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ABSTRACT

Grasping objects presents a multifaceted challenge influenced by variations in shape,
perspective, material, roughness, and environmental conditions, making it a complex task.
This research introduces an algorithm designed to address these challenges by employing
point clouds since they allow a better notion of depth and geometry than RGB images.
The proposed algorithm leverages geometric primitive estimation and lateral curvatures
to identify optimal grasping regions swiftly and efficiently, where only the object geometry
is used to analyze where to grasp.

To ensure the selection of desirable objects within the environment and to avoid
undesirable ones, a purpose-built neural network, Point Encode Convolution (PEC), is
introduced. PEC is tailored to utilize point clouds from RGB-D sensors and offers rapid
execution and training times. The proposed design allows for efficient training and re-
training, making it adaptable to diverse sets of objects. To expedite the training process,
an autonomous dataset generation method is proposed. This method eliminates the
need for manual annotation by autonomously generating data, and training is conducted
within a simulation environment, such as Isaac Sim or any other simulation that allows
object manipulation through scripts.

Validation of both algorithms, individually and in tandem, is conducted through the
implementation of two grasp systems. The first system integrates the grasping algorithm
with a neural network capable of object detection and 6D pose estimation. Initial val-
idation occurs within the Webots and Gazebo simulations, where Gazebo was used for
the visual validation and Webots for grasp validation due to its better physics handling
without needing external plugins. However, due to certain limitations, the network com-
ponent is excluded from subsequent experimental validation. The second system features
the grasping algorithm with the neural network to be used on selective object grasping
tasks.

Experimental validation is carried out using a UR5 robotic manipulator, an Intel Re-
alSense D435 visual sensor, and a Robotiq 2F-140 gripper. The proposed neural network
achieves a classification accuracy of 92.24% on a publicly available dataset. Meanwhile,
the grasping algorithm attains an average success rate of 94% across all tested objects.
The execution time of both algorithms is around 0.002 seconds each.

Keywords: Robotic Manipulator, Point Cloud, Deep Learning, Grasping, Computer
Vision.
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RESUMO

Preensão de objetos apresenta desafio de diversos tipos, devido a variação de forma, per-
spectiva, material, rugosidade e a condições do ambiente, fazendo da preensão uma tarefa
complexa. Esse trabalho apresenta um algoritmo feito para lidar com esses problemas
utilizando nuvem de pontos devido a sua melhor noção de profundidade e geometria do ob-
jeto em comparação a imagens RGB. O algoritmo proposto utiliza primitivas geométricas
e curvaturas laterais para identificar o melhor local para se pegar um objeto de forma
rápida e eficiente, onde somente a geometria do objeto é considerada para fazer a análise.

Para garantir a seleção de objetos de desejo para se realizar a preensão, uma rede
neural de classificação, chamada de Point Encode Convolution (PEC), foi desenvolvida.
A rede foi feita para ser utilizada em nuvem de pontos de sensor RGB-D e possui tempo
baixo de execução e treinamento. Esse design flex́ıvel permite que a rede seja treinada e
retreinada de forma eficiente, sendo facilmente adaptável para diversos grupos de objetos.
Para auxiliar no processo de treinamento, um método de geração de datasets de forma
autônoma foi proposto. Este método elimina a necessidade de anotação manual e é feito
em um ambiente de simulação, como o Isaac Sim ou outro simulador que possua a opção
de manipular objetos por script.

A validação de ambos os algoritmos, de forma individual e em conjunto, foi conduzida
em dois sistemas. O primeiro sistema integra o algoritmo de preensão com uma rede
neural capaz de detectar objetos e estimar a pose em 6D. A validação inicial foi feita
em ambiente simulado do Gazebo e Webots, onde o Gazebo foi utilizado para validação
visual e o Webots para validar a preensão devido a sua melhor f́ısica sem a necessidade de
plugins externos. Entretanto, devido a certas limitações das redes de detecção de objetos
e estimação de pose em 6D, a rede foi exclúıda na execução da validação experimental. Já
o segundo sistema, combina ambos os algoritmos para execução de tarefas em preensão
seletiva.

A validação experimental é conduzida usando um manipulador robótico UR5, o sensor
visual RGB-D Intel Realsense D435 e uma garra Robotiq 2F-140. A rede neural proposta
atingiu uma acurácia de 92.24% em um dataset de uso público, enquanto isso, o algoritmo
de preensão atingiu uma média de 94% de sucesso em tarefas de preensão. O tempo de
execução de ambos os algoritmos está por volta de 0.002 segundos cada.

Palavras-chave: Manipulador Robotico, Nuvem de Pontos, Aprendizado Profundo,
Preensão, Visão computacional.
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CHAPTER 1

INTRODUCTION

This introductory chapter will discuss the motivations for this dissertation research, the
methodology, objectives, and the contributions to the literature.

1.1 MOTIVATION

Robotic manipulators have been used in the industry since the introduction of the first
robotic manipulator, Unimate, in 1962. Unimate was used for automated diecasting at
the General Motors plant in Ternstedt (MORAN, 2007). With the evolution of visual
sensors, the use of robotic manipulators with computer vision to solve more complex
tasks has become common in the literature and the industry, due to the flexibility it
gives to the system since it can deal better with dynamic environments, where without
the use of computer vision the environments would need to be mostly static. Over the
last ten years, advancements in RGB-D sensors and computation power have improved
tasks in diverse areas of robotics, such as robot navigation (Ferreira Neto et al., 2022),
manufacturing operations (ARRAIS et al., 2019), and grasping (Carvalho de Souza et
al., 2021).

Object detection from deep learning algorithms, like Single Shot MultiBox Detector
(SSD) (LIU et al., 2016) and Yolov5 (QU et al., 2022), can be used to help detect objects
in environments with multiple objects, making the visual system more robust and flexible
when compared to traditional computer vision methods. However, since they use RGB
images, they lack depth, resulting in a loss of precision in tasks that require accurate
distance measurements or scale. To address this limitation, researchers have explored
point cloud data in semantic segmentation tasks, such as PointNet++ (QI et al., 2017b),
Semantic Point Cloud Segmentation Using Fast Deep Neural Network and DCRF (RAO
et al., 2021), and EfficientLPS: Efficient LiDAR Panoptic Segmentation (SIROHI et al.,
2022). While a point cloud contains 3D data (XYZ), it is still considered 2.5D because it
suffers from occlusion. To overcome this limitation, multiple point clouds from different
angles can be fused to generate a complete 3D representation (LIU et al., 2022).

In robotic manipulators, one common task is grasping or picking up objects. Visual
systems aid in making these tasks more robust, as they allow the robot to perceive the
desired object in relation to the camera and estimate the best region to grasp it whereas,
without the use of computer vision, the object would have to always be in a previously
known location, making it more susceptible to error. Works such as Grasp detection
for assistive robotic manipulation (Jain; Argall, 2016) estimate the best place to grasp
an object without any prior knowledge of the object using point clouds. Deep learning
networks can also generate possible grasping strategies, as seen in the works of Mahler
et al. (MAHLER et al., 2018) and Mousavian et al. (MOUSAVIAN; EPPNER; FOX,
2019). However, these approaches may have limitations, such as planar grasping, where

4



1.2 METHODOLOGY AND OBJECTIVES 5

the gripper is always perpendicular to the table, or requiring heuristics to select one of
the possible grasps returned by the network. To address these limitations, deep learning
algorithms like PoseCNN (XIANG et al., 2017) and 6-Pack (WANG et al., 2020) have
been developed. These algorithms detect the object, segment it, and estimate its pose
using RGB and RGB-D images.

Reinforced learning and hierarchical learning approaches are currently at the forefront
of robotic grasping research. Works such as Wang et al. (WANG et al., 2022) and Osa et
al. (OSA; PETERS; NEUMANN, 2018) use these approaches to generate robust grasping
deep learning algorithms. However, these types of algorithms are usually expensive to
train due to the reinforced learning process and require robust hardware to run, making
them difficult to retrain if necessary and challenging to use on low-cost hardware and
systems.

This dissertation proposes a new selective grasping system that can handle diverse
types of objects with low execution time. The system pairs a grasping algorithm with a
classification deep learning network. Both algorithms are designed to have low hardware
requirements for their use and will be validated in simulated and experimental environ-
ments.

1.2 METHODOLOGY AND OBJECTIVES

The goal of this dissertation is the development of a selective grasping system that has low
execution time, low graphical memory usage and that can grasp unknown objects. The
research is divided into two main areas: the development of a grasping algorithm capable
of working with objects without prior knowledge, and the creation of a classification deep
learning neural network to facilitate object selection and avoid grasping undesired objects
in environments with multiple objects.

The first part of the research focuses on improving existing grasping algorithms. Build-
ing upon the work by Zapata et al. (ZAPATA-IMPATA et al., 2019), the proposed algo-
rithm analyzes the entire object instead of solely focusing on the centroid. Additionally,
it enhances geometric primitive estimation to detect objects that cannot be reduced to
a primitive shape, improving the work of Jain et. al. (Jain; Argall, 2016). The validity
of the grasping algorithm was established through simulations in Gazebo and further
validation was conducted using the Webots simulator due to its better default physics
when dealing with collisions.

The second part involves the development of a deep learning neural network for ob-
ject classification using a point cloud from an RGB-D sensor. The proposed network
features a simple architecture that enables its usage on more modest Graphic Processing
Units(GPUs), like laptop GPUs, and swift retraining. To enhance the learning process
and usability, a pre-processing algorithm is proposed. In conjunction with the deep learn-
ing network, a method for autonomously creating classification datasets is introduced.
Validation of the proposed network was carried out using three datasets, including one
publicly available dataset and two datasets generated using the proposed method.

Experimental validation of both algorithms was conducted using the UR5 robotic
manipulator in conjunction with the Robotiq 2F-140 gripper. The Intel Realsense D435
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RGB-D sensor was used for visual data acquisition. The algorithms were implemented
using Python, with the support of libraries such as Numpy (HARRIS et al., 2020), Point
Cloud Library (PCL) (RUSU; COUSINS, 2011), Open3D (ZHOU; PARK; KOLTUN,
2018), and Pytorch (PASZKE et al., 2019). The Robotic Operating System (ROS) was
employed for controlling the robotic manipulator, and gripper, and acquiring data from
the visual sensor. The proposed grasping algorithm and deep learning neural network can
be accessed on GitHub: 1 and 2. The system was validated using two hardware setups: a
laptop equipped with an Intel i5 4200M Central Processing Unit (CPU) and Nvidia GT
850M GPU, and a desktop with a Ryzen 5 3600 CPU and Nvidia 3060ti GPU.

The main objectives of this research can be summarized as follows:

• Develop a grasping algorithm capable of efficiently grasping unknown objects using
point clouds with low execution time.

• Create a deep learning neural network for object classification on point cloud, en-
abling selective grasping on low-power GPUs.

• Develop a method for easily generating classification datasets.

• Conduct comprehensive validation of both algorithms in both simulated and real-
world environments.

1.3 CONTRIBUTIONS

The research conducted in this study has resulted in several contributions that have been
published in scientific papers and presented at conferences. The key contributions and
their corresponding publications are as follows:

• Validation of a grasping algorithm capable of efficiently grasping unknown objects
with six Degrees of Freedom (DOF), which is an improvement of the works seen in
Zapata et al. (ZAPATA-IMPATA et al., 2019) and Jain et al. (Jain; Argall, 2016).
The initial version of the algorithm was validated using the Gazebo simulator and
subsequently, the algorithm was further validated using the Webots simulator.

• The development of a deep neural network called Point Encoder Convolution (PEC)
specifically designed for object classification on point clouds. This network is uti-
lized by the proposed grasping algorithm to effectively select the desired object for
grasping during experimental validation. Additionally, a preprocessing algorithm
is introduced to enhance the learning process and generalization of the network by
reorganizing the point cloud.

• The introduction of a method for the rapid creation of classification datasets using
point clouds. This method utilizes a simulator and eliminates the need for manual
labeling, enabling autonomous dataset generation. Paired with this method, a new
dataset, named LARS Classification Dataset, is introduced.

1⟨https://urlr.me/j2PyG⟩
2⟨https://urlr.me/xBPZv⟩

https://urlr.me/j2PyG
https://urlr.me/xBPZv
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• Thorough experimental validation of the proposed grasping algorithm, the PEC
network, and the dataset creation method using a robotic manipulator UR5, a
Robotiq 2F140 gripper, and an Intel Realsense D435 RGB-D sensor.

1.4 DISSERTATION STRUCTURE

Previously, this Chapter presented the motivations, methodology, objectives, and contri-
butions of this research.

Chapter 2 provides an overview of related work and the current state-of-the-art liter-
ature published in recent years.

Chapter 3 introduces two proposed grasping systems: one for simulation experiments
and another for experimental validation. The rationale behind the use of two different
systems is also discussed in this chapter.

Chapter 4 focuses on the development of the deep learning network called PEC. The
chapter presents the network’s architecture, the preprocessing algorithm employed, the
method for creating classification datasets, and the results obtained from three datasets,
including one public dataset and two datasets generated using the proposed method for
dataset creation.

Chapter 5 elaborates on the proposed grasping algorithm, detailing each step of the
grasping process and highlighting its improvements over existing algorithms in the liter-
ature. The chapter also showcases the simulated and experimental results for both the
grasping algorithm in isolation and the selective grasping system incorporating the PEC
network.

Finally, in Chapter 6, the dissertation concludes by summarizing the entire discussion,
reiterating the contributions made, and presenting the overall results achieved.



CHAPTER 2

RELATED WORK

This chapter examines relevant scientific literature, including research papers, theses,
dissertations, and books that have provided inspiration and conceptual foundations for
the present study. The purpose of this literature review is to contextualize and inform
the research, elucidating key concepts and methodologies utilized to achieve the study’s
objectives.

Section 2.1 focuses on exploring and evaluating state-of-the-art algorithms in the
existing literature, specifically those pertaining to 6D object pose estimation and object
detection.

Section 2.2 will illuminate an algorithm utilizing neural networks specifically designed
for point cloud processing. Given the research’s emphasis on point cloud-based grasping,
this algorithm’s examination is particularly relevant, as it provides insights into leveraging
machine learning techniques to enhance object perception.

Lastly, Section 2.3 will provide an in-depth exploration of the definition and theory of
robotic grasping, complemented by a survey of seminal works in the literature that have
significantly contributed to shaping and inspiring the research’s approach to grasping
tasks.

2.1 6D POSE ESTIMATION AND OBJECT DETECTION

In robotics, object detection and pose estimation play crucial roles in various applications,
including mobile robotics and robotic manipulators on tasks that require finding yourself
in an environment or getting the correct object pose to grasp. These tasks are essential for
identifying objects in the environment and are particularly beneficial for localization and
grasping tasks. With the advancements in neural networks, they have become a prominent
tool in the field. One such work, PoseCNN (XIANG et al., 2017), presents a convolutional
neural network that accomplishes two tasks: object segmentation, utilizing another work
by the same author, DA-RNN (XIANG; FOX, 2017), and 6D pose estimation. The
pose estimation is achieved through two modules: one for translation and the other for
rotation. The architecture of PoseCNN is depicted in Figure 2.1, where we can see that
it has three interconnected stages to generate labels for each object and uses those labels
with another output of the network to estimate the 6D pose of each object.

To complement the neural network, the authors also introduced the YCB dataset,
which contains 21 objects, as seen in Figure 2.2. The dataset comprises 92 videos with
133,827 frames, and each object has an associated 3D model available.

The pose estimation results are evaluated based on the Average Distance (ADD)
metric, where the pose estimation is deemed inaccurate if the estimated pose error is
greater than 10%. The authors justify this threshold, stating that errors above 10%
could lead to failed grasping attempts. The ADD metric is defined as follows, where

8
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Figure 2.1: PoseCNN’s architecture. Source: (XIANG et al., 2017).

Figure 2.2: Objects of the YCB dataset. Source:(XIANG et al., 2017).

R and Tl represent the rotation and translation of the object, R̂ and T̂l denote the
estimated rotation and translation from the network, m represents the number of points
that represents the object, and M is the number of points from the 3D model of the
object, where the used dataset provides the 3D model of each object to estimate this
metric:

ADD =
1

m

∑
x∈M

∥ (Rx+ Tl)− (R̂x+ T̂l) ∥ (2.1)

In scenarios involving symmetric objects, the ambiguity of points can pose challenges.
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The ADD-S metric is utilized to address this issue, which calculates distances using the
closest points. The ADD-S can be defined as follows:

ADD − S =
1

m

∑
x1∈M

min
x2∈M

∥ (Rx1 + Tl)− (R̂x2 + T̂l) ∥ (2.2)

The evaluation of the results is performed on both RGB and RGB-D images. In the
case of RGB images, PoseCNN achieved an ADD of 53.7% and an ADD-S of 75.9%. In
contrast, when utilizing RGB-D images, the performance significantly improved, resulting
in an ADD of 79.3% and an ADD-S of 93.0%. The notable enhancement in results when
using RGB-D images underscores the importance of incorporating depth information for
accurate pose estimation.

In contrast to PoseCNN, Densefusion (WANG et al., 2019) proposes a neural network
architecture for estimating the 6D pose of an object by fusing RGB and RGB-D images to
generate a point cloud for pose estimation. The architecture of Densefusion can be seen
in Figure 2.3, where segmentation is accomplished using DA-RNN, similar to PoseCNN,
where the network work by using a Convolutional Neural Network (CNN) and a PointNet
to do color and geometric embeddings to estimate the object pose. However, instead of
using Iterative Closest Point (ICP) for pose refinement, Densefusion employs another
neural network dedicated to refining the pose, as depicted in Figure 2.4.

Figure 2.3: Densefusion architecture that uses semantic segmentation mixed with a con-
volutional neural network to generate color embeddings and a PointNet to generate geo-
metric embeddings to estimate the object pose. Source:(WANG et al., 2019).

During validation, Densefusion utilizes the ADD-S metric, but with a different thresh-
old for considering an error as wrong. It sets the threshold to any error above 2cm, which
the author deems as the ideal maximum error for grasping tasks. As a result, Densefusion
achieves an ADD-S score of 96.8%, an improvement over PoseCNN’s 93.2% when using
the same metric. Comparing the performance of both algorithms, Densefusion demon-
strates its capability to estimate the object’s pose in a mere 0.06 seconds. Within this
time, 0.03 seconds are used for semantic segmentation, 0.02 seconds for pose estimation,
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Figure 2.4: Pose refinement architecture of the DenseFusion that uses a neural network
to refine the pose instead of using ICP like PoseCNN. Source:(WANG et al., 2019).

and 0.01 seconds for pose refinement. In contrast, PoseCNN requires 0.17 seconds for
pose estimation and a longer 10.6 seconds for pose refinement. The faster and more accu-
rate performance of Densefusion makes it a compelling choice for object pose estimation,
and its ability to handle RGB-D data demonstrates the potential benefits of combining
multiple sources of information in robotic perception tasks.

6D Object Pose Regression via Supervised Learning on Point Clouds (GAO et al.,
2020) utilizes a similar approach to Densefusion by fusing RGB and RGB-D images
to create a point cloud, which is then used to estimate the object’s pose. Similarly,
it follows a modular approach to estimate translation and rotation, akin to PoseCNN.
Figure 2.5 depicts the network architecture, where it uses two BaseNets, the convolution
architecture proposed by Qi et al. (QI et al., 2017b), to estimate the translation and
rotation separately while using a depth image and the objects’ semantic segmentation as
input. A distinguishing feature of this network is that it not only predicts the pose but
also reconstructs the point cloud representation of the object in the estimated pose. This
attribute enhances its usability in grasping tasks, as it provides a complete 3D model
unaffected by issues like occlusion or missing points. During validation, the network
achieved an ADD-S of 94.7%, ADD of 82.7%, and 90.3% of the poses had an error below
1cm.

In contrast, Segmentation-driven 6D Object Pose Estimation (HU et al., 2019) adopts
a different approach compared to other networks discussed in this section. Its architec-
ture, as shown in Figure 2.6, primarily focuses on semantic segmentation and feature
extraction. The pose estimation is performed using Efficient Perspective-n-Point (EPnP)
(LEPETIT; MORENO-NOGUER; FUA, 2009), which compares the features from the
RGB image with those of the object’s 3D model. While validating on the YCB dataset,
this method yielded the lowest result, an ADD of 39%. However, it exhibited an impres-
sive execution time of 22FPS, surpassing other methods and achieving real-time perfor-
mance.
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Figure 2.5: 6D Object Pose Regression via Supervised Learning on Point Clouds archi-
tecture. Source:(GAO et al., 2020).

Figure 2.6: Segmentation-driven 6D Object Pose Estimation architecture. It uses three
convolution neural networks to segment the objects and estimate features. Source:(HU
et al., 2019).

During testing in a simulated environment, several limitations surfaced that could
impede experimental validation. Firstly, the networks only worked with identical objects
bearing the same texture. Objects that were similar but not identical resulted in false
positives. Secondly, a considerable number of false positives were encountered, with only
PoseCNN and Segmentation-driven 6D Object Pose Estimation delivering acceptable re-
sults in simulation. Lastly, the networks could only estimate one object instance. The
second and third issues are visualized in Figure 2.7. Among the problems identified, the
first one was particularly critical for altering the proposed grasping system during exper-
imental validation. Extensive efforts would be required to generate enough data using
objects available in the laboratory since these networks necessitate labeled data for both
pose estimation and semantic segmentation. For simulated validation, Segmentation-
driven 6D Object Pose Estimation was chosen due to its superior performance and the
least occurrence of false positives. PoseCNN was omitted due to its high hardware re-
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quirements for pose estimation, demanding a minimum of 6GB of Video Random-Access
Memory (VRAM).

Figure 2.7: Single instance object detection and pose estimation with false positive object
detection.

2.2 NEURAL NETWORKS ON POINT CLOUDS

The application of point clouds in robotics has witnessed a notable surge in recent years.
This rise is particularly evident in the realm of autonomous vehicles, where research
utilizing point clouds has gained significant traction. Among the works that harness point
clouds for tasks like semantic segmentation, PointNet (QI et al., 2017a) stands as a pivotal
contribution. Its architectonic design is versatile and applicable for both classification
and semantic segmentation tasks. Notably, this architecture has served as a foundational
framework for various other deep learning endeavors involving point clouds, including
tasks like pose estimation. Densefusion (WANG et al., 2019), for instance, capitalizes
on PointNet as a component of its pose estimation and refinement approach. Figure
2.8 portrays the PointNet architecture in detail, where we can see that the proposed
architecture is divided into two stages: one for classification and another for semantic
segmentation that uses the classification output.

Another creation by the author of PointNet, PointNet++ (QI et al., 2017b), takes
PointNet’s architecture and augments it with grouping and sampling operations, enhanc-
ing its precision for classification and segmentation duties. Figure 2.9 elucidates the
structure of this advanced deep learning model, where it improves the previous PointNet
architecture by adding a preprocessing step and multiple PointNet to generate the final
output. When evaluated on the Model40 Shape Classification dataset, which contains
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Figure 2.8: The PointNet architecture. Source: (QI et al., 2017a).

3D objects classified into 40 classes, each having multiple samples, PointNet achieved an
accuracy of 89.2%, while PointNet++ achieved a superior 91.9% accuracy.

Figure 2.9: The PointNet++ architecture. Source: (QI et al., 2017b).

A novel convolutional architecture, PointCNN (LI et al., 2018), emerges as an alterna-
tive approach for processing point clouds within deep neural networks. This architecture
introduces the concept of X-Conv, a specialized convolution mechanism tailored for the
irregular and unordered data inherent in point clouds. Illustrated in Figure 2.10, X-Conv
amalgamates matrix operations, Multi-Layer Perceptron (MLP), and convolution. Figure
2.11 shows the PointCNN full proposes architecture for each task, where for a classifica-
tion task it suggests using two X-Conv with a single classification output, for multi-class
classification it proposes the use of two X-Conv but with multiple output classes, and
for semantic segmentation the use of four X-Conv layers. Notably, when assessed against
the Model40 Shape Classification dataset, PointCNN exhibited a slight enhancement in
accuracy, achieving 92.5%, in comparison to PointNet++.

Diverging from the preceding networks, CurveNet (XIANG et al., 2021) introduces a
distinctive approach by incorporating curves and shape estimation from point clouds for
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Figure 2.10: X-Conv architecture. Source: (LI et al., 2018).

Figure 2.11: PointCNN architecture where (a) is the architecture for classification, (b)
for multi-class classification, and (c) semantic segmentation. Source: (LI et al., 2018).

object classification and segmentation. Figure 2.12 shows the CurveNet architecture and
its complexity, where it has three stages to generate the final output using a mix of Multi-
Layer Perception(MLP), points grouping, concatenations, pooling, and other operations
proposed by the author. Leveraging its complexity, CurveNet achieved superior outcomes
compared to both PointNet++ and PointCNN, boasting an impressive accuracy of 94.2%
on the Model40 Shape Classification dataset.

2.3 ROBOTIC GRASPING

According to Robot Grasping Foundations (BRIOT S.; KHALIL, 2015), a grasp is com-
monly defined as a set of contacts on the surface of the object, whose purpose is to
constrain the potential movements of the object in the event of external disturbances.
The primary purpose of a grasp is to constrain the potential movements of the object,
particularly in response to external disturbances. In the context of robotic manipulators,
grasping involves utilizing a set of contact points, often facilitated by a gripper, to se-
curely hold an object. This process enables precise control over the object and is essential
for various tasks, such as pick-and-place operations.
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Figure 2.12: CurveNet architecture. Source: (XIANG et al., 2021).

In the work Grasp Detection for Assistive Robotic Manipulation (Jain; Argall, 2016),
a grasping algorithm based on geometric primitives is introduced. This algorithm relies on
geometric primitives and is designed for deployment in conjunction with an RGB-D visual
sensor and a robotic manipulator equipped with a three-finger gripper. To determine the
most suitable grasp for an object, the author leverages curvature information derived from
the object’s surface. By analyzing the estimated geometry, the algorithm categorizes the
object into three distinct geometric shapes: cube, cylinder, or sphere. Figure 2.13 shows
a grasp estimation using this work, where it can be seen that it suggests two places to
grasp the object, from its front and the top.

However, it’s worth noting that this approach encounters limitations when dealing
with more complex objects possessing intricate geometries. In cases where an object’s
shape consists of multiple intricate components, attempting to approximate it as a sin-
gle simplified geometry can lead to inaccurate grasp planning and potentially result in
unsuccessful grasping attempts.

Figure 2.13: Grasp example from Grasp Detection for Assistive Robotic Manipulation,
where the green represents the gripper position. Source: (Jain; Argall, 2016).
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In High Precision Grasp Pose Detection in Dense Clutter (GUALTIERI et al., 2016),
an approach to grasp pose detection is presented, which combines analytical algorithms
with deep learning techniques for the classification of grasping poses. Notably, the pro-
posed algorithm is specifically designed for grippers with two fingers, and the author
does not recommend its utilization with other types of grippers. The key methodology
involves generating potential grasping points through random sampling of points, followed
by the estimation of their surface normals. Subsequently, a feasibility check algorithm is
employed to validate whether a grasp of those regions is viable. Once deemed feasible,
a classification network is invoked to categorize each grasp and determine the optimal
grasp configuration. An illustration of the grasp estimation process using this algorithm
is depicted in Figure 2.14, where it shows the possible grasps generated, represented by
the yellow gripper.

Figure 2.14: Possible grasp regions estimated by the work High precision grasp pose
detection in dense clutter. Source: (GUALTIERI et al., 2016).

On a related note, Fast Geometry-Based Computation of Grasping Points On Three-
Dimensional Point Clouds (ZAPATA-IMPATA et al., 2019) introduces an alternative
grasping algorithm tailored for industrial robotic manipulators. Distinguished by its
versatility, this algorithm is capable of handling diverse objects without prior knowledge
of their specific shapes or forms. The methodology revolves around analyzing points
in proximity to the object’s centroid. This involves estimating the curvature around
each point, determining their orientation using PCA, assessing the plane distance on
which they are situated, and considering the gripper configuration. However, a notable
limitation of this approach is its emphasis on searching around the object’s centroid,
potentially posing challenges when dealing with intricate objects where the centroid region
might not yield optimal grasping outcomes. Figure 2.15 shows how the proposed grasp
algorithm works, where it selects a pair of points on the lateral extremity of the object
and generates a point ranking based on multiple factors defined by the author.

GraspNet (MOUSAVIAN; EPPNER; FOX, 2019) stands as an advanced grasping
algorithm harnessing the capabilities of deep learning to ascertain optimal grasp con-
figurations for objects. While the neural network adeptly classifies potential grasps, an
auxiliary heuristic remains essential to pinpoint the ultimate choice. Central to its archi-
tecture is the utilization of a Variational Auto Encoder (VAE), where both the encoder
and decoder find their foundation in the PointNet++ framework. The training process
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Figure 2.15: Grasping estimation process for Zapata et. al. work. Source: (ZAPATA-
IMPATA et al., 2019).

relies on reinforcement learning, wherein the neural network evolves through a trial-and-
error approach within a simulation environment. Notably, this simulation encompassed
an extensive 10,816,720 potential grasp scenarios, yielding a mere 20% success rate. From
this voluminous dataset, training data was judiciously partitioned, with 30% designated
for successful grasps and the remaining 70% for instances of grasping failure. Empiri-
cal assessments on diverse objects culminated in a remarkable 88% success ratio for the
executed grasps.

Hierarchical Policies For Cluttered Scene Grasping With Latent Plan (WANG et al.,
2022) introduces an innovative 6D grasping algorithm characterized by its ability to pre-
dict optimal grasp locations and their corresponding trajectories. Figure 2.16 provides
a visual depiction of its architecture, which adeptly harnesses the PointNet and Point-
Net++ frameworks to estimate the local and global trajectory of the manipulator. The
network leverages semantic segmentation to partition objects within the visual sensor’s
field of view, subsequently generating viable grasp trajectories and forecasting potential
collisions. Mirroring GraspNet, this algorithm employs reinforcement learning and relies
on simulation-based training. Notably, a unique feature of the approach is its hierarchical
nature, enabling a portion of the training to be conducted on offline data to expedite the
learning process.
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Figure 2.16: Network architecture proposed by Wang et al.. work. Source: (WANG et
al., 2022).



CHAPTER 3

PROPOSED GRASPING SYSTEMS

This chapter introduces two proposed grasping systems: one designed for a simulated
environment, using a neural network to estimate the 6D pose for the proposed grasping
algorithm, and another for experimental validation, using a traditional method to esti-
mate the 6D pose for the grasping algorithm. Initially, the grasping system was intended
to utilize a neural network for simultaneous pose estimation and semantic segmentation.
However, during experimental tests, it became apparent that the performance of existing
networks was not satisfactory, since the tested neural network only worked with the same
objects it was trained and would require extensive retraining using objects available in
the laboratory. Generating a dataset for this purpose proved to be challenging, as it
necessitated manual annotation of poses for each frame and semantic segmentation.

To address this limitation, an alternative approach was adopted. The proposed grasp-
ing system was modified to utilize alternative techniques for pose estimation and object
segmentation that were better suited for the experimental setup. These techniques offered
improved performance and eliminated the need for labor-intensive dataset generation and
retraining.

3.1 SIMULATED SYSTEM

The first proposed system was utilized for simulated experiments, as depicted in Figure
3.1. This system was used in the published works: Oliveira et al. 2021a (OLIVEIRA;
CONCEICAO, 2021) and Oliveira et al. 2021b (OLIVEIRA; VITURINO; CONCEICAO,
2021).The system operates according to the following steps:

• Initially, an RGB image is employed to perform object segmentation and estimate
their poses using a neural network to detect and estimate the 6D pose.

• Using the provided object 3D model by the dataset used to train the neural network
and the estimated pose, the object is integrated into the point cloud with the mim-
icked pose. This approach effectively bypasses issues such as occlusion or defects
in the point cloud since it uses a 3D model of the object instead of the point cloud
from the sensor. Poisson Disk Sampling (YUKSEL, 2015) is a technique used to
convert a 3D model into a point cloud in a way that ensures the generated points
are evenly distributed while avoiding overcrowding.

• The proposed grasping algorithm is applied to determine the optimal grasping re-
gion.

• Based on the 6D pose of the object and the identified optimal grasping region, the
robotic manipulator is instructed to grasp the object.

20
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Figure 3.1: Proposed grasping system for simulated validation.

Although this system exhibited promising results in simulated environments, it en-
countered challenges when transitioning to experimental validation, including:

• False positives: The tested deep learning networks for pose estimation and semantic
segmentation produced a significant number of false positives.

• Limited capability to estimate multiple objects of the same class: The networks
could only estimate the pose of one object per class, disregarding additional in-
stances of the same object in the scene.

• Restricted applicability to specific objects: The deep learning networks only func-
tioned effectively with the same objects they were trained on, failing to perform
well with similar objects or those possessing different color patterns.

Addressing these limitations through extensive retraining would require extensive la-
borious manual labeling for semantic segmentation and pose estimation. Consequently,
the system was adapted to employ alternative techniques for pose estimation, object
segmentation, and classification in order to overcome these challenges.

3.2 EXPERIMENTAL SYSTEM

This system was used for experimental validation with the objective of overcoming the
limitations mentioned previously. This system was used in the published work by Oliveira
et al. 2023 (OLIVEIRA; CONCEICAO, 2023). The grasping system overview proposed
in this research can be seen in Figure 3.2, where the stages of the system are as follows:

• Filtering stage:
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1. Input point cloud: the initial point cloud pi returned by the RGB-D sensor.

2. Gripper and table removal: the point cloud after being filtered by removing
the gripper and the table, having only the objects over the table. The filtering
process works as follows:

(a) Removing the gripper by limiting the z-axis (depth axis) between [zmin, zmax]
meters, where zmin and zmax are the parameters of the system setup. The
gripper and objects far away from the camera are removed, for example,
the floor.

(b) Removing the table using plane segmentation (RUSU; COUSINS, 2011)
and an Outliner filter.

3. Clustering to separate the objects in the point cloud. Returns to the point
cloud pj of each object, with j = 1, . . . , n, where n is the number of objects.

• Classification stage:

4. Preprocess the data by normalization, downsampling using Farthest Point
Sampling (FPS) (QI et al., 2017b), and grouping the points. Returns the
point cloud pf j, with j = 1, . . . , n, where n is the number of objects.

5. The objects’ point cloud is classified using the proposed classification network
PEC. Returns the objects class cj, with j = 1, . . . , n, where n is the number
of objects.

6. Select the object with the class desired c to be grasped, so we can select only
the object we want to grasp and avoid undesirable objects and return its point
cloud p to the grasping algorithm. From this step on, selective grasping is
possible, as only the point cloud of the desired object will be considered for
the grasping stage.

• Grasping stage:

7. Receive the object’s point cloud p and estimate its 6D pose using Principal
Component Analysis (PCA).

8. Estimate the grasping region of the selected object in the camera’s field of
view. The proposed algorithm uses lateral curvatures and geometric primitives
to estimate the grasping region.

9. Returns the 6D pose to grasp the desired object.

To overcome the limitations mentioned earlier, several changes were implemented in
the segmentation, pose estimation, and object classification components compared to the
simulated system. These modifications aimed to enhance the system’s performance and
address the challenges faced during experimental validation.

For segmentation, a Plane Segmentation (RUSU; COUSINS, 2011) technique was
employed. In this approach, the objects are assumed to be placed on a plane, such
as a table, and by removing the plane, only the objects remain. While this technique
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Figure 3.2: Proposed grasping system for experimental validation.

introduces the limitation that objects can only be segmented when placed on planes, it
allows for the validation of the grasping system with a wide range of objects.

In terms of pose estimation, the PCA method was adopted, as suggested by Zapata
et al. (ZAPATA-IMPATA et al., 2019) and Jain et al. (Jain; Argall, 2016).

To enable selective grasping, a dedicated deep learning network was developed solely
for object classification. This approach was chosen as classification networks are easier
to train and require less complex dataset creation compared to semantic segmentation
datasets.

These changes in segmentation, pose estimation, and object classification components
collectively enhance the system’s capabilities and enable effective grasping in real-world
scenarios.



CHAPTER 4

POINT ENCODER CONVOLUTION

This chapter focuses on introducing the proposed deep learning neural network, Point En-
coder Convolution (PEC), which is designed specifically for object classification on point
clouds acquired from RGB-D sensors. The chapter provides insights into the following
aspects of the PEC network:

• Data Preprocessing: Section 4.1 presents the data preprocessing flow for training
and classification. This involves preparing the point cloud data to ensure its com-
patibility with the network and optimize classification performance.

• Network Architecture: Section 4.2 details the architecture of the PEC network,
highlighting its design choices and components that enable accurate and efficient
object classification. It also explains the network’s structure, layers, and parame-
ters.

• Proposed Datasets and Creation Method: Section 4.3 discusses the datasets utilized
for training and evaluating the PEC network. These datasets are specifically de-
signed to facilitate object classification tasks on point clouds. Also, a novel method
for creating classification datasets without manual labeling is introduced. The
Section explains how this method autonomously generates labeled datasets, remov-
ing the labor-intensive process of manual annotation. This approach streamlines
dataset creation and enables faster experimentation and training.

• Results: The results obtained from the evaluation of the proposed deep learning
network, PEC, are presented in Section 4.4. The evaluation encompasses three
datasets: two datasets created using the proposed dataset creation method and one
publicly available dataset. The section provides a detailed analysis of the network’s
performance and its ability to accurately classify objects across these datasets.

4.1 DATA PREPROCESSING

Prior to applying the data to the PEC network for object classification, a preprocessing
step is performed to enhance the learning and generalization process. Given a group of
point clouds pj ⊂ R3 as input, where j = 1, . . . , n and n is the number of objects, the
centroid pc of each point cloud p is defined as the average of all points pi within the point
cloud p, where i = 1, . . . , N and N is the total number of points:

pc =
1

N

N∑
i=1

pi, pi ∈ p. (4.1)

24
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Using the object centroid, the point cloud of the object is translated to the origin
frame by subtracting the centroid from each point in the point cloud, resulting in the
translated point cloud pf :

pf = p− pc. (4.2)

This normalization process centers the data around the centroid, preventing overfitting
during the training step and improving generalization when classifying objects. Subse-
quently, the object is sampled using Farthest Point Sampling (MOENNING; DODGSON,
2003), which reduces the number of points in the point cloud to a fixed number required
as input for the classification network.

To improve the learning process, the point cloud will be reorganized by creating a
pseudo-organized point cloud. This grouping and reorganization improved the results, as
will be shown in the results later in this section, and is necessary because a point cloud
is stored in a single 1D array, and, different from an RGB image, the order of the points
on the array has no pattern and can impact learning and generalization. The pseudo-
organized point cloud is created by following these steps, where the initial point cloud
will remain intact but the point cloud array will be reorganized:

• Select the first point of the point cloud array pinital and apply a k-d tree (BENT-
LEY, 1975) to identify i points near the target point, where i must be divisible by
the total number of points in the point cloud pf

• Group those points together and remove them from the original point cloud.

• Repeat this process until all points have been grouped.

• Once all points are grouped, calculate the centroid of each group using Equation
4.1, and sort the groups based on their distance to the origin, as proposed by Qi et
al. (QI et al., 2017b).

• Merge all the groups to reconstruct the point cloud pf with the points reorganized.

By performing these preprocessing steps, the input data is appropriately prepared
for classification, facilitating the learning process and enabling more accurate object
classification using the PEC network.

4.2 NETWORK ARCHITECTURE

Figure 4.1 illustrates the complete architecture of PEC, with an input size of 64 points
and 5 classes, resulting in a total of 890K parameters. The architecture is composed of
an autoencoder architecture, incorporating 1D convolutions, 1D transpose convolutions,
MLP, and a bottleneck in the middle, a common architecture employed in deep learning
work due to its efficient. Each convolution layer includes a batch normalization step to
enhance training stability and consistency. The parameterization encompasses the config-
uration of convolution layers (input size, output size, kernel size, stride, padding), linear
layers (input size, output size), and transposed convolution layers (input size, output size,
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Figure 4.1: PEC’s network architecture.

kernel size, stride). For loss calculation, the cross-entropy loss function is employed due
to its superior generalization performance when classifying objects that differ from those
encountered during training. The Adam stochastic optimization method (KINGMA; BA,
2014) is chosen for its faster and more effective training compared to other optimization
algorithms. The network outputs a class c and a confidence score, obtained by applying
the softmax function (GOODFELLOW; BENGIO; COURVILLE, 2016) to the network’s
output. The network’s hyperparameters are empirically determined.

4.3 PROPOSED DATASETS AND CREATION METHOD

To validate the proposed network, three datasets are utilized: ModelNet10 (WU et al.,
2015), a publicly available dataset commonly used in the literature, and two datasets
created using a novel method. The proposed method for dataset creation involves the use
of a simulator. In this research, Isaac Sim (MONTEIRO et al., 2019) is employed due to
its script manipulation capabilities, visual fidelity, and ability to generate random object
poses while capturing point cloud images at each frame. The support for script allows
us to spawn and manipulate objects using Python script, which allows us to easily know
what object is on the scene and generate random poses to generate annotations. This
approach ensures that each class is covered from multiple angles and regions, generating
a large number of samples. Figure 4.2 illustrates the simulator interface and the dataset
generation process and Figure 4.3 shows the diagram with the process to generate the
dataset, where first we spawn an object of known class and then generate random poses
of the object and save them each frame. The process is finished when the desired number
of samples is generated.

For the created datasets, each consists of 5 classes. One dataset contains two objects
representing each class, while the other dataset features only one object per class. Ran-
dom poses in R3 space are generated to create one thousand samples for each object,
with orientations ranging from [−π, π] and positions ranging from [−2 m, 2 m] where
simulated RGB-D sensors capture point clouds for each pose. Figure 4.4 showcases the
first dataset created using the proposed method, which includes objects adapted from



4.3 PROPOSED DATASETS AND CREATION METHOD 27

Figure 4.2: Dataset generation through Isaac Sim.

  

Spawn Object 
from a known 

class

Generate 
random pose 
and transform 

the object

Save point cloud 
on the random 

pose

Stop when 
enough 

samples are 
generated

Figure 4.3: Diagram of the process to generate a dataset.

the YCB Dataset (XIANG et al., 2017). The second dataset, named the LARS Classifi-
cation Dataset, incorporates objects similar to those found in the laboratory, specifically
selected for experimental validation. Figure 4.5 presents the objects and their respective
classes in the LARS Classification Dataset.

One challenge of this approach is that the simulated data is ideal and does not ac-
curately represent the defects typically present in real point clouds. To address this and
improve generalization in real-world experiments, a random subset of points is removed
from a randomly selected region within each data sample. The number of points removed
varies between 0% and 40% of the total points. This amount of points was chosen to avoid
deleting too many points and simulate defects and other problems that could happen with
an RGB-D sensor in real life. This technique does not affect the training accuracy but
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Figure 4.4: Objects of the YCB dataset adapted for classification.

(a) Objects of the class pliers.

(b) Objects of the class joypad.

(c) Objects of the class mouse.

(d) Objects of the class mug.

(e) Objects of the class stapler.

Figure 4.5: Classes and objects of the LARS Classification Dataset.
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(a) Original XYZRGB pointcloud. (b) Filtered pointcloud.

(c) Clustered point cloud. (d) Object classification.

Figure 4.6: Classification process for the PEC.

helps the PEC network handle occlusion and defects when classifying objects.
Figure 4.6 provides an example of the classification process, where the network takes a

segmented object as input. Object segmentation is achieved by applying Plane Segmen-
tation with RANSAC (RUSU; COUSINS, 2011) to detect and remove the table, resulting
in segmented objects within the point cloud. To distinguish between individual objects,
the Euclidean Clustering method (RUSU; COUSINS, 2011) is employed. Some defects
in the point cloud may be noticeable, such as missing spots, which can occur during the
segmentation process. When multiple instances of the same object are present, their con-
fidence rates may vary depending on their similarity to the objects encountered during
training. For example, when classifying mice, different models may yield confidence rates
ranging from 70% to 95%.

4.4 RESULTS

The validation of PEC is conducted on three datasets: ModelNet10, a widely used pub-
lic dataset for classification tasks; YCB dataset, a dataset created using the proposed
method with objects from the YCB dataset; and LARS Classification Dataset, a dataset
comprising objects similar to those found in the laboratory. The input point cloud size
for all experiments is set to 64 points, except for PEC128 and PEC256 which utilize input
sizes of 128 points and 256 points, respectively. To examine the impact of different point
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groupings, groupings of 4, 8, 16, 32, and 64 points were formatted. Since the Model-
Net10 dataset is a dataset composed of 3D meshes of objects instead of point clouds,
Poisson-Disk Sampling (YUKSEL, 2015) was used to convert the mesh to a point cloud
and subsample the objects.

4.4.1 ModelNet10

The accuracy of the network on the ModelNet10 is presented in Table 4.1, where PEC
is compared to other works on the literature, including the state of the art. It can be
observed that the group size influences the network’s accuracy, and having more points
in the input does not necessarily lead to better results. PEC was trained on this dataset
with a learning rate of 0.001 for 150 epochs since those were the hyperparameters that
returned the best results for this dataset on the experiments done.

Network Accuracy
PECgroup4 78.8%
PECgroup8 88.74%
PECgroup16 89.5%
PECgroup32 69.8%
PECnogroup 79.4%
PEC128group32 92.24%
PEC256group64 82.9%
3DShapeNets (WU et al., 2015) 83.5%
OrthographicNet (KASAEI, 2019) 88.56%
VSL (LIU; GILES; ORORBIA, 2018) 91.0%
LonchaNet (GOMEZ-DONOSO et al., 2017) 94.37%
SPNet (YAVARTANOO; KIM; LEE, 2019) 97.25%
RotationN (KANEZAKI; MATSUSHITA; NISHIDA, 2018) 98.46%
VRN Ensemble (BROCK et al., 2016) 97.14%
Panorama-ENN (SFIKAS; PRATIKAKIS; THEOHARIS, 2018) 96.85%
SO-Net (LI; CHEN; LEE, 2018) 95.7%
CurveNet (XIANG et al., 2021) 96.3%
Voxelized Point Clouds (GEZAWA et al., 2022) 93.4%
Shape Self-Correction (CHEN et al., 2021) 95.5%

Table 4.1: Table comparing classification networks on ModelNet10.

4.4.2 YCB Dataset

The accuracy of the network on the YCB dataset is presented in Table 4.2, where the
best result was achieved with an input size of 64 points and a group size of 16 points.
Interestingly, for this dataset, the input size had minimal influence on the results, as an
input size of 256 yielded similar results to an input size of 64. On the other hand, the
number of points per group had a more significant impact, with the biggest difference
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observed when the points were not organized into groups. The dataset was split into
75% for training and 25% for validation, utilizing a learning rate of 0.01 and trained
for 150 epochs. Those values were chosen due to yielding better results from multiple
experiments.

Network Accuracy
PECgroup4 93%
PECgroup8 97.3%
PECgroup16 99.3%
PECgroup32 97.2%
PECnogroup 83.9%
PEC256group64 99%

Table 4.2: PEC accuracy on YCB Dataset.

4.4.3 Lars Classification Dataset

The accuracy of the network on the LARS Classification Dataset is presented in Table
4.3, where the best result was achieved with an input size of 64 points and a group size
of 16 points. Similar to the YCB dataset, the LARS dataset was split into 75% for
training and 25% for validation, using a learning rate of 0.01, and trained for 150 epochs,
where similarly to the last experiment, those values yielded the best results for this
dataset when compared to other hyperparameters that were tested. Figure 4.7 illustrates
the validation accuracy and loss during the training stage. It can be observed that the
validation loss starts high due to batch normalization but eventually normalizes, resulting
in a faster and more stable training process. Although the graph may appear noisy, it was
found to be an effective learning rate that consistently yielded good results. In contrast,
Figure 4.8 demonstrates the training process with a suboptimal learning rate. Figure 4.8a
depicts the training process when the learning rate is too high, leading to instability and
compromising optimal training performance. Conversely, Figure 4.8b shows the opposite
scenario, where the learning rate is too low, causing the optimizer to get stuck in local
minima for an extended period and requiring more time to reach optimal results.

Network Accuracy
PECgroup8 89.2%
PECgroup16 92.5%
PECgroup32 89.1%
PECnogroup 67%
PEC128group32 91%
PEC256group64 91.5%

Table 4.3: PEC accuracy on LARS Classification Dataset.
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Figure 4.7: Training process of PEC on LARS classification Dataset.

4.4.4 Execution and Training Time

Using an RTX 3060ti graphics card, the PEC network with the LARS dataset can per-
form predictions in approximately 0.002 seconds, while the training step takes 152 seconds
when using an input size of 64 points. On the other hand, with a GT850M graphics card,
the prediction time is around 0.009 seconds, and the training process takes approximately
250 seconds. The efficiency in training time is attributed to the dataset’s characteristics,
where each sample contains a low number of points, allowing the entire dataset to fit
into memory, even on a laptop GPU like the GT850M. This aspect reduces the need for
frequent disk reading during training, resulting in faster training times. It is essential
to emphasize that the network’s training step is only performed once for a set of ob-
ject classes. Once trained, the PEC network demonstrates remarkable performance in
execution time and can be deployed on low-cost hardware effectively. Additionally, the
network’s versatility shines through, as it can be retrained as needed to accommodate
changes in the desired objects to be classified. This adaptability adds to its practicality
and makes it an excellent choice for scenarios where hardware constraints or variations
in the target objects may arise.
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(a) Training process of PEC on LARS classification Dataset when the learning rate
is too high.

(b) Training process of PEC on LARS classification Dataset when the learning rate
is too low.

Figure 4.8: Comparassion of the PEC training process when the learning rate does not
have its optimal value.



CHAPTER 5

GRASPING BASED ON LATERAL CURVATURES AND
GEOMETRIC PRIMITIVES

This chapter proposes a novel algorithm for 6D pose grasping using lateral curvatures
and geometric primitives of point clouds. The algorithm builds upon the works of Zapata
et. al. and Jain et. al. (ZAPATA-IMPATA et al., 2019; Jain; Argall, 2016) and offers
two significant improvements:

1. The algorithm breaks the object into smaller and more accessible regions to perform
the grasp. This approach allows analyzing the entire object in less complex regions,
improving upon the algorithm proposed in Zapata et. al. (ZAPATA-IMPATA et
al., 2019), which focuses its analysis near the object’s center of mass. Moreover,
by identifying regions that do not fit the gripper, unnecessary computation time is
saved during the analysis.

2. The algorithm enhances the geometric primitive estimation proposed by Jain et.
al. (Jain; Argall, 2016), which tries to reduce complex objects to a single primitive.
Instead, by breaking the object into multiple regions, the algorithm can assess
whether the object can be effectively reduced to a geometric primitive and grasp it
accordingly if possible.

The input to the grasping algorithm is a point cloud p ⊂ R3 containing only the
desired object to be grasped. The algorithm considers a two-finger gripper with gripper
stroke Wg and finger width Hg, as illustrated in Figure 5.1. The output of the algorithm
is a 6D pose O ⊂ R6 that indicates how to grasp the object, with its position aimed at
the center of the selected region.

The proposed grasping algorithm operates as follows:

• It employs PCA to establish the object’s orientation in relation to the camera, as
suggested in Zapata et. al. and Jain et. al. (ZAPATA-IMPATA et al., 2019; Jain;
Argall, 2016).

• The object is then aligned with the origin axis based on its orientation.

• Grasping regions are generated based on the Hg value, which facilitates further
analysis.

• The algorithm computes the curvature of each region and checks if they share the
same geometry, using Jain et. al.’s work (Jain; Argall, 2016) as a foundation for
estimating each geometry.

34
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Figure 5.1: Robotiq 2F-140 general dimensions: gripper stroke Wg = 140 mm and finger
width Hg = 27 mm.

• If the object can be reduced to a primitive by verifying if each region has the same
geometric primitive and width, the algorithm grasps the object by its centroid.

• Otherwise, it calculates the lateral curvature of each region.

• The algorithm then returns the pose of the region with the smallest curvature that
fits inside the gripper, enabling successful grasping.

5.1 REGION GENERATION

The number of regionsK is defined using the object heightHo and the gripper dimensions:

K =
Ho

Hg

(5.1)

where Ho can be obtained using the following equation, where ymax and ymin are the
topmost and bottommost points, respectively:

Ho = ymax − ymin (5.2)

To generate the graspingK regions, the following algorithm is used, where fp(p, ymin, ymax)
is PassThrough filter used to reduce the field of view of the point cloud p between
(ymin, ymax) on the y-axis and pi is the generated region, where i = 1, ..., K:
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Algorithm 1 Algorithm to generate the possible grasping regions
y ← ymin

yf ← ymin + hg
while i < K do
pi ← fp(p, y, yf )
y ← yf
yf ← yf + hg
i← i+ 1

end while

If Ho ≤ Hg, the object is considered too small, and grasping will be performed at its
center. Otherwise, the object is broken into smaller regions. Since some objects have
regions that can be separated into multiple regions, for each region found, a clustering
algorithm is applied to separate them when applicable, where Euclidean Cluster Extrac-
tion (RUSU; COUSINS, 2011) was used. This way, a complex object can be broken into
smaller and more accessible regions, as shown in Figure 5.2 with the joypad example.

Figure 5.2: A joypad broken into regions.

5.2 CURVATURE CALCULATION

The point cloud surface curvature is obtained using the method proposed by Jain et.
al. and Zapata et. al. (Jain; Argall, 2016; ZAPATA-IMPATA et al., 2019). First, the
centroid of each region is calculated using the equation below, where Ni is the number of
points in the region, with i = 1, . . . , Ni, poi is a point of the point cloud pi, and pc is the
centroid of the region:

pc =
1

Ni

Ni∑
i=1

poi, poi ∈ pi. (5.3)

Then, the covariance matrix is obtained:
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C =
1

Ni

Ni∑
i=1

(poi − pc) · (poi − pc)T , (5.4)

and the eigenvalues λ and eigenvectors for three dimensions v⃗ are obtained by solving
the equation:

C · v⃗t = λt · v⃗t, t ∈ 1, 2, 3, (5.5)

and by using PCA, the curvature σj∗ is defined as:

σj∗ =
λ0

λ0 + λ1 + λ2
. (5.6)

5.3 GEOMETRIC PRIMITIVE REDUCTION

The geometric primitives, proposed by Jain et. al. (Jain; Argall, 2016), are estimated
through the curvature around each point of the region using the Equations 5.6 and 5.7:

∆ =
M∗

M
. (5.7)

where M∗ is the number of points j∗ ∈ ji where σj∗ ≤ 0.01 and M is the total number of
points from the point cloud. This way, the region geometric primitive can be defined as
seen below:

Sphere 0.0 ≤ ∆ ≤ 0.10
Cylinder 0.10 <∆ ≤ 0.40
Box 0.40 <∆ ≤ 1.0

Table 5.1: Geometric primitive classification

5.4 REGION SELECTION

The best region to grasp is defined considering whether each region has the same geometric
primitive and a similar length, within a margin of error due to noises and measurement
errors in the point cloud. If they have this, consider the entire object as a geometric
primitive and grasp it at its centroid. The region length Li is defined by:

Li = xmaxpi − xminpi , (5.8)

where xmaxpi and xminpi are the maximum and minimum values of each generated
region pi on the x-axis. The x-axis represents the horizontal axis, pi represents the
region, with i = 0, 1, . . . , K, and K is the number of regions.

If this condition fails, the curvature around xmaxpi and xminpi is calculated, and a score
called Pi is defined as:

Pi = σxmaxpi + σminpi, (5.9)
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where σxmaxpi is the curvature around xmaxpi , the point on the right extremity of the
object, and σminpi is the curvature around xminpi , the point on the left extremity of the
object.

The best region to grasp is the one where Pi is minimal, and the condition Li ≤ Wg is
valid to avoid regions that do not fit inside the gripper. In the last step, PCA is applied
to the region as it may have a different orientation than the object, as seen in Figure 5.3.

The output of the algorithm will be the 6D pose of the region to be grasped, denoted
as pr.

Figure 5.3: An object with regions that have a different orientation than the complete
object orientation.

5.5 RESULTS

This section presents the results obtained using the proposed grasping algorithm. Section
5.5.1 shows the validation of the grasping algorithm in the simulated environment, where
the system operates as shown in Section 3.2. The algorithm used to estimate the 6D pose
and segment the object was Segmentation-driven 6D object pose estimation (HU et al.,
2019). For the initial experiments in the Gazebo simulator, the gripper was not used due
to collision physics problems that made grasping tasks unviable when using the default
physics configuration. Webots was also used for validation since it has better collision
physics without the need for plugins, allowing simulated grasping to occur.

Section 5.5.2 focuses on the experimental validation of the grasping algorithm using
a system similar to the one described in Section 3.2, but without the classification part.
The main objective was to evaluate the performance of the grasping algorithm on five
distinct objects, each presenting different geometries and challenges. Additionally, an
experiment was conducted to assess the potential benefits of using an active visual sen-
sor, where the robotic manipulator is moved around the object to create a complete 3D
point cloud without encountering occlusion issues. However, the results of this experi-
ment did not show significant improvements. The experimental setup involved using the
UR5 robotic manipulator equipped with a Robotiq 2F-140 gripper and an RGB-D visual
sensor, specifically the Intel Realsense D435.



5.5 RESULTS 39

In Section 5.5.3, the full system proposed in Section 3.2 is utilized for the task of
selective grasping. The hardware used is the same as seen in the validation of the grasping
algorithm.

Section 5.5.4 provides the execution time of the grasping algorithm and an analysis
of its time complexity.

A video demonstrating further experiments can be viewed in the link ⟨https://youtu.
be/h6z5AXT9CZE⟩.

5.5.1 Simulated Results

For the initial validation of the proposed grasping system, the simulator Gazebo was
utilized to test its viability. In the simulated environment, the robotic manipulator UR5
was employed, as depicted in Figure 5.4. The simulated environment also includes an
RGB-D sensor, represented by the cube above the robotic arm, with parameters similar
to those found in the Kinect documentation. The initial pose of the robotic arm and the
RGB-D sensor in the simulated environment is defined as x = -0.4m, y=-0.01m, z=0.5m,
φ=3.14 rad, θ=0 rad e ψ=1.57 rad, where x, y, z represent the position coordinates of the
end effector of the robotic manipulator in the world frame, φ represents the rotation on
x (roll) axis, θ represents the rotation on the y (pitch) axis and ψ represents the rotation
on the z (yaw) axis.

Figure 5.4: UR5 on the Gazebo simulator.

For the simulated experiments, the objects from the YCB dataset were utilized, as
it provides the 3D model of each object, making it suitable for testing the proposed
grasping system. The neural network used for 6D pose estimation is trained with this
dataset, making it compatible with the objects used in the simulation. The Segmentation-
driven 6D Object Pose Estimation (HU et al., 2019) algorithm was selected for 6D pose
estimation due to its lower rate of false positives and more accurate pose estimation,
outperforming other tested networks in the simulated environment.

Figures 5.5, 5.6, 5.7 and Figure 5.8 depict the regions selected for grasping four dif-
ferent objects. In these figures, the red region indicates the optimal grasping region as

https://youtu.be/h6z5AXT9CZE
https://youtu.be/h6z5AXT9CZE
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determined by the grasping algorithm, except for objects that have a primitive geometry,
where we just grasp by its center.

For the drill case, the grasping region is located on its handle, similar to how a human
would grasp it. The algorithm identifies this handle as the most appropriate region for
grasping due to its linear shape and ergonomic design.

In the case of the bleach container, the grasping region near the bottom is chosen
because of its more linear and graspable structure on its laterals. The algorithm recognizes
this region as an ideal location to achieve a secure grip.

The clamp is an object with handles that can be separated into two distinct grasping
regions due to the clustering algorithm applied on each region generated. Due to this,
the algorithm selects a single handle to grasp since it will detect the single handle as the
best place to grasp.

The tomato soup can is grasped by its centroid. The algorithm identifies the object’s
geometry as resembling a cylinder, and therefore, it selects the center for the grasp.

(a) Original drill 3D mesh (b) Best region to grasp the drill.

Figure 5.5: 3D mesh model and the best region to grasp for the drill

(a) Original bleach 3D mesh (b) Best region to grasp the bleach.

Figure 5.6: 3D mesh model and the best region to grasp for the bleach

In the first grasping experiment, the target object was the tomato soup can, positioned
at x = -0.48m, y=-0.07m, z=0.40m, φ=3.14 rad, θ=0 rad e ψ=1.57 rad. The grasping
process is illustrated in Figure 5.9, and the final grasp position achieved was x = -0.48m,
y=-0.08m, z=0.43m, φ=3.10 rad, θ=0.04 rad e ψ=1.63 rad. The resulting final error in
the grasp position was x = 1.47%, y=16%, z=7.5%, φ=1.2%, θ=4% rad e ψ=3.8%.
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(a) Original clamp 3D mesh. (b) Best region to grasp the clamp.

Figure 5.7: 3D mesh model and the best region to grasp for the clamp

(a) Original tomato soup can 3D mesh.
(b) Best region to grasp the tomato soup
can.

Figure 5.8: 3D mesh model and the best region to grasp for the tomato soup can

Figure 5.9: End effector pose in the grasp to grasp the tomato soup can, where: (a) is
the intermediary pose and (b) is the final pose.

In the next experiment, the task was to grasp the bleach, positioned at x = -0.50m,
y=0.02m, z=0.30m, φ=-2.5 rad, θ=0 rad e ψ=0.7 rad. The robotic manipulator suc-
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cessfully grasped the object at the pose x = -0.51m, y=0.02m, z=0.34m, φ=-2.72 rad,
θ=0.023 rad e ψ=0.714 rad, resulting in an error of x = 2.2%, y=10%, z=13%, φ=8.8%,
θ=2.3% rad e ψ=2% rad.

Figure 5.10: End effector pose in the grasp to grasp the bleach, where: (a) is the inter-
mediary pose and (b) is the final pose.

During the Gazebo experiments, it became apparent that the selected neural network
exhibits low orientation error but relatively high position error, particularly on the y and
z axes. The next experiment utilized Webots, which provide better physics for collision
handling, enabling more realistic simulated grasping. Figure 5.11 showcases the four
stages involved in grasping a clamp in the simulation.

Despite the presence of pose estimation errors that may affect precision during grasp-
ing, resulting in slight deviations from the best-estimated position, the Webots simulation
demonstrated successful grasping without any major issues, like missing the object, for
the tested objects.

5.5.2 Experimental Validation Results

Figure 5.12 shows step-by-step how the grasp is performed. The point cloud of the
objects and their respective grasping regions can be seen in Figure 5.13, showcasing the
performance of the grasping stage with objects of varying complexities:

• Joypad: A complex object where the gripper needs to grasp close to its center for
better stability.

• Pliers: For the pliers, both the clusters and the original region are considered
as possible grasping options since some handles may not be ideal to be grasped
individually. The grasping algorithm chose to grasp both handles simultaneously.
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(a) Initial position. (b) Pre grasping position

(c) Grasping position. (d) Final position.

Figure 5.11: The four grasping stages of grasping the clamp.

• Plug Adapter: A rectangular object that uses the wall plug to stay upright, causing
it to have an orientation about the table. Due to its rectangular geometry, the
gripper grasps it by its center.

• Wire Cutter: The wire cutter has predominantly planar geometry and lacks depth.
Therefore, the plane segmentation considers only the handles.

• Cylinder: Another object with a simple geometry, which is grasped by its center.

Figure 5.12 shows an example of the selective grasping algorithm acting on the
controller object alone. This experiment can be seen on the link ⟨https://youtu.be/
OeepuDNFY9Y⟩ with further details.

To benchmark the proposed grasping system, a Generic Grasping Algorithm (GGA)
is used for comparison. The proposed GGA is a grasp algorithm that will only grasp the
object by its center, without any kind of analysis and keeps the gripper perpendicular to
the table. For simple objects, such as the cylinder and the plug adapter, the difference in
success rate is minimal. The success of the grasp depends more on other factors, such as
correct pose estimation and object dimensions. Table 5.2 shows the results of grasping
an object twenty times in different poses to demonstrate the efficiency of the algorithm
on different poses where a more significant gap between the proposed grasping algorithm
and the GGA is noticeable for more complex objects.

A common problem with RGB-D sensors is that the point cloud, when seen from a
single angle, is considered to have 2.5D due to its susceptibility to occlusion. To address
this limitation, an approach involving moving the robotic manipulator around the object

https://youtu.be/OeepuDNFY9Y
https://youtu.be/OeepuDNFY9Y
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(a) Initial pose of the joypad. (b) Original point cloud. (c) Filtered point cloud.

(d) Region for grasping in
red. (e) Executing the grasping. (f) Final pose.

Figure 5.12: Sequence of stages to perform a grasp.

Object Proposed GGA
Joypad 90% 40%
Cylinder 95% 85%
Plug Adapter 100% 100%
Pliers 100% 65%
Wire cutter 95% 70%
Wire cutter (Open) 85% 0%

Table 5.2: Table comparing the proposed grasping system vs. a Generic Grasping Algo-
rithm (GGA).

was explored to create a full 3D point cloud without occlusion issues. Figure 5.14 illus-
trates the poses used to generate the full 3D point cloud of the object, where the poses
were selected through experimentation. However, a challenge arose from the position
of the camera in relation to the gripper, resulting in different orientations between the
camera and the end effector in some poses. To rectify this misalignment, ICP (BESL;
MCKAY, 1992) was employed, since it can be used to align two points cloud of unknown
transformation between each other. Initially, the table was removed using Plane Seg-
mentation, similar to the pre-grasping process, as ICP was not converging correctly with
the table obstructing the field of view. After table removal, point-to-point ICP was ap-
plied with 100 iterations and a maximum error tolerance of 1 centimeter. Subsequently,
all the angles were merged into a single object, and a Voxel Grid Downsample (RUSU;
COUSINS, 2011) was used to merge duplicate or close points.

Figure 5.15 showcases the comparison between the single-shot point cloud and the
point cloud generated from multiple angles. The point cloud generated with the active
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visual sensor demonstrates more details and provides data on previously occluded regions,
resolving some of the issues faced in single-angle capture. However, a limitation of this
approach was identified when dealing with objects with simple geometry, such as cubes
or cylinders. ICP encountered difficulties in aligning such objects accurately. Overall, for
the tested objects, this approach did not yield significant improvements in results.

5.5.3 Selective Grasping Results

Selective grasping allows the user to choose an object of interest from a given environment
with other objects. Figures 5.16 and 5.17 show the system successfully grasping the joy-
pad and the staples, respectively. Those experiments can be seen in the footnotes⟨https:
//youtu.be/5o0LnLQrWyo⟩ and ⟨https://youtu.be/6CfazJfU7yA⟩, respectively.

It is important to note that during the testing of the selective grasping system, objects
similar to those used in the simulation training stage were used. A problem that was
observed while doing the experiments was that the quality of the point clouds obtained
from the sensors played a significant role in the system’s success. The point clouds
acquired by the sensors often contain noise and defective regions, which can lower the
confidence score of the classification compared to the simulated point clouds. However,
despite these challenges, the system demonstrated its capability to handle a diverse set
of objects effectively.

5.5.4 Time Complexity and Execution Time

The grasp algorithm exhibits efficient performance, taking on average only 0.0018s to
generate a grasp for the objects used in these experiments, running on a CPU Ryzen 5
3600.

Regarding time complexity, the main challenge lies in the creation and search of
a group of points using a K-D Tree (BENTLEY, 1975). The point cloud data is not
inherently ordered like an RGB image, necessitating the use of a k-d tree for neighbor
point search to estimate the curvature of a region. The k-d tree is a nonlinear algorithm
with a complexity of O(n log n) for tree creation and search.

However, breaking the object into smaller regions proves to be advantageous, as the
k-d tree creation and search are performed on smaller objects. As the k-d tree’s execu-
tion time grows nonlinearly with the increase in data size, using smaller regions offers
a significant advantage over dealing with the entire object when it comes to execution
time.

https://youtu.be/5o0LnLQrWyo
https://youtu.be/5o0LnLQrWyo
https://youtu.be/6CfazJfU7yA
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(a) Joypad.

(b) Pliers.

(c) Plug adapter.

(d) Wire cutter.

(e) Cylinder.

Figure 5.13: RGB images and their respective point clouds. Objects with simple geometry
are grasped by their centroids.
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Figure 5.14: The poses used to generate the full 3D pose of the object.
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(a) Point Cloud from a single shot point
cloud.

(b) Point cloud generated from multiple an-
gles.

Figure 5.15: Comparison between a single shot point cloud and a point cloud merged
from multiple angles, where the point cloud that was generated from multiple angles has
a more detailed and complete point cloud.
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(a) Initial pose. (b) Filtered point clouds.

(c) Pre-processed objects. (d) Classified objects.

(e) Selected object. (f) Grasp region.

(g) Grasping. (h) Final pose.

Figure 5.16: Selective Grasping. The environment has two objects (pliers and a joypad),
and the objective is to grasp the joypad.
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(a) Initial pose. (b) Filtered point clouds.

(c) Pre-processed objects. (d) Classified objects.

(e) Selected object. (f) Grasp region.

(g) Grasping. (h) Final pose.

Figure 5.17: Selective Grasping. The environment has three objects (pliers, staples, and
a joypad), and the objective is to grasp the staples. This experiment can be seen in the
footnote



CHAPTER 6

CONCLUSION

This research endeavor introduces a selective grasp system optimized for deployment
on cost-effective hardware, capable of executing in approximately 0.004 seconds, 0.002
seconds for classification and 0.0018 seconds for pose generation of feasible grasp con-
figuration. The presented grasping algorithm, capable of identifying unfamiliar objects,
has augmented and overcome the limitations of existing algorithms, thereby enhancing
their utility. Additionally, a specialized deep learning neural network, known as Point
Encoder Convolution (PEC), was devised to facilitate object classification, empowering
the grasping algorithm to make informed selections for optimal grasp candidates. Two
distinct systems were developed to validate the proposed concepts, encompassing both
simulation and real-world experimental scenarios.

The PEC neural network is characterized by its simplicity and efficiency, boasting a
modest parameter count and expedited training and inference times. This attribute en-
ables training and classification tasks even on outdated or budget-constrained hardware,
without incurring prolonged processing durations. To further expedite the dataset cre-
ation process, an innovative autonomous dataset generation method was introduced. This
approach obviates the need for manual labeling, expediting dataset creation, and mini-
mizing labor requirements. Furthermore, a data preprocessing algorithm was integrated
into the framework to refine the training and generalization processes. The training on
various datasets, including two datasets generated using the proposed method to gen-
erate datasets and a publicly available dataset, demonstrated substantial classification
accuracy. Achieving 92.24% accuracy on the public dataset with ten classes and 99.3%
and 92.5% on the method-generated datasets underscore the effectiveness of the proposed
methodology. While PEC exhibits limitations in scaling to complex classification tasks
involving numerous classes, it excels in rapid processing for a limited class set, particularly
beneficial for high repeatability robotic tasks.

The grasp algorithm’s fundamental principle rests on dissecting intricate objects into
more manageable regions. Upon this foundational breakdown, the algorithm investigates
the object’s potential for reduction into geometric primitives. If feasible, the object is
grasped through its centroid. Alternatively, when such simplification proves impractical,
the algorithm systematically generates and evaluates potential grasp regions, selecting
the optimal candidate for execution. This approach was thoroughly evaluated across di-
verse scenarios, involving two different grasping systems in distinct environments. The
algorithm’s robust performance across varying object detection and pose estimation algo-
rithms showcases its adaptability and independence from the specific techniques employed
for these tasks. Experimental validation demonstrated the algorithm’s efficacy, achieving
an average success ratio of 94% across all tested objects. Even upon excluding objects
with simpler geometries, the algorithm’s average success ratio remained a commend-

51



CONCLUSION 52

able 91.25%. An investigation into the utilization of an active visual sensor, capturing
multi-angle images for 3D object representation, yielded inconclusive results as it did not
significantly enhance grasp success ratios.

Furthermore, to consolidate the combined algorithms, experiments were conducted
where the robotic manipulator selected objects within the environment and successfully
grasped them.

In conclusion, this research has accomplished its objective of cultivating a selective
grasp system tailored for deployment on cost-effective hardware. By introducing a grasp-
ing algorithm and leveraging deep learning techniques, this work has advanced the ca-
pabilities of grasping algorithms and object classification methodologies. The proposed
PEC neural network and grasping algorithm have been rigorously evaluated through
simulations and real-world experiments.

For future works, the current algorithm would greatly benefit from a CUDA imple-
mentation. Since we already load the data to use on the PEC, this data already loaded
could be utilized on the grasping algorithm as well to speed up costly operations, like
the kd-tree. The proposed neural network could also be expanded to a multiclass classi-
fication algorithm and tested if its architecture could be used for semantic segmentation.
The grasp algorithm could be validated on tasks where two robotic manipulators work
together to move big or heavy objects since the algorithm allows the selection of different
regions for each manipulator to grasp and avoid collisions between them.
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