such as program slicing, code
clone detection, feature toggling, and comprehensive testing. This included a discussion on
the use of GP for organ adaptation, the handling of multi-file organs, and the introduction
of feature toggles when necessary.
The next chapter describes the implementation details. It introduces prodScalpel

giving an overview of its architecture and main features while describing the challenges
for SPL reengineering via ST solved by our automated solution.





Chapter

5
IMPLEMENTATION

Providing an automated solution for the transplantation of multiple organs remains an
open issue in the field of ST. This is justified by the relativelly recent emergence of this
field and the inherent complexity of the transplantation process.
In this context, this section introduces prodScalpel, which is the first automated

solution for multi-organ transplantation within the realm of SPLE. prodScalpel imple-
ments the Foundry approach, tailored specifically to handle codebases developed in the
C programming language. Building upon the groundwork established by mµScalpel [17],
prodScalpel expands and incorporates new capabilities to enable the transplantation
of multiple organs into a single host codebase (i.e., product base). This feature is par-
ticularly essential for effectively supporting SPLE, as product lines often involve the
integration of diverse features to derive new products.
prodScalpel can be employed to support Foundry for both extractive or reac-

tive[35] product line adoption. Additionally, it can be utilized as a part of a systematic
Clone-and-own strategy to specialize existing products.
In extractive adoption, prodScalpel enables the extraction and transplantation

of organs from donor codebases, facilitating the integration of desired features into a
product line. This process empowers SPL engineers to selectively extract and incorporate
functionality from external sources, enabling the realization of feature-rich and versatile
software systems
In reactive adoption, prodScalpel automates the adaptation and transplantation

of organs in response to evolving requirements or market demands. By utilizing prod-
Scalpel, SPL engineers can modify existing organs or introduce new organs into the
product line, maintaining its continued relevance and competitiveness in dynamic envi-
ronments.
Furthermore, prodScalpel supports a systematic clone-and-own strategy, allowing

for the specialization of existing products. By cloning a base product and applying selec-
tive modifications through organ transplantation, software engineers can create tailored
versions that cater to specific customer needs or niche markets. This approach provides
the flexibility to customize products according to specific requirements.

61
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prodScalpel provides solutions for problems often cited in the SPL reengineering
literature [7]. It uses program slicing and clone-aware genetic improvement techniques
to extract, specialise and implant organs to their implantation points, preserving feature
behaviour while detecting and removing potential cross-organ redundancies.
prodScalpel also supports the use of existing variability mechanisms [127] based on

feature toggle [22] or preprocessor directives [23]. It can surround implanted organs with
feature flags, which permit enabling and disabling features, to facilitate its integration
into an existing SPL codebase that uses them.
In the rest of this chapter, we provide an overview of the key features of prod-

Scalpel, focusing on its contributions and advancements in the field of SPLE. Section
5.1 details the specific features offered by prodScalpel, highlighting the challenges it
addresses and the corresponding automated solutions it provides. Section 5.2 discusses
how prodScalpel can offer automated support for SPLE. Section 5.3 concludes the
chapter.

5.1 PRODSCALPEL

The implementation of prodScalpel comprises five distinct modules, as depicted in
Figure 5.1. These modules serve as integral components of the prodScalpel solution,
implementing the different stages of Foundry for the reengineering of systems into SPL.

Figure 5.1: Overall implementation of prodScalpel.
An SDG is a system dependency graph that the GP algorithm uses to constrain its

search space.

The domain engineering process is automated by the Preprocessing and cleansing and
the Over-organ extraction modules. The first one is responsible for cleansing the donor
codebases, eliminating any extraneous preprocessor directives that may be present. It
also used to host preparing process by removing undesired features delimited by prepro-
cessor directives from the product base. On the other hand, the Over-organ extraction
module employs the program slicing technique implemented with SGD to extract an over-
organ from the donor codebase, thereby isolating the relevant code fragments for further
adaptation.
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The application engineering process is automated by the Over-organ reduction and
adaptation, and the Organ implantation modules. The first one utilizes genetic program-
ming (GP) to reduce the size and complexity of the selected over-organ obtained from the
transplantation platform. This reduction process is carried out while ensuring that the
over-organ is effectively adapted to function within the target product base. GP enables
the systematic exploration and optimization of the organ’s code structure, achieving an
organ specialized to a specific product base. The Organ implantation, in turn, employs a
clone detector to identify code elements duplication and dependencies during the process
of implanting the organ into the product base.

5.1.1 Automating Feature Removal

The presence of preprocessor conditionals (cpp) in large-scale systems often introduces
complexities, such as intricate Boolean definitions encoding configuration dependencies
and nested structures enabling code sharing across configurations. From a maintenance
perspective, compile-time configurability poses significant challenges [52]. One of these
challenges pertains to the synchronization between the configuration model presented to
the user and the configurability implemented at the code level, which, when performed
manually, becomes a tedious and error-prone task [52]. Furthermore, once a configuration
is defined and a new product is generated, the portion of code consisting of unselected
configurations can be considered dead code. Ideally, all dead code should be removed
from the organ and product base, retaining only the code required by the current system
configuration of them.
prodScalpel implements a Reconfigurator in the Preprocessing and cleansing mod-

ule to automate the feature and dead code removal processes required for cleaning both
the donor and host systems. This implementation also addresses one of the initial lim-
itations of the mµScalpel algorithm [17], namely, the default C grammar’s inability to
handle preprocessor directives.
To initiate the process, prodScalpel requires the SPL engineers to provide a textual

list of all possible configurations and the guidelines for switching between them as input.
Leveraging this input, the tool performs a targeted search within the codebase, identifying
and removing the code sections that implement the features delimited by these directives.
However, it retains the required portion of code defined by the current configuration file,
preserving the unchanged source code structure associated with the organ. When applied
for streamlining the product base, it removal of all code related to the specified features
by the SPL engineer. Figure 5.2 gives a example of a portion of code after prodScalpel
cleaned up unused directives.
Our automated solution for Foundry utilizes the command line tool unifdef 1, which

selectively processes conditional directives. While this approach proves useful, selectively
processing directives alone may not be the optimal solution, as it does not fully com-
prehend the lexical and grammatical syntax of programming languages. For instance,
unifdef does not handle defined or #elif preprocessor directives, nor does it address
more complex issues, such as determining when both sides of a conditional assign the

1http://freshmeat.sourceforge.net/projects/unifdef
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Figure 5.2: The reconfigurator
Used to automated removal of preprocessor annotation from donor codebase and

unwanted features from product base.

same value to a preprocessor variable. To overcome this limitation, prodScalpel is also
implemented in Turing eXtender Language (TXL) [126] to generate abstract trees. By
utilizing TXL, prodScalpel gains enhanced capabilities for removing dead code and
compilation directives with more precision.

5.1.2 Automating Vein and Over-Organ Extraction

The extraction of each selected organ captures a considerable amount of code not confined
in a single file or library. Thus, an important issue, which must be considered during
organ extraction, is how to organize the code belonging to a particular organ in terms
of its file structure. Although it is possible to implement modifications to organ’s files
structure and even introduce a new one, we have chosen to maintain it in its original
form, as implemented in its donor, without any redesign of the system besides those ones
performed by GP during GP-refinement. This is justified when we consider the inherent
complexity of the process, which often decreasing readability and maintainability while
introducing the potential for additional programming errors.
Program slicing technique implemented in mµscalpel algorithm was extended to pro-

duce a multi-file over-organ. We had to implement an organs slicer that computes slices
in multi-files, keeping the original file structure of the features rather inline all their func-
tions calls in a single file, as implemented by initial algorithm. Thus, each slice constructed
includes either the files which each statement has been originally captured, necessary to
produces an organ composed by multiple files. Producing a multi-file over-organ became
it more self-contained and more understandable, facilitating future maintenance of the
organ in the new product. Additionally, by computing multi-file over-organs, we avoid
code duplication by handling dependencies between organs when transplanted from the
same donor.
The process of slicing discards those parts of the donor program that can be deter-

mined to have no effect upon the organ. Hence, it allows us to obtain an executable
subset of program statements that preserves the original behaviour of the organ from its
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entry point in the donor program. Figure 5.3 illustrates the slicing process performed by
prodScalpel.

Figure 5.3: Over-organ extraction process

Similarly to previous work [17], given an entry point in the donor provided by the
user, prodScalpel automatically extracts an over-organ, an executable slice from the
donor codebase.
Given the organ’s entry point provided in the preoperative stage, prodScalpel ex-

tracts an over-organ, an executable slice from the donor codebase, and a vein, constructing
an over-organ, that contains all portions of code in the donor that implements the target
functionality [17].
Initially, prodScalpel generates a call and caller graphs for each function imple-

mented in the donor system. Then, it selects the call graphs corresponding to the organ’s
entry point. The organ’s entry point is used as a starting point for automated organ slic-
ing. Using the observation-based slicing approach [20], prodScalpel reaches all func-
tions from the organ’s entry point. To find the over-organ, it slices forwards by isolating
the donor’s call graph edges that are particularly relevant to the organ under consider-
ation. To compute a slice, it context-insensitively traverses the donor’s call graph and
transitively includes all the functions called by any function whose definition it reaches.
To handle transplantation of organs spread in multiple files, prodScalpel records

the name of the files where the slice is and its location into the donor codebase. Then, it
records the related statements in an Abstract Syntax Tree (AST), according to their order
of appearance in the file. This is done to preserve the same structure in the transplanted
organ as it appeared in the donor. Then, prodScalpel computes the resulting slices in
copies of its original files in the transplantation platform, without breaking the over-organ.
To compute a vein for an organ, prodScalpel slices backward from the given organ’s

entry point traversing the call graph in reverse until it reaches the donor’s entry point.
Once it reaches the donor’s entry point, prodScalpel prunes the slice to retain only
the shortest path, under the assumption that all paths to the organ are equivalent.
Following the solution implemented by Barr et al. [17], prodScalpel inlines all

functions, then maps the over-organ’s statements to an array. Each array index uniquely
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identifies each statement required by the GP algorithm to execute the process of pruning
and adapting the over-organ.
Inlining is a technique employed by compilers to optimize code by replacing a function

call with the body of the function itself. Through this technique, the GP algorithm can
manipulate the code and generate new combinations that are better suited for the new
host environment. However, inlining a vein can lead to the issue of vein redundancy,
wherein a significant portion of the vein is shared among multiple organs transplanted
from the same donors. If transplanted into the host environment, each inlined vein will
contain a considerable amount of its statements duplicated.
As solution for vein redundacy, prodScalpel also saves each function belonging to

the vein retained in a copy of its source file in the transplantation platform. Then, it
also includes calls for functions existing into vein source code in the array of over-organ
statements used by GP to achieve a multi-file vein.
The vein duplication is discovered during the implantation stage. In the extraction

stage, both veins belonging to two organs (A and B) are kept duplicated in the trans-
plantation platform in different directories, since it is important to keep the over-organ
functional. However, when the second organ( organ B) is implanted after the transplant of
organ A, the code clone detector, implemented in the Organ implantation, module looks
for duplication also in the vein code of organ A. For example, imagine that a vein has a
function fx() implemented in file F.c and belonging to both over-organs A and B. When
prodScalpel tries to transplant organ B after organ A, it checks if the function fx()
already exists in file F.c in the post-operative environment. In this way, if the function
fx() is already in the host post-operative, as part of organ A, prodScalpel does not
insert it into the host again. Instead, it introduces a calling from the vein belongs to the
organ B. In this way, the function fx() already transplanted also is used by organ B.
Thus, a function/method in the vein shared between two or more organs is not duplicated
when transplanted.
prodScalpel also identifies occurrences of mutually recursive functions, even an

occurrence of an indirect recursion. Technically, prodScalpel inlines the vein code
while puts each function found in a stack of functions. When prodScalpel finds an
occurrence of a recursive function it recovers the beginning of the recursive call and
does not inline it. Instead, prodScalpel extracts the function to a file with the same
name of the where the function is implemented. Then, it inserts a calling from the vein
to the recursive function. This solution provides a finite interpretation for not inlining
mutually recursive functions in the array of over-organ statements. Thus, prodScalpel
can produce a search space for GP with a finite amount of program statements even from
recursive functions.
As the donor code is slicing, prodScalpel also generates an SDG for both the

organ and its corresponding vein, which is subsequently retained within the transplan-
tation platform. The SDG serves as a graphical representation of the relationships and
dependencies among various code elements encompassed within an over-organ, including
functions, variables, and statements. This SDG guides the GP algorithm and constrains
the search space for over-organ reduction and adaptation.
The GP algorithm utilizes the SDG to navigate the organ’s complex web of depen-
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dencies among statements, ensuring that the selected code elements for reduction and
adaptation retain the essential functionality while mitigating any potential negative im-
pacts on the overall system behaviour. The SDG acts as a roadmap for the GP algorithm,
guiding its exploration and enabling it to make informed decisions based on the interde-
pendencies among code elements.

5.1.3 Automating Over-organ Reduction and Adaptation

As proposed in Foundry, prodScalpel improves the process of over-organ reduction
and adaptation by being able to handle over-organs containing multiple files. It also
introduces a layer in the organ that works as an organ-host wrapper.
In practice, prodScalpel uses GP, as in previous work [17], to prune one or more

program elements within the boundaries of the target organ while maintain the organ
still functional and passing on the icebox tests. Furthermore, the GP algorithm is used
to search for matching between variables in the organ and the product base during the
over-organ adaptation process. The matches found are inserted in the organ-host wrapper.
By a mutation operation, a new version of the organ (i.e., a new individual) is created

while prodScalpel makes several changes in the organ-host wrapper and prunes the
over-organ. Each such mutation operation is either an INSERT, REPLACE and DELETE of
code into the individual and the wrapper at the level of statements.
To create individuals for the next generation, a crossover operation concatenates two

individuals from the current population by appending one list to another. The first parent
is chosen based on its fitness value, while the second parent is uniformly selected from
the breeding population, following a similar approach to previous implementations [14].
At each generation, prodScalpel selects the top 10% most fit individuals and adds

them to the new generation. Tournament selection is employed to choose 60% of the
population for reproduction. Parents must be compilable, and if the proportion of possible
parents is less than 60% of the population, the GP algorithm generates new individuals
and starts a new refinement loop.
During the GP process, for each individual, a type-compatible binding is uniformly

selected from the host’s variables in scope at the implantation point for each of the organ’s
parameters. Then, one statement from the over-organ, including its vein, is uniformly
chosen and added to the individual. The GP system keeps track of the selected statements
and favors those that have not been selected yet.
In the organ-host wrapper, prodScalpel abstracts variable names so that GP can

select a type-compatible binding. It selects different combinations of all valid statements,
variables and function calls mapped from the organ’s vein to initialise an execution envi-
ronment that the organ expects before executing it. In the end, prodScalpel synthesises
a call to the individual to execute and test it from the interface constructed.
At the conclusion of the adaptation process, achieves an organ that passes all the

icebox tests. This organ is subsequently implanted into the product base during the
implantation stage. The over-organ reduction and adaptation processes aim to ensure
that the transplanted organ is fully functional and aligns with the desired behavior and
requirements.
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5.1.4 Automating Multiple Organs Implantation

Once the organ is adapted to correctly work on the host, it can be automatically implanted
into the product base.
In our approach, code elements already belonging to the beneficiary or more than

one organ can be characterized as a simple code redundancy or implicit connection points
since they can represent a connection or dependence points among two or more organs. To
correctly insert an organ prodScalpel needs to identify and handle potential connection
points and code redundancy, avoiding the insertion of code duplication into the product
base.
To automate the implantation process, we have implemented in prodScalpel a code

clone detector based on the NiCad [124]. Our implementation of it combines Program dif-
ferencing [125] implemented in a Clone detection technique to identify individual textual
differences at a line level, even if it reflects changes in the organs already transplanted.
Figure 5.4 illustrates our implantation process and the solution to avoid the organ

collision, the problem described in the previous chapter. In essence, the clone detector
analysis whether a specific code element already exists within the beneficiary’s environ-
ment. To do this, it constructs two lists, one with elements in the organ and the other
with elements in the host. Then, it checks if there is a code element in the target organ
which is also in the list of the host’s elements.

Figure 5.4: Code clones detector.

Once a potential element duplication is identified, they are compared line-by-line using
a program differencing implementation. It checks if the code element is already present
in the beneficiary by looking for name collisions [128] in the host codebase.
Although useful, the use of program differencing technique is not enough solution yet,

because a line-by-line code comparison does not really understand the programming lan-
guage’s lexical and grammatical syntax. For example, Program Unix DIFF command [125]
used by prodScalpel does not provide enough information to prodScalpel can han-
dle more complex problems, such as determining high-level software changes such as
refactorings [129] and crosscutting modifications [130], which often consist of a group of
changes that share similar structural characteristics.
prodScalpel exploit the benefits of TXL [126] to decompose both organ and host
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elements in ASTs. Thus, our automated solution finds clones over arbitrary program
fragments in organ and host source code by comparing abstract syntax trees. Additionally,
by decomposing the code elements, prodScalpel can handle feature dependencies using
a context-free parsing mechanism implemented in TXL.
Using TXL, prodScalpel can flexibly select the granularity of an input, such as a

parse tree, under the control of a context-free grammar [124]. This allows prodScalpel
to fine-tune the existing code of potential clones by introducing additional line breaks. By
doing so, potential variances within statements and other structures can be accurately
inserted using sub-abstract tree comparison.
As each code element from the organ is analysed, it is either completely grafted

into the host codebase, discarded, or merged with existing code. The decision to graft
discard, or merge a code element is made based on some factors. For example, a code
element is discarded when it conflicts with the existing one in the codebase, keeping the
codebase version.
In cases where a code element needs to be merged, prodScalpel incorporates addi-

tional line breaks into the code and encapsulated by a feature toggle mechanism (provided
the current transplantation’s input configuration specifies it). By incorporating feature
toggle and line breaks, prodScalpel can re-implant new versions of organs into a prod-
uct base. This approach enables the SPL engineers to manage the product evolution and
organ changes. For example, consider the following function (shown in Figure 5.4 (a) and
(b)) belonging to the organs DIFF and SPELL CHECK, both extracted from VIM. Using a
line-by-line code comparison of the segments (highlighted in blue), including the func-
tion’s signature, we can accurately determine that it is shared between the two organs.
Considering an appropriate similarity threshold for the code segments, we can see that
prepare help buffer, if transplanted again, in a new iteration, would generate the clone
pair. In this case, it should not be transplanted again. However, it is possible to see that
there is a variance present when the code fragment is used by the SPELL CHECK, (line 22
in Figure 5.5 (c)). Thus, prodScalpel only catches this variance in the code segments,
encapsulates it with a feature toggle mechanism and inserts it into the host (shown in
Figure 5.5 (c) line 21).
It is important to highlight that prodScalpel is an initial Foundry implementation

for the SPLE field, which emerged during the execution of our multiple case study. As
with all initial solutions, it still has some limitations inherited from external tools used in
the process, such as the imprecise call graphs when dealing with function pointers, which
affect the extraction of larger organs, see Section 7 for more details. This highlights the
need for future research and improvements in refining the implementation of program
slicing techniques and overcoming that limitation.

5.2 AUTOMATED SUPPORT FOR SPLE

Automated ST, as proposed in Foundry, offers a promising avenue for enhancing and
automating the reengineering of systems into SPLs. The potential benefits and opportu-
nities provided by ST justify the effort to explore research opportunities in ST idea for
SPLE area. Here we elaborate on and discuss such opportunities.
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Figure 5.5: Source code merging process.

5.2.1 Automating re-engineering of existing systems into SPL.

The fundamental concept behind the Foundry approach is to introduce a novel method
for reengineering systems into SPLs by building upon the principles of ST. The aim is
to improve the traditional reengineering process by leveraging the benefits and insights
offered by ST area, thereby enabling more efficient and effective SPL adoption.
Our idea of SPLE based on ST offers a promising avenue for automating the processo

of reengineering existing systems into SPL. Companies can use Foundry for the initial
conversion of an existing codebase into SPL, taking advantage of the numerous benefits
associated with SPL adoption.
Even with such a one-off application of Foundry, can itself be used to evolve or

maintain a product line based on a conventional variability mechanism. Its automated
solution can be configured to encapsulate transplantable organs with feature toggles be-
fore it is implanted, which permits enabling and disabling of features, to facilitate its
integration into an existing SPL that uses them.
The opportunity for research in this area lies in exploring and extending the capa-

bilities of the Foundry approach to further enhance the evolution and maintenance of
product lines based on conventional variability mechanisms. While Foundry initially
focuses on the reengineering of existing systems into SPL, it can also be utilized as a
valuable tool for managing and adapting product lines in an ongoing manner.

5.2.2 Automating clone-and-own technique.

One compelling research avenue lies in utilizing Foundry to automate the application
of the clone-and-own technique [65, 9]. The clone-and-own approach entails duplicating
existing software artifacts and independently modifying them to accommodate various
product variants. However, managing consistency and synchronization between shared
features across these variants presents significant challenges.
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Foundry offers a solution to such challenge by facilitating the transplantation of
fixed or updated versions of shared features. This automation brings consistency among
the variants, mitigating the need for manual synchronization and improving overall main-
tenance efficiency.
Consider a scenario where a bug is identified in a shared feature present in one product

variant created using the clone-and-own technique. With Foundry, the fixed version of
the feature can be transplanted onto the unpatched copy, synchronizing the changes and
eliminating the need for manual intervention.

5.2.3 Automating Reactive Product Line Adoption Process

In some organizations, product lines are already in place, but the adoption process follows
a reactive approach, where new features are added only when there is a specific need for
them. This reactive strategy often leads to ad-hoc and unstructured product development,
resulting in limited scalability and flexibility.
Foundry, with its automated transplantation capabilities, represents an opportu-

nity to enhance and streamline the reactive product line adoption process. By leveraging
Foundry, organizations can initially generate product variants based on specific de-
mands or requirements.
As the demand for specific products or features increases, Foundry can be employed

to automate the generation of additional product variants from the transplant of organs
extracted from specialized products, effectively evolving it into a product line.
The use of Foundry in the reactive product line adoption process offers several

benefits. Firstly, it provides a systematic and automated approach to product line expan-
sion, ensuring consistent and controlled feature integration. Secondly, by automating the
transplantation of features, Foundry minimizes the risk of introducing errors or incon-
sistencies during the adoption process. Furthermore, Foundry can ve used to guide a
modular and incremental growth of a product line. It allows organizations to incremen-
tally introduce new features or product variants in response to market demands.
Further research can explore and refine the automation capabilities of Foundry in

the context of reactive product line adoption. This includes investigating techniques for
efficient feature identification and prioritization, optimizing the automation process for
generating product variants, and developing strategies for effectively managing the evolv-
ing product line.

5.2.4 Automating a Symbiotic SPL

Foundry introduces a novel approach to SPL called “symbiotic SPL”, enabling a symbi-
otic relationship between the donor codebase and the ongoing reorganization of the SPL.
In this mode, the donor codebase remains oblivious to the parallel SPL reengineering
process, allowing for independent improvements to be made in both the donor and host
codebases.
A key feature of Foundry is the ability to capture and incorporate improvements

from the donor codebase. Periodically, prodScalpel refreshes its set of features by
re-transplanting them into the transplantation platform and subsequently into the host
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products. This symbiotic approach allows for the integration of updates and enhancements
into the SPL, without disrupting the ongoing reorganization efforts.
For example, prodScalpel can be utilized to create lightweight and specialized text

editors from the VIM project. By extracting and transplanting specific features from
VIM, prodScalpel can generate new text editors tailored to specific user needs or
requirements. This symbiotic SPL approach enables the creation of specialized products
while leveraging the ongoing development and improvements in the donor codebase.
The symbiotic SPL paradigm can offer several advantages. Firstly, it allows for a more

dynamic and responsive development process, as improvements in the donor codebase
can be quickly assimilated into the host products. Such strategy can ensure that the SPL
remains up-to-date with the latest enhancements, bug fixes, and optimizations.
Secondly, the symbiotic approach enhances the modularity and maintainability of the

SPL. By encapsulating features within transplantable over-organs, the donor codebase
can evolve independently, enabling the introduction of new features or improvements
without affecting the host products. This modularity promotes code reuse can facilitate
maintenance, and simplifies the management of feature variations.
The symbiotic SPL facilitated by Foundry opens up new possibilities for SPLE. It

combines the advantages of independent development in the donor codebase with the
systematic and automated feature integration provided by SPL.

5.2.5 Supporting Controlled Maintenance and evolution of SPL

Maintaining assets and products within an SPL poses significant challenges, and these
challenges are further amplified when incorporating organs as assets. When individual
organs are maintained within the platform, there is a risk of introducing errors into the
product line or the derived products. This is due to the shared elements, such as variables
and functions, among the maintained organ and other organs within the product line.
Re-implanting the changed organ can be a potential solution, but a critical problem arises
when attempting to match the changed organ with a different version already transplanted
in the target product.
We propose two approaches to address this problem and effectively maintain a created

product line. The first approach involves re-transplanting the features if the original source
codebase undergoes changes. By doing so, the changes in the organ can be synchronized
with the product line, ensuring consistency and avoiding potential errors. The second
approach entails maintaining the extracted over-organs and re-running the adaptation
and implantation stages as needed. This allows for iterative updates and modifications
to the product line, as well as, its continuous evolution and alignment with changing
requirements.
To facilitate continuous deployment, the implantation process in Foundry can be

configured to involve each organ with feature flags. This practice connects new, unre-
leased code to the production environment while keeping it hidden from users. Once a
transplanted organ is deemed ready for production, developers can disable the feature
flag, revealing the new organ or its changes to the users.
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5.2.6 Providing a Variability Mechanism through Organ Transplantation

Foundry introduces a powerful variability mechanism that leverages the transplantation
of organs into product bases. This mechanism offers developers the flexibility to include
or exclude specific features, enabling the instantiation of different products at any given
moment by simply transplanting the corresponding organs into the target product.
This approach addresses the challenges associated with maintaining and evolving a

product line that consists of a vast number of individual products. Instead of managing
and maintaining a multitude of product configurations, Foundry streamlines the process
by allowing developers to selectively incorporate desired features through organ trans-
plantation. This variability mechanism eliminates the need for extensive feature toggle
management and reduces technical debt related to the presence of unremoved feature
toggle.
Moreover, Foundry ensures that the source code structure of the product base re-

mains unchanged during the transplantation process. This preservation of the product
base’s integrity enables smooth integration of the transplanted organs without introduc-
ing unnecessary complexity or conflicts.
The provided variability mechanism brings several benefits to the software engineering

process. Firstly, it simplifies the management of feature configurations, making it easier
to develop, maintain, and evolve the product line. Instead of manually toggling feature
flags and dealing with complex branching structures, developers can rely on organ trans-
plantation to achieve the desired product variations.
Secondly, by avoiding the proliferation of feature toggles, Foundry mitigates tech-

nical debt associated with the accumulation of unused or obsolete code. The variability
mechanism ensures that only relevant features are included in the product, reducing code
complexity and improving overall code quality.
Furthermore, the variability mechanism introduced by Foundry fosters modularity

and reusability. The transplantation of organs encapsulates the implementation of specific
features, promoting code reuse across different products within the product line. This
modular approach enhances maintainability, as changes or updates to a feature can be
easily propagated by transplanting the updated organ into the relevant products.

5.3 CHAPTER SUMMARY

In this chapter, we presented prodScalpel, an automated solution designed to ad-
dress the challenges associated with building product lines through ST. We provided an
overview of prodScalpel’s architecture, highlighting its key features and functionali-
ties. We also discussed the specific challenges faced in the process of reengineering systems
into SPLs and how prodScalpel tackles those challenges. Furthermore, we elaborated
and discussed some promising opportunities for SPLE provided by our ST approach.
The following chapter delves into a comparative study conducted to evaluate the

capabilities of our approach in supporting the SPL reengineering process, as well as
identifying any remaining open issues when compared to existing solutions. The primary
objective of this study was to provide initial empirical evidence that supports the claim
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that adopting ST for SPL reengineering is a promising research direction.
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Chapter

6
COMPARATIVE STUDY ON AUTOMATED SPL

REENGINEERING PRACTICES VIA ST

Many contributions (including industrial experiences) can be found in the reengineering
literature [7]. Nevertheless, there is a lack of automated approaches covering the whole life
cycle of reengineering for a product line [7]. Most existing solutions are responsible for the
dependency on expert knowledge, manual labour or by using a combination of multiples
tools, which is one of the reasons why the reengineering process is still a laborious, time-
consuming, and error-prone task that requires a high upfront investment before the first
product is produced from an SPL[44, 115, 7].
We argue that ST can be a feasible technique for migrating existing systems to product

lines. However, to be able to explore it as a promising new research direction with appli-
cation in reengineering for SPL, we need to compare it with existing practices regarding
its support to the reengineering process and limitations.
In this sense, we conducted a comparative study in the existing literature to evaluate

the feasibility of using the approach from the analyse of: (i) how software transplantation
supports SPL reengineering phases, and (ii) how it provides a solution for addressing SPL
reengineering open issues in comparison with the existing solutions.
The remained of this chapter consists of four sections. Section 6.1 introduces the

exploratory study goal and research questions. Section 6.2 gives an overview on exist-
ing approaches and main open issues. Section 6.3 discusses the analysis of the study
and threats to validity. Section 6.4 draws concluding remarks and points out future
directions.

6.1 THE COMPARATIVE STUDY

This section presents the design, objectives, research questions and selection criteria con-
sidered in our comparative study.
Assunção et al. [7] described many open issues on SPL reengineering research includ-

ing the following: (i) the implementation of automation and tool support, (ii) the use of
different sources of information, (iii) need for improvements in the feature management,

77
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(iv) the definition of ways to combine different strategies and methods, (v) lack of so-
phisticated refactoring, (vi) need for new metrics and (vii) measures and more robust
empirical evaluation [7].
In order to demonstrate the potential to use autotransplantation as an automated

solution to address the open issues, we compare it with the current reengineering practices
for extracting an SPL from existing code bases. Figure 6.1 shows the comparative study
design.

Figure 6.1: Comparative Study Design.

This investigation can support our proposal as it enables us to gain a better under-
standing and provides evidence of how AutoST can serve as a viable solution for SPL
reengineering projects. We acknowledge the significance of conducting new studies to
compare our tool with other solutions using real-world systems in the evaluation pro-
cess. Such studies would allow us to compare the reengineering process and the resulting
product line. However, a common challenge lies in the absence of a framework for com-
paring reengineering approaches [7], especially frameworks that can effectively handle the
reengineering of systems implemented in C, as supported by our tool.

6.1.1 Objective and Research Questions

The objective of this study is to analyse and discuss our proposal in comparison with the
current practices in the field of reengineering of systems into SPL, thereby demonstrating



6.1 THE COMPARATIVE STUDY 79

the potential of autotransplantation technique for addressing existing open issues. Thus,
the following questions were established:

• RQ1. How does multi-organ transplantation (as realised in Foundry) automate
existing reengineering practices for extracting an SPL from a codebase? There al-
ready exist a range of tools [7] that support the reengineering of system variants
into SPLs! (SPLs!), generating refactored code as an output. Demonstrating that
a new solution can advance the current state of reengineering practices to attain an
SPL requires a comparative analysis among the existing solutions. Hence, we have
employed the existing reengineering approaches from the literature to address our
first research question. We have selected a collection of approaches that also pro-
pose automated solutions for the SPL reengineering process and produce refactored
source code as the output.

• RQ2. Do the transplantation approach for obtaining SPL address any of the open
issues in the field of reengineering of systems variants into SPL? If so, how does
it address such challenges? It is important to understand if AutoST implements
any solutions to the open issues identified by [7]. This question aims at analyzing
what/how the current limitation of the existing solutions can be addressed by our
approach.

6.1.2 Selection Criteria

Our main source of information was the systematic mapping performed by Assunção et
al. [7]. According to the authors, from the total of 119 existing studies for guiding the
SPL reengineering process, only 19 of them the authors provide automated support to
their methods, considering tools that are specific for the reengineering process.
Many proposed tools have focus on more than one phase. Nevertheless, most part of

them only covers the detection and analysis phases (8), Variability to Aspect tool [43],
CoDEx Tool [131], FeatureMapper [132, 133], MapHist Tool [134], ExtractorPL [135],
AUFM Suite [136], FMr-T [64], ArborCraft [137]; followed by one (1) that gives support
only to the analysis phase, ETHOM [138]; and Model Driven SaaS [29] tool that pro-
vides support only to the transformation phase (1). Thus, a total of eight (8) remaining
tools cover both three phases, ThreeVaMar [62], Recfeat [138], Clone-Different [139],
SPLevo [140], Theme/SPL [141] BUT4Reuse [142], ECCO Tool [9], JfeTkit [143].
It is important to observe that the transformation phase allows the actual systematic

reuse of the artefacts, and source code refactored is the most common outputs [7]. Source
code refactored is an output provided to allow a better organization of the features with
the SPLE. Thus, in order to select the most relevant set of tools regarding its support
of the entire process of reengineering and eliminate studies which do not address the
research questions, the following criteria were used to form the final set of tools included:

1. The tool must cover all phases of the reengineering process, i.e., detection, analysis
and transformation;

2. The proposed tool must produce source code refactored as output; and
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3. Tool considering code as input artefact.

Finally, a total of six remaining tools were selected based on these criteria and com-
pared with our proposal. We analyzed the selected tools by looking at its publication,
their documentation such as development documents and user manuals, and available
extensions (such as plugins) in those tools which have an extensible architecture.

6.2 TOOL SUPPORT FOR REENGINEERING OF SYSTEMS INTO SPL

The main reason to provide automated support to the reengineering process is to reduce
the manual effort [142, 144]. Moreover, an automated process can improve the overall
quality of the reengineering process since this process is a labour-intensive task and error-
prone [145]. In this sense, authors argue for the necessity of providing tool support, such
as [146, 147, 148, 149]. However, in many cases, the reengineering researchers expose only
an intention to provide an automated solution to their methods [7]. Further studies should
envisage the implementation of tools to automate to support the entire reengineering
process.
We present a summary of the tools selected and analysed in this study that were

used for our approach evaluation. A brief description of the tools and corresponding work
references are presented below:

• Recfeat [138]: a prototype tool developed to support the use of the history-
sensitive heuristics for the recovery of features in code of degenerate program fam-
ilies. RecFeat tool is used to classify the features’ code elements of the selected
program families. Once the analysis of the family history is carried out, the feature
elements are structured as Java project packages; they are intended to separate
those elements in terms of their variability degree;

• Clone-Different [139]: a Clone Differentiator tool that automatically character-
izes clones returned by a clone detector by differentiating Program Dependence
Graph of clones. The tool complements clone detection with semantic differenc-
ing of reported clones. It is able to provide a precise characterization of semantic
differences of clones.

• SPLevo [140]: a software development tool that supports the consolidation of cus-
tomized product copies into a SPL based on program dependencies as represented
in Program dependency graphs. It reduces the effort of consolidating developers
when identifying dependent differences and deriving clusters to consider in their
variability design;

• BUT4Reuse [142]: (Bottom-Up Technologies for Reuse) a tool-supported bottom-
up SPL adoption framework specially designed for genericity and extensibility. This
tool provides technologies for leveraging commonality and variability of software
artefacts.
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• ECCO Tool [9]: (Extraction and Composition for Clone-and-Own) automatically
locates reusable parts in existing systems and compose a new system from a selec-
tion of desired features. It gives support to an approach to enhance clone-and-own
that supports the development and maintenance of software product variants. By
following this approach, a software engineer selects the desired features, and ECCO
finds the proper software artefacts to reuse and then provides guidance during the
manual completion by hinting which software artefacts may need adaptation;

• JfeTkit [143]: (Java Feature Mining Toolkit) extracts featured code from the soft-
ware legacy. JFeTkit is a compound system, which uses several existing software
analysis libraries, including BCEL (Byte Code Engineering Library), Crystal3 anal-
ysis framework and JDT (Java Development Toolkit). JFeTkit collects the infor-
mation generated using these third-party APIs and annotates software code legacy
using a top-down feature mining framework by for SPL proposed in [143].

6.3 RESULTS AND DISCUSSION

Even with numerous researches and advancements, open issues remain in the field of
reengineering (with focus on SPL). Assunção et al. [7] identified these research gaps and
limitations. From these, they reported the research opportunities and trends uncovered.
To answer both of our research questions, we analysed which open issues existing in
reengineering practices are addressed by existing tools and compare them with the so-
lution implemented in prodScalpel using ST technique. We summarize the results in
Table 6.1.

Table 6.1: Comparison of the prodScalpel with existing reengineering solutions to SPL
regarding the strategies used and open issues addressed based on [7].

Tool Strategies Input Open Issues
Exp. Stat. Dyn. IR SB Test Req. Des. Code. 1 2 3 4 5 6 7 8

Recfeat ✓ ✓ ✓
Clone-Different ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SPLevo ✓ ✓ ✓ ✓ ✓
BUT4Reuse ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ECCO ✓ ✓ ✓ ✓ ✓ ✓
JfeTkit ✓ ✓ ✓ ✓ ✓
prodScalpel ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Open issues:

1. Automation and tool support: the first reason to provide tool support for the reengi-
neering process is to reduce the manual effort [142, 144]. Despite the need to auto-
mate the entire reengineering process, existing solutions provide support for specific
tasks, still requiring manual effort. Additionally, Assunção et al. [7] highlighted that
there is still no tool for feature aggregation and abstraction. prodScalpel was im-
plemented to be an automated solution for analysis, detection and transformation
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tasks, including with automated support for feature aggregation using GP and clone
detection techniques. Our solution automates the process of feature location and
dependency handling when the reengineering process requires the transplant of two
or more features from the same donor.

2. Exploiting multiple sources of information for reengineering: another research gap
is exploiting different information sources during the reengineering process. For
example, a research opportunity is using test cases, commonly available in most
projects, in conjunction with other sources to determine features [61]. Many studies
generate feature models as output but, in general, constraints, such as one feature
requires or excludes another feature, are not considered [7]. Two of the existing
tools use more than one source, Clone-Different and BUT4Reuse. Our ST solution
uses source code as input, but the process feature extraction is also guided by test
suite observation.

3. Feature management: feature management is an important task in the reengineer-
ing process, responsible for providing variability among the features that compose
the product variants. Many studies generate feature models as output but, in gen-
eral, constraints, such as one feature requires or excludes another feature, are not
considered [7]. The prodScalpel integrates two key techniques, namely Program
slicing [20] and Observational slicing in GP [90], to enable the extraction, reduc-
tion, and adaptation of over-organs. Program slicing, a well-established technique
in software engineering, is employed to extract the relevant code fragments com-
prising an over-organ from the donor codebase. This process isolates the specific
statements and dependencies necessary for the over-organ’s functionality.

In addition to program slicing, prodScalpel incorporates observational slicing, a
technique based on GP, to further refine and adapt the extracted over-organ. Obser-
vational slicing, as introduced in reference [8], leverages GP’s capabilities to reduce
the size and complexity of the over-organ while preserving its essential functionality.
By applying genetic operators and fitness evaluation based on observations of the
over-organ’s behaviour, prodScalpel guides the adaptation process to produce a
streamlined and customized version of the over-organ.

4. Hybrid Approaches: hybrid approaches can improve the results when compared with
the application of only one type of strategy [7]. The combination of techniques is one
of the main characteristics of our solution. Regarding the selected solutions, only
SPLevo consider the combination of dynamic and static analysis strategies. There
is still no tool for that consider search-based techniques as a strategy to reengi-
neering process. prodScalpel has been implemented to extract and transform
features using a form of dynamic observational strategy, close to dynamic analysis,
in combination with GP.

5. Refactoring techniques: Assunção et al. [7] highlighted the need for new refactoring
techniques. The Search-based strategy, for example, has been little explored in the
area of SPL [11] and has the potential to exploit as a combination of different
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strategies [10]. Regarding new refactoring techniques, our solution explores ST as
a new approach to obtain SPL. Regarding the transformation phase, Olszak and
Jørgensen point out the labour-intensive task of manually annotating feature entry
points [60]. Full automation of the process has been considered unrealistic due
to the complexity of the task [150, 151, 152]. Even that existing techniques for
locating a feature’s implementation [75, 76, 77], domain experts still need to confirm
whether found code fragments belong to the feature and then adapt it to the product
line [151].

6. Need of usage guidelines: many authors argue the necessity of the creation of guide-
lines to formalize the tasks of their proposed approaches [7]. In a similar way, Kang
et al. point out the need for guidelines for evaluating product line assets [153]. Half
of the solutions selected propose some kind of guideline that formalize the tasks
predict in their proposed approaches. Foundry provides a detailed guideline for
automating the extractive SPL reengineering process. Such guideline can, with suit-
able tailoring, be applied in a wide range of projects and domains. Additionally,
Foundry proposes three validation tasks that together can provide a suitable form
to validate the productized products.

7. New Measures and Metrics: measures and metrics are important for the reengineer-
ing process [7]. Nöbauer et al. [154], for example, exposed the need for a similarity
calculation method that allows the identification of commonalities among existing
products. By applying Foundry, new measures and metrics can be introduced and
integrated into the reengineering process for SPL based on ST.

The possibility of extracting, executing and testing over-organs separately and out-
side their donor codebase opens up opportunities for extracting new metrics and
measurements that provide deeper insights into the behaviour and impact of indi-
vidual functional features. This capability allows for more granular analysis of the
features and their impact on the overall software system. For example, an analysis
of individuals of over-organs may be used to calculate similarity scores, identify
commonalities among existing products, measure code reuse, assess modularity, an-
alyze feature dependencies, and capture other relevant aspects. These metrics can
contribute to a better understanding of the variability, performance, and quality
aspects of an SPL.

Additionally, Foundry’s transplantation platform provides a controlled environ-
ment where the reengineered codebase and its variations can be analyzed and eval-
uated. This platform can serve as a data source for applying and validating the
new measures and metrics based on organs characteristics, allowing researchers and
practitioners to assess the effectiveness of the reengineering process and the impact
of different strategies.

8. More Robust Empirical Evaluation: Researchers acknowledge the importance of us-
ing real case studies. However, the most of authors of tooling support for SPL reengi-
neering expose only an intention to provide empirical evaluation using their ap-
proaches in different domains and with complex case studies are [7]. Both Foundry
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and prodScalpel have been validated on two case studies using open-source sys-
tems (Chapter 7). Additionally, we performed an empirical experiment comparing
the performance of our tool in comparison with the performance of SPL experts.
Nevertheless, we acknowledge the importance of providing more evidence for them
generalisation and investigating its applicability in an industrial context.

In summary, although approaches to conducting the reengineering process with a focus
on SPL have been proposed [7], they provide incomplete solutions to transform those
single products into an SPL by focusing on part of the process [7]. Many approaches lack
the means to consolidate different features present in more than one product, other has
not automated support to the phases of the process, or fail by not exploiting multiple
sources of code for reengineering [7]. Moreover, the existing solution [9] only cover the
reuse of variants from related systems or from the same family what limit the potential
of existing codebases reuses for SPL. On the other hand, AutoST for SPL reengineering
emerges as an ambitious initiative that could, in the future, facilitate the reengineering
of systems even across different languages and platforms.
We believe that with more research and suitable tailoring, AutoST approach can make

the reuse of one or more products to generate a new one possible by transplanting features
from pre-existing systems. Open source projects, for example, can enable every developer
the opportunity to share codes, allowing them to migrate an already existing code from
a pre-existing source to their own SPL project. In the same way, software organisations
could derive new software products from its existing systems portfolio.

6.4 CHAPTER SUMMARY

This chapter provides a comprehensive comparative study aimed at synthesizing evidence
regarding the potential of ST in migrating existing systems to SPLs. By examining exist-
ing practices and their limitations, we sought to assess the effectiveness and advantages
of ST as an alternative approach.
The comparative study involved an analysis of various factors such as the existing

reengineering processes, practices, migration techniques, and the challenges faced in tra-
ditional practices. By contrasting these practices with the principles and concepts of ST,
we aimed to identify the unique contributions and benefits that ST brings to the field
of SPL migration. As outcoming, we were able to highlight the potential of ST as a
promising methodology for system migration based on the ST principles.
Next chapter presents a multiple case study that serves as a practical evaluation of the

Foundry approach and its supporting tool, prodScalpel. The case study involves the
generation of two distinct products from four real-world systems, providing insights into
the applicability, effectiveness, and challenges associated with their adoption in real-world
context.
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7
THE CASE STUDIES

While various approaches and techniques for reengineering of systems into SPL have
been proposed, there is a recognized need for empirical studies that provide concrete ev-
idence of the benefits, challenges, and trade-offs associated with these solutions [7]. Such
empirical evaluations can contribute to a deeper understanding of the impact of reengi-
neering strategies on the quality, maintainability, and productivity of software software
development process.
In this context, this chapter presents a multiple case study [155] conducted to as-

sess the applicability and effort required to generate new product variants from existing
systems using Foundry. We validated Foundry and prodScalpel through two case
studies involving real-world systems. We employed three donor systems with a focus on
assembling two new systems, each specialized with a set of organs transplanted with the
support of our tool.
These case studies were influenced by Yin [155] and based on the guidelines defined

by Brereton, Runeson and Höst in [156, 157]. These references are important for scientific
rigor and possibility for replications. Yin [155] describes case study research as an em-
pirical inquiry that investigates a contemporary phenomenon within its real-life context.
“A case study is a suitable research methodology for software engineering research since
it studies contemporary phenomena in its natural context” [157].
The remaining of this chapter is organized in three sections. Section 7.1 presents

the design of our case studies. Section 7.2 discusses and results of our empirical study,
including the threats to validity. Finally, Section 7.3 concludes the chapter.

7.1 CASE STUDIES DESIGN

Case study research involves an in-depth investigation of a particular phenomenon within
its real-life context, focusing on specific cases or instances. In our study, we aim to evalu-
ate our proposed approach and tool for generating new product variants from real-world
systems. By examining multiple product bases and donors, we can assess the feasibil-
ity and effectiveness of the transplantation process for SPL reengineering across different
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systems and domains. Furthermore, our research questions involve the exploration of spe-
cific aspects related to the case, such as effort estimation, characteristics of features, and
current limitations. This indicates a focus on examining and understanding a particular
case or set of cases in depth, which is characteristic of a case study research approach.
Yin [155] defined four distinctions in designing case studies: (1) single or (2) multiple-

case designs which involve the number of case studies to be carried out and (3) holistic
or (4) embedded which involves the number of units of analysis to be studied within a
case study. The choice between holistic and embedded case study depends on the research
goals of the study.
Based on the [158], our case study follows a multiple-case design within a holistic

design approach. Multiple-case design because the study involves two text editors, VI
and VIM, as the product bases, and multiple donors from different domains, including
code analysis software (GNU Cflow) and other text editors (kilo, VI, and VIM ). By
examining multiple cases (product bases and donors), we could compare and evaluate
the effectiveness of the transplantation process across different systems and domains. It
is a holistic design by considering the entire case as a whole, including all relevant aspects
of the transplantation process. They focus on the evaluation of the proposed approach
and tool by generating new product variants from real-world systems using ST for SPL
reengineering. The features identified for transplantation, the preparatory steps (removing
dead-code and reducing hosts to their basic form), the transplantation procedure, and
the experimental environment are all part of the holistic design approach.
According to Herriott and Firestone [159] stated in [155], “The evidence from multiple

cases is often considered more compelling, and the overall study is therefore regarded as
being more robust”. A multiple case study approach increases the external validity of the
research through the implied “replication” inherent in its design [155].
The replication approach to multiple-case studies is illustrated in Figure 7.1. It in-

dicates that the two initial steps in designing the study consist of theory development
and then shows that case selection and the definition of specific measures are important
steps in the design and data collection process. Based on the design defined, each case
is individually performed. Each individual case study consists of a whole study, in which
convergent evidence is sought regarding the facts and conclusions for the case; each case’s
conclusions are then considered to be the information needing replication by other indi-
vidual cases. For each individual case the preparation, data collection, and analysis are
carried out. In the final of each study, an individual case report is written. Finally, all
individual cases are analyzed and the research may be concluded. This analysis consists
in cross-case analysis where patterns are searched and conclusions can be inferred. The
loop represented by dotted line corresponds to feedback which may occurs in situations
where important discovery occurs during the conduct of one of the individual case studies
- for instance, one of the cases did not in fact suit the original design.
Another characteristic of research methodology is related with its flexibility. According

to (Robson, 2002), the research process may be characterized as fixed or flexible. In a fixed
design process, all parameters are defined at the beginning of the study. In a flexible design
it is possible to modify or customize these parameters. It may occur when the case study
is being applied, and new information is provided, or when new data is gathered. For our
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Figure 7.1: Case Study Method
The figure illustrates the case study method as described by Yin in [155], providing a
visual representation of the key components and stages involved in conducting a case

study research in software engineering.

research, we applied the fixed design option.
During the case study design process, a protocol was created. This protocol was in-

fluenced by [156] and complemented with the advises presented by Yin in [155], and
Runeson and Höst in [157]. The protocol described the execution of the case study, what
methods would be used for data collection and what analysis method would be used. The
first version of the protocol was developed and revised with members of the RiSE Labs1.
It is important to highlight that these researchers did not participate in the research.
The main improvements were related to define what methods would be used for data
collection and analysis.

7.1.1 Objective and Research Questions

The primary objective of this research study is to evaluate the proposed approach and
tool for generating new product variants from real-world systems, thereby demonstrating
the feasibility of ST for SPL reengineering. To achieve this objective, we have formulated
the following research questions:
RQ1. How much effort is required to generate products from a product line created

using prodScalpel? Considering the inherent complexity of the task, it is unrealistic to
expect the product derivation process to be instantaneous. However, it should be efficient
enough to be seamlessly integrated into the development cycle and exhibit advantages
over manual efforts. To answer this question, we have measured the time required for the

1http://labs.rise.com.br/
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transplantation process and quantified the number of lines of code (LOCs) transferred.
RQ2. Which features can prodScalpel effectively transplant? In this study, we

investigate the characteristics of features that can be successfully handled by prod-
Scalpel, as well as identify any limitations it currently faces. Given the inherent com-
plexity of the transplantation process, it is crucial to establish a clear understanding of
the current capabilities and limitations of prodScalpel in handling different types of
features.
By addressing these research questions, we aim to gain valuable insights into the time,

effort and limitations of the proposed approach and tool for generating product variants
through ST, ultimately contributing to the advancement of SPL reengineering.

7.1.2 Subject Selection

To define the context for performing the case study research, the first step was to identify
the most suitable codebases for composing the product lines. The selection of subject
systems for our case studies was based on four criteria aimed at providing a comprehensive
evaluation of the proposed approach and tool. These selection criteria were based on the
convenient sampling method Wohlin et al. [160].
Diversity and variation: The selection of subjects should aim to encompass a range

of diversity and variation to provide a comprehensive understanding of the phenomenon
under investigation. This can include diversity in terms of domains, sizes, complexity,
functionality, or other relevant characteristics.
Representativeness: The selected subjects should be representative of the broader

population or the specific context under study. They should capture the characteristics
and variations found in the target population or application domain.
Feasibility and accessibility: Practical considerations, such as availability of data,

availability of use and modification, access to organizations or systems, and resources
required for data collection, should be taken into account during subject selection.
Established systems: Established systems are typically used in real-world scenarios

and have a significant user base. Studying such systems can provide insights into practical
challenges and solutions.
Base on these criteria, we present the systems used in Table 7.1. We chose two text

editors, VI and VIM, as product bases. These text editors serve as the foundation upon
which the transplantation process is performed. By selecting widely used and established
text editors, we increase the relevance of your case study.
To illustrate that donors can come from different application domains, we included

GNU Cflow one of the donors. GNU Cflow, being a call graph extractor from C source
code, represents a distinct domain compared to the text editors. This demonstrates that
the transplantation process can be applied to diverse types of software systems. In addi-
tion to using donors from different domains, we also included VI and VIM as donors as
well as another text editor, kilo. This highlights the possibility of using donors from the
same system as the product base or from different systems within the same application
domain. It showcases the flexibility of the transplantation process and its ability to handle
variations within a specific domain.
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Table 7.1: Donors and hosts corpus for the evaluation.

Column Features shows the number of features identified.
Subjects Type Size (LOC) #Features
Kilo Donor 804 17
CFLOW Donor 4,274 54
VI Donor 20,292 36
VIM Donor 839,438 176
VI Product Base 20,223 36
VIM Product Base 737,466 117

By selecting different subject systems allowed us to assess the effectiveness, appli-
cability, and versatility of prodScalpel in achieving products. We used subjects from
different domains and with a wide range of sizes to give evidence that prodScalpel can
also be used to achieve a product line from a distinct set of usage scenarios.
We identified the following features as possible desired features in a new editor: output

from CFLOW, enableRawMode from kilo, vclear from VI, and spell check and search
from VIM.

7.1.3 Procedure and Execution

In the initial phase of the study, prodScalpel was employed to automatically eliminate
dead-code from both the donors and host codebases. Additionally, the host codebases
underwent a reduction process where optional features were removed, resulting in a sim-
plified version. This preparation phase ensured that both the donors and host were ready
for the transplantation process.
Subsequently, the researchers introduced organ entry points in the donor systems and

each target implantation point in the product base. The researchers also implemented
corresponding test suites for each organ. Thus, prodScalpel was executed to facilitate
the localization and extraction of organs from the donor. Furthermore, it was used to
automatically transform each organ, while ensuring compatibility with the specific con-
text of their target sites in the product bases and subsequently implanting them in the
beneficiary’s environment.
The automated organ transplantation process was repeated 20 times to account for

the heuristic nature of the over-organ adaptation process. The runtimes were measured
on a system with an Intel Core 3.1 GHz Dual-Core Intel Core i5 processor, 16 GB of
memory, running MacOS 10.15.4.
The study measured the average number of lines of code transplanted and the average

runtimes for the transplantation process. The measurement of the average is justified
by the inherent variability that can arise from the heuristic nature of the over-organ
adaptation process performed by GP algorithm. Since the process involves heuristics and
adaptations, each organ transplantation may result in a different number of code lines
being transplanted and varying runtimes. This variability can stem from factors such as
the complexity and compatibility of the organs with the target sites, the specific context
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of the transplantation, and the interactions between the transplanted organs and the
beneficiary’s environment.
By measuring and reporting the average number of lines of code transplanted and

the average runtimes, the study captures this inherent variability and provides a more
comprehensive understanding of the overall outcomes and performance of the transplan-
tation process. It allows for the identification of tendencies and general characteristics
of the process, while also acknowledging that individual transplantation instances may
exhibit different results.

7.2 RESULTS AND DISCUSSION

In this section, we present the results of our study and provide a discussion and interpre-
tation of these results. We address each of the research questions outlined in the study
and offer insights and implications based on the presented findings.

7.2.1 Results

The case studies provided initial evidence that Foundry implemented by prodScalpel
can be successful in automatically building product variants by combining features from
real-world systems. Table 7.2 displays the average runtime and the number of code lines
transplanted for each organ during the transplantation process. The postoperative prod-
ucts, labeled as Product A and Product B, have 28k LOC with 40 features and 745k
LOC with 121 features, respectively. The donors contributed three feature variants to
the product line, resulting in approximately 7.8k LOC for Product A and 8.1k LOC for
Product B. It is worth noting that one feature was removed and re-transplanted in the
VI editor.

prodScalpel successful integrated features from donors into two product lines, re-
sulting in the generation of distinct product variants.

To address research question RQ1, the study focused on analyzing the average time
required by prodScalpel to transplant the three features into both the VI and VIM
editors. The transplantation process took an average of 4 hours and 31 minutes per
1KLOC for the VI editor, and 4 hours and 40 minutes per 1KLOC for the VIM editor.
These findings provide insights into the time efficiency of the transplantation process and
highlight the comparable effort required for transplanting features in different product
lines.

On average, prodScalpel spent 4h31min/1KLOC for transplanting three features
into VI, and 4h40min/1KLOC for transplanting the same three features into VIM,
demonstrating the effort required for generating products from a product line created
using prodScalpel.



7.2 RESULTS AND DISCUSSION 91

Table 7.2: Case studies results

Multi-organ transplantation results to generate products A and B. Columns Trans.
Time shows the time (Sys+User) spent on the organ transplant process in which column
Sys. correspond to the prodScalpel’s execution time; column User correspond to the
user time spent in preoperative stage and augmenting the host’s regression test suite
(regression++). Product A uses a reduced VI editor as a product base, while Product B
was derived by transplanting features from the donors into the reduced VIM editor.

Donors Number of Trans.time(min)
LoC Functions Files Sys. User

Kilo „963 35 4 „86 32
CFLOW „4,822 37 8 „344 123
VI „1,983 5 15 „1,234 184
Product A „7,768 77 27 „1,664 339
Kilo „981 35 4 „94 32
CFLOW „4,898 37 8 „428 123
VI „2,234 5 15 „1,294 184
Product B „8,113 77 27 „1,890 532

In response to research question RQ2, an aditionals transplantation processes were
conducted to transplant two more features, namely spell check and search, which en-
compassed a substantial amount of code (104 KLOC and 153 KLOC, respectively). How-
ever, the effectiveness of prodScalpel in this regard was influenced by its reliance on
Doxygen [120], a source code documentation generator, for generating call graphs. Lim-
itations inherited from the underlying slicing tools, specifically the imprecise generation
of call graphs when handling function pointers, presented challenges for prodScalpel
in automatically extracting these larger organs from VIM. Although a significant part of
over-organ sliced is pruned from over-organ during GP-refinement, it continues retaining
unnecessary instructions. How future work, we can explore more precise techniques, such
as Dynamic analysis [55] and other code manipulating tools, to enhance the efficiency
and accuracy of the slicing process.

While manual efforts could potentially overcome these limitations, our tool’s current
capabilities prevented fully automated extraction of large organs implemented with func-
tions pointers.

Although prodScalpel is able to successfully transplant smaller organs from donors
into the product base, faces limitations when dealing with larger organs due to im-
precise call graphs, suggesting the need for further improvements and investigation
into more precise slicing techniques.
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7.2.2 Discussion

The study’s results highlight the contributions made by the donors in terms of feature
variants and lines of code added to the product line. The donors, namely Kilo, CFLOW,
and VI, provided feature variants that were successfully transplanted into the product
base, resulting in the generation of two distinct products, A and B.
Product A, derived from the reduced VI editor, incorporated three feature variants

from the donors. These feature variants added approximately 7.8k lines of code to the
product, enhancing its functionality and expanding its feature set. The transplantation
process involved careful extraction, transformation, and implantation of the organs to
ensure compatibility with the product base.
Similarly, Product B was derived by transplanting features from the donors into the

reduced VIM editor. This resulted in the incorporation of three feature variants into
the product, contributing around 8.1k lines of code. The transplantation process, similar
to Product A, involved the localization, extraction, and transformation of the organs to
seamlessly integrate them into the VIM editor.
These results allows for an evaluation of the effectiveness of the transplantation process

in incorporating feature variants from different donors into the product line. It demon-
strates the feasibility of integrating features from diverse sources and showcases the po-
tential for creating product variants with enhanced functionality by leveraging existing
systems.
In the context of software engineering context, the ability to transplant features from

donors across different domains and integrate them into a product base opens up pos-
sibilities for reusing existing functionality and accelerating product development. This
approach reduces the need for manual effort in feature implementation, saving time and
resources while maintaining the integrity of the resulting products. However, it is im-
portant to acknowledge the limitations encountered during the transplantation process,
such as the imprecise call graphs when dealing with function pointers, which affected
the extraction of larger organs from the VIM editor. This highlights the need for future
research and improvements in refining the implementation of program slicing technique
and overcoming such limitations.
In conclusion, the study’s results demonstrate the successful integration of features

from donors into the product line, resulting in the generation of distinct product variants.
This showcases the potential of ST as an effective approach for product development
and highlights avenues for future research to enhance the precision and efficiency of the
transplantation process.

7.2.3 Threats to Validity

The relatively small number and diversity of systems used for transplantation pose an
external threat to validity. However, we tried to mitigate it by constructing a possible
real-world scenario, i.e., transplantation of features that would be useful in production of
new text editors.
In terms of internal threats, we are limited by abilities of the tools we use, in particular,

Doxygen, for call graph construction, and TXL for program transformation. We also use
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testing as a means of validating our approach, which cannot provide a formal proof of
its correctness. However, testing is a standard approach in evaluating code in real-world
scenarios due to its high scalability.
Additionally, our case studies are limited to a specific implementation technique and

specific code-transplantation scenarios; generalization to object-oriented languages and
others requires further investigation.

7.3 CHAPTER SUMMARY

We conducted a multiple case study to assess the viability of the proposed approach by
generating two product variants through the transplantation of features extracted from
three real-world systems. Although preliminary, the findings of our study are promising.
Our research provides initial evidence that that Foundry as implemented by prod-
Scalpel is a feasible approach for developing product variants with minimal human
intervention.
The subsequent chapter concludes the experimental evaluation, which aims to analyze

the effectiveness and efficiency of our approach in comparison to the manual process of
deriving software products from existing systems, as carried out by experts in SPL.





Chapter

8
EXPERIMENTAL EVALUATION

In the previous case study, we showed the viability of our software transplantation ap-
proach, implemented in prodScalpel, to generate software product lines from the ex-
isting codebase. Although the validation of the approach is based on empirical evidence,
it is still important to test its efficiency by comparing it with other tools used to product
line migration. Unfortunately, tool support for the reengineering process is limited, in
general, they give support for specific activities, such as feature location, refactoring or
quality assurance [7, 99]. To the best of our knowledge, there is currently no comparable
tool that manages to transplant features from distinct donors systems written in C to
generate a product line, remaining to us analysing it concerning to human effort. Thus,
we conducted an experiment based on Wohlin et al. [160], that reflects a real-world pro-
cess of product line migration from existing codebases [35]. The obtained results make
us to appreciate as a promising approach.
The remainder of this Chapter is organized into four sections. In Section 8.1, we

detail the experiment design by stating our research objectives, research questions, met-
rics, instrumentation, hypotheses and methodology applied. Section 8.1.8 highlights the
data collecting process while Section 8.2 discusses and results of our empirical study.
Additionally, this Chapter includes a subsection for the threats to validity Section 8.3.
Finally, Section 8.4 presents the Chapter summary.

8.1 EXPERIMENT DESIGN

The design of our experiment follows the guidelines presented in Wohlin et al. [160]. we de-
tail the experiment design by stating our research objectives, research questions, metrics,
instrumentation, hypotheses and methodology applied. The stages of the experimental
study are: design, preparation, collection of data, and analysis of data.

8.1.1 Goal

The goal of this experiment is to analyse the effectiveness and efficiency of our approach
compared with the manual process of generating a product line from existing systems,
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performed by SPL experts. In accordance with the guidelines for reporting software en-
gineering experiments presented in [161], we have framed our research objectives using
the Goal Question Metric (GQM) method suggested by Basili [162]. Our goal is to:
Analyse of a software transplantation approach to derive product variants for the

purpose of comparison with respect to effectiveness and efficiency from the point
of view of the researcher in the context of an SPL project of product line migration
from real-world systems.

8.1.2 Research Questions

In order to achieve the stated goal, we defined two quantitative questions. These are
related to the data collected during the period that the experiment was executed. The
questions are described as follows:
RQ1.What is the accuracy of the proposed approach for automated migration of target

features to a product line? In this respect, we would like to understand how accurate our
approach is when automatically transferring all required code so that the target feature
can run in an emergent product line compared to the manual process.
RQ2. How much feature migration time can be gained using prodScalpel compared

to the manual process? With this question, we evaluate the time spent by SPL experts
to extract, adapt and merge features to derive new product variants in comparison with
the same process using prodScalpel.

8.1.3 Metrics

With the objective to answer the previous questions, we defined the metrics that must
be computed. For each question, it was defined one metric. These are described as follow:
M1. For the first question, the accuracy of our approach is computed by verifying if

prodScalpel successfully migrated new functionalities to a product line and it passed
in all the regression, augmented regression and acceptance test suites. Together, these
our test suites check whether or not the output of the transplanted feature is correct with
respect.
M2. For the second question, it is simply tracked down the time that is spent with the

activities to transfer the target features. Examples of these activities are code extraction,
adaptation, and merging. The time for each of these activities was individually collected.

8.1.4 Instrumentation

According to Wohlin et al. [160], the instruments for an experiment are classified in
objects, guidelines, and measurement. The object instruments of the experiment are two
donor systems: NEATVI 1, vi/ex editor for editing bidirectional UTF-8 text and Mytar 2,
an archive manager besides another version of NEATVI used as product base are used
in this experiment.

1https://github.com/aligrudi/neatvi
2https://github.com/spektom/mytar
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Manually inspecting code to transfer a feature to a product line is challenging, time-
consuming, and potentially tedious [163]. Therefore, we opted to work with small code-
bases to prevent participants from becoming fatigued. Otherwise, the experiment would
necessitate a significantly longer execution time.
Table A.1 gives more details about the object instruments used in this experiment.

These objects were available to download together with a script to automatic setup of
the environment.

Table 8.1: Experiment instrumentation

Scenario Donors LoC Target features LoC Host LoC
I NEATVI 5,276 DIR INIT 239

Product base 5,285
II Mytar 1,046 WRITE ARCHIVE 170

We recruited 20 SPL experts for the experiment that were allocated in two different
groups. We chose to allow participants to use their own work environment by avoiding
adaptation bias to a strange environment with the use of unknown tools.
Given this experiment involves subjects guidelines were needed to guide the partic-

ipants in the experiment. It includes a process description and systems documentation.
In addition to the guidelines, we provided a soft training on re-engineering to SPL and
clone-and-one by assure that all participants have the same idea about the experiment
objective.
For the measurement instruments, we used time sheets to track down the effort spent

with the necessary activities to transfer features from existing codebase to a product
base, as previously mentioned. In addition to the time sheets, we applied two forms
used to collect information about the experience of subjects is shown in Table 8.2 and
a post-survey used to better understand participants difficulties. Further details on the
operationalisation and instrumentation of this construct is presented later in the paper.

8.1.5 Hypotheses

Null hypothesis. Our null hypothesis determines that there is no benefit of using the
Foundry. That is, our approach cannot transplant features to generate product variants
with better accuracy than manual process or the payoff is not worth. The null hypothesis
is specified as follows:

H0: µ(accuracy with our approach) ă“ µ(accuracy with manual process)
µ(payoff with our approach) ă“ µ(payoff with with manual process)

Alternative hypothesis. The alternative hypothesis of this experiment determines
that our approach is a better option than manual approaches. That is, the proposed ap-
proach has higher accuracy and payoff. The alternative hypothesis is specified as follows:

H1: µ(accuracy with our approach) ą µ(accuracy with manual approaches)
µ(payoff with our approach) ą µ(payoff with manual approaches)
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8.1.6 Methodology

We answered our research questions by simulating an authentic reengineering process in
which two features needed to be transferred to a product line built on top of a product
base. The experiment design drew inspiration from documented real product-line migra-
tion scenarios [48, 7]. In Scenario I, we assembled a group of 10 SPL experts, each tasked
with manually transferring all portions of code that implement the feature

Before the simulation process, we conducted two pilot studies with 6 graduate students.
We used the pilot study results to determine the amount of time needed to execute our
tasks and the suitable size of features. This allowed us to estimate and plan the number
of participants we needed in the main study.
The pilot study also allowed us to assess whether the participants could properly

understand the subject systems and the tasks they should perform. We do not consider
the results of the pilot in our analysis.

8.1.7 Participants

After the pilot phase, we recruited a total of 20 participants (excluding the pilots): 2
undergraduates (Un), 9 master’s students (M), and 9 Ph.D. candidates (PhD). The ma-
jority of participants have over 5 years of experience in software product lines (SPLs) and
over 10 years of experience in software development. These participants come from ten
distinct universities (U1 to U10), and among them, analysts and developers are associated
with four different companies (C1, C2, C3, C4, and C5). To enroll these participants, we
reached out via email to professors from two universities who were affiliated with various
software reuse research groups, seeking recommendations for both current and former
members.
Before the experiment, we asked them to answer an online survey, which we used to

collect background data about their experience, mainly in software development and SPL.
According to our design, we created balanced groups(A and B) of participants to each
product line generation scenario based on their experience. Table 8.2 shows the details of
the participants involved in the experiment.

8.1.8 Operation

Before the participants receive their tasks, we introduced the experiment with a tutorial
about clone-and-own and reengineering of existing systems into SPL. The tutorial took
30 minutes on average.
We provided the participants with the same input as the one required for Foundry,

namely: feature entry points in the donor, a set of automated unit testing, the donor’s
source code, and a prepared product base with the target insertion point. Additionally,
they received a few-sentence description of each feature in the target system and the
system’s documentation with donor and host feature models. From those artifacts, they
get domain knowledge about the systems.
The direct costs of this experiment are related solely to the time spent by the re-
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Table 8.2: Details of participants’ expertise (in years) and division into groups.

Group A worked on scenario I, transplanting a feature from different versions of the
same donor system as the host. Group B worked on scenario II,transplanting a feature

from a donor system different to the host one
Group Part. Degree Inst. Exp. (years)

Dev. SPL
A P1 MSc U7 [1,5) [5,10)

P2 Un C5 [10) [1,5)
P3 PhD U4 [10) [10)
P4 MSc U4 [10) [1,5)
P5 MSc U4 [10) [5,10)
P6 MSc U4 [10) [5,10)
P7 PhD U8 [10) [10)
P8 PhD U9 [10) [1,5)
P9 PhD U10 [10) [10)
P10 PhD U4 [1,5) [1,5)

B P11 MSc C1 [10) [1,5)
P12 MSc C2 [1,5) [1,5)
P13 Un C3 [10) [1,5)
P14 PhD U1 [10) [10)
P15 PhD U2 [10) [10)
P16 PhD U3 [10) [5,10)
P17 MSc U4 [5,10) [5,10)
P18 MSc C4 [5,10) [5,10)
P19 PhD U5 [10) [10)
P20 MSc U6 [5,10) [1,5)

searcher with setup of the experiment itself. This involved: specifying the respective
annotations for the entry point and insertion points of the features, which took approxi-
mately 13 minutes of work at the scenario I and 17 minutes at scenario II; creating the
test cases, necessary to validate the target features, taking approximately 16 minutes of
programming activities; preparing the product base, which took approximately 14 min-
utes; then, approximately 34 minutes were spent creating all documentation of donor
systems including the product base feature model.

To extend the number of product base variants with a new feature transferred from the
correspondent donor system, all participants had three activities based on clone&own and
the migration of cloned variants to a product line [44, 163]: feature extraction, adaptation
and merging, with descriptions and instructions provided for each task.

Initially, participants are required to identify and extract all code associated with the
feature of interest to a temporary directory. Each segment of code identified as pertaining
to the target feature must be enclosed within ifdef directives. For instance,
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We have provided a task and time registration worksheet. While participants were running
the experiment, we ask them to take notes of which strategies were being used for each
stage of the features transfer process and why they are performing each specific task. It
allowed us to capture strategies and performance data simultaneously.
We have complemented the above setup with a post-survey. By post-survey, we could

better understand participants’ difficulties and meaningful differences about the manual
and automated process in both scenarios. We have triangulated the data generated with
the experiment with the responses we obtain from the pre and post-survey.
To establish the time for feature transplantation using our automated approach con-

cerning manual effort, we ran prodScalpel 20 times, and measure the average time
transplanting the same feature used by the participants in each scenario. This average
time was compared with the time spent by our participants on the manual re-engineering
process.
Based on our pilot study, we set a time limit of 4 hours for each manual and automated

process. Another way, the result might be affected negatively by participants’ boredom
and tiredness.
Our corpus and data collected are available at the project webpage [164].

8.2 RESULTS AND DISCUSSION

We used 22 pre-existing regression test suite designed by the NEATVI developers to
assess the accuracy of prodScalpel and answer our RQ1. However, they were not
designed to test NEATVI as a product base with new variants and may not be sufficiently
rigorous to find regression faults introduced by the re-engineering process. To achieve a
better product line coverage, we manually augmented the host’s regression test suites
with additional tests, our augmented regression suites.
Furthermore, we implemented an acceptance test suite with 3 tests cases for evaluating

the transferred feature in the scenario I and II for evaluating the feature in scenario II.
Thus, we executed a total of 27 tests in the scenario I and 29 in scenario II, considering
the acceptance tests already incorporate into the product base by the first variant inserted
in scenario I.
We summarise our results in Table 8.3. We report the status of the product base and

variant inserted by the participants, the time spent and the number of passing tests for
the regression augmented regression and acceptance test suites. In the first scenario, only
one of the participants was not able to finish the process before the timeout. On the other
hand, half of the participants were able to finish the process before achieving the timeout
in the second scenario and only three of them have been able to insert the target feature
without breaking the product base.
For each scenario, we also report the number of prodScalpel runs in which the

product derived passed in all test cases in the successful running. For each scenario, we
repeat each run 20 times. The success rate was retained for both scenarios I and II, where
we lost only one successful run in the timeout and the product line generated passed in
all tests in all test suites.
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Table 8.3: Scenario I: Donor NEATVI - Host Product Base

Experiment results comparing the time of tool over 20 repetitions with the
participants:column product line status shows the generated product line status by
participants and tool; column Execution Time shows the time spent on the feature
transplant by the participants and the average time of 20 run of prodScalpel, we
highlight the execution time of the participant that spent less time; columns Test Suites
shows the results for each test suite and report statement coverage (%) for the

postoperative host and for the organ; columns PASSED report the number of passing
tests.

Test Suites
Participants Product Line Execution Regression (59%) Regression++ (70.1%) Acceptance (72.5%)

Status Time (minutes) PASSED PASSED PASSED
P1 OK 82 22/22 30/30 3/3
P2 OK 88 22/22 30/30 3/3
P3 OK 77 22/22 30/30 3/3
P4 OK 68 22/22 30/30 3/3
P5 OK 81 22/22 30/30 3/3
P6 Broken Timeout 0/22 0/30 0/3
P7 OK 87 22/22 30/30 3/3
P8 OK 83 22/22 30/30 3/3
P9 OK 73 22/22 30/30 3/3
P10 OK 113 22/22 30/30 3/3
prodScalpel OK in 20/20 runs 20 22/22 30/30 3/3

Table 8.4: Scenario II: Donor Mytar - Host Product Base

Test Suites
Participants Product Line Execution Regression (70.1%) Regression++ (71.9%) Acceptance (73.3%)

Status Time (minutes) PASSED PASSED PASSED
P11 Broken Timeout 0/22 0/33 0/2
P12 Broken Timeout 0/22 0/33 0/2
P13 Error 181 0/22 0/33 0/2
P14 Broken Timeout 0/22 0/33 0/2
P15 Broken Timeout 0/22 0/33 0/2
P16 Error 114 0/52 0/33 0/2
P17 OK 104 22/22 33/33 2/2
P18 OK 194 22/22 33/33 2/2
P19 OK 131 22/22 33/33 2/2
P20 Broken Timeout 0/22 0/33 0/2
prodScalpel OK in 19/20 runs 27 22/22 33/33 2/2

To answer RQ1,the results show success of rate was retained for both scenario I and
II, where we lost only one successful run in the timeout and all products derived
passed in all test in all test suites.

As stated in the definition of the metricM2 and to answer RQ2, we evaluate the pay-
off of Foundry. Figure 8.1 graphically shows the time spent on each activity performed
in re-engineering to SPL process. In summary, Group A transferred the target feature
from NETVI to the product base in 1h24 minutes on average. prodScalpel turned out



102 EXPERIMENTAL EVALUATION

to be quicker, successfully transplanting this feature in all 20 trials, in an average of 20
minutes.

Figure 8.1: Time (in minutes) spent by participants and prodScalpel on performing
the three stages of SPL reengineering.
Feature extraction, adaption and merging. The graph highlight the average participants

time that successful generated its target product line.

Most of the participants of Group B had not completed the product line generation
process from Mytar within the 4 hours time limit. Considering the participants that were
able to finish the process (i.e., participants P17, P18 and P19 ) and its product line passed
in all test suites they spent an average of 2h23 minutes while prodScalpel was able to
complete this task in 19 of 20 trials in the timeout, taking 27 minutes on average.
Statistic analysis of performance. The quantitative analysis strategy from the

experiment was adapted to this study because there is no comparison between scenarios
since used different donors and target features. The first analysis step consists of iden-
tifying the statistical distribution for each scenario through the Shapiro-Wilk [165], a
method with the best power for a given significance [166]. Its null hypothesis claims the
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population is normally distributed. It determines which set of methods must be applied
in the hypothesis testing and the strength of association between variables.
Figure 8.2 graphically shows the time results for our two groups in comparison with

prodScalpel performance. In the scenario, I, the preliminary information provided by
the box plots indicate that all samples are normally distributed (W = 0.70445, p-value =
3.129e-05). Thus, a ANOVA [167] and Pairwise Student’s t-test analysis were conducted
considering the hypothesis of the time values for prodScalpel have statistically higher
values if compared to the manual methods (p-value ă 2e-16). It led to the rejection of
the null hypothesis for all pairs.
In the scenario II, the normality test result showed a normal distribution with a

W = 0.69378, p-value = 1.715e-06. Thus, we used ANOVA to hypothesis testing and
Pairwise t-Student. Based on the ANOVA test and Pairwise t-Student, we rejected the
null hypothesis (p-value ă 2e-16) that the distribution of the population is homogeneous.
We can concludes that prodScalpel reduces developer effort to transfer features

to a product line in both scenarios. For both simulation scenarios, there is a significant
effect size between the tasks performed in a manual way and using prodScalpel. The
participants had similar performance times in scenario I, with the exception of the par-
ticipants P6. On the other hand, most of the participants of scenario I do not terminate
the experiment before the 4-hour timeout. This last one is qualitatively explained by the
participants in the post-survey where they exposed how hard is to adapt a feature to run
in a strange codebase.

Figure 8.2: Time results grouping automated and manual in both scenarios.
Scenario I: NEATVI - Product Base; Scenario II: Mytar - Product base.
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To answer RQ2, in both scenarios prodScalpel outperformed participants with
respect to the average task time. By considering the sum of time spent with both
scenarios, the tool accomplished the product line generation process by inserting two
new variants in 4.8 times faster than the mean of participants were able to finish the
experiment in the timeout and their resulting product line passed in all test cases.

8.3 THREATS TO VALIDITY

The threats to the validity of this study are mainly related to external and internal valid-
ity [160]. Conclusion validity issues involve the low power of the statistical analysis. The
number of SPL projects can be a threat to the hypotheses not rejected in this experiment.
Aiming to address it, the extension of the experiment to incorporate new donors systems
is being explored, and improved results will be reported in future work. In addition, we
already provide a set of heterogeneous systems, with distinct characteristics in terms of
domains, amount of code lines, and numbers of features. It provides a representation on
how the prodScalpel approach behave when applied to different objects as an archive
manager providing features to generate a text editors product line.
External Validity. The relatively small number and diversity of systems used for

generating a product line pose an external threat to validity. We applied our results to
small programs due to the boundaries of an in-lab study; our results may not generalize
to larger programs in the wild. We tried to mitigate it by constructing possible real-
world scenarios, i.e., reuse of features from unrelated codebase and variations of the
same systems, both real-world systems. Additionally, given that our approach was helpful
even in small programs, we argue that is likely helpful for larger systems as it is nearly
impossible to incorporate new variants to a product line without a large understanding
of the donor systems specifications or without specialized tool support [7].
Internal Validity. Due to time expensive nature of a human study, we had few

participants. We tried to mitigate this issue by selecting participants with considerable
experience in SPL projects. The other threat to the validity is the system size; small
features are used in this experiment. We assume that inspecting the code to transfer a
feature to a product line is hard, slow, and possibly a tedious work. Thus, we preferred
this way to avoid eventual human error as consequence of participant’s tired, in another
way, it would require too much time of execution. Even with a limited execution time,
we were able to transplant features from donors with significant size (consisting the more
than 6k LoC of our donor systems together, as shown in Table A.1. We also use testing as
means of validating our approach, which cannot provide a formal proof of its correctness.
We used extensive testing to mitigate this risk. Moreover, testing is a standard approach
to code evaluation in real-world scenarios due to its high scalability.

8.4 CHAPTER SUMMARY

This chapter presents the results and discussions of an experiment comparing the per-
formance of with that of SPL experts in transplanting features across aN SPL. The
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experiment involved two scenarios, and the results were based on the time spent, the
number of passing tests, and the product line status. The results showed that outper-
formed the participants in both scenarios, with only one timeout recorded in 20 trials.
In addition, completed the task of transplanting a target feature in all 20 trials, with
an average time of 20 minutes, while the participants took an average of 1h24 minutes.
The results suggest that is a faster and more reliable option for feature transplantation
in SPLs.
Next chapter concludes this thesis, summarizing the main contributions and providing

directions to new research.
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Chapter

9
CONCLUDING REMARKS AND FUTURE WORK

In this thesis, we are pursuing a twofold goal. While we extended the ST principles to
product variants generation, we also intend to evaluate the flexibility of our transplanta-
tion approach as an alternative approach to the optimization of the reengineering process
to obtain SPL from existing systems. Thus, we believe we accomplished our goals since we
presented the first ST approach and tool for product line and product variants generation
(Chapter 4).
We evaluated the potential of Foundry and prodScalpel for automating existing

reengineering practices for extracting an SPL from existing systems regarding remaining
open issues in this research field (Chapter 6). Then, we validated our approach and tool
on two case studies using open-source systems (Chapter 7). We generated two products
through the transplantation of features extracted from three real-world systems into two
different product bases. Finally, we performed an empirical experiment comparing the
performance of our tool in comparison with SPL experts (Chapter 8). The tool accom-
plished the product line generation process by migrating two features 4.8 times faster
than the mean time spent by participants who were able to finish the experiment within
the timeout.
Our evaluation studies provide initial evidence to support the claim SPLE using ST,

is a feasible and, indeed, promising direction for SPL research and practice. However,
more studies are needed to provide more evidence for the generalisability of our approach
and to investigate its applicability in an industrial context.

9.1 RESEARCH CONTRIBUTION

The main contributions of this thesis can be summarized as follow:

• Comparative study on automated SPL reengineering practices via ST.
The comparative study presented in the Chapter 6 aimed at understanding how
multi-organ transplantation (as realized in Foundry) automate existing reengi-
neering practices to obtain an SPL. Moreover, how it can be used to address the
open issues in the field of reengineering of existing systems into SPL. The result of

109
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this exploratory study gives evidence that ST can be a feasible technique for the
reengineering of existing systems to an SPL. Different from existing tools, prod-
Scalpel can extract, transform and merge features from different systems into a
software product with a minimal manual effort of feature identification.

• An approach for automated SPL reengineering via ST. Drawing upon the
principles of ST, we have devised an approach that encompasses the essential prereq-
uisites for automating the reengineering of systems into SPLs!. These prerequisites
encompass various facets, including the capacity to extract multiple organs and
seamlessly integrate them into a unified product base. Furthermore, our approach
harnesses over-organs as valuable SPL assets; once extracted, these over-organs
can be refined and tailored to suit diverse host environments. Additionally, our ap-
proach demonstrates the ability to identify organ duplication and potential conflicts
through the application of clone-ware GI techniques.

• Realization of the approach in a tool. The proposed approach depicts the
high-level aspects to be considered when automating SPL reengineering via ST
assignment. Thus, this work also described how the approach has been implemented,
detailing the adopted automation strategy, including all modules implemented to
compose our solution.

• Validation of the approach and tool. We also conducted two case studies to
evaluate the proposed approach where two products were generated from the trans-
plant of features extracted from four real-world systems. Although initial, our results
are encouraging. They provide initial evidence to support that automated product
line and product variants generation, using transplantation idea, is promising in the
direction of product development with no human involvement whatsoever for rein-
venting functionality that already exists on some other system. Additionally, the
proposed approach was validated in an experiment. We could verify its efficiency
and efficacy, which were all satisfactory and promising.

9.2 FUTURE WORK

Overall, there is significant potential for further research and development in the area
of ST for SPLE. By refining and optimizing the transplantation process, researchers can
help to make it a more practical and widely adopted approach for meeting the demands
of modern software engineering.
Due to the time constraints to prepare a Ph.D. thesis, this work can be seen as initial

research towards the efficient application of ST in the SPLE field. Thus, the following
issues should be investigated in future work:

• Further refinement and optimization of the ST process for SPLE. In Chap-
ter 7, which presents the case studies, we identified that the process of identifying
and extracting semantically required code from multiple donor systems can be a
challenging task, particularly if the donor codebase is large and it was implemented
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with different architectures, dependencies, and implementation details. This can
involve analyzing large amounts of code and identifying all dependencies and inter-
actions across the features in their codebases. Developing more efficient algorithms
and methods for call graph generation and identifying and adapting organs can help
to streamline this process and make it more effective. This could include research
into techniques for automating the extraction and adaptation of code from donor
systems, as well as new approaches for efficiently merging and integrating the trans-
planted features into the target product line. For example, we intend to investigate
the use of machine learning or natural language processing techniques to improve
the accuracy and efficiency of feature identification and adaptation. They could
also explore the use of dynamic analyse techniques and other automated meth-
ods to streamline the process of identifying dependencies and interactions among
features.

• The investigation of the use of machine learning techniques for feature
identification and adaptation. Investigation of the use of machine learning tech-
niques for feature identification and adaptation, as well as for predicting potential
conflicts and interactions among features. It could involve exploring the use of algo-
rithms such as clustering or classification to automatically identify relevant features
in the codebase. Machine learning could also be used to optimize the adaptation
of features to the target environment, potentially reducing the need for manual
intervention and increasing the efficiency of the ST process.

Furthermore, machine learning could be used to predict potential conflicts and
interactions among features during the ST process. For example, a machine learning
model could be trained on historical data to identify common conflicts that occur
when certain features are combined, or to identify patterns in feature interactions
that could lead to issues in the final product.

• Development of automated testing and validation techniques for ensuring
that transplanted features are fully functional and perform as intended.
One of the key challenges in ST is ensuring that the transplanted features are fully
functional and perform as intended in the new product. This requires rigorous test-
ing and validation of the features to ensure that they meet the desired requirements
and do not introduce any new bugs or errors. Automated testing and validation
techniques can greatly aid in this process by providing a systematic and efficient
way to test the functionality of the transplanted features. This involves developing
automated test suites that cover various aspects of the feature’s functionality, such
as input/output testing, boundary testing, and stress testing.

Validation techniques can also be developed to ensure that the transplanted features
meet the desired quality standards, such as reliability, maintainability, and usability.
This can involve developing automated code analysis tools that detect potential
issues with the code, as well as developing techniques for measuring the performance
and usability of the feature in real-world scenarios.
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• Investigation of the potential use of ST in other areas of software engi-
neering. There are many potential applications of ST beyond product line reengi-
neering that could be explored in future research. For instance, it could be explored
as a technique for modernizing legacy code or for maintaining complex software
systems.

In the context of legacy code modernization, ST could be used to extract and
transplant specific features from outdated codebases into a new codebase. This
could help to reduce the amount of time and effort required for modernization, as
it would allow developers to focus on extracting and adapting only the necessary
features instead of having to rewrite the entire codebase from scratch.

In terms of software maintenance, ST could potentially be used to transplant fea-
tures from a well-maintained codebase into a poorly maintained one, thereby im-
proving the overall quality and maintainability of the latter. It could also be used
to transplant features from a codebase that is no longer actively developed into
one that is still being actively maintained, helping to extend the useful life of the
former.

• Exploration of the use of ST in combination with other software engi-
neering techniques. In Chapter 6, where we presented a comparative study of
ST for SPL reengineering with the existing practice in the literature, we observed
a new interesting future work that would apply good practices used in the exist-
ing approaches to improve Foundry. By combining the good practices used in
such techniques, it may be possible to leverage the strengths of each approach and
address their weaknesses, leading to a more robust and comprehensive solution. Ad-
ditionally, combining ST with other techniques may open up new possibilities and
enable the handling of more complex scenarios, such as those involving large-scale
software systems with multiple interdependencies.

ST can be combined with other software engineering techniques, such as model-
driven engineering (MDE), to enhance the efficiency and effectiveness of SPLE.
MDE aims to increase productivity and quality by raising the level of abstraction
used in software development, making it easier to reason about complex systems.

One possible approach would be to use MDE to create higher-level models of the
donor systems and the desired product line. These models could be used to identify
and extract the relevant features more accurately, as well as to detect and resolve
potential conflicts among features. The resulting model could then be used as a
blueprint for the ST process.

Furthermore, the use of MDE could also improve the testing and validation process
by automatically generating test cases from the model, ensuring that the trans-
planted features behave as intended. This approach can reduce the manual effort
required in testing and validation.

Therefore, investigating the combination of ST with MDE can provide new insights
into SPLE and can lead to the development of more efficient and effective techniques
for software engineering.
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• Evaluation of the scalability and performance of ST in real-world scenar-
ios involving large-scale software systems and product lines. The results of
our evaluations, presented in Chapters 7 and 8, showed that the proposed approach
is able to transplant generate product lines via ST techniques. However, we did not
evaluated the quality of it in the industry environment.

Evaluating the scalability and performance of ST in real-world scenarios would in-
volve testing the proposed approach on large-scale software systems and product
lines to identify any potential scalability limitations or performance issues. This
could be done through empirical studies using benchmarks or case studies, where the
proposed approach is applied to real-world software systems from software develop-
ment industry and the resulting performance and scalability metrics are compared
to those of existing reengineering approaches.

The evaluation could also involve analyzing the impact of the size and complex-
ity of the software system and the number of features being transplanted on the
performance and scalability of the ST approach. Additionally, the evaluation could
include testing the approach under different conditions, such as varying levels of
feature dependencies and interactions, to assess its effectiveness and efficiency.

• Investigation of the potential impact of ST on software quality, main-
tainability, and reliability. Although our evaluations prove initial evidence of
the potential of ST to improve the SPLE field, investigating the potential impact
of ST on software quality, maintainability, and reliability is crucial because it can
help to understand the benefits and limitations of the approach. Additionally, this
investigation can also provide insights into how ST can be further refined and op-
timized to improve its effectiveness in improving software quality, maintainability,
and reliability.

Some potential research directions in this area could include: (i) Developing metrics
to measure the quality, maintainability, and reliability of software systems before
and after undergoing ST; (ii) Conducting experiments and case studies to evaluate
the impact of ST on software quality, maintainability, and reliability, and com-
paring these results with those of traditional software engineering techniques; (iii)
Investigating the potential trade-offs between ST and other software engineering
techniques concerning software quality, maintainability, and reliability; (iv) Explor-
ing the use of ST in specific domains or industries, such as safety-critical systems
or healthcare; and (v) evaluating the impact on software quality, maintainability,
and reliability in these contexts.

9.3 CONCLUDING REMARKS

The automated transplantation aims to identify and extract an organ (interesting be-
haviour to transplant), all code associated with the feature of interest, and then transform
it to be compatible with the namespace and context of its target site in the host. The
automatic transplantation of a single organ already faces significant challenges. The code
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from different systems is unlikely to compile, execute and pass test cases when relocated
into an unrelated foreign system without extensive modification.
The utilization of ST as a means to successfully automate the re-engineering of prod-

uct lines presents even greater challenges. The multiple features extraction involves the
identification of all semantically relevant organ’s code from multiple codebases to main-
tain the organ functional even outside the donor environment. Adapting the extracted
features to work in a single and strange host system can also be challenging. The host sys-
tem may have different architectures or dependencies than the donor systems, which can
require significant modifications to the extracted organs. The successful implantation of
the extracted organ into an emergent new product is hindered by potential dependencies
between it and other transplanted organs.
Face to the additional challenges, we propose an approach and a tool that can be used

for optimizing the process of generating both product lines as new products from existing
codebases with minimal human involvement.
Both approach and the tool have been validated through case studies with real-world

systems and an experiment with SPL experts to compare our approach with manual effort.
We showed the applicability of Foundry and significant time effort improvements when
using prodScalpel.
We argue that the migration to SPL transplantation-based in contrast to the existing

SPL practices makes it easier to use in practice. Our approach improves SPL main-
tainability by physically separating features from the product base. Foundry can be
used both for extractive or reactive product line migration, as well as as a systematic
Clone&own strategy to specialize existing products. Foundry avoids code duplication
of feature implementations while preserving feature behaviour within a product line of
which it is part. It can automatically propagate feature changes. That is, it provides
solutions for problems often cited in the reengineering of systems in SPL literature.
Our evaluation studies provide initial evidence to support the claim SPLE using ST, is

a feasible and, indeed, promising direction for SPL research and practice. Thus, our work
leaves a valuable trail for further research. However, more studies are needed to provide
more evidence for the generalisability of our approach and to investigate its applicability
in an industrial context.
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38 KUCZA, T.; NäTTINEN, M.; PARVIAINEN, P. Improving knowledge management in
software reuse process. In: Proceedings of the Third International Conference on Product
Focused Software Process Improvement. [S.l.: s.n.], 2001. (PROFES ’01), p. 141–152.

39 JALENDER, B.; GOVARDHAN, A.; PREMCHAND, P. A pragmatic approach to
software reuse. Journal of Theoretical and Applied Information Technology, v. 14, n. 2,
p. 87–96, 2010.

40 MCGREGOR, J. D. Initiating software product lines. IEEE Software, p. 24–27, 2002.

41 SAMETINGER, J. Software Engineering with Reusable Components. Berlin, Heidel-
berg: Springer-Verlag, 1997. ISBN 3-540-62695-6.

42 SOORA, S. K. A Framework for Software Reuse and Research Challenges. v. 4, n. 10,
p. 441–448, 2014.

43 FRAKES, W. B.; KANG, K. Software reuse research: Status and future. IEEE Trans.
Softw. Eng., IEEE Press, v. 31, n. 7, p. 529–536, jul. 2005.

44 ALVES, V.; MATOS, P.; COLE, L.; VASCONCELOS, A.; BORBA, P.; RAMALHO,
G. Extracting and evolving code in product lines with aspect-oriented programming. In:

. Transactions on Aspect-Oriented Software Development IV. Berlin, Heidelberg:
Springer-Verlag, 2007. p. 117–142.

45 Chikofsky, E. J.; Cross, J. H. Reverse engineering and design recovery: a taxonomy.
IEEE Software, v. 7, n. 1, p. 13–17, 1990.

46 AN integrated environment for reuse reengineering C code. Journal of Systems and
Software, v. 42, n. 2, p. 153 – 164, 1998.



BIBLIOGRAPHY 119

47 LOZANO, A. An overview of techniques for detecting software variability concepts
in source code. In: TROYER, O. D.; MEDEIROS, C. B.; BILLEN, R.; HALLOT, P.;
SIMITSIS, A.; MINGROOT, H. V. (Ed.). Advances in Conceptual Modeling. Recent De-
velopments and New Directions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. p.
141–150.

48 LAGUNA, M. A.; CRESPO, Y. A systematic mapping study on software product
line evolution: From legacy system reengineering to product line refactoring. Science of
Computer Programming, v. 78, n. 8, p. 1010 – 1034, 2013.
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157 RUNESON, P.; HöST, M. Guidelines for conducting and reporting case study re-
search in software engineering. Empirical Softw. Engg., Kluwer Academic Publishers,
USA, v. 14, n. 2, p. 131–164, apr 2009.

158 HÖST, M.; RUNESON, P. Checklists for software engineering case study research.
First International Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), p. 479–481, 2007.

159 HERRIOTT, R. E.; FIRESTONE, W. A. Multisite Qualitative Policy Research:
Optimizing Description and Generalizability. Educational Researcher, v. 12, n. 2, p. 14–
19, 1983.

160 WOHLIN, C.; RUNESON, P.; HST, M.; OHLSSON, M. C.; REGNELL, B.;
WESSLN, A. Experimentation in Software Engineering. [S.l.]: Springer Publishing Com-
pany, Incorporated, 2012.

161 WOHLIN, C.; RUNESON, P.; HST, M.; OHLSSON, M. C.; REGNELL, B.;
WESSLN, A. Experimentation in Software Engineering. [S.l.]: Springer Publishing Com-
pany, Incorporated, 2012.

162 BASILI, V. R.; CALDIERA, G.; ROMBACH, H. D. The goal question metric ap-
proach. In: Encyclopedia of Software Engineering. [S.l.]: Wiley, 1994.
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Appendix

A
MULTIPLE CASE STUDIES: DATA AND SUPPORT

MATERIAL

This appendix provides instruction of prodScalpel usage, including all dependencies,
commands and directory organization. All the case studies artifacts are available in the
project webpage1. You can find links to the artefacts and a script that runs all our case
studies. This artifact contains the tool prodScalpel, donors and host codebases. We also
provide our regression, augmented regression, and acceptance test suites, where possible.
In the other cases these test suites were executed manually, or the original regression test
suite was not executing at all the organ.
Note: the scripts contains just one run of each transplant. In the thesis the results are

averaged on 20 runs. By using the random seed parameter of prodScalpel, and than
run the script for 20 times, the results from the thesis may be approximated.

A.1 PRODSCALPEL USAGE

This section provides detailed information on how to effectively use and apply the prod-
Scalpel tool. It serves as a practical guide for users who want to utilize prodScalpel
for their own projects.
Prerequisites. For correctly compile, prodScalpel requires:

• Xcode Command Line Tools2;

• gcc3;

• autoconf4;

• cflow5;
1https://autotransplantation-spl.github.io/foundry.github.io/
2https://developer.apple.com/xcode/
3https://gcc.gnu.org/
4https://www.gnu.org/software/autoconf/
5https://www.gnu.org/software/cflow/
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• doxygen6;

• automake7;

• libglib2.08;

• make9;

• libgcrypt2010;

• check11;

• Pkg-config12;

• GNU Diff13;

• and with at least 16 GB memory.

For correctly execution, prodScalpel requires:

• Autoconf ;

• libtool14;

• Pkg-config ;

• Check ;

• cflow;

• doxygen;

• and GNU Diff

Transplantation directory organization. Table 8.2 illustrate the transplantation
directory organization. The transplantation directory is structured to facilitate the exe-
cution of the ST process. At the root level, there are several key files and directories. The
prodscalpel.exec file represents the executable file of the prodScalpel tool, while the
ErrorFile.out contains any errors generated during the TXL transformation process.
The Transplant <donor-host names> directory serves as the current transplantation
directory, containing product line-specific files and subdirectories.

6https://www.doxygen.nl
7https://www.gnu.org/software/automake/
8https://libgit2.github.com/
9https://www.gnu.org/software/make/
10https://gnupg.org/related software/libgcrypt/
11ttps://libcheck.github.io/check/
12https://www.freedesktop.org/wiki/Software/pkg-config/
13https://www.gnu.org/s/diffutils/
14https://www.gnu.org/software/libtool/
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Table A.1: TRANSPLANTATION FOLDER STRUCTURE

ROOT
} ´ ´prodscalpel.exec # Exec file
} ´ ´ErrorF ile.out # TXL errors
} ´ ´Transplant ă donor ´ hostnames ą #Current experiment directory
. } ´ ´CFLAGS.txt # Flags to the current experiment
. } ´ ´coreFunctions.in # Core function input list (Feature entry points)
. } ´ ´Donor # Donor system directory
. } ´ ´Doxygen ă donor name ą # Doxygen directory
. } ´ ´Host # Host system folder
. } ´ ´Temp # Temporary folder for the transplant process
. } ´ ´TempDonorF iles # Temporary folder for Donor system
. } ´ ´TempImplantationDirectory # Temporary folder for Implantation files
. } ´ ´TempSourceF iles # Temporary folder for the transplant process
. } ´ ´TestSuites # Testing directory
. } ´ ´TransplantCode # Temporary folder for the organ
} ´ ´TXLpFormacOSq # TXL for macOS directory
} ´ ´TXL LINUXpForLINUXq # TXL for Linux directory
... # Tool source code

Within the transplantation directory there are various subdirectories and files. The
CFLAGS.txt file holds the flags specific to the current product line, providing configuration
information. The coreFunctions.in file contains a list of core function input points,
serving as entry points for the features being transplanted.
The Donor directory holds the donor’s codebase, while the Doxygen <donor name>

directory is used by prodScalpel to generate the the call graphs. The Host directory
corresponds to the host system’s codebase (product base). The Temp directory serves
as a temporary folder for the transplantation process, housing intermediate files and
directories. The TempDonorFiles directory stores temporary files specific to the donor
system, while the TempImplantationDirectory directory holds temporary files related to
the implantation process. The TempSourceFiles directory stores temporary files used
during the transplantation process.
The TestSuites directory represents the IceBox directory. It is dedicated to keep the

IceBox tests, containing test suites and associated files. The TransplantCode directory ,
where the transplanted code is stored. Additionally, there are separate directories for the
TXL tool, with TXL for macOS and TXL LINUX for Linux.
The binary with example usage is available in the project webpage15. It also contains

an example run for the Mytar Donor - NEATVI Host transplant. The prodScalpel
binary release was compiled on 64-bit MacOS 10.15.4.
Running prodScalpel. The complete command, as it should be pasted is:

1 prodScalpel --seeds_file <transplantation_directory >/seed -1.in \
2 --compiler_options <transplantation_directory >/ CFLAGS \
3 --host_target <transplantation_directory >/ productBase/insert_point_file.c \
4 --donor_target <donor_directory >/Donor/organ_souce_file.c \
5 --donor_folder <donor_directory >/Donor/ \

15https://autotransplantation-spl.github.io/foundry.github.io/
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6 --workspace <transplantation_directory >/ \
7 --core_function <core_funtion_name > \
8 --host_project <transplantation_directory >/ ProductBase

You should run this from root folder. The Organ is automatically grafted into the
host program, so, for subsequent runs the original version of the host must be restored.
If you wish to run prodScalpel on your own transplants, you will need to keep the
same folder structure as shown in our examples. The required and optional parameters
of prodScalpel are:

--seeds file /path/to/file: (required) take the seeds from a file. The file must
contain 7 lines of 4 numbers each, as in this example.

--transplant log /path/to/folder/: (optional) log the results of the transplanta-
tion operations, in every generation.

--compiler options /path/to/file: (optional) required if the compilation of the
code in donor requires additional options or libraries. The format of this file is:
CFLAGS = ‘libgcrypt-config --libs’. The variable CFLAGS contains all the ad-
ditional dependencies.

--donor folder/path/to/folder/: (required) the folder where is the source code of
the donor.

--workspace /path/to/folder/: (required) the workspace of the transplantation.

--txl tools path /path/to/folder/: (optional) used when the binary files with ex-
tension *.x are in a different place than prodScalpel

--host project /path/to/folder: (required) the folder where is the source code of
the host.

--donor entry function /path/to/file: (required) the function in the donor that
correspond to its entry point (generally the main function).
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--donor entry file: /path/to/file: (required) the file in the donor that contains
the entry point (generally main.c).

--conditional directives: (optional) directive in case when the organ and host
must be merged. prodScalpel introduces variability into the organ by inserting this
conditional directive around the organ’s code, making it variable.

--product base: (required) the version of product base after the organ transplantation
process.

Additional parameters:

--exclude functions /path/to/file: (optional) exclude some functions from the
transplantation algorithm.

--transplant statistics /path/to/file: (optional) log statistics about the trans-
plantation operation.

-´ urandom seeds: prodScalpel will take its seeds from /dev/urandom

--random seeds: prodScalpel will take its seeds from /dev/random. This may take
a while. The default option is --urandom seeds.

For a new organ transplantation change the file coreFunctions.in. For example, to
transplant the feature write archive from MYTAR to the product base NEATVI the
complete command, as it should be pasted in the file is:

--coreFunction write archive
--donorSystem MYTAR
--donorFileTarget Transplant-PRODUCT BASE/Donor/append.c
--hostFileTarget Transplant-PRODUCT BASE/ProductBase/NEATVI/ex.c

Where:
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--core function function name: (required) the entry point of the functionality to
transplant.

--donorSystem: (required) the donor system name.

--donor target /path/to/file: (required) the file in the donor, with the function
annotated for transplantation.

--host target /path/to/file: (required) the file in the host that contains the
ADDGRAFTHERE JUSTHERE annotation. This annotation is required, and it marks
the place where theorgan will be added.



Appendix

B
EXPERIMENT: DATA AND SUPPORT MATERIAL

This appendix lists the documentation, data, script, and support material used in the
experimental study, earlier addressed in Chapter8.
This appendix is organized as follows: Section B.1 presents the online survey used to

get the profile of each participant; B.2 presents the online survey to get the participants
feedback about the experiment execution process; Sections B.3 and B.4 shows the ex-
periment tasks respectively, i.e., the instructions followed by the participants during the
experiment execution; In Section B.5 we present the results of post-execution survey; and
Section B.6 presents the time spent by each participant to execute the tasks.

B.1 ONLINE PRE-SURVEY (BACKGROUND FORM)

The online survey used to get the profile of each participant.

137



01/05/2023, 15:54PARTICIPANTS BACKGROUD FORM

Page 1 of 5https://docs.google.com/forms/u/0/d/1ZoeV9EjTBb-MHGjEWSH9SxHxWCL3H6c-Nl7F5xHblrA/printform

Personal information

This information will help us analyze the results of the experiment according to the characterization 
of the group.

PARTICIPANTS BACKGROUD FORM
Objective: The following questionnaire was constructed to collect pre-execution informations about
each experiment participant. 

Context: This questionnaire is part of an experiment to analyse the effectiveness and e>ciency of 
our Software Transplantation approach compared with the manual process of generating a product 
line from existing systems, performed by SPL experts.  Software transplantation is "the adaptation 
of one system’s behaviour or structure to incorporate a subset of the behaviour or structure of 
another”

Instructions and Target Population: This questionary should be answered by software engineers 
which have any experience with Software Product lines. The questionnaire is composed of 9 
questions. 

Con9dentiality: The information obtained with this questionary will be only used for academic 
purposes, and no identiHcation of the respondents is required. This questionary is part of a Ph.D. 
thesis to develop new solution approaches to Software Product Line Engineering via Software 
Transplantation, supervised by Prof. Ph.D. Eduardo Santana de Almeida from the Computer Science
Department in Federal University of Bahia (UFBA, Brazil), Ph.D. Earl T. Barr from the Computer 
Science Department in University College London., Ph.D. Justyna Petke from the Computer Science 
Department in University College London.

Leandro Oliveira de Souza
Ph.D. student in Computer Science - UFBA 
Professor at Federal Institute of Bahia

Thank you for participating in this study. All information you provide in completing this questionnaire
will remain anonymous. We do not let your personal information about analytics.

*Mandatory 
**Questions applied only in the company

* Indica uma pergunta obrigatória
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Page 2 of 5https://docs.google.com/forms/u/0/d/1ZoeV9EjTBb-MHGjEWSH9SxHxWCL3H6c-Nl7F5xHblrA/printform

1.

2.

3.

4.

Marcar apenas uma oval.

High School

Undergraduate

Non-degree Graduate Course

M.Sc.

Ph.D.

Pos-Ph.D.

5.

Outro:

Marque todas que se aplicam.

Software Engineer
Developer
Analyst
Researcher

Experience with software development

Email address*: *

Full name*: *

Company and/or University**: *

What is your level of education? *

Position in the Company**:
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6.

Marcar apenas uma oval.

< 1 year

>= 1 year and < 5 years

>=5 years and < 10 years

>= 10 years

Experience in the area of Software Product Lines

We would like to know about your experience with Highly ConHgurable Systems (HCS) and Software 
Product Lines (SPL) (project and industry).

7.

Marcar apenas uma oval.

I have been involved in software development teams applying HCS / SPL approaches.

I am a researcher working on topics related to HCS / SPL development.

I know what HCS / SPL is, but I have never participated in a software project applying HCS /
SPL development.

8.

Marcar apenas uma oval.

< 1 year

>= 1 year and < 5 years

>=5 years and < 10 years

>= 10 years

How many years of programming experience do you have using any programming language?

Regarding your Software Product Line (SPL) background knowledge: (Choose only
one)

How many years of experience do you have in SPL (consider industry and academic)?
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9.

Marcar apenas uma oval.

Yes, but only in the research domain

Yes, but only in the industry domain

Yes, both research and industry domain

no

Este conteúdo não foi criado nem aprovado pelo Google.

Have you applied the SPL approach to software development? (choose only one)

 Formulários
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B.2 ONLINE POST-SURVEY (FEEDBACK FORM)

The online survey to get the participants feedback about the experiment execution pro-
cess



01/05/2023, 16:08FEEDBACK FORM (POST-EXECUTION)

Page 1 of 8https://docs.google.com/forms/u/1/d/1lQro2ANlLUEry8B1TztZs7ZyF8ETvhcA1NrdrB8abSY/printform

1.

TRAINING

2.

Marcar apenas uma oval.

It was effective, helped to understand the tasks, steps and artifacts of the process

It was effective, helped to understand the tasks, steps and artifacts of the process, but the
time needed to be longer

It would be more effective if there were more examples

Very intuitive activity, but a good experience is needed to apply it according to the rules and
estimated time

A model should be shown, following step by step all the possible details that may occur
during the process

FEEDBACK FORM (POST-EXECUTION)
Thank you for participating in this study. All information you provide in completing this questionnaire
will remain anonymous. We do not let your personal information about analytics.

Feel free to answer the questions in English or Portuguese. 

*Mandatory 

Full name*:

How effective do you think the training was?
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3.

4.

Marcar apenas uma oval.

Yes. Asked for an explanation to the instructor

Yes. Reviewed the training material.

No.

5.

Marcar apenas uma oval.

Yes

No

6.

Comments:

Were you in doubt about any concept or activity used in the manual process? If yes,
how did you handle it?

In addition to the knowledge acquired in training, you needed other information to
perform the processes:

If yes, which ones?
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ABOUT THE FEATURE IDENTIFICATION AND EXTRACTION

7.

8.

Marcar apenas uma oval.

1. Very easy

2. Easy

3. Neutral

4. DiPcult

5. Very diPcult

ABOUT THE FEATURE ADAPTATION STAGE

9.

Did you experience difficulties in carrying out feature IDENTIFICATION/EXTRACTION
steps during the feature transferring process? Which one(s)?

On a Scale Of 1 To 5, how difficult was to complete this stage to you? Please, do not
answer it if you had no time to start it.

Did you experience difficulties in carrying out feature ADAPTATION steps during the
feature transferring process? Which one(s)?
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10.

Marcar apenas uma oval.

1. Very easy

2. Easy

3. Neutral

4. DiPcult

5. Very diPcult

ABOUT THE FEATURE ADAPTATION STAGE

11.

12.

Marcar apenas uma oval.

1. Very easy

2. Easy

3. Neutral

4. DiPcult

5. Very diPcult

On A Scale Of 1 To 5, how difficult was to complete this stage to you? Please, do not
answer it if you had no time to start it.

Did you experience difficulties in carrying out feature INSERTION steps during the
feature transferring process? Which one(s)?

On A Scale Of 1 To 5, how difficult was to complete this stage to you? Please, do not
answer it if you had no time to start it.
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ABOUT THE FEATURE TRANSFERRING PROCESS TO REALIZE AN PRODUCT LINE

13.

14.

15.

Did the use of any tool increase the efficiency of the feature transferring process?

In general, did you have any difficulties in executing the process? Which one(s)?

Was you able to finish all step in the time limited of 4 hours? If not, why?
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16.

MANUAL APPROACH

17.

Marcar apenas uma oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

18.

Marcar apenas uma oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

Have you ever used or knows any tools that could be use to support any stage of the
process?

I believe the manual approach is robust enough for SPL generation

The manual process is complex when you do not know how the donor system was
implemented.
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Send form

Thank you for your feedback.

19.

Este conteúdo não foi criado nem aprovado pelo Google.

Do you have any additional suggestion, comment, etc? Please share with us.

 Formulários
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B.3 EXPERIMENT TASKS: SCENARIO I

Experiment tasks executed in scenario I, i.e., the instructions followed by the participants
during the experiment execution.



 

 

EXPERIMENT SCRIPT FOR THE SCENARIO I (GROUP A) 
 

1. SUMMARY 
 
The purpose of the experiment is to analyze the transplant process (transfer) feature manual between two systems, 
the donor and the receiver (host), both written in C. For this process, we will compute the necessary activities, time 
and effort spent by a set of SPL specialists compared to our automated approach proposal. The process consists 
of four steps: extract, identify, adapt, and insert. 
 
The participants will have access to a set of unit testing, a feature's entry point in the donor (a function) and an 
insertion point in the host system provided by the researchers. Participants may use the tools (s) that they want to 
try to perform the process in the shortest time possible. We request to the participants to compute all activities, 
step, and time spent as well as the tool of the tool used. 
 
It is important to highlight that the experiment will not need to be performed without any breaking, since they 
compute time and activities correctly with each return to the execution process. 
 

2. TRAINING 
 

 We have prepared some videos describing each section of this script. You can assist at any time while 
performing the experiment. We only ask you not to register this time in the time and effort spreadsheet. 
 

3. EXPERIMENT EXECUTION ACTIVITIES 
1. Download the experiment files, available at: experiment_directory 
2. Access experiment form containing the access link to your time and effort registration spreadsheet: 
registration_sheet. 
3. Install dependencies. 
4. Execute the Feature transferring process. 
5. Execute the unit test. 
6. Perform system testing in the post-transference receiver system. 
7. Send files to researchers via the experiment form. 
8. Signal the end of the experiment to researchers. 
 

4. EXPERIMENT DIRECTORY 
 
Execution Directory: As part of the experiment preparation process, the participant should download the files 
contained in the folder corresponding to the group in which he was allocated. All files needed for the experiment 
can be downloaded by the link: transplantation_directory 
 
Effort Register Worksheet: For time and effort registration, we provide a spreadsheet for each participant. You 
can it by the link: transplantation_directory 
 

4.1. DIRECTORIAL STRUCTURE 
 

GROUP A 
   | _ Dependencies_run -> Dependency Installation Files 
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   | _ Documentation -> Contains the Donor and host system documentation if the participant wants to 
better understand the systems. 
   | _ Owner -> Contains the source code of the donor system. 
   | _ Host_original -> Contains the source code of the receiving system (host) 
   | _ Host_to_transplant -> Contains the host source code to receive the feature. 
   | _ Test_Suite -> Temporary directory for feature and unit tests 
| _ Feature -> Temporary directory of the feature source code insertion 

 
5. DEPENDENCIES INSTALATION 

Please install some dependencies required to execute unit tests. Do not worry about installing these premises, 
at the end you can run the script that will be automatically generated after the facilities in the directory will 
be installed Installation of dependencies (dependencies_run) 

We have prepared a shell script to install the dependencies automatically from the directory: Dependencies_install 

 
5.1. INSTALLATION OF DEPENDENCIES (FOR MAC OS) 

From the directory Dependencies_Run execute the following command:./install_dependencies.sh  

 

Terminal screen with CD commands e ./install_dependencies.sh 

This command will install the following dependencies:  

● Autoconf 
● libtool 
● Pkg-config 
● Check 
● Glib 

 
6. DESCRIPTION OF SYSTEMS AND FEATURE 

We have divided the participants into two groups (A and B). This script describes the process to be performed by 
group A. The participant of group A have to try to transfer the feature WRITE_ARCHIVE from the Mytar system, a 
file manager in NeatVI, an editor of text. When executed, the feature WRITE_ARCHIVE copies all contents of a 
file and writes it in other with a different format. To do this, the feature must receive as input at least the name of 
input file and the target output file. 

 
6.1. AVAILABLE ARTIFACTS 

 
As they are distinct systems it will be necessary to adapt the code that implements the entry point of the feature 
(ie the write_Archive function) for the insertion point in the Neatvi system, based on the following information: 

● Feature inserting point: The WRITE_ARCHIVE function of the append.c file. 
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● Host system insertion point: point defined by notation with __ADDGRAFTHERE__JUSTHERE in 
the ex.c file 

● Call_graph: The Feature call graph available. 
● Test_suite: A set of unit tests used to test the feature. It can be used to assist in process of the 

feature adapting and executing before insertion. Such test files are available in the experiment 
directory. 

 

 
 

These artifacts are described more detailed in the following sections. 
 

7. UNIT TEST EXECUTION 
brew install check 
When identifying, extract the code elements and perform the necessary adaptation you can perform 
the unit tests available in the test_suite.c file. For this, you must execute the script in 
run_test.sh 
If Feature is working properly, you will receive the message: 
 

 
Terminal with unit testing informing: 100% percentage of acceptance; Checks: 1. Number of tests performed; Failures: 

0 number of failures and errors: 0, number of errors. 
 
8. TRANSPLANT VALIDATION 

 
After transferring the feature to the host system and it is passing on the unit tests, you can perform 
the final transplant validation test. We have provided a post-operative test suite. The post-operative 
tests correspond to a set of regression, augmented regression and acceptance tests to exercise the 
feature transplanted and check if the transplant has not broken the host system. 
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Executing the post-operative tests: 
1. Open the terminal. 
2. Access the directory 

HOST_TO_TRANSPLANT/NEATVI_1.0/TRANSPLANTATION_TEST_CASES where you 
insert the feature source code. 

3. Execute the commands: ./test_product_line.sh 
 

 
 
9. SENDING ALL ARTIIFACTS 

  
After the execution of the experiment is completed, make sure that it computed all the time elapsed at each stage 
of the process. Sign up to the researchers to end the activity and time registration worksheet. 
 
Rename Group B Directory Complete your name and compact the folder. Then upload the folder with your 
changes from the form. 
If you have a shipping problem, download the artifacts from transplantation_artifacts and report this to the 
researchers 
 
We greatly appreciate the time and availability to perform this vital experiment for the progress of our 
research. 
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B.4 EXPERIMENT TASKS: SCENARIO II

Experiment tasks executed in scenario II, i.e., the instructions followed by the participants
during the experiment execution.



 

 

EXPERIMENT SCRIPT FOR THE SCENARIO II (GROUP B) 
 

1. SUMMARY 
 
The purpose of the experiment is to analyze the manual feature transfer process between two systems, the donor 
and the receiver (host), both written in C. For this process, we will record the necessary activities, time, and effort 
spent by a set of SPL specialists compared to our proposed automated approach. The process consists of four 
steps: extraction, identification, adaptation, and insertion. 
 
The participants will have access to a set of unit tests, a feature's entry point in the donor (a function), and an 
insertion point in the host system provided by the researchers. Participants may use the tools they prefer to try to 
perform the process in the shortest time possible. We request that participants record all activities, steps, and time 
spent, as well as the tool they used. 
 
It is important to note that the experiment will not require participants to perform the process without any breaks, 
as long as they record time and activities correctly each time they return to the execution process. 
 

2. TRAINING 
  
 We have prepared some videos describing each section of this script. You can assist at any time while 
performing the experiment. We only ask you not to register this time in the time and effort spreadsheet. 
 

3. EXPERIMENT EXECUTION ACTIVITIES  
1. Download the experiment files, available at: experiment_directory; 
2. Access experiment form containing the access link to your time and effort registration spreadsheet: 
registration_sheet; 
3. Install dependencies; 
4. Execute the Feature transferring process; 
5. Execute the unit test; 
6. Perform system testing in the post-transference receiver system; 
7. Send files to researchers via the experiment form; 
8. Signal the end of the experiment to researchers. 

   

 
4. EXPERIMENT DIRECTORY 

 
Execution Directory: As part of the experiment preparation process, the participant should download the files 
contained in the folder corresponding to the group in which he was allocated. All files needed for the experiment 
can be downloaded by the link: transplantation_directory 
 
Effort Register Worksheet: For time and effort registration, we provide a spreadsheet for each participant. You 
can it by the link: effort_form 
 

4.1. DIRECTORIAL STRUCTURE 
 

GROUP B 
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   | _ Dependencies_run -> Dependency Installation Files 
   | _ Documentation -> Contains the Donor and host system documentation if the participant wants to 
better understand the systems. 
   | _ Owner -> Contains the source code of the donor system. 
   | _ Host_original -> Contains the source source code of the receiving system (host) 
   | _ Host_to_transplant -> Contains the host source code to receive the feature 
   | _ Test_Suite -> Temporary directory for feature and unit tests 
| _ Feature -> Temporary directory of the feature source code insertion 

 
5. DEPENDENCIES INSTALATION 

Please install some dependencies required to execute unit tests. Do not worry about installing these premises, 
at the end you can run the script that will be automatically generated after the facilities in the directory will 
be installed Installation of dependencies (dependencies_run) 

We have prepared a shell script to install the dependencies automatically from the directory: Dependencies_Run 
execut 

 
5.1. INSTALLATION OF DEPENDENCIES (FOR MAC OS) 

From the directory Dependencies_Run execut the following command:./install_dependencies.sh  

 

Terminal screen with CD commands e ./install_dependencies.sh 

This command will install the following dependencies:  

● Autoconf 
● libtool 
● Pkg-config 
● Check 
● Glib 

 

6. DESCRIPTION OF SYSTEMS AND FEATURE 
 
We divide the participants of our experiment into two groups (A and B). This script describes the process to be 
performed by group B participants. As a member of Group B, you will try to transfer the feature dir_init between 
two versions of the Neatvi text editor, Neatvi_1.0 version (receiver system) and Neatvi_2.0 ( fetal donor). The 
feature dir_init, present only in the Neatvi_2.0 version, allows the opening of a file already created. For this, the 
function performs changes in global variables: 
 

struct rset *dir_rslr;    /* pattern of marks for left-to-right strings */ 
struct rset *dir_rsrl;    /* pattern of marks for right-to-left strings */ 
struct rset *dir_rsctx;    /* direction context patterns */ 
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, present in the dir.c. Without such variables will be null but do not interfere with the functioning of the system. To 
function correctly it will be necessary to extract all functions called from the dir_init () function implemented in the 
dir.c file, following its call chart.

 

 
6.1. AVAILABLE ARTIFACTS 

 
As they are distinct systems it will be necessary to adapt the code that implements the entry point of the feature 
(ie the dir_init() function) for the insertion point in the NEATVI system, based on the following information: 
 

• Feature input point: place where a call to the dir_init () function will be inserted, the entry point of the 
feature implemented in the dir.c file. 

• Host system insertion point: point defined by notation with __ADDGRAFTHERE_JUSTHERE in file vi.c 
• Call_GRAPH: The Feature call chart available both in your documentation in 

documentation/owner_documentation/index and can be viewed through the 
documentation/call_graph.png image. 

• Test_Suite: A set of unit tests that can be used to assist in adapting and executing the feature before its 
insertion. Such test files are available in the transfer directory and have already been implemented by the 
researchers, and participants are only the task of executing them from the commands described in 
Section 6. 

 
These artifacts are described more detailed in the following sections. 

 
7. FEATURE TRANSPLANTATION PROCESS 

 
In this section, we describe the systems and features involved in the transfer process and the step-by-step process 
for executing the feature transfer. We provide each participant with training mini-videos of the process that can be 
viewed as many times as necessary. If there are still any questions after reading the step-by-step instructions and 
viewing the training, please contact the researchers. 
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The purpose of this experiment is to analyse the manual feature transfer process between two versions of the 
same system written in C. You may use the IDE you feel comfortable with or just a simple text editor. 
You should record the activities and time spent on the individual time collection spreadsheet provided. Consider 
any action taken during each stage of the process as an activity, for example, IDENTIFICATION STAGE: searching 
for global variables used by extracted functions. Do not count the time for training and reading these scripts. Below 
we highlight the stages of the process that will be counted. 
 

7.1. PROCESS STEP 
 
Once the premises are installed, you can start execution of the experiment. Have the activity and time -spent 
registration worksheet available. 
We divide the experiment into 4 steps: extraction, identification, adaptation and insertion of feature. Next we 
describe each step. 

We divide the experiment into 3 steps: extraction, adaptation and insertion of feature. Next we describe each step. 

1. Extraction: corresponds to the extraction process of the entire portion of code that implements the 
feature, necessary for its execution (functions) from the function that determines the entry point of the 
feature and its call chart. All code implements the feature should be copied to the host_to_transplant 
directory, environment with the host system. If the function already exists in the receiving system, you 
should involve it with the F_DIR_INIT directive. 

All copied elements must be delimited with FLAG F_DIR_INIT. As it is the transfer of features between two 
versions of the same system it will be common to find functions already implemented in the receiving 
version. In this case, you should delimit the function with FLAG F_DIR_INIT_TOO. Both flags are already 
defined in file vi.h (lines 4 and 5). 

To facilitate this process, we provide the call graph. The full version of it is available in the Documentation 
directory. 

 

 
 

Grafico de chamada da feature dir_init 
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2. Adaptation: You should, in addition to extracting the functions called by Feature, analyze whether any 
portion of receiving system code needs to be adjusted to load the parameters correctly from the feature 
point of the feature in the host environment. The inserting point is defined with the notation: 
__ADDGRAFTHERE__JUSTHERE, which can be found in the main function of file vi.c.  

 
 

 
3.1 Test Execution: Once all these steps are done, the host system will be ready to perform the 
unit tests already implemented and made available in the Test_Suite Directory. These tests have 
already been implemented, requiring the participant only to execute the commands described in 
Section 6 of this document. It is possible that in the first execution the tests do not go through the 
lack of an incorrect source code or adaptation. In this case, you should analyze if the adaptation 
performed is correct and feature has all the code for its execution, fixing any errors and running 
again the unit test execution commands until the test passes without errors, as can be seen in the 
figure below. See how to perform the unit tests in the next section. 
 

 
 

 OBS: The proper feature compilation process will generate an individual file.x. Only after 
the generation of this file and subsequent execution of failure -free tests, as per section 6, 
we can say that the feature has been correctly extracted from the donor and its files can be 
inserted into the host system directory. 
 

3. Mergin: Once the code is extracted and the unit tests are performed you can enter the feature insertion 
into the host environment. This process consists of inserting a call to the insertion point replacing the 
notation __ADDGRAFTHERE__JUSTHERE by the chamda to the dir_init() function. You 
must access the vi.c file, within the host system directory, and identify the notation 
__ADDGRAFTHERE__JUSTHERE. This annotation signals the insertion point of a call to 
the feature. Instead of this notation you should insert a call to the dir_init function, adding 
the parameters, if necessary, among the local variables declared in the main function. 

 
Once all these steps are completed and feature is passing on the unit tests, you will be able to 
execute the host execution command and use feature in the host. The details of this process are 
given in Section 7 of this document. 
 
8. UNIT TEsST EXECUTION 

brew install check. 
When identifying, extracting the code elements, and performing the necessary adaptation you can 
perform the unit tests made available within the Test_Suite directory. For this, you must open the 
terminal, access the Test_Suite Directory and execute the command: ./run_test.sh that will 
compile the copied feature and execute it. He may inform some Warning that you should disregard 
but should not generate errors. If you are informed of the compilation process, you must correct the 
error in the transferred code. 
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 Terminal screen with the execution of comand ./run_test.sh.  
 
If compilation occurs successfully and no error is informed, the above command should generate an 
individual file.x in the test directory. Once this file is generated it can be executed with the command: 
./Individual.x that will test the feature. If Feature is working properly, you will receive the 
message: 
 

 
 

Terminal with unit testing informing: 100% percentage of acceptance; Checks: 1. Number of tests performed; Failures: 
0 number of failures and errors: 0, number of errors. 

 
9. TRANSPLANT VALIDATIOIN 

 
After transferring the feature to the host system and it is passing on the unit tests, you can perform 
the final transplant validation test. We have provided a post-operative test suite. The post-operative 
tests correspond to a set of regression, augmented regression and acceptance tests to exercise the 
feature transplanted and check if the transplant has no broken the host system. 
 
 
Executing the post-operative tests: 

1. Open the terminal; 
2. Access the directory 

HOST_TO_TRANSPLANT/NEATVI_1.0/TRANSPLANTATION_TEST_CASES where you 
insert the feature source code. 

3. Execute the commands: ./test_product_line.sh 
 
 

10. SENDING ALL ARTIIFACTS 
  
After the execution of the experiment is completed, make sure that it computed all the time elapsed at each stage 
of the process. Sign up to the researchers to end the activity and time registration worksheet. 
 
Rename Group B Directory Complete your name and compact the folder. Then upload the folder with your 
changes from the form. 
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If you have a shipping problem, download the artifacts from transplantation_artifacts and report this to the 
researchers 
 
We greatly appreciate the time and availability to perform this vital experiment for the progress of our 
research. 
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B.5 EVALUATION: RESULTS OF POST-EXECUTION SURVEY



 

RESULT OF POST-EXECUTION SURVEY 
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B.6 EVALUATION: THE TIME MEASURED FOR THE PARTICIPANTS AND
TOOL

The time spent by each participant to execute the tasks.

Table B.1: Scenario I.

The time measured for the participants that transferred a feature from NEATVI to
NEATVI as a product base.

FASES/PARTICIPANTS PRODSCALPEL P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 MIN. MAX. AVG. AV. WITH PRODSCALPEL
Extraction 18 24 35 69 17 50 211 56 30 59 106 17 69 49.6 67.5
Adaptation 0 42 26 3 39 15 15 3 23 4 2 2 42 17.4 17.2
Merging 2 16 27 5 12 16 14 28 30 10 5 5 30 16.6 16.5

Total 20 82 88 77 68 81 240 87 83 73 113 83.6 101.2

Table B.2: Scenario II.

The time measured
for the participants that transferred a feature from MYTAR to NEATVI as a product base.
FASES/PARTICIPANTS PRODSCALPEL P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 MIN. MAX. AVG. AV. WITH PRODSCALPEL

Extraction 0 20 35 69 45 21 31 43 20 38 30 21 69 33.67 32.00
Adaptation 27 220 205 104 195 219 59 53 171 90 210 53 205 104.67 141.18
Merging 0 0 0 8 0 0 24 8 3 3 0 8 24 4.67 4.18

Total 27 240 240 181 240 240 114 104 194 131 240 143.00 177.36
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Table B.3: Total time (in minutes) spent by on performing the three stages of SPL
reengineering: feature extraction, adaption and merging.

The highlights line show the execution that achieved the timeout without no result.
SCENARIO I SCENARIO II

EXECUTION START END TIME START END TIME
1 17:37:30 18:22:04 00:44:34 20:06:07 20:27:08 00:21:01
2 18:22:04 18:43:20 00:21:16 20:06:07 20:48:46 00:21:20
3 18:43:30 00:00:00 04:00:00 20:27:26 21:09:53 00:20:48
4 22:27:09 22:43:38 00:16:29 20:49:05 21:31:04 00:10:54
5 22:43:38 23:08:18 00:24:40 21:20:10 21:52:00 00:20:38
6 23:24:13 23:49:09 00:15:40 21:31:22 22:13:16 00:20:58
7 23:49:18 00:09:14 00:24:56 21:52:18 22:34:29 00:20:54
8 00:09:22 00:44:01 00:19:56 22:13:35 22:55:44 00:20:56
9 08:13:35 09:23:14 00:34:39 22:34:48 23:16:56 00:20:53
10 00:44:08 01:02:01 01:09:39 22:56:03 23:38:19 00:21:06
11 01:02:09 01:15:32 00:17:53 23:17:13 23:59:34 00:20:57
12 01:15:41 01:28:38 00:13:23 23:38:37 00:20:47 00:20:53
13 01:28:46 01:50:56 00:12:57 23:59:54 00:41:54 00:20:49
14 01:51:04 02:16:23 00:22:10 00:21:05 01:03:02 00:20:50
15 02:16:32 03:32:46 00:25:19 00:42:12 01:24:11 00:20:50
16 02:32:53 03:21:21 01:16:14 01:03:21 01:45:17 00:20:48
17 03:21:30 03:35:17 00:48:28 01:24:29 02:06:25 00:20:49
18 03:35:26 03:56:14 00:13:47 01:45:36 02:27:33 00:20:50
19 03:56:21 04:10:25 00:20:48 02:06:43 02:48:40 00:20:47
20 04:10:32 04:29:38 00:14:04 02:27:53 03:09:57 00:20:58

AVERAGE TIME 00:28:15 00:20:24
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