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RESUMO

A crescente disponibilidade de imagens de lâminas inteiras escaneadas (WSIs) tem ex-
pandido a patologia digital, permitindo tanto a tomada de decisão médica quanto a
análise computacional diretamente a partir de imagens de alta resolução. O diagnóstico
de doenças renais por meio de WSIs depende da análise de estruturas espećıficas do tecido,
e a análise automática dessas estruturas requer a segmentação precisa de componentes
essenciais, como glomérulos, túbulos, interst́ıcio e vasos. Esta tese foca nos glomérulos,
que são fundamentais na avaliação de WSIs após biópsias renais. Essas estruturas são
impactadas por lesões associadas a diversas doenças. Na análise de WSIs com técnicas de
aprendizado de máquina, os glomérulos costumam ser as primeiras regiões segmentadas
para orientar tarefas subsequentes. A cápsula de Bowman (CB) é essencial, pois marca a
fronteira entre os componentes glomerulares e o tecido intersticial ao redor. Este trabalho
propõe dois estudos para abordar a segmentação semântica de glomérulos em imagens
histopatológicas de alta resolução dos rins. No primeiro estudo, investigamos a viabilidade
de segmentar glomérulos em WSIs humanas utilizando modelos de aprendizado profundo
treinados exclusivamente com dados de camundongos. Camundongos e humanos com-
partilham diversas semelhanças biológicas, incluindo caracteŕısticas genéticas, fisiológicas
e estruturais, o que faz com que os camundongos sejam amplamente utilizados como
modelos para estudar doenças humanas. Embora essa transferência de conhecimento en-
tre espécies seja consolidada na medicina, ela permanece pouco explorada na patologia
computacional, onde as WSIs são objetos primários de pesquisa. Para preencher essa la-
cuna, avaliamos cinco modelos de segmentação semântica: U-Net, U-Net 3+, Res-U-Net,
DeepLabV3+ e MA-Net em conjuntos de dados compostos por 18 WSIs de camundongos
e 42 WSIs humanas. O U-Net 3+ apresentou o melhor desempenho na avaliação intra-
conjunto, alcançando um DICE médio de 0,930 em imagens de camundongos coradas
com HE. Nos dados humanos, o U-Net 3+ também obteve excelente desempenho, com
DICEs de 0,772, 0,824 e 0,791 nas colorações HE, PAS e PAMS, respectivamente. Além
disso, o U-Net 3+ mostrou boa generalização ao ser treinado exclusivamente com da-
dos de camundongos e testado em todo o conjunto de dados humanos, alcançando um
DICE de 0,798 para imagens HE. No entanto, o desempenho desses modelos diminuiu
ao serem aplicados em colorações diferentes, destacando uma limitação na generalização
entre colorações. O segundo estudo aborda os desafios da segmentação de glomérulos
sem bordas, afetados por esclerose global. Para isso, desenvolvemos um framework au-
tomatizado para recorte e recomposição de patches, eliminando a intervenção manual e
simplificando o processo de segmentação. Nossos experimentos mostraram que, embora
os modelos convencionais possam alcançar resultados de ponta para glomérulos normais
e parcialmente escleróticos, o desempenho deteriora significativamente para glomérulos
com esclerose global. A precisão da segmentação nesses casos mostrou alta dependência
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da coloração utilizada, com resultados geralmente insatisfatórios. Comparando modelos
não-fundamentais (U-Net, U-Net 3+ e SwinTransformer + U-Net), com e sem fine-tuning,
com o modelo SegGPT, observamos que os modelos não-fundamentais, treinados apenas
em glomérulos normais nas colorações HE, PAS e PAMS, apresentaram bom desempenho
para glomérulos normais (mDice > 0,92) e moderado para glomérulos parcialmente es-
cleróticos (mDice > 0,72). No entanto, o desempenho caiu drasticamente para glomérulos
com esclerose global (mDice > 0,02), com melhorias mı́nimas mesmo após o fine-tuning.
Por outro lado, o SegGPT obteve melhoria substancial, atingindo um mDice superior a
0,37 para glomérulos com esclerose global, utilizando apenas poucas amostras de consulta.
Esse resultado destaca o potencial dos modelos fundamentais para enfrentar desafios de
segmentação em glomérulos severamente lesionados. Em resumo, os estudos apresentados
nesta tese representam um avanço significativo na segmentação de glomérulos em WSIs,
oferecendo alternativas eficazes e eficientes para tarefas com dados de treinamento limi-
tados. Nossos achados demonstram o potencial do transfer learning entre camundongos
e humanos e o uso de modelos fundamentais para melhorar a segmentação de glomérulos
com esclerose.

Palavras-chave: segmentação; glomérulo; biópsias renais; aprendizado profundo; im-
agem de lâmina inteira.



ABSTRACT

The growing availability of scanned whole slide images (WSIs) has expanded digital
pathology, enabling medical decision-making and computational analysis directly from
high-resolution images. Kidney disease diagnoses using WSIs rely on the analysis of
specific tissue structures, and automatic analysis depends on accurately segmenting key
components such as glomeruli, tubules, interstitium, and vessels. This thesis focuses
on glomeruli, which are essential in assessing WSIs after kidney biopsies. These struc-
tures are impacted by lesions related to various diseases. In machine learning-based
WSI analysis, glomeruli are often the first regions segmented to guide subsequent tasks.
The Bowman’s capsule (BC) is crucial, marking the boundary between glomerular com-
ponents and surrounding interstitial tissue. This work proposes two studies aimed at
addressing the segmentation of glomeruli in high-resolution kidney histopathological im-
ages. In the first study, we investigate the feasibility of segmenting glomeruli in human
WSIs using deep-learning models trained exclusively on mouse data. Mice and humans
share several biological similarities, including genetic, physiological, and structural char-
acteristics, making mice a common model for studying human diseases. While this cross-
species knowledge transfer is well-established in medicine, it remains underexplored in
computational pathology, where WSIs serve as primary research objects. To address
this gap, we evaluated five semantic segmentation models: U-Net, U-Net 3+, Res-U-Net,
DeepLabV3+, and MA-Net, using datasets consisting of 18 mouse WSIs and 42 human
WSIs. Among these, U-Net 3+ delivered the best performance in intra-dataset evaluation,
achieving an average DICE score of 0.930 on HE-stained mouse images. On human data,
U-Net 3+ also excelled, attaining DICE scores of 0.772, 0.824, and 0.791 on HE, PAS, and
PAMS stains, respectively. Moreover, U-Net 3+ proved promising generalization when
trained solely on mouse data and tested across the entire human dataset, achieving a
DICE score of 0.798 on HE-stained images. However, while these models performed well
on images within the same staining technique, their performance declined when applied
across different stains, highlighting a limitation in cross-stain generalization. The second
study focuses on the segmentation challenges posed by borderless glomeruli affected by
global sclerosis. We developed an automated framework for patch cropping and stitching,
eliminating manual intervention to streamline the segmentation process. Our experiments
show that while standard segmentation models can achieve state-of-the-art results for
normal and partially sclerotic glomeruli, their performance deteriorates significantly for
globally sclerotic glomeruli. Notably, segmentation accuracy for these cases was highly
dependent on the staining type and generally remained poor across models. We com-
pared non-foundation models (U-Net, U-Net 3+, and SwinTransformer + U-Net) with
and without fine-tuning against the SegGPT foundation model. Non-foundation models,
trained exclusively on normal glomeruli with HE, PAS, and PAMS stains, achieved high
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performance on normal glomeruli (mDice > 0.92) and moderate performance on par-
tially sclerotic glomeruli (mDice > 0.72). However, their performance dropped sharply
to mDice > 0.02 for globally sclerotic glomeruli, with minimal improvements even af-
ter fine-tuning. In contrast, SegGPT demonstrated substantial improvement, achieving
a significantly higher mDice score (> 0.37) for globally sclerotic glomeruli by leveraging
only a few query samples. This result highlights the potential of foundation models in ad-
dressing segmentation challenges for glomeruli affected by severe lesions. In summary, the
studies presented in this thesis represent a significant step forward in the segmentation of
glomeruli in WSIs. Our findings offer a comprehensive analysis of glomerulus segmenta-
tion with limited training data, demonstrating the potential of mouse-to-human transfer
learning, as well as the use of foundation models to improve segmentation accuracy for
glomeruli affected by sclerosis.

Keywords: segmentation; glomerulus; kidney biopsies; deep learning; whole slide im-
ages.
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Kidneys are vital organs for human body homeostasis that continuously regulate blood
pressure and remove waste products from the system (Schwartz et al. 2007). Some dam-
age to the kidney structure can make kidneys unable to remove waste and produce urine.
Frequently, kidney disease occurs when the glomeruli, which are formed by tiny blood
capillaries, become injured, causing them to lose their filtering capacity. This process
of damage in renal function is often undetected in the early stages due to the absence
of evident symptoms and the limited evaluation of clinical data. As a result, this silent
progression can develop into chronic kidney disease (CKD) if not diagnosed and treated
promptly (Levey et al. 2003).

The correct diagnosis of renal disease is crucial for effective treatment to prevent
progression to kidney failure and to establish a prognosis. Diagnosis typically relies on
clinical and laboratory data, including blood and urine tests. In specific cases, a renal
biopsy may be required to confirm the diagnosis (Hogan et al. 2016). Figure 1.1 presents
an example of human kidney biopsy sections placed on a glass slide. A kidney biopsy
is a medical procedure in which a small fragment of kidney tissue is extracted from the
patient’s body via percutaneous needle puncture. The sample is then processed for exam-
ination using optical, immunofluorescence, and electron microscopy, providing essential
information to diagnose, monitor, or guide the treatment of renal failure (Walker et al.
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2 INTRODUCTION

Figure 1.1 An example of a kidney tissue image on a glass slide. The full image has a resolution
of 60,914 × 111,422 pixels. On the right, a magnified section is shown with a resolution of 4,576
× 17,118 pixels at 40x magnification.

2004; Asadzadeh et al. 2019). Figure 1.2 illustrates the medical procedure performed for
a kidney biopsy.

Several work groups are engaged in evaluation and standardizing histological staining
techniques (Lyon e Horobin 2007; Lyon et al. 1994). Currently, there is a variation of
stains in the observed tissue under a microscope by pathologists due to academic medi-
cal background or professional experience (Athanazio et al. 2009). The aim is to enhance
medical procedures that produce stain substances for analysis of tissue in the microscopic,
thereby providing reproducibility in different countries in the field of histopathology
(Lyon e Horobin 2007). In pathology laboratories, tissue fragments are commonly stained
using one or more of the following techniques: Hematoxylin and eosin (HE), periodic acid-
Schiff (PAS), periodic acid-methenamine silver (PAMS), Mallory’s trichrome (AZAN),
picro-sirius red, Masson’s trichrome and Congo red (Alturkistani et al. 2016, Agarwal et
al. 2013).

Figure 1.3 A○ depicts the key components of a nephron – the functional unit of the
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Figure 1.2 General process of kidney biopsy. From left to right: A human being has his
kidney examined by biopsy, where a tiny section of kidney tissue is extracted by percutaneous
needle puncture. Then, the tissues are cut in 3-6 sections and processed using stain techniques
in a glass slide. Finally, the sections are observed for scanning optical microscopy, where a
magnification is manually defined (2x, 10x, 20x, 40x).

kidney – responsible for filtering blood and facilitating the exchange of small molecules,
ultimately leading to urine production. Each nephron consists of a glomerulus, along with
associated tubules (T), interstitium (I), and blood vessels. Although different diseases
can affect one or more nephron components, the glomerulus is the primary target of injury
in approximately 90% of renal diseases requiring biopsy (Gesualdo et al. 2004; Polito et
al. 2010; Dos-Santos et al. 2017).

The afferent arteriole (Art) , a terminal branch of the renal arteries (Ar), gives rise to
the glomerulus, a nearly spherical structure composed of intricately interwoven vascular
capillary tufts. As blood flows through these capillaries, it is filtered across their walls.
The filtrate then passes through the renal tubules, undergoing multiple exchanges of ions
and small molecules, resulting in the production of approximately two liters of urine per
day, which contains metabolic waste. The glomerular filtration barrier consists of three
key components: endothelial cells (EnC), the underlying glomerular basement membrane,
and visceral epithelial cells (podocytes, P). These capillary tufts are supported by the
mesangium, a central structure composed of mesangial cells (Mes) embedded in a mesan-
gial matrix. The glomerulus is enclosed by Bowman’s capsule (BC), which is made up
of fibrous tissue lined internally by a layer of simple squamous epithelium. The space
between the parietal and visceral epithelial layers is known as Bowman’s space (BS),
where the initial filtrate collects.

Pre-analytical processing of renal biopsies is a fundamental step of a proper morpho-
logical analysis. This step includes sample fixation, paraffin-embedding, sectioning in 2-3
micrometers thin slices, and staining by using different techniques. Most nephropathol-
ogy laboratories rely on four primary staining methods in routine diagnostics: Periodic
Acid-Schiff (PAS), Periodic Acid-Methenamine Silver (PAMS), Hematoxylin-Eosin (HE),
and Trichrome (TRI) stains. Each technique employs distinct pigments and optimizes
their binding to specific tissue structures based on the chemical and physical properties
of the components involved. For instance, during HE staining (see Fig. 1.3 B○) hema-
toxylin binds to anionic components of the cell nucleus while eosin binds to cathionic
components of the cell cytoplasm. Therefore, the use of different staining techniques
allows a proper visualization of different tissue structures. In the study of renal biopsies,
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Figure 1.3 Schematic and histological view of the nephron and examples of different stained
glomerulus images. This figure includes contributions I made as part of the work proposed
in (Silva et al. 2022). A○ - Graphic representation of the nephron: Blood flows from the
interlobullar artery to the afferent arteriole, enter the glomerular capillaries and leaves
the glomerulus through the efferent arteriole. The blood is filtrated in the glomerulus and
the filtrate flows through the renal tubules where solutes are exchanged; urine is concentrated
and discharged through the renal collecting tubule. B○ – HE stain reveals most of the
microscoscopic structures such as cells, and supporting matrix. C○ – PAS stain highlights
the supporting membranes such as Bowman’s capsule and mesangium. D○ – PAMS is a
silver stain that enhance visualization of extracellular matrix (membrane and part of interstitial
components). E○ – Masson’s trichrome stain highlights interstitial extracellular matrix. The
main structures highlighted in the stained glomeruli are: Ar = artery, Art = arteriole, BC =
Bowman’s capsule, BS = Bowman’s space, EnC = endothelial cell, EpC = parietal epithelial
cell, I = interstitium, Mes = mesangium, P = podocyte, and T = tubule. Image taken from
(Silva et al. 2022).

HE is used to obtain a general view of the tissue. Cell nucleus and cytoplasm are clearly
stained contrasting with the light staining of the extracellular matrix. PAS (see Fig. 1.3
C○) highlights basement membranes and sugar aggregates. There are a variety of silver
stain techniques such as Jones methenamine silver and PAMS (see Fig. 1.3 D○) that
clearly delineates details of normal or altered basement membranes. TRI, such as Mas-
son (see Fig. 1.3 E○) or Azan trichromes, stains collagen and other extracellular matrix
components allowing visualization of cell-extracellular matrix relationship (Cathro et al.
2018, Chang et al. 2012).

Pathologists commonly analyze four histological tissues by means of a microscope:
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the Glomeruli, tubules, interstitium, and vessels. The glomeruli are histological tissues
located at the beginning of the nephrons in the kidney, formed by a network of capil-
laries. The main function of the glomeruli is the filtration of the blood, which leads to
urine production. The tubular system is comprised of the proximal and distal tubules.
The proximal tubule consists of convoluted and greater portions, with cells present-
ing abundant cytoplasm and containing structures for active fluid transport. The distal
tubule is narrower and shorter than the proximal tubule, and there are more cells per
unit area. The interstitium tissue contains specialized interstitial cells and connective
tissue elements, which provide support to fill spaces around the parenchyma. The renal
blood vessels are structurally similar to those ones in other parts of the body. Figure
1.4 is an example of tissue renal four structures.

Among different structures in kidney histological tissue, this Ph.D thesis focuses on
the glomeruli, a roughly spherical network formed by tiny blood capillaries responsible for
blood filtration. Given its primary function, the location and segmentation of glomeruli
are valuable information extracted from a kidney whole slide images (WSIs). Figure 1.5
shows an example of a zoomed-in patch of a glomerulus from a WSI. Since localizing
glomeruli is time-consuming and error-prone, a promising alternative arises with the
development of an automatic glomerular segmentation approach, providing a fast and
reliable supportive tool for the pathologists’ decision-making pipeline. In this context,
we highlight the challenge of gathering a large amount of annotated data, which can be
even harder to obtain if one considers human biopsies.

Typically, the segmentation of glomeruli is one of the early tasks performed
by machine-learning-based expert systems in computational nephropathology.
The primary objective is to provide specialists with a decision-making tool
for pre-screening WSIs (e.g., glomerulus counting), thereby streamlining subse-
quent automated tasks (e.g., glomerular lesion classification). Many studies ad-
dress the problem of glomerulus segmentation (Bel et al. 2018; Marsh et al. 2018;
Gadermayr et al. 2019; Hermsen et al. 2019; Bueno et al. 2020; Altini et al. 2020;

Figure 1.4 An example of a whole-slide sub-image without (left) and with (right) manually
annotated contours in HE-stained kidney histological tissue. The class/color correspondences:
glomerulus (orange), tubules (green), interstitial (yellow) and vessels (blue).
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Figure 1.5 An example of a glomerulus from the WSI.

Jha et al. 2021; Jiang et al. 2021; Jayapandian et al. 2021; Bouteldja et al. 2021;
Davis et al. 2021; Gallego et al. 2021; Altini et al. 2023). Most of these studies do not
differentiate between types of glomeruli, and the performance of the deep learning (DL)
models used for segmentation is evaluated by disregarding the various lesions that can
affect the glomeruli. Consequently, the performance of the proposed DL models may be
overestimated, especially when considering their translation to routine clinical practice.
Nonetheless, DL pipelines still require large amounts of data to train the model, either
performing it from scratch or fine-tuning it to a target domain.

These studies explores the use of the deep learning models (non-foundation models),
and in recent years, the emergence of foundation models has gained significant attention
(Chen e Sun 2023; Chen et al. 2024). Non-foundation models are deep learning mod-
els that are developed without relying on a foundational or “base” model. They are typi-
cally trained from scratch or with specific data, without leveraging pre-existing knowledge
from a broad task dataset. These models are often designed to address a particular prob-
lem and may require substantial training to adapt to different tasks (Chen e Sun 2023).
Foundation models, on the other hand, are large-scale machine learning models trained
on vast datasets, allowing them to perform a variety of tasks. They are often capable of
handling different tasks without the need for complete retraining. These models can be
fine-tuned for specific applications using techniques like transfer learning, offering versa-
tility across multiple domains, such as natural language processing and computer vision
(Chen et al. 2024).

1.1 MOTIVATION

Segmenting glomeruli in gigapixel histopathological images is one of the main challenges in
computer vision applied in the medical field (Marsh et al. 2018; Gadermayr et al. 2019).
Segmentation methods leverage various characteristics to describe the glomeruli to be seg-
mented. Generally, these characteristics do not explicitly account for borderless glomeruli,
even though edge delineation is a crucial visual feature for identifying glomeruli in gi-
gapixel histopathological images, especially those affected by global sclerosis lesions.

In this work, to tackle the problem of having limited training data, we explore the use
of transfer learning between species (rats and humans) and the problem of segmenting
global glomerulosclerosis, aiming to address three main questions: (i) Is it possible to
design an end-to-end convolutional neural network (CNN) for segmentation of glomeruli
in high-resolution images? (ii) Is it possible to segment human glomerulus from WSIs
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by using a model trained with only mouse glomerular images? (iii) How do we segment
borderless glomeruli?

To address those research questions, we investigated different segmentation ap-
proaches, including deep learning methods and foundation model techniques. Based
on our findings, we propose two key investigations: (i) Considering the similarities be-
tween mice and humans, the first contribution of our work is the investigation of cross-
species compatibility for glomerulus segmentation. We explore whether a DL model
trained on mouse data can effectively segment human glomeruli; (ii) the second contri-
bution focuses on the challenge of accurately delineating the boundaries of borderless
glomeruli in histopathological images. We assess the robustness of normal glomeru-
lus segmentation and further analyze the critical aspects involved in segmenting bor-
derless glomeruli affected by global sclerosis lesions. This evaluation includes using
both traditional deep learning models (non-foundation models) and foundation models
(Chen e Sun 2023; Chen et al. 2024).

1.2 GOALS

1.2.1 General goal

The main goal of this thesis is to conduct a comprehensive study on the segmentation
of glomeruli, using limited training data. For that, we aim to investigate glomeruli with
clearly defined borders, those with partially defined edges, and glomeruli without distinct
borders, in gigapixel histopathological images, using transfer learning, fine-tuning, and
few-shot learning techniques.

1.2.2 Specific goals

More specifically, other goals are:

• Explore the feasibility of segmenting glomeruli in human WSIs by leveraging trans-
fer learning to train deep learning models exclusively on mouse data;

• Investigate the automated segmentation of globally and partially sclerotic glomeruli
using non-foundation (deep learning) models and foundation models;

• Construct annotated datasets provided by Fiocruz to support the research commu-
nity.

1.3 CONTRIBUTIONS

The main contribution of this work is a comprehensive study of glomerulus segmentation
in high-resolution histopathological images, focusing on supervised and semi-supervised
segmentation tasks. Our approach leverages transfer learning, fine-tuning, and few-shot
learning by training on one subset of glomerulus classes and testing on a different subset.
We explored a foundation model, called Segmentation Generative Pre-trained Trans-
former (SegGPT), which employs few-shot learning with a minimal number of images
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and achieves remarkable results in segmenting normal glomeruli and those with segmen-
tal and global sclerosis. Further details on SegGPT are provided in Chapter 3 and in
the article submitted to Kidney International, which is currently under review (decision
scheduled for January).
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1.4 CHAPTER MAP

The remainder of this thesis is divided as follows:

• Chapter 2 provides a concise introduction to segmentation, discussing the funda-
mental types, key methods, and evaluation metrics.

• Chapter 3 presents an overview of the methods explored in this comprehensive
study, along with a detailed description of the public glomeruli datasets and the
private dataset developed at Fiocruz.

• Chapter 4 outlines our first contribution, focusing on the cross-species compati-
bility of human and mouse data for glomerulus segmentation.

• Chapter 5 delves into our second contribution, examining the robustness of seg-
menting normal glomeruli and the challenges of segmenting borderless glomeruli.

• Chapter 6 summarizes the key findings of the thesis. Here, we present our fi-
nal considerations on the strengths and limitations of the proposed approach and
suggest perspectives for future research.
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In this chapter, we present the theoretical background that underpins our research.
We begin by providing a formal definition of image semantic segmentation. Following
this, we explore the metrics commonly used to evaluate its performance. Finally, we
discuss related works and their connection to our study.

2.1 IMAGE SEMANTIC SEGMENTATION

Image semantic segmentation is the task of classifying each pixel in an image into known
structures, which is a semantic label (in our case: glomeruli). Segmenting semantic labels
requires pinpointing the contour of structures and thus imposing more complex localiza-
tion accuracy requirements than other computer vision tasks such as image classification
or detection.

Definition 2.1.1 (Image semantic segmentation). Let P be the set of all pixels of the
image I, and L a set of labels, where L is finite. Image semantic segmentation involves
assigning a label l ∈ L to each pixel p ∈ P.

Defining the number of pixels and the semantic classes into which an image should
be divided is not a deterministic task; it largely depends on individual perception. In
semantic image segmentation, every pixel receives a label. Figure 2.1 illustrates examples
of images with and without semantic segmentation of glomeruli. In the segmentation 2.1

11
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(a) (b) (c)

Figure 2.1 Examples of glomeruli from the WSI dataset. (a) An example of a glomerulus;
(b) Binary mask of the glomerulus segmentation; (c) Ground-truth mask of the glomerulus
segmentation.

(a), an example of a glomerulus, 2.1 (b), the white label represents glomeruli, while the
black label denotes other structures, and 2.1 (c), the green label shows ground-truth mask
of the glomerulus.

2.2 EVALUATION METRICS

The performance of a segmentation model is evaluated using various metrics, with the pri-
mary ones being the Dice similarity coefficient (Dice) and Intersection over Union (IoU).
These metrics rely on information from a standard confusion matrix, which includes the
following components: true positives (TP), where a pixel in the ground truth is positive,
and the method correctly identifies it as positive; true negatives (TN), where a pixel
in the ground truth is negative, and the method correctly identifies it as negative; false
positives (FP), where a pixel in the ground truth is negative, but the method incorrectly
identifies it as positive; and false negatives (FN), where a pixel in the ground truth is
positive, but the method incorrectly identifies it as negative. These components are used
to calculate the difference between the segmentation provided by the ground truth and
the prediction masks.

Mean-IOU considers the overlap between the predicted and ground truth masks, di-
vided by the union of the two masks. The Dice score measures twice the overlap between
the predicted and ground truth masks, divided by the total number of pixels in both
masks. Figure 2.2 depicts both geometric representations of the operations performed by
these two metrics. Using the information from the confusion matrix, we can define both
metrics, Dice score and IoU, respectively as

Dice(G,P) =
2 · |G ∩ P|
|G|+ |P|

=
2TP

2TP + FP + FN
(1)
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IoU(G,P) =
G ∩ P

G ∪ P
=

TP

TP + FP + FN
(2)

Equation (1) shows the Dice metric between two sets G and P , where G is predicted
pixels, and P is the the ground truth. The notation |G| indicates the number of pixels in
the predicted pixels, while |P | indicates the number of pixels in the ground truth pixels.
The term |G∩P | denotes the number of pixels common to both the predicted and ground
truth pixels.

Equation (2) shows the IoU metric between two sets G and P , where G is predicted
pixels, and P is the the ground truth. The notation G indicates the number of pixels in
the predicted pixels, while P indicates the number of pixels in the ground truth pixels.
The term G∩P ndicates the number of pixels common to both the predicted and ground
truth sets, while G∪P represents the number of pixels in the union of the predicted and
ground truth sets.

Figure 2.2 Visual representation of IoU and Dice evaluation metrics.

The IoU and the Dice are widely used metrics for evaluating segmentation models,
each with its own characteristics. IoU, also known as the Jaccard Index, measures the
ratio between the intersection and the union of the predicted and ground truth areas. It is
more stringent and commonly used in benchmarks but is sensitive to small discrepancies
and may not perform well in scenarios with imbalanced classes. On the other hand, the
Dice Coefficient calculates the similarity between predictions and ground truth based on
the intersection weighted by the size of the areas. It is more tolerant of minor differences
and ideal for imbalanced datasets, such as in medical segmentation. However, its lower
penalization for significant errors and less frequent use in general benchmarks can be
limitations. The choice between them depends on the context and the characteristics of
the evaluated data. Dice is typically more sensitive to small classes due to its emphasis
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on true positives and false negatives, whereas IoU can be more affected by false positives.
Our study employed the Dice metric, which is widely used in medical applications due
to its focus on relative overlap.

2.3 RELATED WORK

In the literature on WSI segmentation in digital pathology, supervised segmentation
is the standard approach for evaluating existing methods. This technique involves
training an algorithm on a labeled dataset, with ground truth annotations provided
by experts to guide the segmentation process (Carneiro et al. 2017; Ing et al. 2018;
Komura e Ishikawa 2018). These methods often require human intervention throughout
the process, particularly to refine the segmentation outputs generated by the algorithm.
Ground truth annotations serve as the input, delineating one or more renal structures
to be segmented in WSIs (Bel et al. 2018; Marsh et al. 2018; Gadermayr et al. 2019;
Kannan et al. 2019).

Locating and detecting glomeruli in WSIs is one of the primary tasks undertaken by
pathologists. Both quantitative and qualitative assessments of glomeruli are complex,
time-consuming processes that requiring specialized expertise and often resulting in
low inter-pathologists agreement (Haas et al. 2020). The primary goal is to provide
specialists with a decision-making tool for pre-screening WSIs (e.g., glomerulus count-
ing), thereby streamlining subsequent automated tasks, such as glomerular lesion
classification. Numerous studies address the problem of glomerulus segmentation
(Bel et al. 2018; Marsh et al. 2018; Gadermayr et al. 2019; Hermsen et al. 2019
; Bueno et al. 2020; Altini et al. 2020; Jha et al. 2021; Jiang et al. 2021;
Jayapandian et al. 2021; Bouteldja et al. 2021; Li et al. 2021; Gallego et al. 2021;
Altini et al. 2023). However, most do not differentiate between classes of glomeruli,
and the performance of DL models used for segmentation is often evaluated without
considering the various lesions that can affect glomeruli. This oversight may lead to an
overestimation of the proposed DL models’ performance, especially when considering
their translation to routine clinical practice.

Table 2.1 summarizes the related works selected for our study. Several insights can
be drawn from Table 2.1: U-Net and its variations are prominent choices for glomeru-
lus segmentation; the most commonly used stains are HE, PAS, and PAMS, with only
three studies using TRI stain. Notably, the majority of the datasets used are private.
Additionally, only one study proposes a custom DL network for glomerulus segmentation
(Silva et al. 2022), while the others employ off-the-shelf DL-based segmentation models.

Lately, some studies apply DL techniques using Transformer-based models in the lit-
erature for digital histology image segmentation (Zhang e Zhang 2021; Valanarasu et
al. 2021; Kawazoe et al. 2022; Saikia et al. 2023; Luo et al. 2022). The combi-
nation of Transformer-based models and U-shaped structures has become common as
a robust alternative for medical image segmentation (Shamshad et al. 2023). Notably,
recent works focusing on histological image segmentation with Transformer-based mod-
els have achieved satisfactory results in histology domains without glomerular structure
(Zhang e Zhang 2021; Valanarasu et al. 2021; Luo et al. 2022) and with renal histology
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Table 2.1 Summary of related work for glomerulus segmentation. Dashes indicate instances
where information was unreported.

Specimen Reference #WSI #Glom. Method Stain Classes Data set
− (Bel et al. 2018) 15 944 FCN PAS Normal Private

M-FCN
U-Net

Sclerosis

Human (Marsh et al. 2018) 48 3, 867 CNN(VGG-16) HE Normal Private
LoG
Blob-detection
Linear Regression

Sclerosis

Mouse (Gadermayr et al. 2019) 24 − SW-CNN
U-Net-S
U-Net-D

PAS − Private

Human (Hermsen et al. 2019) 60 238 U-Net PAS Normal Private
Sclerosis

Human (Bueno et al. 2020) 47 1, 245 U-Net PAS Normal Private
SegNet + AlexNet Sclerosis

Human (Altini et al. 2020) 26 2, 772 SegNet PAS Normal Private
DeepLabv3+ Sclerosis

Human (Jha et al. 2021) 61 1, 334 Mask-RCNN
U-Net
DeepLabv3

HE
PAS
PAMS

− Private

Human (Jiang et al. 2021) 348 8, 665 Cascade Mask R-CNN PAS Normal Private
PAMS Global Sclerosis
TRI Other lesions

Human (Jayapandian et al. 2021) 459 1, 196 U-Net HE
PAS
PAMS
TRI

− Private

Human (Bouteldja et al. 2021) 168 2, 611 Modified U-Net PAS − Private
Mouse
Human (Li et al. 2021) 258 24, 133 U-Net HE Normal Public

Sclerosis
Human (Gallego et al. 2021) 51 2, 429 U-Net HE Normal Public

PAS Sclerosis
Human (Silva et al. 2022) 665 5,309 DS-FNet HE − Public

PAS Private
PAMS
TRI

Human (Souza et al. 2023) 60 1,430 U-Net HE − Public
Mouse U-Net3+ PAS Private

Res-U-Net
DeepLabV3+
MA-Net

PAMS

Human (Altini et al. 2023) 875 23, 477 Cascade R-CNN PAS − Private

with glomerular structure (Kawazoe et al. 2022; Saikia et al. 2023).

Kawazoe et al. (2022) demonstrated an automated pipeline for detecting glomeruli
in 677 PAS-stained WSIs, followed by segmentation histopathological regions inside the
glomeruli. The authors proposed a pipeline comprising the following two steps: (i) the de-
tection task of glomeruli, which draws bounding boxes surrounding the glomeruli in a WSI
using Faster R-CNN, and (ii) the segmentation of glomerular components, which classifies
image pixels in bounding boxes labeled into five classes (Bowman’s space, glomerular tuft,
crescentic, sclerotic, and background regions) using SegFormer that uses Transformer-
based models, which change the position of the pixel in the bouding box to the region
in the WSI, and the located and segmented glomeruli in a WSI. In Figure 2.3 shows
an overview of the pipeline proposed. This pipeline, aids in medical evaluation kidney
pathology by visualizing and quantifying the histopathological regions of glomerulus with
the prognosis of kidney function in patients of immunoglobulin A nephropathy (IgAN).

In another study, Saikia et al. (2023) proposed a new approach to segment glomeruli
in 20 PAS-stained WSIs, called Multi-Layer Perceptron U-Net (MLP-U-Net), aimed at
improving the diagnosis of kidney diseases. This approach incorporates both CNN-
based networks and Transformer-based models. The MLP-U-Net aims to develop an
embedding-encoder-decoder architecture with Multi-Layer Perceptron (MLP) encoders
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Figure 2.3 Shows an overview of the approach proposed developed in the scope of the work
in (Kawazoe et al. 2022). The parallelograms represent the input or output data, while the
rectangles represent the processes. Step 1: Detection of glomeruli, and Step 2: Segmentation
of glomerular components into four classes: Bowman’s space, glomerular tuft, crescentic, and
sclerotic. Image taken from (Kawazoe et al. 2022).

in the following Fig. 2.4. The CNN embedding module comprises downsampling CNN
layers that receive input images and masks. Following the CNN embedding module,
the encoder module, which utilizes Transformers and MLP, is connected to the decoder
module through Convolutional and ReLU layers. Additionally, researchers conducted
a comparative study of deep networks employing four approaches: U-Net, TransU-Net,
Mixer-U-Net, and ResMLP-U-Net. The results indicated that MLP-based architectures
provide comparable and satisfactory outcomes using the Dice metric when compared to
conventional U-Net architectures.

The localization and segmentation of glomeruli in mouse kidney WSIs requires cap-
turing both broad contextual information, due to the renal biopsy process, which en-
compasses the entire mouse kidney. In this context, Gadermayr et al. (2019) proposed
a method for glomerulus segmentation in 24 PAS-stained WSIs of mice kidney. The
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Figure 2.4 Shows an overview of the framework developed in the scope of the work in
(Saikia et al. 2023). The proposed framework utilizes MLP-U-Net to generalize the encoder-
decoder architecture by incorporating Multi-Layer Perceptron encoders. The CNN embedding
module, which consists of downsampling CNN layers that are fed input images and masks. The
encoder module comes after the CNN embedding module and is linked to the decoder module
by Convolutional and ReLU layers. Image taken from (Saikia et al. 2023).

authors employed two deep neural networks: one network was adapted for glomerulus
detection in WSIs, while the other was fine-tuned for segmentation based on the detection
output, as illustrated in Figure 2.5. They investigated network architectures comprising
the sliding window CNN method (SW-CNN) and U-Net, along with their variations.
The results demonstrated that both conventional network approaches yielded satisfac-
tory outcomes using the Dice metric. This study effectively evaluated the accuracy of
automated glomerulus segmentation in mouse kidney WSIs by first proposing glomerulus
localization followed by segmentation.

The identification and classification of normal and sclerosed glomeruli in WSIs using
deep networks is a challenging task that requires efficient methods. To tackle this chal-
lenge, Bueno et al. (2020) conducted a study on segmenting glomeruli in 47 PAS-stained
WSIs of human kidney tissue, followed by classification, as shown in Figure 2.6. The
authors compared two deep networks, U-Net and SegNet, for segmenting three classes:
non-glomerulus, normal glomerulus, and sclerosed glomerulus, with SegNet yielding sat-
isfactory results. After segmentation, glomerular regions were extracted using bounding
boxes, and the AlexNet classifier was applied to categorize the glomeruli as either normal
or sclerosed. The combination of SegNet and AlexNet achieved satisfactory performance
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Figure 2.5 Shows an overview of the proposed processing pipeline in the scope of the work in
(Gadermayr et al. 2019). Two CNN cascades were proposed for glomerulus segmentation and
compared with conventional CNN approaches. Image taken from (Gadermayr et al. 2019).

in both segmentation and classification, as measured by Accuracy and F1-Score.This
study demonstrated that by applying a sequential segmentation-classification process,
where segmentation of glomeruli in WSIs is performed first, the AlexNet classifier was
able to reduce predictive errors between normal and sclerosed glomeruli.

In another work, Gallego et al. (2021) developed a framework for segmenting and clas-
sifying glomeruli as either normal or sclerosed in 51 WSIs of human kidney WSI stained
with PAS and HE, as illustrated in Figure 2.7. The authors employed a U-Net model,
which was trained on PAS-stained images and evaluated on both PAS and HE stains.
The results demonstrated that the U-Net model achieved satisfactory performance using
the F1-Score metric. In this study, the model was trained on WSIs from the AIDPATH
dataset and tested on WSIs from four independent sites not involved in AIDPATH.

2.4 RELATION WITH OUR WORK

We conducted two investigations for the semantic segmentation of glomeruli. The
first focused on transfer learning using supervised learning, where we trained mod-
els on a dataset of mouse images and tested them on a dataset of human images.
This evaluation employed five methods: U-Net (Ronneberger et al. 2015), U-Net 3+
(Huang et al. 2020), Res-U-Net (Zhang et al. 2018), DeepLabV3+ (Chen et al. 2018),
and MA-Net (Fan et al. 2020). Our study made significant strides in cross-species gen-
eralization, demonstrating that our hypothesis is indeed feasible. Experiments demon-
strated that most networks, when trained on a public HE-stained mouse dataset, achieved
promising results when tested on human glomerulus segmentation tasks that included HE,
PAS, and PAMS stained samples. Notably, successful generalization was primarily ob-
served when the training and test sets contained images with the same staining type; in
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Figure 2.6 Provides an overview of the workflow for the sequential segmentation and classifi-
cation process, which consists of processing kidney WSIs, extracting patches, resizing images,
performing semantic segmentation (SegNet), extracting bounding box, performing classification
(AlexNet), and calculating performance metrics, as described in (Bueno et al. 2020). This pro-
cess includes the steps of processing kidney WSIs, extracting patches, resizing images, perform-
ing semantic segmentation (using SegNet), extracting bounding boxes, conducting classification
(using AlexNet), and calculating performance metrics, as outlined in (Bueno et al. 2020). The
workflow is structured in two stages: (i) segmentation into two classes: Non-glomerulus (black)
and glomerulus (white), followed by (ii) classification into two classes: Normal glomerulus and
sclerosed glomerulus. Image taken from (Bueno et al. 2020).

cross-staining scenarios, particularly when testing on PAS and PAMS, lower and more
variable scores were observed. These findings are especially relevant as they were drawn
from general segmentation networks, such as those used in this study.

In the second investigation, we applied supervised learning, fine-tuning, and few-shot
learning, training on a dataset of normal glomeruli images and testing on a dataset
of glomeruli with segmental and global sclerosis, with a particular focus on border-
less glomeruli. This evaluation explored four methods: U-Net (Ronneberger et al.
2015), DeepLabV3+ (Chen et al. 2018), SwinTransformer (Liu et al. 2021), and Seg-
GPT (Wang et al. 2023). Our study improved the circumscription of glomeruli in
scanned kidney tissue slides, representing a crucial step toward automating renal pathol-
ogy diagnostics. This task becomes especially challenging when the boundaries of Bow-
man’s capsule, which normally outlines the glomerulus, are blurred or obscured, as seen
in cases of sclerotic lesions. Sclerosed glomeruli often lack clear boundaries, complicat-
ing detection by computational models. By utilizing a foundation model with few-shot
learning capabilities, this approach shows promise for enhancing segmentation accuracy
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Figure 2.7 Provides an overview of the proposed framework, as outlined in (Gallego et al.
2021). This framework is designed to segment and classify glomeruli in WSIs of human kidney
specimens into normal and sclerosed categories. Image taken from (Gallego et al. 2021).

and improving diagnostic reliability in complex renal pathology cases.
U-Net, in particular, is widely recognized for its effectiveness in biomedical image

segmentation and has demonstrated precise segmentation of renal histological images in
WSIs (Bel et al. 2018; Gadermayr et al. 2019). Additionally, we will evaluate existing
data augmentation techniques for our semantic segmenters, including methods such as
flipping, rotation, Gaussian filtering, and whitening transformation, which have been
well-documented in the literature.

2.5 CLOSURE

In this chapter, we presented the key concepts that form the foundation of our work. The
next chapter will focus on the materials and methods used in our studies.
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In this chapter, we present the materials and methods used for the histopathology
image segmentation task, focusing specifically on the segmentation of glomerular im-
ages. We provide an in-depth overview of dataset, segmentation models, the glomerulus
segmentation problem, and evaluation methodology.

21
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3.1 DATA SETS

The dataset used in this work originates from three sources: Lutnick’s
(Lutnick et al. 2019), Fiocruz, and HuBMAP (Howard et al. 2020). Lutnick’s dataset
has been reused with the same corpus from its original paper, containing 18 kidney
sections extracted from mice specimens. The Fiocruz dataset is composed of three cat-
egories: Normal, Sclerosis, and Mixed. The Normal dataset extends the prior dataset
(Souza et al. 2023), now featuring 45 WSIs of human kidney biopsies. The Sclerosis
dataset is newly created and includes 37 human kidney sections, while the Mixed dataset
is also new and contains 1 human kidney section. Finally, a subset of the HuBMAP
dataset was selected, including 15 kidney sections from human specimens. Our exper-
imental analyses, relied upon three datasets, whose characteristics are summarized in
Table 3.1 and described next.

3.1.1 Lutnick’s - Mouse

Lutnick’s data set. According to Lutnick et al. (2019), all histological sections were
collected by following protocols approved by the Institutional Animal Care and Use
Committee at the University at Buffalo, obeying the guidelines and specifications of the
American Veterinary Medical Association guidelines on euthanasia. C57BL/6J mice were
euthanized, and their kidneys were perfused, extracted, and embedded in paraffin. Mice
were either treated with streptozotocin (STZ) to induce diabetic nephropathy or with
an STZ vehicle for control. The renal biopsies were sliced from the paraffin-embedded
kidney. Sections at 2 µm thick were stained with HE and bright-field imaged at 0.25
µm per pixel resolution using an Aperio ScanScope slide scanner (Leica Biosystems) in
40× magnification. This data set consists of 18 HE-stained images, each accompanied by
annotations.

3.1.2 Fiocruz - Human

The renal biopsies used to build the Fiocruz dataset were fixed in formalin-acetic acid-
alcohol to preserve their histological structure, later included in paraffin. Images were
finally captured using a VS 110 Olympus scanner with 40× magnification for the nor-
mal dataset and a Zeiss Imager.Z2 scanner with 20× magnification for the sclerosis and
mixed datasets. The Fiocruz dataset contains 83 WSIs from 39 patients, annotated by
our PathoSpotter group and categorized into three groups: (i) Normal, (ii) Sclerosis: Seg-
mental and Global, and (iii) Mixed. This dataset adhered to Resolution No. 466/12 of
the Brazilian National Health Council. All procedures were approved by the Ethics Com-
mittee for Research Involving Human Subjects of the Gonçalo Moniz Institute, Oswaldo
Cruz Foundation (CPqGM/FIOCRUZ), under Protocols No. 188/09 and No. 1817574.
To ensure confidentiality, the images were anonymized, containing no identifiable patient
information. These images were exclusively used for research purposes

Normal dataset: It comprises 45 high-resolution gigapixel images from 5 patients. Sec-
tions of 2 µm were stained by HE, PAS, and PAMS. The WSIs exhibit signs of no lesions
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Table 3.1 Summary of the three datasets, including descriptions of the staining types, number
of WSIs, number of glomerulus, and average image dimensions used for training and testing.
The staining methods explored include PAS, HE, and PAMS.

Data set Specimen Stain # WSI # Glomerulus Average pixels
(height x width)

Lutnick‘s - Public Mouse HE 18 805 19,511 × 20,044
HE 15 221 23,203 × 10,639

Fiocruz: Normal - Private Human PAS 15 210 22,795 × 11,075
PAMS 15 210 22,698 × 11,825
ALL 45 641 22,899 × 11,180
HE 19 71 29,211 × 15,818

Fiocruz: Sclerosis - Private Human PAS 18 76 26,453 × 14,193
ALL 37 147 27,869 × 15,028

Fiocruz: Mixed - Private Human HE 1 12 26,624 × 13,824
HuBMAP - Public Human PAS 15 3,568 29,416 × 36,409

and a normal appearance in the glomeruli. The selected images contain 15 WSIs stained
with HE, 15 WSIs stained with PAS, and 15 WSIs stained with PAMS. 36 WSIs were
used for training the segmentation models, while 9 were used for testing.

Sclerosis dataset: It consists of 37 high-resolution gigapixel images from 33 patients.
Sections of 2 µm thickness were stained with HE and PAS. The WSIs are derived from
cases of focal segmental glomerulosclerosis (FSGS) disease. The glomeruli present can
be classified into the categories of segmental or global glomerulosclerosis. The selected
images include 19 WSIs stained with HE and 18 WSIs stained with PAS, which were
used only to test the segmentation model.

Mixed dataset: It contains a single high-resolution gigapixel image from 1 patient. Sec-
tions of 2 µm thickness were stained with HE. The WSI is categorized into three classes:
normal, segmental sclerosis, and global sclerosis. This WSI was exclusively used for train-
ing via fine-tuning and for querying through SegGPT of the segmentation model. For the
per-crop evaluation, the same WSI was utilized, consisting of only 12 glomerulus patches
extracted from the WSI, with 4 patches from each class: normal, segmental sclerosis, and
global sclerosis.

3.1.3 HuBMAP - Human

Sponsored by the National Institutes of Health (NIH), the Human BioMolecular
Atlas Program (HuBMAP) managed a glomerulus segmentation competition in the
Kaggle(Howard et al. 2020) platform. This challenge involved developing a supervised
model for glomerulus segmentation using a set of 20 human kidney WSIs. The dataset
includes 11 fresh frozen and 9 formalin-fixed paraffin-embedded (FFPE) PAS-stained kid-
ney images. Of these WSIs, 15 are designated for training, and 5 are reserved for testing.
Test images and annotations are not available, and model results can only be verified
through submissions on the Kaggle platform. The HubMAP dataset also contains ad-
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ditional information, including anonymized patient data, for each image. These images
were used exclusively for the HuBMAP “Hacking the Kidney” competition.

3.2 DATA AUGMENTATION

The process of increasing the quantity and diversity of the dataset without the need
to collect new data is known as data augmentation. It relies on existing datasets to
make small transformations, generating modified copies, or in other words, new data
samples. As data augmentation strategies, we applied resizing, vertical and horizontal flip,
random rotation in intervals of 90 degrees, shift scale rotation, Gaussian noise, Gaussian
blur, random brightness contrast, and random hue saturation value. These techniques
were highlighted in the articles from Table 2.1 and in the Kaggle (Howard et al. 2020)
competition focused for glomeruli segmentation. Henceforth, we continued with these
strategies in our two studies using deep networks.

3.3 SEMANTIC SEGMENTERS

Semantic segmentation is the task of categorizing each pixel of an image into distinct
regions. In this segmentation, each region is associated with a label corresponding to a
semantic class.

Region-based This approach tries to solve the problem of finding the bound-
aries between regions of the image. Regional-based methods, such as region-
growing (Adams e Bischof 1994), explore the discontinuities between pixel intensities to
find these boundaries.

This approach is capable of accurately segmenting regions that share the same prop-
erties and are spatially separated, generating interconnected regions (Bankman 2000).
Some object segmentations, manual intervention is required to determine the initial seed
placement point. Therefore, it is necessary to place a seed for each region that needs to
be segmented (Gonzalez 2009).

3.3.1 Deep-learning based non-foundation models

As demonstrated across multiple research domains, deep learning has been successful
in computer vision (CV) in solving complex tasks (Chai et al. 2021). In the case of
image segmentation, convolutional networks are the main approach. These networks
comprise a series of convolutional filters, which the parameters can be learned from
the data. The following discussion focuses on FCN (Long et al. 2015), U-Net (Ron-
neberger et al. 2015), U-Net 3+ (Huang et al. 2020), Res-U-Net (Zhang et al. 2018),
DeepLabV3+ (Chen et al. 2018), MA-Net (Fan et al. 2020), and SwinTransformer + U-
Net(Liu et al. 2021; Cao et al. 2022), which are the main models of deep networks used
in segmentation tasks.

FCN This method is an adaptation of the Visual Geometry Group (VGG) network
(Simonyan e Zisserman 2014) for the semantic segmentation task. fully convolutional
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Figure 3.1 FCN developed in the scope of the work in (Long et al. 2015), adapted from a VGG
classification network (Simonyan e Zisserman 2014). The blocks C1, C2, C3, C4, C5 represent
the convolutional stages just as they are present in the VGG network. The blocks F1, F2, F3

represent the fully connected layers that have been replaced by convolutional layer with a kernel
of 1x1. The block named pixelwise prediction represents a upsampling layer used to return the
convoluted image to the size of the output matrix. Image taken from (Long et al. 2015).

network (FCN) was proposed by (Long et al. 2015) as the first segmentation network
capable of being trained end-to-end for pixel-wise prediction. This indicates that, for
each iteration of the deep network’s training, the model maps the input image to the
desired outputs using a certain amount of labeled data. In other words, the model learns
to extract useful features from the data and to use these features for making predictions
without passing through a pipeline of techniques. The network leverages the spatial
correspondence and translational invariance present in convolutional networks. In a clas-
sification network, such as VGG, convolution and pooling operations maintain a certain
degree of spatial correspondence between the input image and the output features. To
ensure this equivalence in the FCN, the authors converted the fully connected layers to
2D convolutions with a 1 × 1 kernel. Figure 3.1 illustrates the fundamental architec-
ture of the FCN, where the network learns to generate dense predictions for semantic
segmentation task.

U-Net is one of the first networks for medical image segmentation based on an encoder-
decoder architecture, forming a U shape. This architecture is composed by a reduction
step (encoder) and an expansion step (decoder). The encoder reduces spatial dimensions
while increasing channels, whereas the decoder increases spatial dimensions and reduces
channels, ultimately restoring spatial dimensions to make pixel-wise predictions for the in-
put image. The encoder can be based on a standard deep-learning classification network,
such as FCN, where each block in the downsampling operation consists of convolution
and max pooling operations. The upsampling stage utilizes successive blocks to combine
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Figure 3.2 The U-Net encoder-decoder architecture, developed in (Ronneberger et al. 2015),
is illustrated with blue boxes representing multi-channel feature maps, with the number of
channels indicated above each box and the x-y size noted in the lower left corner. White boxes
denote copied feature maps, while arrows indicate different operations. A key feature of this
architecture is the skip connections between the encoder (left) and decoder (right) steps. Image
taken from (Ronneberger et al. 2015).

features from different layers, with each block in the upsampling operation consisting
of up-convolution and convolution operations. Figure 3.2 illustrates the original U-Net
architecture (Ronneberger et al. 2015).

UNet 3+ redefines skip connections to integrate full-scale information
(Huang et al. 2020), achieving fewer parameters while outperforming its predeces-
sor, the traditional U-Net encoder-decoder architecture. In UNet 3+, each decoder layer
combines smaller- and same-scale activation maps from the encoder with larger-scale
activation maps from the decoder, as illustrated in Figure 3.3. This enhanced design
captures both low- and high-level details from feature maps more effectively, leading to
improved segmentation performance.

Res-U-Net is an enhanced U-Net variation that incorporates residual learning by using
residual units with identity mapping (Zhang et al. 2018), replacing traditional encoder
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Figure 3.3 The U-Net 3+ architecture, developed in (Huang et al. 2020). U-Net 3+ inte-
grates multi-scale features through redesigned skip connections and full-scale deep supervision,
producing a segmentation map that is both position-aware and boundary-enhanced. Image
adapted from (Huang et al. 2020).

and decoder blocks. This architecture improves information flow through skip connec-
tions within residual units and between encoding and decoding layers, helping to prevent
gradient degradation and requiring fewer parameters, as shown in Figure 3.4. By combin-
ing the strengths of residual networks with U-Net’s segmentation capabilities, Res-U-Net
achieves competitive or superior performance in semantic segmentation tasks with im-
proved efficiency.

DeepLabV3+ is a deep learning architecture designed for semantic image segmen-
tation (Chen et al. 2018), created from improvements on the DeepLabV3 network
(Chen et al. 2017), by employing a encoder-decoder structure. This architecture uses
the encoder stageand add a simple yet effective decoder stage to refine the segmenta-
tion results especially along object boundaries. Even though the encoder can process
multi-scale contextual information by applying dilated convolution at multiple scales,
DeepLabV3+ was not properly designed to obtain long-range dependencies in the deep
learning process. Figure 3.5 illustrates the DeepLabV3+ architecture (Chen et al. 2018).

MA-Net is the multi-scale attention network builds upon the U-Net architecture as
its basic structure, incorporating a residual mechanism in the encoder to enhance fea-
ture extraction (Fan et al. 2020). Additionally, the convolutional block attention mod-
ule (CBAM) is divided into channel attention and spatial attention modules, which are
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Figure 3.4 The Res-U-Net architecture, as presented in (Zhang et al. 2018), consists of three
primary components: encoding, bridge, and decoding. The encoding component compresses
the input image, the bridge links encoding to decoding, and the decoding reconstructs the
image for pixel-level segmentation. Each component is built with residual units, featuring two
3×3 convolutional blocks with batch normalization, ReLU activation, and convolutional layers.
Identity mapping connects the input to output within each unit, ensuring efficient information
flow and reducing gradient degradation. Image taken from (Zhang et al. 2018).

applied in both the encoder and decoder of the architecture. In this configuration, the
attention mechanism from Attention U-Net is integrated to capture low-level features and



3.3 SEMANTIC SEGMENTERS 29

Figure 3.5 The DeepLabV3+ encoder-decoder architecture, developed in (Chen et al. 2018).
The encoder step encodes multi-scale contextual information by applying atrous convolution
at multiple scales, while the simple yet effective decoder step refines the segmentation results
along object boundaries. Image taken from (Chen et al. 2018).

Figure 3.6 The architecture of MA-Net network, developed in (Fan et al. 2020). The encoder
step includes Res-blocks, consisting of convolution layers and residual connections, to extract
high-dimensional feature information, along with the PAB, while the decoder step employs
the MFAB to capture channel dependencies, enriching multi-scale semantic information and
enhancing network performance. Image taken from (Fan et al. 2020).

effectively combine them with high-level features, enhancing segmentation accuracy and
contextual understanding. The MA-Net is a deep learning architecture that consists of
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a self-attention mechanism for adaptive feature extraction using two stages: (i) position-
wise attention block (PAB), which covers feature inter-dependencies between pixels in
spatial dimensions and (ii) a multi-scale fusion attention block (MFAB), which captures
the channel dependencies between any feature map by multi-scale semantic feature fusion.
Figure 3.6 illustrates the MA-Net architecture.

Swin Transformer + U-Net is a Transformer-based architecture for medical image
segmentation that combines a U-Net-like encoder-decoder structure with the Swin Trans-
former (Liu et al. 2021; Cao et al. 2022). It tokenizes image patches and processes them
through a hierarchical Swin Transformer encoder with shifted windows, capturing both
local and global semantic features. The decoder, constructed from symmetric Swin
Transformer blocks, uses patch-expanding layers to restore spatial resolution through
up-sampling. This design enables Swin Transformer + U-Net to efficiently model long-
range dependencies and hierarchical features. Figure 3.7 depicts the architecture of
Swin Transformer + U-Net.

3.3.2 Foundation models

Image segmentation is a long-standing challenge in the field of CV, having been the
focus of extensive research for many years, as demonstrated by both traditional non-
deep learning methods and deep learning approaches. With the advent of foundation
models (FMs), methods aimed at image segmentation have entered a new era, leveraging
the capabilities of these advanced models. The term “foundation model” refers to machine
learning (ML) models that are trained on large-scale, generalized datasets, enabling them
to perform a wide variety of tasks across different domains (Zhou et al. 2024). These
approaches not only provide superior segmentation performance but also introduce new
segmentation capabilities that have not been seen before in the context of deep learning.
Furthermore, it is faster and more cost-effective to utilize pre-trained FMs to develop
new ML applications, rather than training bespoke ML models from scratch.

SegGPT is a generalist model developed for context-aware segmentation tasks, utilizing
a FM that distinguishes it from non-foundation models (Wang et al. 2023). It approaches
training as an in-context coloring task, applying random color mapping to each data sam-
ple. We adapted this model for gigapixel histopathological images of glomeruli, allowing
it to function without a conventional training phase and thus avoiding the need for
extensive task-specific training or fine-tuning. Instead, SegGPT leverages feature repre-
sentations from a few query samples during inference. Figure 3.8 illustrates the SegGPT
FM (Wang et al. 2023).

3.4 WAYS TO IMPROVE GLOMERULUS SEGMENTATION

Our study focuses on the glomerulus, a roughly spherical network of tiny blood capillaries
responsible for blood filtration. Given its critical function, the localization and segmenta-
tion of glomeruli provide valuable information that pathologists often extract from kidney
WSI. However, locating and segmenting glomeruli can be time-consuming and prone to
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Figure 3.7 The architecture of SwinTransformer + U-Net developed in (Cao et al. 2022),
which is composed of encoder, bottleneck, decoder and skip connections. Encoder, bottleneck
and decoder are all constructed based on swin transformer block (Liu et al. 2021). Image taken
from (Cao et al. 2022).
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errors. To address that, there is a growing interest in developing automated glomerular
segmentation approaches that offer fast and reliable support for pathologists’ decision-
making processes. The following discussion highlights four alternatives to enhance the
segmentation task with limited training data: (i) data augmentation, (ii) improvement
of deep learning methods, (iii) the emergence of foundation models, and (iv) refinement
of the dataset.

In the first alternative, data augmentation refers to techniques used to artificially
increase the dataset (see Section 3.2). In summary, the main benefits of this tech-
nique include reducing overfitting, increasing model accuracy, and assisting in scenar-
ios with limited data sources. In the second alternative, we discuss the improvement
of deep learning methods through the use of transfer learning techniques to leverage
pre-trained models from rodents and fine-tune them on human data. This approach is
outlined in our publication titled “Mouse-to-Human Transfer Learning for Glomerulus
Segmentation”(Souza et al. 2023) (see Chapter 4). In the third alternative, we explore
the use of the foundation model SegGPT to assess borderless glomeruli, as discussed
in the submission titled “The Problem of Segmenting Global Glomerulosclerosis in Gi-
gapixel Histopathological Images: The Borderless Glomeruli” (see Chapter 5), which
could be crucial for the diagnosis of certain kidney diseases. Lastly, collaboration with
renal pathologists is essential to ensure that the dataset is representative and well-labeled,
as well as to expand the dataset to make it more diverse for the segmentation task. In our
group, PathoSpotter, we have a suite of intelligent tools to support pathologists’ daily

Figure 3.8 Illustration of overall training framework of SegGPT, developed in (Wang et al.
2023). The authors incorporate diverse segmentation data, including part, semantic, instance,
panoptic, person, medical image, and aerial image segmentation, and transform them into the
same format of images. They adopt a general Painter (Wang et al. 2023) framework with in-
context coloring as the training objective and a random coloring scheme for more flexible and
generalizable training. Image taken from (Wang et al. 2023).
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practice 1.

3.5 EVALUATION METHODOLOGY OF THE STUDY

3.5.1 Scientific search in literature

This study was based on a search for scientific articles in the following datasets: Sco-
pus2, IEEE3 (Institute of Electrical and Electronics Engineers), Engineering Village4,
CAPES Journal Portal5, Google Scholar 6, and the gold-standard repository for medical
journals, PubMed7. In these databases, we reviewed articles containing the following
keywords: glomerulus, glomerulosclerosis, glomerulus segmentation, kidney biopsies, kid-
ney histopathological images, deep-learning e foundation model. The criteria for selecting
these works were threefold: (i) they perform glomerulus segmentation, (ii) they utilize
whole slide images (WSI), even if processing patches, and (iii) the articles based on deep
learning methods on the topic began to be published in 2018 and continue to the present
day.

3.5.2 Methods employed for segmentation

Instead of using just one model for each network architecture in the two studies focused
on glomeruli, we first evaluated the five most relevant methods from the literature to
investigate mouse-to-human transfer learning. In the second study, we applied three of
the most relevant methods, both with and without fine-tuning, along with a new approach
from the literature utilizing a foundation model.

In our first study to evaluate the similarity between mice and humans, we used transfer
learning to investigate whether five deep learning models: U-Net, U-Net 3+, Res-U-Net,
DeepLabv3+, MA-Net —trained on mice data can segment glomeruli using human data.
In our second study, we are investigating the problem of segmenting global glomeru-
losclerosis from a human dataset. The initial setup involved loading three deep learning
methods: U-Net, U-Net 3+, and Swin-Transformer + U-Net, with weights pre-trained on
the HuBMAP dataset (Howard et al. 2020). We then performed training with these three
networks, both with and without fine-tuning, and finally, we conducted a context-aware
analysis without training using the foundation model: Seg-GPT.

The number of images utilized in the training and testing subsets, as well as the
results obtained using the Dice metric, is detailed in Chapters 4 and 5, for the first and
second studies, respectively. There is a variation in the number of WSIs from the Fiocruz
dataset used for training and testing in the first and second studies, as the first study
had a limited number of annotated human sections.

1https://pathospotter.bahia.fiocruz.br/
2http://www.scopus.com/
3http://ieeexplore.ieee.org/Xplore/home.jsp
4http://www.engineeringvillage.com/
5http://www-periodicos-capes-gov-br.ez10.periodicos.capes.gov.br/
6https://scholar.google.com.br/
7https://pubmed.ncbi.nlm.nih.gov



34 MATERIALS AND METHODS

3.5.3 Segmentation strategy

Our segmentation strategy begins with the automatic division of the image, which is
cropped into 1,024 x 1,024 pixels, with a padding size of 256 pixels. To manage the high
memory process and enhance training speed, each patch is resized to 320 x 320 pixels
before being used as input for the segmentation models. The results from each model
for the corresponding patches are summed, and a sigmoid function is then applied to the
resulting image. Finally, the masks containing the segmentation of the glomerulus are
resized to match the original input size, and the resulting masks are evaluated using a
Dice metric.

3.6 CLOSURE

In this chapter, we presented the materials and methods important that ground our work.
In the following chapters, we will discuss the details of our study within the context of
glomerulus segmentation, starting with mouse-to-human transfer learning.
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In this chapter, we present our first study focused on the task of segmentation, specif-
ically addressing mouse-to-human transfer learning for glomerulus segmentation. We
provide an overview of the study, including implementation details, experimental analy-
sis, and the corresponding results and discussion.

4.1 BACKGROUND

It is usual to conduct animal experiments before clinical tests on humans while per-
forming scientific medical studies. Some of these studies include histological analysis
of representative tissue samples, which must be collected from specific animals and
under unique circumstances to generate findings that can apply to humans. Among
several animals, mice are frequently selected for these studies, not only for their ge-
netic and physiological similarities with humans (Kim et al. 2007) but also because

35
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the rodents are inexpensive to breed and their tiny sizes take less space in the labo-
ratory facilities (Smith e Corrow 2005). That preemptive mouse experimentation also
benefits the study and diagnosis of kidney diseases inside a field called nephropathol-
ogy, which is ultimately the domain of this study. Kidney biopsies may be required
for diagnosing renal diseases depending on the problem’s complexity. As a com-
mon approach, these renal samples are processed and scanned into WSI, which are
easier to be shared among specialists while analyzed on computational environments
(Barisoni et al. 2013; Farris et al. 2017; Santos et al. 2019; Chagas et al. 2022).

DL techniques have gained prominence in the literature for addressing automatic seg-
mentation tasks, consistently achieving state of the art results across various domains,
including medical imaging and, more specifically, WSI segmentation (Bel et al. 2018;
Gadermayr et al. 2019; Ginley et al. 2020; Jiang et al. 2021; Silva et al. 2022). How-
ever, DL models often require large annotated datasets for effective training, either from
scratch or through fine tuning on target domains. Given the limited availability of an-
notated human WSIs, this study explores the potential of leveraging transfer learning by
using models trained on mouse WSIs to segment human glomeruli.

We hypothesize that, due to clinically known similarities between human and mouse
glomeruli, it is possible to achieve accurate glomerular segmentation on human samples
using models trained exclusively on mouse data. Among the various kidney structures,
this work focuses on the glomerulus, a spherical network of capillaries responsible for
blood filtration. Detecting and segmenting glomeruli in WSIs is crucial, as this infor-
mation supports diagnostic workflows. However, manual glomerulus annotation is time
consuming and prone to error, making automated segmentation a promising solution to
assist pathologists by offering a fast and reliable tool for decision making.

4.2 MOUSE-TO-HUMAN TRANSFER LEARNING

The challenge of collecting large volumes of annotated data, particularly from human
biopsies, remains a significant barrier. This constraint naturally raises the following
research question: Is it possible to accurately segment human glomeruli in WSIs using
a model trained solely on mouse glomerular images? This study aims to address this
question by examining cross species transfer learning and evaluating its effectiveness for
glomerulus segmentation.

From the histology perspective, it is worth noting that there is no obstacle to mixing
mouse and human samples. The renal histological structures are similar across these
species, as illustrated in Figure 4.1, despite variations in size. Mice are widely used in the
study of various human diseases, including infectious, autoimmune, metabolic disorders,
and drug toxicity. Thus, a system capable of identifying and correlating pathological
changes in kidney WSIs for both humans and mice would be highly valuable for research
and therapeutic development. Although there are some works using mouse and human
species outside the domain of histology (Chater et al. 2021; Hossain et al. 2021), few
deep-learning-based studies have proposed exploring images of histology samples of these
species, and only in isolated (same specie for training and testing) evaluation proto-
cols (Bouteldja et al. 2021; Simon et al. 2018; Ginley et al. 2019; Lutnick et al. 2019).
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(a) (b)

(c) (d)

Figure 4.1 Examples of two renal WSI and two glomeruli: (a) A mouse WSI; (b) A human
WSI; (c) A mouse glomerulus image from Lutnick’s dataset; (d) A human glomerulus image
from the Fiocruz dataset.

Bouteldja et al. (2021) developed a custom U-Net network for automated multi-class
segmentation of glomerular images of different mammalian species, not only mice and
humans. Simon et al. (2018) modified a feature extractor based on local binary pat-
tern (LBP) to feed a support vector machine (SVM) model for glomerulus detection in
human and mouse WSIs, separately. Ginley et al. (2019) proposed a deep-learning-based
approach to quantify the number of nuclei, capillary luminas, and Bowman spaces from
histology images of humans and mice; a set of features is used to describe the structural
progression of diabetic nephropathy through a recurrent neural network used; yet, a
DeepLabV2 network is used for glomerular segmentation on WSIs. Lutnick et al. (2019)
applied a DeepLabV2 network to segment glomerulus and internal glomerular structures
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from human and mouse renal tissue slides.

Given the DL dominance in computer vision and segmentation tasks, instead of eval-
uating human or mouse glomerular segmentation in an isolated fashion, we propose an
evaluation of DL segmentation models for the cross-species generalization task, i.e., to
use a model trained with mouse data to segment human glomerulus.

Contributions: Considering the similarities between mice and humans, the main
contribution of our work is the investigation of the cross-species compatibility of hu-
man and mouse data for glomerulus segmentation. Our main goal is to investigate if
a DL model, trained on mouse data, can segment the human glomerulus. In addition
to bringing experiments that aim to demonstrate our initial hypothesis, we also show a
qualitative analysis of a data set of glomeruli with unbounded shapes. This last study
aims to present the difficulty of the segmentation task when trying to predict on top of
bruised-boundary glomeruli.

4.3 MATERIALS AND METHODS

In this section, we provide a comprehensive overview of the materials and methodologies
utilized in our study to investigate the segmentation of human glomeruli using models
trained on mouse WSIs. This includes a detailed description of the datasets, methods,
and implementation strategies employed throughout the research.

The analytical protocol shown in Fig. 4.2 illustrates the outline of the proposed study
split as follows: (i) data acquisition, (ii) glomerulus annotation, (iii) patch generation,
(iv) training of the network models with mice glomerular images, (v) network model
prediction on human samples, and finally (vi) stitching the predicted patches of human
glomeruli. The first step consists of the extraction of kidney biopsy sections from mice
and humans with 40× magnification, followed by staining with HE, PAS, and PAMS. In
the second step, the Cytomine1 software was used to perform manual annotation of the
glomeruli to support the training of the network models. At the third step, the WSIs
were divided into patches of 1024×1024 pixels with padding size of 256 pixels; each patch
was resized to 320×320 pixels due to high-memory footprint to increase training speed. In
the fourth step, the generated patches from mice samples are used to train the following
networks: U-Net (Ronneberger et al. 2015), U-Net 3+ (Huang et al. 2020), Res-U-Net
(Zhang et al. 2018), DeepLabV3+ (Chen et al. 2018), and MA-Net (Fan et al. 2020).
We highlight that all networks had the EfficientNet-b1 (Tan e Le 2019) architecture as
the backbone (encoder). The next steps refer to the segmentation of human glomerular
samples using the models trained on mice glomerular images. In the fifth step, the best
prediction model was selected for each architecture, and the segmentation performance
was assessed through the Dice score. Finally, in the sixth step, the resulting predicted
patches from all models are stitched to compound the resulting semantic segmentation
masks.

1https://cytomine.com/
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Figure 4.2 Analytical protocol for this study. From (i) to (vi): (i) kidney biopsy samples are
collected from human and mouse specimens, whose histological sections are processed, stained
and scanned into WSIs; (ii) glomeruli are manually annotated from sections of kidney biopsies;
(iii) each section is divided into patches; (iv) five types of architectures were trained with
mice glomerular images; (v) the best model of each architecture is selected to predict human
glomerulus classes in each patch; (vi) finally, the resulting masks are stitched to compose the
final segmented WSI mask.
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4.3.1 Datasets

The datasets used in this study include one introduced by (Lutnick et al. 2019) (See
Section 3.1.1), which focuses on mice, and our own collection for humans, referred to
as Fiocruz (Souza et al. 2023) (See Section 3.1.2 - Normal dataset). Lutnickś dataset
has been reused in its original form, containing 18 kidney sections extracted from mouse
specimens. The Fiocruz dataset is an extension of the previously published Fiocruz
dataset (Souza et al. 2022) and now comprises 42 kidney sections collected from human
specimens. Table 4.1 provides a summary of the details for both datasets.

4.3.2 Methods

Segmenting semantic labels requires pinpointing the contour of structures and pixel-level
accuracy. The semantic network models commonly have an encoder-decoder architecture:
the encoder learns hierarchical features while it downsamples the input image resolution;
the decoder receives the aggregated encoded features and generates the segmentation
mask. In this present work, we selected five types of segmentation networks: U-Net
(Ronneberger et al. 2015), U-Net 3+ (Huang et al. 2020), Res-U-Net (Zhang et al. 2018),
DeepLabV3+ (Chen et al. 2018), and MA-Net (Fan et al. 2020). Each network relies on
a different deep learning segmentation paradigm, as further detailed.

U-Net based networks: The U-Net is a typical encoder-decoder architecture, where
each encoding layer is connected to each respective upscaling layer of the decoder, forming
a U shape. Different U-Net variations can be found for medical image segmentation tasks,
such as U-Net (Ronneberger et al. 2015), U-Net 3+ (Huang et al. 2020), and Res-U-Net
(Zhang et al. 2018). U-Net 3+ combines the multi-scale features by re-designing skip
connections and capturing feature maps in full scales for accurate segmentation with fewer
parameters. In the U-Net 3+ network, each decoder layer bridges smaller- and same-scale
activation maps from the encoder and larger-scale activation maps from the decoder. The
Res-U-Net is a similar U-Net variation that also brings the strengths of residual learning;
this architecture uses residual units with identity mapping instead of encoder and decoder
blocks from the classic U-Net architecture. The main goal of this approach is to improve
skip connections inside the residual units and between the encoding and decoding layers,
ultimately facilitating information propagation with fewer parameters.

DeepLabV3+ network: The DeepLabV3+ is a deep learning architecture designed
for semantic image segmentation, created from improvements on the DeepLabV3 network

Table 4.1 Summary of the data sets. Lutnick’s data set comprises only mouse data, while
Fiocruz is composed of human data.

Data set Stain
# WSI # Glomerulus Average pixels

Train Test Train Test (height × width)
Lutnick’s HE 14 4 634 171 19,511 × 20,044

Fiocruz
HE 6 6 103 102 23,111 × 10,178
PAS 9 6 149 61 22,251 × 10,441
PAMS 9 6 133 77 21,881 × 11,214
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(Chen et al. 2017). Even though the encoder can process multi-scale contextual informa-
tion by applying dilated convolution at multiple scales, DeepLabV3+ was not properly
designed to obtain long-range dependencies in the deep learning process.

MA-Net network: The multi-scale attention network is an architecture that consists
of a self-attention mechanism for adaptive feature extraction using two stages: (i) PAB,
which covers feature inter-dependencies between pixels in spatial dimensions and (ii) a
MFAB, which captures the channel dependencies between any feature map by multi-scale
semantic feature fusion.

4.3.3 Implementation details

Based on the survey presented in Table 2.1 (see Chapter 2), the initial experiments in
our work, and glomeruli segmentation in the Kaggle competition (Howard et al. 2020),
we outline the configuration details in this subsection. U-Net, U-Net 3+, Res-U-Net,
DeepLabV3+, and MA-Net architectures were implemented using the Pytorch frame-
work (Paszke et al. 2019) version 1.9.1, initially loading all networks with weights pre-
trained on the Imagenet-1k data set (Russakovsky et al. 2015). The models were trained
across 50 epochs with a batch size of 16, a warm-up learning rate scheduler at a maxi-
mum of 0.0001, and a weight decay of 0.00001, using a loss that combines binary cross-
entropy (BCE) (Yi-de et al. 2004) and Lovasz (Berman et al. 2018) loss functions. All
experiments were run on a computer with AMD EPYC 7742 64-Core Processor, 1TB
RAM, and an A100-SXM4 NVIDIA GPU containing 40GB of memory. The pre-trained
weights were fine-tuned on the top layers, aiming to keep the rich features previously
learned. In order to improve the variability of the input data, we used the following
online training data augmentation techniques: resizing, vertical and horizontal flip, ran-
dom rotation in intervals of 90 degrees, shift scale rotation, Gaussian noise, Gaussian
blur, random brightness contrast, random hue saturation value, optical distortion, grid
distortion, and piece-wise affine.

4.4 RESULTS AND DISCUSSION

The human data in Fiocruz contains 42 sections from 5 patients. We created the train and
test sets in the following manner: 60%-40% train-test split for PAS- and PAMS-stained
WSIs, resulting in 9 and 6 WSIs for train and test sets, respectively, for both stains; since
we have less HE-stained WSIs, we adopted a 50%-50% train-test split on the HE data
set, so that we kept the same test set size across all stains, resulting in 6 WSIs in the
train set and 6 in the test one. Considering the mouse data set from Lutnick, we used
78% of WSIs for the training set, leaving the remaining 22% of WSIs for testing. The
selection of WSI splits on both data sets was adequately randomized to avoid selection
bias.

4.4.1 Quantitative analysis

Our first analysis was based on an intra-dataset evaluation, which consisted of training
and testing each model on the same data set. The goal was to provide a baseline to com-
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pare with the proposed cross-species generalization. Table 4.2 summarizes our findings
considering the five selected semantic segmentation networks. Overall, the best results
were achieved on Lutnick’s test set, with Dice scores ranging from 0.773 to 0.93. On the
other hand, the Dice scores on Fiocruz test set ranged from 0.011 to 0.824. We already
expected this difference in generalization because the mice training data is larger and
more diverse than the human training set. Still considering the results on Fiocruz test
set, it is noteworthy that almost all networks achieved Dice scores above 0.4 (mostly
above 0.6) for all stains, except the MA-Net network, which returned scores below 0.02
for all stains. These low scores of MA-Net are justified by the need for a large amount
of high-variability data when training attention-based models, which also explains the
competitive performance of MA-Net on Lutnick’s test set (0.773). U-Net 3+ returned
the highest marks for Lutnick’s test set (0.930) and all stains on Fiocruz test sets (0.772,
0.824, and 0.791, respectively, for HE, PAS, and PAMS). The U-Net 3+ was the only
U-Net variation that achieved competitive results for both data sets and for all stains.

From the results in Table 4.2, it is possible to notice that the selected models ad-
equately performed the segmentation of the glomeruli regardless of the numerical dif-
ferences on each data set. We believe that if we had more data for training, it would
guarantee higher scores on the test sets. Now we can move forward to the main focus of
our study: the cross-species experiments.

As we ultimately desire to segment human glomeruli, the following evaluation was to
compare the results of models trained on human train sets (serving as baseline, directly
extracted from Table 4.2, called here as Htrain) with models trained on mouse train sets
(shortly here as Mtrain), finally testing these models on the Fiocruz test set (shortly here
as Htest). Table 4.3 summarizes the evaluation of the models trained on Mtrain and Htrain

sets when predicted (represented by the “→” symbol) on Htest set. In other words, for
each stain, we aim to compare the proposed cross-species generalization (Mtrain → Htest)
with the human intra-dataset results (Htrain → Htest).

For each stain, we highlighted in bold the best results of Mtrain → Htest so we can
compare them with the best Htrain → Htest score within the respective stain.

Considering a per-stain comparison, HE is the only stain on which the best Mtrain →
Htest score gets close to the Htrain → Htest result, since Lutnick’s train set contains only
HE-stained images. Most HE-Mtrained networks presented competitive scores, surpassing
HE-Htrained ones on U-Net, DeepLabV3+, and MA-Net. Considering an overall Mtrain ×
Htrain comparison (for every stain and network combination), the Mtrained models out-
performed their respective Htrained ones on 6 out of 15 tests, which is a promising result.
However, the high variation between Mtrained and Htrained models on PAS and PAMS
assessments does not allow us to conclude that our hypothesis holds for different stains.
These findings validate our hypothesis on the feasibility of segmenting human glomerulus
with a model trained on mouse histology images, at least considering a reasonable amount
of mouse data stained on HE. Since the generalization of one stain trained on another
one is very different from generalizing one specie to another, one might attempt to ex-
plore the DS-FNet network (Silva et al. 2022), which copes with the specific problem of
multi-stain generalization by combining segmentation and boundary detection streams.

As we have a limited human data set, we opted to compare the Lutnick’s trained
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Table 4.2 Intra-dataset results (Dice score), considering five segmentation networks over the
train and test data sets described on Table 4.1.

Data set Stain
Network models

U-Net U-Net 3+ Res-U-Net DeepLabV3+ MA-Net

L
u
tn
ic
k
’s

HE 0.847 0.930 0.906 0.875 0.773

F
io
cr
u
z

HE 0.664 0.772 0.748 0.732 0.018

PAS 0.457 0.824 0.671 0.416 0.012

PAMS 0.591 0.791 0.726 0.435 0.011

Table 4.3 Comparative results (Dice score) considering training the network models on Lut-
nick’s mouse train set (Mtrain) and on Fiocruz human train set (Htrain), separately. The pre-
diction was performed on Fiocruz human test set (Htest). The best results in each Mtrain →Htest

line is in bold.

Stain Train→Test
Network models

U-Net U-Net 3+ Res-U-Net DeepLabV3+ MA-Net

HE

Mtrain →Htest 0.747 0.655 0.601 0.738 0.434

Htrain →Htest
1 0.664 0.772 0.748 0.732 0.018

PAS

Mtrain →Htest 0.296 0.267 0.273 0.444 0.270

Htrain →Htest
1 0.457 0.824 0.671 0.416 0.012

PAMS

Mtrain →Htest 0.288 0.401 0.351 0.273 0.159

Htrain →Htest
1 0.591 0.791 0.726 0.435 0.011

1Note that this line comes from Table 4.2.

models on both Fiocruz test (whose results directly come from Table 4.3) and the entire
(train and test) set, shortly here as Htest and Hentire respectively. Our goal with this
analysis is to test our hypothesis in a more influential group, verifying whether the earlier
results were biased by the test set random choice. Table 4.4 summarizes the test versus
entire set comparison, where we can highlight that the results on Hentire were greater or
very close to the Htest results for the most cases, even for the MA-Net network.

In addition, the Htest’ and Hentire’ scores proximity on the HE assessments corrobo-
rates our hypothesis validation, strengthening the assumption that human-mice compat-
ibility occurs in intra-stained samples.
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Table 4.4 Comparative results (Dice score) considering training the network models on Lut-
nick’s mouse train set(Mtrain). Prediction was performed on Fiocruz human test set(Htest) and
Fiocruz human train and test sets(Hentire).

Stain Test set
Network models

U-Net U-Net 3+ Res-U-Net DeepLabV3+ MA-Net

HE

Hentire 0.708 0.798 0.721 0.735 0.746

Htest
2 0.747 0.655 0.601 0.738 0.434

PAS

Hentire 0.554 0.422 0.419 0.392 0.232

Htest
2 0.296 0.267 0.273 0.444 0.270

PAMS

Hentire 0.408 0.300 0.383 0.555 0.149

Htest
2 0.288 0.401 0.351 0.273 0.159

2Note that this line comes from Table 4.3.

4.4.2 Qualitative analysis

Experiments over Fiocruz Figure 4.3 illustrates a visual comparison of the segmenta-
tion results over some samples of the Fiocruz data set when trained on Lutnick’s train
set. We displayed the true positive predictions in green and false negatives in red over
each image in Figure 4.3. Overall, most of the segmenters achieved competitive results,
except, as expected, for the MA-Net network, as we have already discussed its underper-
formance in the quantitative analysis. Most segmenters presented visual results linked
to the quantitative analysis on HE-stained images, displaying mostly true-positive seg-
mentation areas (in green). That was an expected outcome, as these networks were also
trained over HE-stained images. In addition, we can notice that most of the segmenters
also showed a reasonable generalization on PAS- and PAMS-stained images (with slightly
better performance for PAS). Considering specific networks, MA-Net presented poor per-
formance for all stains, displaying large false-negative areas. Res-U-Net and U-Net showed
better results, but bringing a little more false negatives around glomerular-boundary re-
gions. DeepLabV3+ and U-Net 3+ returned the best predictions, correctly identifying
the glomeruli with smaller false-negative areas on glomerular boundaries. We must no-
tice that the U-Net 3+ had a slightly better performance, especially on PAMS-stained
images.

In Figure 4.4, some of the visual worst results are depicted. In addition to true
positives (green) and false negatives (red), we displayed false positives in yellow over
each image. Most results are missing detection (false negatives), but MA-Net and U-Net
produced small false positive image regions inside the tissue area on the PAMS-stained
images, Additionally, there is a small false positive, where the ’no glomerulus’ class is
incorrectly segmented as glomerulus in an area outside the tissue for DeepLabV3+. In
fact, very few false positives can be found in the segmentation of the U-Net 3+, Res-U-Net
and DeepLabV3+ over the entire Fiocruz data set.
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Figure 4.3 Samples of expected results from U-Net, Unet 3+, ResUNet, DeepLabV3+, MA-
Net, when trained on Lutnick’s train set, predicting on Fiocruz entire data set. Glomeruli in
yellow are false positives (very few examples), in red are false negatives, and in green are true
positive.
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Figure 4.4 Samples of missing detection from U-Net, Unet 3+, ResUNet, DeepLabV3+, MA-
Net when trained on Lutnick’s train set, predicting on Fiocruz entire data set. Note that there
is small false-positive regions in yellow on PAMS stain predicted with U-Net, DeepLabv3+, and
MA-Net.
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Experiments on unbounded glomeruli. Within the qualitative analysis, one can also high-
light the kind of glomerulus used to assess the performance of the segmenters. Both data
sets are indeed comprised of WSIs containing normal glomerulus or those with minimal
change disease (MCD) , which is a type of lesion that it is not possible to verify a change in
the morphological aspect of the glomerulus. Therefore, the anatomy of each glomerulus is
preserved, facilitating the segmentation work. The segmentation results would surely be
very different in the case of a data set formed, for instance, by glomerulus depicted in Fig.
4.5. All glomeruli in the figure present bruised boundaries due to three different types
of lesion: A○ - a cellular crescent filling the Bowman space, B○ - a fibrous crescent and
sclerosis of glomerular tufts, and C○ - periglomerular fibrosis. Common to all samples,
there is the lack of the Bowman’s capsule, which delimits the normal or MCD glomeruli
in the data sets we used for performance evaluation. In summary, it is reasonable to
state it is not expected that a very well-tunned, off-the-shelf segmentation method would
present satisfactory results over the challenging glomeruli illustrated in Fig. 4.5. It is a
limitation of our work and an interesting room for investigation in the future.

A○ B○ C○

U
-N

e
t
3
+

Figure 4.5 Samples of segmentation results by U-Net 3+, when trained on Lutnick´s train set.
This nine images present bruised-boundary glomeruli substantially changed by the following
lesions: A○ - a cellular crescent filling the Bowman space, B○ - a fibrous crescent and sclerosis
of glomerular tufts, and C○ - periglomerular fibrosis. Note that there is two small true-positive
glomeruli region on A○ and B○ lesions.
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4.5 CLOSURE

This chapter evaluated mouse-to-human transfer learning for glomerulus segmentation.
Networks trained on a public HE-stained mouse dataset showed promising results in
segmenting human glomeruli (HE, PAS, and PAMS). However, the networks failed to
identify glomeruli with indistinct boundaries in the visual analysis. In the next chapter,
we discuss the second proposed study for the glomerulus segmentation problem, focusing
on glomerulosclerosis lesions.
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In this chapter, we present our second study, which focuses on segmenting segmental
and global glomerulosclerosis, with particular attention to the challenges of segment-
ing borderless glomeruli in WSIs. We provide a comprehensive overview of the study,
detailing the implementation process, experimental analysis, results, and discussion.

5.1 BACKGROUND

A kidney biopsy is a medical procedure in which a small specimen of kidney tissue is
obtained from a patient for microscopic investigation. This procedure is typically per-
formed to diagnose and follow up on several kidney conditions (e.g., lupus nephritis, IgA
nephropathy, and transplant). The histological kidney structure can be analyzed under a
microscope or in gigapixel WSIs displayed on computer screens (Niazi et al. 2019; Della
Mea et al. 2006, Bayramoglu et al. 2016). Among the structures present in the human

49



50 SECOND STUDY

(a) (b) (c)

Figure 5.1 Examples of glomeruli (green bounding box) from the WSI data sets. (a) A healthy
glomerulus (normal), (b) A partially sclerotic glomerulus (segmental sclerosis), and (c) A global
sclerotic glomerulus.

kidney biopsy, the glomerulus is the nephron unit responsible for blood filtration. Figure
5.1 illustrates examples of glomeruli detected on WSIs: (a) a healthy glomerulus (nor-
mal), (b) a partially sclerotic glomerulus (segmental sclerosis), and (c) a global sclerotic
glomerulus. Normal and partially sclerotic glomerulus commonly have their Bowman’s
space (the white space delineating the glomerulus) intact or partially preserved. In (b),
some nuclei (black points) are still seen, making the segmental sclerotic glomerulus keep
some special primitives that characterize a healthy glomerulus internally. A globally scle-
rotic glomerulus is a lesion affecting 100% of the glomerular tuft, marked by fibrosis and
prominent scarring or hyaline deposition (Haas et al. 2020). In Figure 5.1 (c), one can
find it difficult to distinguish the globally sclerotic glomerulus in the green box from the
surrounding renal interstitium. On the other hand, normal glomeruli are characterized
by well-preserved internal structures and distinct borders, whereas sclerotic glomeruli
exhibit notable abnormalities. Consequently, early attempts to automate glomerulus
segmentation have primarily concentrated on identifying normal glomeruli.

Identifying and detecting glomeruli is one of the primary tasks undertaken by pathol-
ogists in renal biopsy analysis. Quantitative and qualitative assessments of this task are
complex, subjective, and require specialized expertise, often yielding low inter-observer
agreement (Haas et al. 2020). The primary objective of automating that task is to pro-
vide pathologists with a decision-making tool for pre-screening WSIs (e.g., glomerulus
counting), thereby streamlining subsequent automated tasks (e.g., glomerular lesion clas-
sification).

Detecting the glomerulus in WSIs is a key step in machine learning-based approaches.
Typically, the BC outlines the glomerulus, separating it from surrounding tissue. How-
ever, in cases of global sclerosis, the glomerulus often lacks a visible BC, making it appear
borderless.

Many studies address the problem of glomerulus segmentation (Bel et al. 2018;
Marsh et al. 2018; Hermsen et al. 2019; Bueno et al. 2020; Altini et al. 2020;
Jiang et al. 2021; Davis et al. 2021; Gallego et al. 2021). Most of these studies do
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not differentiate between types of glomeruli (Gadermayr et al. 2019; Jha et al. 2021;
Jayapandian et al. 2021; Bouteldja et al. 2021; Silva et al. 2022; Souza et al. 2023;
Altini et al. 2023) , and the performance of the proposed machine learning methods
used for segmentation is evaluated by disregarding the various lesions that can affect
the glomeruli. Consequently, the performance of the proposed methods may be overes-
timated, especially when considering their translation to routine clinical practice. To
further understand the current landscape of glomerulus segmentation research, Table 5.1
summarizes the works related to our study. The criteria for selecting these works were
threefold: (i) perform glomerulus segmentation, (ii) utilize WSIs, and (iii) be available
in PubMed (https://pubmed.ncbi.nlm.nih.gov).

Several insights can be drawn from Table 5.1: U-Net and its variations are a promi-
nent choice for glomerulus segmentation; the most commonly used stains are HE, PAS,
and PAMS, with only three studies using TRI, and our study is one out of two to con-
sider all three glomerulus classes: (i) normal, (ii) segmental sclerosis, and (iii) global
sclerosis. It is also noteworthy that most of the datasets used are private. Due to
the limited availability of public datasets, the time-consuming annotation process by
pathologists, and the low categorization of sclerosed glomeruli, most studies develop
datasets with fewer than 100 WSIs and fewer than 3,000 glomeruli, usually including
only two glomerulus classes: normal and sclerosed. This distinction in approach is
further highlighted by the fact that many studies do not differentiate between types
of glomeruli, aiming instead to develop a robust segmenter for a canonical structure
(Gadermayr et al. 2019; Jha et al. 2021; Jayapandian et al. 2021; Bouteldja et al. 2021;
Altini et al. 2023; Silva et al. 2022; Souza et al. 2023). Except (Silva et al. 2022), which
proposes its own DL network applied to a more complex segmentation problem, the re-
maining studies employ off-the-shelf (or eventually modified) methods, primarily on WSIs
stained with HE, PAS, and PAMS and considering mostly normal glomeruli.

Some related works consider two classes of glomeruli when tackling
the problem of segmenting sclerotic glomeruli: normal and with sclero-
sis (Bel et al. 2018; Marsh et al. 2018; Hermsen et al. 2019; Bueno et al. 2020;
Altini et al. 2020; Davis et al. 2021; Gallego et al. 2021). These studies often do
not specify the performance of the segmenters for each glomerulus category, leaving
unclear which Dice or IoU scores were achieved for normal versus sclerotic glomeruli.
While the reported results are generally high, they are likely overestimated due to
the common issue of unbalanced datasets, which typically contain many more normal
glomeruli than sclerotic ones.

Only the study by Jiang et al. (2021) investigates glomeruli with global sclerosis
alongside two other classes: normal glomeruli and glomeruli with other lesions (moderate
to severe mesangial hypercellularity or expansion, crescents, and apparent endothelial
proliferation). The methodology used by Jiang et al. (2021) involves cropping the WSIs
into 2048 x 2048 pixel patches, which are manually verified to ensure that all irrelevant
areas are filtered out and that each glomerulus remains entirely within a patch. This
meticulous approach clearly impacts the segmenter’s performance, as demonstrated in the
present study. For experimental results, the authors used the training and test datasets
within the same glomerulus class domain, with the mIoU metric employed to evaluate
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Table 5.1 Summary of related work for glomerulus segmentation. Dashes indicate instances
where information was unreported.

Year Reference #WSI #Glom. Method Stain Classes Data
set

2018 (Bel et al. 2018) 15 944 FCN PAS Normal, Private
M-FCN
U-Net

Sclerosis

2018 (Marsh et al. 2018) 48 3, 867 CNN(VGG-16) HE Normal, Private
LoG
Blob-detection
Linear Regression

Sclerosis

2019 (Gadermayr et al. 2019) 24 − SW-CNN
U-Net-S
U-Net-D

PAS − Private

2019 (Hermsen et al. 2019) 60 238 U-Net PAS Normal, Private
Sclerosis

2020 (Bueno et al. 2020) 47 1, 245 U-Net PAS Normal, Private
(SegNet + AlexNet) Sclerosis

2020 (Altini et al. 2020) 26 2, 772 SegNet PAS Normal, Private
DeepLabv3+ Sclerosis

2021 (Jha et al. 2021) 61 1, 334 Mask-RCNN
U-Net
DeepLabv3

HE
PAS
PAMS

− Private

2021 (Jiang et al. 2021) 348 8, 665 Cascade Mask R-CNN PAS Normal, Private
PAMS Global Sclero-

sis,
TRI Other lesions

2021 (Jayapandian et al. 2021)459 1, 196 U-Net HE
PAS
PAMS
TRI

− Private

2021 (Bouteldja et al. 2021) 168 2, 611 Modified U-Net PAS − Private
2021 (Davis et al. 2021) 258 24, 133 U-Net HE Normal, Public

Sclerosis
2021 (Gallego et al. 2021) 51 2, 429 U-Net HE Normal, Public

PAS Sclerosis
2022 (Silva et al. 2022) 665 5,309 DS-FNet HE − Public

PAS Private
PAMS
TRI

2023 (Souza et al. 2023) 60 1,430 U-Net HE − Public
U-Net3+ PAS Private
Res-U-Net
DeepLabV3+
MA-Net

PAMS

2023 (Altini et al. 2023) 875 23, 477 Cascade R-CNN PAS − Private
2024 Ours 83 800 U-Net HE Normal, Private

U-Net3+ PAS Segmental
sclerosis,

SwinTransf.+U-Net PAMS Global scle-
rosis

Fine-tuned versions
SegGPT

the three classes. The best scores were achieved for the PAS-stained normal class with a
mIoU of 0.943, the PAMS-stained glomeruli with other lesions class with 0.812, and the
PAMS-stained and PAS-stained global sclerosis class with 0.692. When evaluating the
segmentation performance of WSIs using the mIoU metric, the results were lower than
those obtained by patch-based evaluation. The best scores were found for the PAMS-
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stained normal class with 0.742, the PAMS-stained glomeruli with other lesions class with
0.660, and the PAS-stained global sclerosis class with 0.646.

5.2 CHALLENGES IN SEGMENTING GLOMERULOSCLEROSIS

It is important to consider that the work by Jiang et al. (2021) does not represent the
most likely situation to be found in the real-world scenario of renal pathology diagnosis
since it deals with glomerulus manually cropped from WSIs.

It is important to note that the study by Jiang et al. (2021) does not reflect the most
realistic scenario in renal pathology diagnosis, as it involves manually cropping glomeruli
from WSIs. Instead, the ideal approach would involve segmenting the glomerulus directly
on the WSI. Segmenting the entire glomerulus in cropped images is simpler because the
glomerulus is more prominent compared to other renal structures (such as the intersti-
tium, tubules, and vessels) and is often zoomed in for a focused view. An approach that
emphasizes the analysis of WSI from the start will provide more efficient support for
pathologists’ decision-making. Unlikely, we have investigated glomerulus segmentation
starting from WSIs and subsequently assessed automatically cropped glomeruli. Both
WSIs and cropped were evaluated using the mean-Dice. It is important to emphasize
that in our study, the non-foundation models were trained with a limited number of sam-
ples exhibiting segmental and global glomerulosclerosis, particularly during fine-tuning.
This approach was intended to mirror the real-world challenges of annotating sclerotic
glomeruli, which are compounded by the lack of consensus among pathologists when
defining masks for glomeruli with severely deteriorated Bowman’s capsules.

Whereas early works have investigated the task of glomerulus segmentation by ini-
tially focusing on normal glomeruli (using a canonical structure as the starting point),
addressing the issue of global sclerosis remains a recurrent challenge in the pathologists’
routine. The main contribution of this chapter is then to elucidate this ill-posed problem,
revealing critical aspects necessary for effectively paving the way to solve the segmentation
problem involving few examples, difficult-to-label image objects, and highly unbalanced
classes (with a predominance of glomeruli with well-defined boundaries). To this end, we
carried out a set of experiments conducted on a dataset of histological images of repre-
sentative cases of the diagnostic routine, containing a variety of glomeruli, either normal
or with sclerotic lesions.

The primary challenge with global glomerulosclerosis is accurately delineating their
boundaries in histopathological images. This difficulty arises because they may exhibit
similarities with another renal structure, the interstitium, often sharing similar color
tones between these two structures (see Fig. 5.1 (c)). In the next section, we begin
addressing the problem by assessing how robust it is to segment normal glomeruli and
further analyzing the critical aspects of segmenting borderless glomeruli affected by global
sclerosis lesions.
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5.3 MATERIALS AND METHODS

The dataset compilation used in this paper originates from two newly introduced sets
named Normal and Sclerosis. The “Normal” dataset extends the prior dataset found in
(Souza et al. 2023), now featuring 45 WSIs of human kidney biopsies. The “Sclerosis”
dataset is newly created and includes 37 human kidney sections. The “Mixed” dataset
is also new and contains 1 human kidney section. The renal biopsies used to build the
dataset were fixed in formalin-acetic acid-alcohol to preserve their histological structure,
later included in paraffin. Images were finally captured from a VS 110 Olympus scanner
with 40× magnification. The main characteristics of these two datasets are summarized
in Table 5.2.

5.3.1 Datasets

5.3.2 Methods

The first assumption of our study is that segmentation must be conducted under similar
conditions to pathology practice, without any manual intervention. Since WSIs of kidney
biopsies are typically gigapixel-sized, the WSIs are first automatically divided into regular
tiles (or patches). The proposed framework to address this challenge is illustrated in Fig.
5.2 and comprises training and prediction phases. Since this framework is agnostic regard-
ing the segmentation network, based on the literature review, we employed four powerful
methods: vanilla U-Net (Ronneberger et al. 2015), U-Net 3+ (Huang et al. 2020), Swin-
Transformer (Liu et al. 2021) as the backbone of a U-Net, and Segmentation Generative
Pre-trained Transformer (SegGPT) (Wang et al. 2023). SegGPT is a generalist model
developed for context-aware segmentation tasks, utilizing a foundation model that distin-
guishes it from the other non-foundation segmentation methods. It approaches training
as an in-context coloring task, applying random color mapping to each data sample. We
adapted this model for gigapixel histopathological images of glomeruli, allowing it to
function without a conventional training phase and thus avoiding the need for extensive
task-specific training or fine-tuning. Instead, SegGPT leverages feature representations
from a few query samples during inference. There is no need to manually crop the in-
put WSI into patches; each segmenter predicts object masks directly on the whole-slide
image. A stitching algorithm is then employed to seamlessly reassemble the patches into
the final WSI output. To evaluate this approach, our team of pathologists assembled a

Table 5.2 Summary of the characteristics of the datasets.

Dataset Stain #WSI #Glom. #Glom. by class Average Pixels
Train Test Train Test Normal Segmental Global (height × width)

HE 12 3 194 27 221 - - 23,203 × 10,639
Normal PAS 12 3 149 61 210 - - 22,795 × 11,075

PAMS 12 3 133 77 210 - - 22,698 × 11,825
ALL 36 9 476 165 641 - - 22,899 × 11,180
HE - 19 - 71 - 48 23 29,211 × 15,818

Sclerosis PAS - 18 - 76 - 56 20 26,453 × 14,193
ALL - 37 - 147 - 104 43 27,869 × 15,028

Mixed HE 1 - 12 - 4 4 4 26,624 × 13,824
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Figure 5.2 Proposed framework for ensuring comprehensive glomerulus segmentation.
Glomeruli are manually annotated by pathologists from human kidney biopsy sections and
automatically segmented into patches - these patches serve as inputs for training segmentation
networks (agnostically defined here); the best model from each network is selected to predict
the pixel class of the glomeruli in each patch; finally, the resulting masks are generated, and
evaluated using a Dice metric.

specialized dataset of WSIs, with further details provided in the following section.

5.3.3 Implementation details

Based on the articles presented in Table 5.1 (see Section 5.1), the initial experiments in
our work, and glomeruli segmentation in the Kaggle competition (Howard et al. 2020),
we provide a detailed description of the implementation parameters in this subsection.
U-Net, U-Net 3+, SwinTransformer + U-Net, and SegGPT methods were implemented
using the PyTorch framework (Paszke et al. 2019) version 1.9.1. The initial setup in-
volved loading all networks with weights pre-trained on the Human BioMolecular Atlas
Program (HuBMAP) dataset (Howard et al. 2020). The network models were trained
across 30 epochs with a batch size of 8, a warm-up learning rate scheduler at a maximum
of 0.0001, and a weight decay of 0.00001, using a loss that combines BCE (Yi-de et al.
2004) and Lovasz (Berman et al. 2018) loss functions. The WSIs were automatically
tiled into patches of 1,024 x 1,024 pixels, with a padding size of 256 pixels. To manage
the high memory footprint and enhance training speed, each patch was resized to 320
x 320 pixels before being used for training. All experiments were run on a laptop with
AMD Ryzen 5 3600, 32GB RAM, and a GeForce RTX 3080 NVIDIA GPU containing
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10GB of memory. The pre-trained weights were fine-tuned on the top layers, aiming to
keep the rich features previously learned. To improve the variability of the input data, we
used the following online training data augmentation techniques: resizing, vertical and
horizontal flip, random rotation in intervals of 90 degrees, shift scale rotation, Gaussian
noise, Gaussian blur, random brightness contrast, and random hue saturation value.

5.4 RESULTS AND DISCUSSION

WSIs analyses significantly shape the daily routine of a pathologist. For an expert system
to assist these professionals effectively in day-to-day diagnosis practice, it must handle
gigapixel images containing numerous renal structures and various lesions, which often
obscure the canonical appearance of these structures. Hence, the primary goal of this
study is to work within the framework depicted in Fig. 5.2. Given that normal glomeruli
represent the majority in our dataset, we aim to demonstrate that this type of canoni-
cal glomerulus can aid in the segmentation of glomeruli affected by segmental glomeru-
losclerosis (see Fig. 5.1 (b)). However, this convenience does not necessarily extend to
glomeruli affected by global sclerosis (see Fig. 5.1 (c)), even when a fine-tuning strategy
is applied to samples of global sclerotic glomeruli. The secondary objective is to demon-
strate that segmenting a crop containing an entire globally sclerotic glomerulus can lead
to overestimation. This evaluation was conducted similarly to the approach proposed by
(Jiang et al. 2021).

5.4.1 Qualitative and quantitative analysis of WSI

Tables 5.3 and 5.4 summarize the results found by our proposed study, considering the
splits defined in Table 5.2. The metric used to assess the performance was mDice. Table
5.3 shows the evaluation of the behavior of the three segmenters by training on normal
glomeruli and subsequently testing on either normal or segmental sclerotic glomeruli.
The results show that any of the network models were able to reach state-of-the-art
performance (see Table 5.3), either for testing over normal (considering U-Net, U-Net 3+,
and SwinTransformer + U-Net; average mDice of 0.937, 0.931, and 0.935, respectively)
or segmental sclerotic glomerulus (considering U-Net and SwinTransformer + U-Net;
average mDice of 0.730 and 0.702, respectively). However, the performance of the three
trained deep learning models, U-Net, U-Net3+, and SwinTransformer + U-Net, was
significantly poor in segmenting globally sclerotic glomeruli, regardless of whether they
were fine-tuned or not in the WSI segmentation task. As shown in Table 4, both U-Net3+
and SwinTransformer + U-Net recorded a mDice score of zero when trained on normal
glomeruli and subsequently tested on globally sclerotic glomeruli. In contrast, significant
performance improvements were achieved with the foundation model for globally sclerotic
glomeruli, with SegGPT reaching an average mDice score of 0.428.

These results make clear that the primary factor for achieving state-of-the-art perfor-
mance is dataset unbalance. This is due to the small number of glomeruli with global
sclerosis found in the WSI (see Table 5.2). The numbers achieved by testing on WSI
regarding only global sclerosis are invariably tiny, whether fine-tuning the models with
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Table 5.3 Comparison of Dice scores and their standard deviations obtained from three seg-
mentation networks trained on the Normal’s train set. Predictions were performed on both the
Normal’s test set and the Sclerosis’ test set as described in Table 5.2

Input Class Stain mDice (test subset)
U-Net U-Net3+ SwinTransformer+U-Net

HE 0.923(±0.014) 0.864(±0.022) 0.935(±0.008)
Normal PAS 0.915(±0.005) 0.931(±0.022) 0.907(±0.009)

PAMS 0.937(±0.006) 0.926(±0.006) 0.850(±0.048)
WSI ALL 0.919(±0.018) 0.908(±0.028) 0.918(±0.033)

HE 0.720(±0.192) 0.575(±0.131) 0.650(±0.150)
Segmental PAS 0.730(±0.197) 0.643(±0.184) 0.702(±0.156)

ALL 0.728(±0.163) 0.667(±0.163) 0.675(±0.186)

Table 5.4 Comparison of Dice scores and their standard deviations obtained from four seg-
mentation networks tested exclusively on global sclerotic glomeruli using both the input WSI
and per-crop data from the Sclerosis’ test set. Columns 3-5 list the results for three segmenters
without fine-tuning, trained on the Normal’s train set. Columns 6-8 show the results for the
same three segmenters with fine-tuning using the pre-trained model from the Normal train’s set
and additional training from the Mixed’s dataset. Column 9 lists the results for the SegGPT
segmenter, which uses feature representations (without a training set) by querying the Mixed’s
dataset.

mDice (test subset)
Input Stain Fine-tuning

U-Net U-Net3+ SwinTransf. U-Net U-Net3+ SwinTransf. SegGPT
+U-Net +U-Net

HE 0.020 0.000 0.000 0.066 0.000 0.000 0.428
(±0.018) (±0.000) (±0.000) (±0.054) (±0.000) (±0.000) (±0.258)

WSI PAS 0.002 0.027 0.017 0.011 0.151 0.131 0.366
(±0.001) (±0.022) (±0.011) (±0.009) (±0.039) (±0.041) (±0.261)

ALL 0.005 0.020 0.004 0.041 0.124 0.034 0.400
(±0.002) (±0.013) (±0.002) (±0.013) (±0.033) (±0.015) (±0.255)

HE 0.000 0.000 0.035 0.420 0.386 0.112 0.742
(±0.000) (±0.000) (±0.164) (±0.142) (±0.108) (±0.110) (±0.350)

Patch PAS 0.087 0.225 0.002 0.448 0.461 0.224 0.654
(±0.268) (±0.282) (±0.010) (±0.201) (±0.126) (±0.203) (±0.363)

ALL 0.084 0.059 0.001 0.587 0.330 0.121 0.701
(±0.265) (±0.204) (±0.009) (±0.284 (±0.150) (±0.114) (±0.354)

HE-stained patches or not. It is noted that when confronted with a real-world dataset,
the networks cannot even locate the glomeruli with global sclerosis, as indicated by a
Dice virtually equal to zero in most cases (see Table 5.4). Jiang et al. (2021) cope with
this problem by manually cropping individual glomerulus from the WSI and presenting
the patches to the network.

Conversely, promising results were obtained using SegGPT, as demonstrated in Table
5.4, with visual outputs on WSIs shown in Figure 5.3. Unlike non-foundation models,
SegGPT is not trained in the traditional manner but instead relies on receiving a few
image-mask pairs to query new image classes within the WSI. For our evaluation, we
utilized glomeruli from the Mixed dataset to perform the query and subsequently tested
SegGPT on the global sclerosis subset. In the HE-stained image (top), the model per-
formed well, correctly segmenting a glomerulus (highlighted in green). In the PAS-stained
image (bottom), the segmentation was reasonable, with one true positive glomerulus (in
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(a)

(b)

Figure 5.3 Some visual results from SegGPT’s WSI segmentation for global sclerosis. (a)
HE-stained WSI and a zoomed patch: The WSI segmentation shows the only globally sclerotic
glomerulus (green mask) with true-positive pixels. The zoomed patch highlights detailed true-
positive pixels (in green) and very few false negatives (in red). (c) PAS-stained WSI and a
zoomed patch: The WSI displays a yellow mask representing false-positive pixels, two red
masks indicating false-negative pixels, and two green masks highlighting true-positive pixels.
The zoomed patch shows two glomeruli: one with missed detection (red mask) and the other
containing true-positive (green mask), false-positive, and false-negative pixels, with true-positive
pixels predominating.

green), one false positive (in yellow), and two missed detections (in red).
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Figure 5.4 Samples of expected results from SegGPT applied on Global Sclerosis’ test set.
From left to right: input image, ground truth, and results from SegGPT’s per-crop segmen-
tation for global sclerosis. Yellow masks represent false-positive pixels, red masks indicate
false-negative pixels, and green masks show true-positive pixels (best viewed in color). The first
two rows are HE-stained images, while the last two rows are PAS-stained images.

5.4.2 Qualitative and quantitative analysis of cropped glomeruli

In Table 5.4, results were obtained by extending our framework to include global scle-
rotic glomeruli from the per-crop input. Our best performance was achieved with the
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Figure 5.5 Samples of missing detection from SegGPT predicting on Global Sclerosis’ test
set. From left to right: input image, ground truth, and results from SegGPT’s per-crop seg-
mentation for global sclerosis. Yellow masks represent false-positive pixels, red masks indicate
false-negative pixels. The first two rows are HE-stained images, while the last two rows are
PAS-stained images
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SegGPT foundation model, yielding a Dice score of 0.742. The U-Net, U-Net3+, and
SwinTransformer + U-Net models achieve average Dice scores of 0.587, 0.461, and 0.224,
respectively. In these experiments, we fine-tuned the non-foundation models using the
pre-trained model generated by the initial framework along with the Mixed dataset of
per-crop glomerulus, which was used exclusively for training (see Datasets). The Sclerosis
test set consisted exclusively of globally sclerotic glomeruli. It is important to note that
when the trained non-foundation models were applied to these globally sclerotic glomeruli
without fine-tuning, the results were zero or close to zero across U-Net, U-Net3+, and
SwinTransformer + U-Net.

According to the quantitative results listed in Table 5.4, the best segmenter was Seg-
GPT applied to per-crop data, which generated the qualitative results illustrated in Fig.
5.4. All the stains show similar visual results on the samples depicted in the figure, with
prominent true positive segmentations (in green), minor false positives (in yellow), and
very few false negatives (in red). In contrast, Figure 5.5 highlights some of the worst vi-
sual results obtained using the SegGPT segmenter. In addition to false negatives (in red),
false positives (in yellow) are highlighted in the figure, with no true positives detected.
All visual results from the per-crop glomerulus were characterized by missed detections
(false negatives). Additionally, a few false positive regions were generated outside the
glomerulus area in the HE-stained image (initial per-crop segmentation image).

5.5 CLOSURE

This chapter evaluates the challenges associated with segmenting globally sclerotic
glomeruli in WSIs. Although the models demonstrate strong performance for normal and
partially sclerotic glomeruli, their efficacy significantly declines when addressing globally
sclerotic cases, even with fine-tuning. However, the SegGPT foundation model shows
promise, providing substantial improvements in segmentation accuracy. In the next
chapter, we discuss the results shown throughout this thesis. We conclude this thesis
by presenting our final considerations and perspectives for future work in this research
line.
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This thesis explores the problem of glomerulus segmentation in high-resolution
histopathological images, trained on limited data. To address that, we developed two
studies: cross-species analysis between mice and humans, and segmentation of sclerotic
glomeruli using a foundation model. These studies are based on transfer learning and
few-shot learning, respectively. In this chapter, we present key insights from these studies
by analyzing the overall experimental results, highlighting the strengths and limitations
of the investigated methods, and outlining potential directions for future research in this
field.

6.1 OVERALL RESULTS IN THE EXPERIMENTS

6.1.1 Mouse-to-human transfer learning

We proposed investigating the feasibility of segmenting glomeruli in human WSIs by
training deep-learning models on mouse data only. A set of semantic segmenters was
evaluated, with their performance assessed on two datasets consisting of 18 mouse WSIs
and 42 human WSIs.

The experiments demonstrated that our hypothesis is indeed feasible, as most net-
works, when trained on a public HE-stained mice data set, achieved promising results in
the human glomerulus segmentation task (including samples stained with HE, PAS, and
PAMS). However, we found that generalization was only achievable when the training
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and test sets contained images with the same staining. In the cross-species scenario,
testing on PAS and PAMS-stained images resulted in low and inconsistent scores.

It is important to note that these conclusions are based on general-purpose segmen-
tation networks, like those used in our experiments. Additionally, both the human and
mouse datasets contained well-defined glomeruli (with no morphological lesions), which
facilitated direct generalization. To test this shape assumption, we collected nine glomeru-
lar images with irregular boundaries and observed that the top-performing network (U-
Net 3+) was almost unable to identify any glomeruli in the visual analysis. Although
all networks successfully segmented intra-stain images, we could not confirm the same
performance on inter-stain ones.

6.1.2 The problem of segmenting global glomerulosclerosis

We investigated glomerulus segmentation in WSIs and cropped samples of human kidney
tissue, focusing on the challenges of segmenting sclerotic glomeruli. A set of semantic
segmenters was evaluated, with their performance assessed on three datasets: 45 WSIs
of normal glomeruli, 37 WSIs of glomerulosclerosis, and 1 WSI containing both normal
and sclerotic glomeruli.

Our findings indicated that while segmenting glomeruli with well-preserved structures
is largely a solved problem, the deterioration of Bowman’s capsule presents significant
challenges for existing segmentation methods. Specifically, conventional supervised mod-
els (non-foundation) struggled to segment globally sclerotic glomeruli, as the lack of
distinct boundaries resulted in near-zero performance.

In contrast, we identified a promising alternative in the SegGPT foundation model.
Our results demonstrated that SegGPT achieved over 40% segmentation accuracy for
globally sclerotic glomeruli in WSIs — a significant improvement over the near-zero
performance of non-foundation models, especially given that SegGPT requires neither
extensive training nor fine-tuning.

6.2 STRENGTHS AND LIMITATIONS

Non-foundation models (classical deep learning) and foundation models are essential
methods for addressing the proposed task.

For non-foundation models, we can highlight two positive points:

(i) Satisfactory performance in the initial study on mouse-to-human transfer learning
using five methods: U-Net, U-Net3+, Res-U-Net, DeepLabv3+, and MA-Net. The
first four achieved results above 60%, while the last method obtained approximately
43%;

(ii) Acceptable performance in the second study addressing the issue of borderless
glomeruli with segmental glomerulosclerosis, achieving over 72%. However, the
results for global glomerulosclerosis remained notably poor, even when employing a
fine-tuning strategy.

Regarding foundation models, several key points emerge:
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(i) The SegGPT foundation model shows promise, delivering significant improvements
in segmenting glomeruli completely borderless;

(ii) SegGPT achieved considerable enhancement in segmenting globally sclerotic
glomeruli by utilizing only a few query samples, with a significantly higher mDice(>
0.37).

Non-foundation models and foundation models were applied to input WSIs and
cropped samples to investigate global glomerulosclerosis lesions. When we used non-
foundation models with fine-tuning, we observed minimal improvements in the results.
This led us to formulate our hypothesis of evaluating a foundation model utilizing only
a few query samples to investigate whether borderless glomeruli could be labeled.

In our two comprehensive studies, we identified some limitations:

(i) In the first study, cross-species generalization was only achievable when both train-
ing and testing sets contained images with the same staining type. When testing
on PAS and PAMS stained samples, we observed low and variable scores in the
cross-species scenario. Additionally, there were limitations in segmenting borderless
glomeruli. In supplementary experiments, we collected nine glomerular images with
damaged contours representing three types of lesions: (i) Cellular crescents filling
Bowman’s space, (ii) Fibrous crescents with sclerosis of glomerular tufts, and (iii)
Periglomerular fibrosis. We found that the network with the highest score (U-Net
3+) almost failed to detect glomeruli upon visual analysis.

(ii) In the second study, using non-foundation models, we achieved only satisfac-
tory results with models trained exclusively on normal glomeruli (using HE,
PAS, and PAMS-stained images) demonstrated strong performance for normal
glomeruli (mDice > 0.92) and moderate performance for partially sclerotic glomeruli
(mDice > 0.72). However, their performance dropped drastically for globally scle-
rotic glomeruli (mDice > 0.02), with negligible improvements even after fine-tuning
on globally sclerotic samples. In contrast, SegGPT achieved substantial improve-
ment on globally sclerotic glomeruli by leveraging only a few query samples, with a
significantly higher mDice(> 0.37).

6.3 CONTRIBUTION AND FUTURE WORK

In light of the empirical evidence provided throughout this thesis, we are now able to
answer the questions raised in Chapter 1. They are:

(i) Is it possible to design an end-to-end CNN for semantic segmentation of glomeruli
in high-resolution images?

Yes, it is. In this work, we developed a methodology that spans from data acquisition
to stitching the predicted patches in our two studies presented in Chapters 4 and
5. The experiments demonstrate satisfactory results for both normal glomeruli and
two types of sclerotic lesions: segmental and global.
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(ii) Is it possible to segment human glomerulus from WSIs by using a model trained
with only mouse glomerular images?

Yes, it is possible to achieve successful segmentation of glomeruli trained on mouse
data, based on the morphological similarities between mouse and human glomerulus.
We evaluated several state-of-the-art segmentation networks for our proposed cross-
species generalization discussed in Chapter 4. Using mice glomeruli images offers
significant advantages, including the relative ease of obtaining samples compared
to human samples. In a laboratory setting, mice can be bred and monitored to
ensure they are either healthy or have specific lesions, and their kidneys can be
harvested for targeted research. Additionally, the smaller size of mouse kidneys,
typically around 1.25 to 1.5 cm in length, is another advantage (Wang et al. 2017).
In contrast, human kidney samples are generally limited to small biopsy sections,
as human kidneys are larger, measuring about 8 to 14.5 cm in length (Rao et al.
2013).

(iii) How do we segment borderless glomeruli?

Using traditional deep learning methods, we achieved satisfactory results with par-
tially borderless glomeruli (segmental sclerosis). However, segmenting fully bor-
derless glomeruli (global sclerosis) presented significant challenges, as the lack of
clear boundaries and limited training data resulted in near-zero performance. The
SegGPT foundation model provides an alternative approach for identifying and seg-
menting globally sclerotic glomeruli in both WSI and per-crop evaluations, where
we obtained mDice scores exceeding 0.37 and 0.65, respectively. Unlike traditional
models, the SegGPT model requires only a few sample images for guidance, demon-
strating potential for enhanced segmentation accuracy. In Chapter 5, we discuss
the challenges of segmenting these borderless glomeruli in WSIs, underscoring the
promise of SegGPT foundation model to address these issues, especially in light of
the limitations seen with traditional deep learning methods.

Even considering that the used models helped us answer the main questions of this
thesis, our findings make us glimpse future improvements that can be investigated.
Below, we outline some of these potential investigative paths.

First study: In the cross-species generalization task, we can extend segmentation
to other renal histological structures and increase the number of samples in the
WSI dataset. Additionally, applying foundation models for intra-dataset evaluations
and mouse-to-human generalization offers a valuable opportunity. We also plan to
acquire more mice samples stained with PAS and PAMS to further explore cross-
species generalization. Other species not investigated in this study may also be
considered to evaluate the generalization potential.

Second study: For the borderless glomeruli task, we aim to investigate additional
foundation models specifically focused on glomeruli affected by global and segmental
sclerosis. Furthermore, we intend to evaluate the percentage of affected areas within
each segmented glomerulus exhibiting sclerosis. Additionally, we seek to explore the
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application of foundation models for segmenting other glomerular lesions and renal
histological structures.

In our comprehensive studies on medical imaging, we developed deep learning
and foundation model methods designed to segment glomeruli in high-resolution
histopathological images, even with limited training data. The aim was to develop
an automated framework to assist renal pathologists in analyzing WSIs, particularly
for glomeruli with presence, partial, and absent borders.
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loesclerose segmentar e focal ou com lesões mınimas utilizando transfer learning em
cnn. In: SBC. Anais do XIX Simpósio Brasileiro de Computação Aplicada à Saúde.
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