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Resumo
Controladores preditivos baseados em modelo (MPC) são amplamente utilizados para
controlar sistemas com características comuns a muitas aplicações industriais e acadêmicas.
A lei de controle de um MPC é formulada pela minimização de uma função objetivo que
considera o erro entre saídas previstas estimadas e referências futuras ao longo de um
horizonte de tempo especificado. Essas saídas previstas podem ser definidas usando um
modelo nominal paramétrico ou modelo baseado em dados. Tipicamente, nas abordagens
lineares, o processo de minimização gera uma sequência ótima de entradas através do
princípio de horizonte deslizante, incorporando naturalmente as restrições do sistema em
sua solução. Um problema conhecido com MPC com restrições é a perda de factibilidade
quando há mudança de referências. Isso acontece devido ao horizonte finito escolhido e às
restrições impostas pelo controlador que podem levar o otimizador a um alvo inatingível,
dependendo das condições iniciais do problema, o que pode causar em insucesso do
seguimento de referência. Este trabalho apresenta contribuições para estratégias de MPC
aplicadas a referências variantes no tempo. Será visto que o MPC apresenta uma função
custo conflitante em tais condições de tal forma que uma simples modificação pode
proporcionar uma flexibilidade à sintonia do MPC, evitando assim problemas indesejados
de ganhos elevados do controlador causados por sintonias agressivas. Inicialmente, uma
abordagem filtrada do DMC é avaliada, na qual o filtro de predição mantém sensibilidade
a distúrbios de alta frequência, enquanto a sintonia do MPC melhora o rastreamento de
referências e sua eficácia é avaliada em simulação e experimento do controle de temperatura
de um sensor termorresistivo. Em seguida, uma abordagem de função custo modificada
em um MPC baseado em receptância foi abordado com vista a reduzir o valor nominal
da função custo em condições de referências variantes no tempo. A modelagem baseada
em matriz de receptância propõe-se a trazer uma simplicidade na etapa de identificação
de sistemas complexos, de tal forma que parâmetros do modelo fenomenológico de um
sistema de múltiplos corpos não precisa ser necessariamente conhecido. Assim, resultados
em simulação foram avaliados para um sistema subatuado, mostrando sua eficácia para
seguimento de referências periódicas. Por fim, este trabalho também trata do problema
do MPC com garantia de estabilidade robusta por meio do uso de referências artificiais e
da reformulação analítica do alvo desejado. A eficiência dessa abordagem é validada por
análises numéricas de simulação, e sua aplicabilidade prática é demonstrada no controle
de trajetória de um veículo terrestre não tripulado (UGV).

Palavras-chave: Controle Preditivo Baseado em Modelo; Sistemas Restritos; Seguimento
de trajetória.





Abstract
Model predictive controllers (MPC) are widely used to control systems with characteristics
common to many industrial and academic applications. The control law of an MPC is
formulated by minimizing an objective function that considers the error between estimated
predicted outputs and future references over a specified time horizon. These predicted
outputs can be defined using either a nominal parametric model or a data-based model.
Typically, in linear approaches, the minimization process generates an optimal sequence of
inputs through the receding horizon principle, naturally incorporating system constraints
into the solution. A well-known issue with constrained MPC is the loss of feasibility when
reference changes occur. This happens due to the finite horizon and the constraints imposed
by the controller, which may lead the optimizer to an unreachable target depending on
the initial conditions of the problem, potentially causing failure in reference tracking. This
work presents contributions to MPC strategies applied to time-varying references. It will
be shown that MPC exhibits a conflicting cost function under such conditions, such that a
simple modification can provide greater tuning flexibility, thus avoiding undesirable issues
like excessively high controller gains caused by aggressive tuning. Initially, a filtered DMC
approach is evaluated, where the prediction filter maintains sensitivity to high-frequency
disturbances while MPC tuning improves reference tracking. Its effectiveness is assessed
through simulations and experiments on temperature control of a thermoresistive sensor.
Next, a modified cost function approach is proposed for a receptance-based MPC to
reduce the nominal value of the cost function under time-varying reference conditions.
Additionally, the receptance matrix-based modeling aims to simplify the identification stage
of complex systems, eliminating the need for prior knowledge of the phenomenological model
parameters of a multibody system. Simulation results were evaluated for an underactuated
system, demonstrating its effectiveness in tracking periodic references. Finally, this work
also addresses the issue of MPC with robust stability guarantees through the use of
artificial references and analytical reformulation of the desired target. The efficiency of this
approach is validated through numerical simulation analysis, and its practical applicability
is demonstrated in trajectory control of an unmanned ground vehicle (UGV).

Keywords: Model Predictive Control; Constrained Systems; Trajectory Tracking.
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1 Introduction

The Model Predictive Control (MPC) is a set of control strategies contained in the
family of optimal controllers that has been proposed in the 1970s and has been widely
applied in both industry application and academy research (CAMACHO; ALBA, 2013).
Although MPC defines an entire family of control strategies, most of the algorithms are
solved online from a finite horizon optimal control problem, using the current state of the
controlled process as the initial state (MAYNE, 2000). The optimization is then solved at
each time sample, respecting the receding horizon principle and therefore only the first
element of the solution is applied as input of the process at each sampling instant. This
receding horizon principle is the common element of the MPC algorithms.

The MPC has been attracting attention from many researchers from the past
decades due to many advantages when compared to other methods (CAMACHO; ALBA,
2013), whilst many points will be addressed within this chapter:

• It is attractive to tune with a limited knowledge of control systems since the concepts
are very intuitive;

• It can be applied to a wide range of dynamic systems: from simple dynamic systems
to plants with non-minimum phases, long delay times or unstable behaviors;

• It is natural to deal with Multiple-Input Multiple-Output (MIMO) systems;

• The impact of delays in the system is dealt easily within the prediction phase;

• Measurable disturbances can be handled in the control law in a feed-forward control
that is consequence of its formulation;

• Constraint satisfaction is simple and can be included by proper modification of the
optimization problem.

• The consideration of future references is possible and its usage is opportunely explored
in practical applications;

• It can be applied to control systems described by nonlinear model (MAYNE, 2000).

The strategy first demonstrated its potential in industrial applications in the late
1970s (RICHALET et al., 1978), utilizing an impulse response for a multivariable model.
It heuristically searched for a sequence of inputs to drive the future outputs of the internal
model as close as possible to the reference trajectory. The results were tested in a distillation
column at an oil refinery and a polyvinyl chloride (PVC) plant.
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The Dynamic Matrix Control (DMC) is presented as an MPC variant based
on the convolutional model, firstly proposed by (CUTLER; RAMAKER, 1980). Such
model bring simplicity to the modelling and prediction phase of the strategy, thus it was
widely appraised by the process control industry since its initial formulation, as cited
in (QIN; BADGWELL, 2003). The application using Quadratic Programming is known
as Quadractic Dynamic Matrix Control (QDMC) (GARCIA; MORSHEDI, 1986) and is
highly accepted due to its satisfactory efficiency for constrained system and due to advance
of Quadratic Programming (QP) algorithms over the years. The vast application of the
DMC comes to the fact that its modelling phase, as stated in (XU et al., 2020), depends
only from a data-based convolutional model. The convolutional model is constructed based
on its step response which brings simplicity and justifies the wide application on industrial
applications. Moreover, practical applications of the DMC has been explored in recent
works such as (KLOPOT et al., 2018a; ZHANG; HU; GAO, 2022; FERNANDES et al.,
2020a). The grown academic interest on data-driven approaches comes to the William’s
fundamental Lema and the behavioral system theory as stated in (WILLEMS et al., 2005;
MARKOVSKY; DÖRFLER, 2021).

As the DMC depends basically from its data-based modelling from an experimental
basis, its application might be limited since its prediction does not handle disturbance
rejections of systems with integrating and unstable modes. Thus, (SANTOS; NORMEY-
RICO, 2023) presents a Generalized Dynamic Matrix control that allows the DMC to
handle with unstable processes.

The implicit integral action proposed in various MPC strategies may result in
an unsatisfactory response when considering reference tracking in the presence of time-
varying objectives (SATOH et al., 2019). The design of predictive controllers with implicit
integral action has a fundamental role in time-varying references since the prediction
model and the cost function are established under the premise of tracking constaRge
nt references over time. The Filtered Dynamic Matrix Control (FDMC) deals with the
balance between robustness and disturbance rejection without compromise the nominal
performance (LIMA; NORMEY-RICO; SANTOS, 2016). Therefore, the open-loop gains
could be reduced without losing the efficiency on the reference tracking issue in a scenario
without uncertainties. Such additional degree of freedom is particularly important in the
case of aggressive tuning due to reduced reference tracking error objectives.

The Generalized Predictive Control (GPC) was firstly introduced in (CLARKE;
MOHTADI; TUFFS, 1987), which is presented by a simple formulation based on the
Controlled Autoregressive Integrated Moving Average (CARIMA) plant model and is
capable to handle with open-loop unstable processes, non-minimum phase plants, and
systems with unknown dead time . Apart from the original DMC (CUTLER; RAMAKER,
1980), the GPC introduces the concept of using a control horizon different from the
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prediction horizon, which makes the explicit and QP problem much lighter if a sufficient
small horizon is chosen. Recent works focused on practical applications have been proposed
in this type of MPC as in (ZHANG et al., 2022; JIANG et al., 2023).

Despite the many advantages provided by these strategies, some drawbacks might
be highlighted. The first drawback is concerned about the computational effort to achieve
the optimal control law. For linear, unconstrained formulation, the calculation of the
input is easy to implement and usually is simplified as a state/output feedback, which
requires little computation. This issue becomes more relevant when the change of the
process dynamic needs to be considered during the prediction formulation. Therefore,
the prediction computation needs to be calculated online at each sampling time, in
contrast to the prior condition when the prediction matrices can be computed offline.
Additionally, the formulation considering constraints in the system variables demands way
more computational power due to inequalities and equality (for stabilizing conditions, which
will be assessed further) conditions to the optimization problem. Fortunately, standard
QP problem achieves the optimal solutions fast enough for the majority of the problems
(CAMACHO; ALBA, 2013), thus the analysis of computational effort should be done when
applying to fast systems.

It has been cited that MPC strategies are suitable to control MIMO systems
naturally and consider the dead-time impact of the systems easily by simply including
its effect in the various predictors available in the literature. Moreover, its capability to
naturally deal with constraints is an advantage when comparing to other classical controllers
and infinite horizon strategies. The control law for MPC can be computed offline when
constraints are not considered. The same applies to the infinite horizon case, such as Linear
Quadractic Regulator (LQR) and Linear Quadractic Gaussian Regulator (LQG) strategies,
which compute the infinite horizon control function offline. In contrast, restricted MPC
requires periodic solving of a finite horizon constrained optimization using a QP problem
(MAYNE et al., 2000). Depending on the system dynamics complexity and computational
resource limitations, reduced horizon values may be necessary to enable online solving
within the control loop time window.

Despite the aforementioned advantages, stability is not guaranteed due to the finite
horizon principle since the optimal finite horizon action is not optimal in the infinite
horizon sense (MAYNE et al., 2000). Anyway, for linear unrestricted systems, there exists
a finite control with proper tuning configuration (sufficient long horizons, mainly) such as
the MPC is stabilizing.

However such condition rarely represents the reality of controlled systems since
hardware restrictions, natural limitations of the process, and/or non-linearities are com-
monly present in the control problems, which could lead the MPC to not ensure stabilizing
control laws for a given target. For this matter, additional stabilizing ingredients have been
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used (KOUVARITAKIS; ROSSITER; CHANG, 1992; ROSSITER; KOUVARITAKIS;
RICE, 1998). Terminal equality constraints (NICOLAO; MAGNI; SCATTOLINI, 1996;
MAGNI; SEPULCHRE, 1997) and constraints relaxation for ensuring stability and feasi-
bility (KERRIGAN; MACIEJOWSKI, 2000) are also proposed. Moreover, (MAYNE, 2000)
presents sufficient conditions that guarantee the stabilizing properties of constrained MPC
by appropriately utilizing additional terminal cost functions and constraints, Lyapunov
functions, and invariant sets.

As an illustrative case to show the importance of stability guarantees of MPC,
(SANTOS et al., 2011) presents two MIMO systems that appears to be similar on first sight
- linear and stable open-loop poles - however one of the strategies presents a non-negative
transmission zero, having a non-minimum phase, which is not possible to verify by simple
inspection. Therefore, the analysis is done by the same GPC configuration and the response
for the non-minimum phase system leads to instability in the nominal case, leading to
completely different results. This example brings some conclusions, such as: (i) optimality
does not guarantee stability in the context of receding horizon control; (ii) it may not be
trivial to detect an inappropriate cost function, and; (iii) MPC with stability guarantees
are useful when controlling systems with complex dynamics such as open-loop unstable
processes, non-minimum phases and natural constraints.

Thereby, (MAYNE et al., 2000) has settled the foundation of main conditions and
ingredients to guarantee asymptotic stability to the system under some assumptions which
will be discussed later in this work. In this proposal, stability is achieved by modifying
the optimization problem that consists on adding three stabilizing terms, as follows: (i) a
terminal cost that penalizes the terminal state (i.e. the value of the state at the end of the
prediction horizon); (ii) a terminal constraint that guarantees that the terminal state is
within a positively defined invariant set, and; (iii) an implicit stabilizing terminal control
law. The overall idea of the stabilizing terms were done from the assumption that the
system regulates the output to the origin, although a proper change of coordinates can be
successfully done for any other equilibrium condition.

Several MPC strategies consider only the regulation problem, i.e. to steer the system
to the origin (MUSKE; RAWLINGS, 1993). Practical applications of MPC often demands
non-zero value as the target of the controller (MUSKE, 1997). Therefore a suitable change
of coordinates can be done and the problem recurs to original formulation without any
change of the original strategy. The change of the steady state reference might lead to
loss of feasibility of the strategy since the finite horizon and constraints imposed on the
terminal state could lead the optimization problem to an unreachable target and it fails to
track the reference (SHEAD; ROSSITER, 2007).

Some preliminary work has been proposed regarding the issue of the loss of
feasibility of the MPC for piece-wise constant references, such as reference governors
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(GILBERT; KOLMANOVSKY; TAN, 1994; BEMPORAD; CASAVOLA; MOSCA, 1997),
interpolation-based control based on a control invariant set as a tracking domain of
attraction (BLANCHINI; MIANI, 2000), artificial references in a constrained stable Single-
Input Single-Output (SISO) system (ROSSITER; KOUVARITAKIS; GOSSNER, 1996),
and dual-mode controller for tracking (CHISCI; ZAPPA, 2003). In (LIMÓN et al., 2005)
an MPC for tracking is proposed for constrained general (non-square system) MIMO
linear systems which leads the system to steer the states to any admissible target in a
feasible solution. The proposed strategy is done based on the addition of artificial variables
that defines a virtual equilibrium point based on nominal models, and the inclusion of an
offset cost function to the optimization problem that penalizes the deviation between the
required target and the artificial steady state. Additionally, terminal boundaries based on
the extended concept of the invariant set for tracking is used for stabilizing conditions
and then recursive feasibility is ensured for any reference. The properties of the offset
cost function are discussed as a role of the steady-state optimizer (FERRAMOSCA et al.,
2008). Therefore, the system steers the output to the reference if it is admissible, and leads
to the best possible steady state if the reference is not admissible. Optimal performance of
the controller in such condition is also discussed and shown that the proposed controller is
locally optimal in the neighborhood of the constraints.

Additional contributions on this matter have been done over the recent years, such
as extending the proposal to non-linear systems (LIMÓN et al., 2018; SOLOPERTO;
KÖHLER; ALLGÖWER, 2022), periodic references (LIMÓN et al., 2015; KÖHLER;
MÜLLER; ALLGÖWER, 2020), and distributed MPC for multi-agent systems (KÖHLER;
MÜLLER; ALLGÖWER, 2024). Also, a transient performance boundary is set on the
closed loop and the solution recovers the infinite horizon solution for sufficiently increased
horizons (KÖHLER et al., 2023). Despite the advances regarding the loss of feasibility
when reference changes, the MPC for tracking with additional artificial decision variables
works under the premise of piecewise-constant references.

The MPC applied to track non-constant references over time is an important
subject in mechatronics systems, mainly in robotics systems, that presents underactuated
MIMO systems, non-linearities, and the presence of a set of future references is common
from its various applications (SCIAVICCO; SICILIANO, 2012, Chapter 8). The next
section presents some recent applications of MPC applied to submarine, ground, and aerial
robotics, showing the relevance of the MPC on mechatronic systems.
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1.1 Motivation - MPC applied to systems with non-constant refer-
ences

The optimal controller under nonlinear model predictive theory has been widely
investigated in off-road mobile robots (FNADI et al., 2021), multiple autonomous nonholo-
nomic robots (GE et al., 2022), ship maneuvering (SANDEEPKUMAR et al., 2022) and
underwater autonomous vehicles (YAN et al., 2022). For instance, an interesting MPC
trajectory tracking task for a 4-wheel independent steering (4WIS) robot is presented
in (LIU et al., 2022). This type of trajectory tracking problem is a typical example of
non-constant reference.

The 4WIS robot brings some issues regarding the time delay and speed constraints
of the drivers, the MPC controller for trajectory tracking is considered based on the 4WIS
robot kinematic model, solving naturally both delay and state constraint challenges. The
proposed novel is simulated assuming a reference speed of 3.5m/s, making the robot follow
curved trajectories and comparing its efficiency with classical PID approaches. Comple-
mentary, the strategy has been tested in a real experiment, which showed considerable
advantages by comparing the performance of both techniques by means of the sum of
square residuals of position and angle of attack. Despite, this paper showing promising
results, other challenging trajectories could be tested in future works.

Concerning an educational navigation application, (POPESCU et al., 2021) presents
a task of a table tennis quad-rotor vehicle with tilting propellers. In this work, aggressive
trajectory tracking was achieved by proposing an iterative Linear Quadractic Regulator
(iLQR) which achieved a success rate of 40% during real experiments. Therefore, some
troubles were found within this novel, such as unwanted vibrations caused by the Unmanned
Aerial Vehicle (UAV) plastic material, and limitations on the rate of the motion capture
system, which limited the control rate of the iLQR.

In (DAI et al., 2022), a fast tube MPC for controlling an underwater vehicle
together with its manipulator system is proposed. Thus, the controller strategy is capable
for handling the Underwater Vehicle-Manipulator System (UVMS) for tracking tasks in
underwater environment. Robustness properties are guaranteed by adding an Sliding Mode
Control (SMC) ingredient to the optimal constrained formulation. This way, the SMC
brings the robustness required, solving the issue of the fast MPC approach proposed in this
paper, assisting by rejecting model uncertainties and external disturbances during operation.
The control tuning of this strategy is done by a linearized model of the system, which
can only evaluate local stability of the strategy. Despite that, it shows promising and fast
results when compared to the pure MPC formulation, which was reported a loop runtime
less than 30 ms for a prediction horizon of 20 steps. Also, the results and comparisons
reported were assessed in simulation environment with sinusoidal disturbances applied,
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being interesting to verify its efficiency under real environment or under non-Gaussian
disturbances.

Another hybrid MPC solution for navigation and manipulation tasks is shown in
(SLEIMAN et al., 2021), which a whole-body planning MPC framework unifies free-motion
missions and manipulation tasks by proposing a multiobjective MPC control law solved
by means of an Sequential Linear Quadractic (SLQ) solving approach. In this study, the
framework makes use of natural constraints of the SLQ solving to determine any gait
sequence or manipulation schedule of the robot. The nonlinear model is based on top of an
augmented model that considers the manipulated object dynamics, the robot’s center of
mass dynamics and finally the full kinematics of the asset, which allows to cover the entire
control and task sequencing of the robot in an unified cost function. Despite this strategy
covers a wide range of complex missions integrated to locomotion and manipulation tasks,
the optimal technique is used only for defining the planning phase of the problem, it
still does not cover the low level controllers regarding actuator regulators for trajectory
tracking mission, for instance. Although, this paper shows some interesting online system
identification techniques to solve uncertainties of the object’s model, adding robustness to
the novel.

A ballbot balancing stabilization and motion problem is integrated with a manip-
ulator task solving in a single multi-objective cost function in (MINNITI et al., 2019),
which solves its optimization by defining a linearized ballbot/manipulator model in each
controlling step based on the current state estimation of the system. The optimal technique
solves the nonlinear control challenge by means of a Sequential Linear Quadratic MPC
(SLQ-MPC), which shows a linear complexity with respect to the optimization of the cost
function, proving feasibility of the strategy under laboratory experiments.

Recently, many optimal approaches have been applied to Image-based Visual
Servoing (IBVS) tasks using both navigation and manipulation methods. The IBVS
general formulation intends to use an image taken from a set of visual sensors as reference
for position tracking of the robotic sensor. Despite this technique shows promising results
for end-effector position control under the task space, some issues regarding camera
uncertainties and unknown dynamics have been tackled by robustness ingredients of
the MPC approach. For instance, (JIN et al., 2021) proposes a Gaussian Process-based
Nonlinear Model Predictive Control (GP-NMPC) to solve the IBVS task. by using a novel
Nonlinear Model Predictive Control (NMPC) to solve a visibility constrained IBVS problem
in combination with a Gaussian process estimation to overcome unknown dynamics of the
mobile robot. The costly NMPC algorithm performance has also been improved by using
a modified iLQR, which also guarantees input constraints applied by the visual servoing,
which implies that the object of interest should be within the image throughout the whole
prediction. Despite (JIN et al., 2021) presents a promising IBVS approach, the technique



30 Chapter 1. Introduction

has been tested only in simulation so far. Also, it presents some minor limitations due to
the lack of uncertainty state propagation under the prediction phase. The author itself
proposes the usage of known variances of the model to deal with such limitation, which
will result in a nonlinear stochastic optimal control problem. Otherwise, (WU et al., 2021)
proposes an Extended State Observer (ESO) based MPC algorithm for a visual servoing
application in a robotic manipulator. Hence, the modelling is divided in two parts: i) the
first one uses an Recurrent Neural Network Model Predictive Control (RNN-MPC) at the
kinematic visual tracking system in order to provide reference signals for the second layer;
ii) the second layer takes account of the coupled dynamics of the system, considering the
model and camera parametric uncertainties as additional disturbances. Finally an input-to-
state stability is evaluate, providing a method to give the maximal admissible uncertainty
boundary for the eye-to-hand manipulator configuration. Although this paper shows
an interesting solution for the manipulation IBVS challenge, its experimental feasibility
validation still has to be done, since the technique has only been tested in simulation with
a 2 degrees of freedom manipulator.

On the manipulator problem, the MPC based on linearized manipulator model has
been widely investigated in the past years. In (NICOLIS; ALLEVI; ROCCO, 2020), an
MPC formulation integrated to an SMC framework for trajectory tracking and impedance
control of the end-effector is developed for a redundant manipulator. The SMC-MPC
approach is based on a nominal feedback linearized model, that provides robustness
guarantees in the task space without getting the state information of velocity and torque
from the joint control loop. Besides that, extra sensors should be added for the impedance
control of the gripping mechanism to differentiate external forces from residual robot
uncertain dynamics.

Despite robotic manipulation has not seen much NMPC applications lately when
compared to navigation problem, there is some interesting works exploring nonlinear
optimal control solutions directly. An NMPC strategy for a bilateral teleoperation of a
manipulator is explored in (PICCINELLI; MURADORE, 2021). This robotics comes in
handy in remote tasks that needs to handle with secure and precise manipulation, like
surgery application, aerospace and underwater environment missions, which should provide
high control reliability and force feedback of the object and environment conditions. Thus,
the bilateral strategy is done by a passivity-based control approach that relies on the
energy storing principle, using a pair of NMPC algorithms to both i) track the remote
manipulator states and ii) provide force feedback of the remote robotic arm to the operator
side. Finally, the stability of the proposed solution under time-varying delay is assessed
only in simulation tests, with environment conditions being estimated online by means of
a recursive least square method.

Since MPC is becoming popular in robotics and mechatronics in past years thanks
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to the growth of computational power and modern processors, many studies address the
predictive approach to low-level/actuator position tracking when the trajectory is already
defined by an offline and slow solver. Thus, (FARONI et al., 2019) makes use of an MPC
approach to solve a redundant manipulator trajectory planning, combining a fast MPC
approach to the ability to deal naturally with a MIMO system with constraints on its
inputs and states. The approach for planning is compared to classical techniques, which
shows improvements in the feasibility of complex task scaling by preserving geometrical
paths when the desired motion is not realizable. This is done since MPC can predict within
a time horizon if the set of joint configurations will fall into non-feasible paths, being
able to do corrections of the path before the joint inconsistency is reached. Hence, the
comparison results were evaluated only in simulation environment, which brings future
discussions of the results presented in bench tests with a real manipulator.

A multi-layer Neural Network-based Model Predictive Control (NN-MPC) strategy
is used for trajectory tracking of a robotic manipulator under uncertainties and input
constraints in (KANG et al., 2021). The novel contribution consists of a two-layer control
architecture. While the first neural network layer is responsible to estimate unknown robot
dynamics by using an MPC predictive model strategy, the second one makes use of such
prediction to solve the optimization problem, presenting a fast approach with feasible
time response for robotic tasks. However, such evaluation was done only by testing a 2
Degree of Freedom (DOF) manipulator in a simulation environment. It is expected that
the complexity of the problem will raise greatly when a redundant manipulator with more
degrees of freedom, having an open question if such strategy could be feasible for a real
and redundant manipulator.

Finally, (NUBERT et al., 2020) presents an experimental application of a robust
setpoint tracking MPC and an Approximated Model Predictive Control (AMPC) utilizing a
multi-staged deep learning novel of a KUKA’s LBR4+ manipulator with obstacle avoidance
. This paper proposes a robust and stable MPC approach for end-effector position control
in face of disturbances and model uncertainties, dealing with every robot control step (i.e.
motion planning, path tracking, actuator feedback control) in only one layer by adding
an artificial reference in the cost function formulation, as proposed in (LIMÓN et al.,
2018), which is an extension of the MPC for tracking (LIMÓN et al., 2008), illustrating
an interesting possibility of application of the modified MPC to robotics. Although this
strategy provides the robustness required to be applied to experimental evaluations, its
response time becomes a challenge to be tackled, having a sampling time of 400 ms
due to high computation cost in face of the complex optimal problem, caused by robust
guarantees.

To improve computation efficiency, the AMPC proposed by (KARG; LUCIA, 2020)
is used to train a novel deep learning based on the robust MPC strategy. Thus, the
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technique provides a similar solution, but ten times faster than the original one. On the
other side, the AMPC approach does not necessarily guarantee mathematically the state
constraint required for the robust nonlinear operation. Even so, statistical evaluations were
done on top of this option, assuring the safety provided by the Robust Model Predictive
Control (RMPC). Hence, these results illustrate the relevance of MPC applications for
non-constant references which is the main motivation of this work.

1.2 Objective
The objective of this thesis is to propose novel MPC strategies for tracking general

references defined from a dynamic model evolution. These references are dynamic reference
signals (KÖHLER; MÜLLER; ALLGÖWER, 2024) or dynamic reference targets. The
main motivation is derived from the trajectory tracking specifications for autonomous
robots. The following specific objectives are considered in this work:

• To analyze high-gain MPC solutions as a simple alternative for tracking non-constant
references.

• To propose alternative MPC solutions based on the cost function modification for
dealing with non-constant references.

• To analyze robust MPC solutions to track references defined by dynamic target
signals.

• To propose MPC solutions based on QP optimization problems that can be experi-
mentally tested.

1.3 Organization of the text
The following work is organized as follows: Chapter 2 presents the fundamentals of

MPC, detailing three classical strategies commonly used in academia and industry: State-
Space MPC (SSMPC), DMC, and Generalized Predictive Control (GPC). A discussion on
the stability conditions that must be met under certain assumptions is provided, followed
by an exploration of the proposed MPC for tracking.

Chapter 3 evaluates the performance of Filtered DMC under time-varying references.
The controller’s effectiveness in this scenario is demonstrated through both simulation and
experimental approaches, focusing on the temperature control of a thermo-resistive sensor.

Chapter 4 introduces a receptance-based GPC and DMC that do not require explicit
knowledge of plant parameters. The tracking objective is achieved through a modified
cost function designed to ensure nominal zero delay tracking error. Simulation results
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applied to an underactuated multi-body system are presented to illustrate its potential for
practical applications.

Chapter 5 provides a discussion of a robust approach for tracking piecewise-constant
reference signals using the artificial target approach to improve recursive feasibility for any
target. This way, if the reference is not admissible, the system will converge to the best
admissible target determined by an additional offset cost function. The robust property is
ensured by strangling the set of constraints based on the worst-case scenario of disturbances
to be known during controller design. Finally, a general target modification for any RMPC
controller that follows the same concept of set shrinkage in order to ensure offset free
trajectory tracking of a time-varying reference. To illustrate the main transient and steady
states of the modified approach, a simulation and experimental analysis will be presented
on top of a skid steering Unmanned Ground Vehicle (UGV) while tracking a lemniscate
trajectory.

Finally, Chapter 6 presents the final conclusions of the work and outlines open
topics for future research and list the publications from the result of the research conducted
from this thesis.
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2 Model Predictive Control

This section provides the technical foundations for various MPC algorithms. While
the initial strategies are well-known to researchers in optimal control, some concepts are
fundamental for developing the theory around stability guarantees and modifications of the
cost function to assess feasibility when controllers are subject to time-varying references.
Such modifications are necessary because nominal asymptotic stability conditions are
typically satisfied under the premise of a terminal set that depends on the desired reference,
ensuring the terminal state is contained within this set. Thus, changing the reference might
cause issues on feasibility of the optimizer and then loss of tracking might occur.

Therefore, this chapter will resume the common concepts behind the various MPC
algorithms, showing the main concepts in common behind the strategies. This evaluation
will be followed by a discussion on the stability of MPC, primarily based on the work
of (MAYNE et al., 2000). Finally, a discussion on MPC for tracking, as proposed by
(LIMÓN et al., 2008) and (FERRAMOSCA et al., 2008), will be conducted. Additionally,
constructive aspects of the MPC will be conducted in the Annex A of this work, focusing
on the State-Space Model Predictive Control (SSMPC), DMC, and GPC algorithms.

2.1 Open-loop MPC statement
Consider a nonlinear time-invariant state-space description given by

x[k + 1] = f(x[k], u[k], w[k]), (2.1)
y[k] = h(x[k]), (2.2)

where f(.) denotes the state evolution over time k and has an equilibrium point at the
origin (i.e. f(0, 0, 0) = 0), x[k] is the state vector, u[k] is the control signal vector, y[k] is
the output and w[k] is the disturbance vector. If the system is linear, the system dynamic
is

x[k + 1] = Ax[k] + Bu[k] + w[k], (2.3)
y[k] = Cx[k]. (2.4)

In the following control statements to be presented in this work, consider that the
system must satisfy the conditions
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u[k] ∈ U, (2.5)
x[k] ∈ X, (2.6)

where U is a convex, compact subset of Rm and X is a convex, closed subset of Rn. Also
consider that y ∈ Rp and could be subject to a hard output constraint set Y, that is

y[k] ∈ Y. (2.7)

Therefore, from now on, the system is considered to have m inputs, n states and p

outputs. It is assumed that these sets contain the origin in its interior.

The first strategies of state-space MPC assumes that the main goal is to regulate,
i.e. to steer the state to the origin or to a given (constant) equilibrium state xr, in which
yr = h(xr). For the sake of simplicity, the second case can be simplified to the first one if
a proper change of coordinates is applied to the problem. Asymptotic constant references
scenarios are proposed by (LIMÓN et al., 2005), which modifies the classical formulation
and will be discussed at the end of this section. For now, consider that a sequence of
reference is known for the whole time frame and the controller disposes the information
required for any future time window.

For a given optimal input sequence defined u(k) = {u[k|k], u[k + 1|k], . . . , u[k +
N − 1|k]}1 defined by solving the optimization problem PN (x[k]) within a finite prediction
horizon N

PN(x[k]) : min
u

{J(x[k], u(k))|u(k) ∈ U(x[k])}, (2.8)

in which the cost function

J(x[k], u(k)) =
N−1∑
i=0

L(x[k + i|k], u[k + i|k]) + F (x[k + N |k]), (2.9)

where the stage cost function L(., .) and F (.) are properly chosen combining together as
the objective to be minimized and L(0, 0) = 0. To consider the operational constraints of
the system to be controlled, the problem may be formulated as follows

u[k + i|k] ∈ U, i = 0, 1, . . . , N − 1, (2.10)
x[k + i|k] ∈ X, i = 0, 1, . . . , N. (2.11)

1 The notation f(k + i|k) denotes the future value of f in instant k + i calculated at a given time k.
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Additionally, the state at the receding horizon (instant k + N at a given time k) is
subject to a terminal set defined as

x[k + N |k] ∈ Xf ⊂ X, (2.12)

and the set U(x[k]) combines the conditions (2.10), (2.11) and (2.12) together for the sake
of mathematical simplification of the definition of PN(x[k]).

Thus, the receding horizon principle states that only the first element of u(k) is
applied to the system at time k, restarting the whole optimization process at the next
instant k + 1. This way, the implicit model predictive control law is defined:

u[k] = κN(x) = u[k|k], (2.13)

and the solving step of (2.8) is repeated at each sampling time. According to (MAYNE,
2000), if f(.) and J(.) are time-invariant, the problem PN is also time invariant and by
consequence the optimization stage only depends of the initial state x[k] at any time k.

With the initial statements of the model predictive controller being disposed, the
various strategies differs mainly on the definition of the stage cost function, which could be
designed for various objectives, either considering the error between the future outputs and
references, or considering economic properties of the system in terms of energy consumption
and supply chain fees. For most of derivations, a proper prediction model should be used to
evaluate the state and output evolution within a finite horizon N. Therefore, the following
sections will explore the most used techniques for state predictions, such as the state space
formulation, the impulse/step response of the process and also the usage of the transfer
function of the plant for output prediction by proper iterations. In the later sections,
the definition of the terminal cost and terminal constraints will be studied in order to
evaluate stability (since MPC controllers usually does not guarantee stability as shown by
(MAYNE, 2000), the terminal ingredients are necessary to overcome this issue). Moreover,
the statements presented until now consider that the control needs to steer the process
to a constant reference, thus the final section of this chapter will analyze the tracking
properties of the MPC for non-constant references.

2.2 MPC with stability guarantee
Infinite horizon controllers needs only elementary assumptions to guarantee stability.

The existence of a stabilizing condition implies that the optimal result leads to bounded
responses since the error cannot go to infinite in the best conditions. Such analysis is
not possible to be relied for constrained MPC (finite horizon) strategies due to receding
horizon principle. Consider that the optimal sequence at a given time k is defined as u0[k|k],
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u0[k + 1|k], . . . , u0[k + Nu − 1|k] within a control horizon Nu and the control law is taken
by selecting only the first element, that is u[k] = u0[k|k]. The next control input selected
upon the next optimal sequence at k + 1 and the equality u0[k + 1|k + 1] = u[k + 1|k] is
not true for finite horizon N . In fact, Bellman’s optimality principle (BELLMAN, 1957)
demonstrates that u[k + 1] → u[k + 1|k] only if N = Nu → ∞. Therefore, the cost function
needs to be properly defined for finite horizons, or the MPC closed loop performance might
lead to instability even in the nominal case.

Considering a discrete and time invariant dynamic system described by Equations
(2.1) and (2.2), the system constraints are applied to the states and inputs throughout the
entire horizon

u[k + i|k] ∈ U, i = 0, 1, 2, . . . , N − 1, (2.14)
x[k + i|k] ∈ X, i = 1, 2, . . . , N, (2.15)

such as the constraint sets are identical to the ones at Equation (2.5) and (2.6). Additionally,
a terminal constraint is imposed at the end of the prediction horizon

x̂[k + N |k] ∈ Xf ⊂ X, (2.16)

in a way that the constraints depicted in (2.1), (2.2) and (2.16) are mapped in terms of
the decision variable of the optimization problem u[k] and the composed set U(x[k]) such
as u[k] ∈ U(x[k]).

The new optimization problem within a finite horizon is defined by

PN(x[k]) = min
u[k]

(V (x[k], u[k])|u[k] ∈ U(x[k])). (2.17)

The new cost function is

V (x[k], u[k]) =
N−1∑
i=0

L(x[k + i|k], u[k + i|k]) + F (x[k + N |k]), (2.18)

with L(., .) the regular stage cost function, and F (.) a known and determined terminal
cost function which is used to guarantee stability in the MPC framework.

Following some usual simplifications to reduce formalism from the discussion
of (MAYNE et al., 2000), consider that the cost function must follow the condition
L(x, u) ≥ c · ||(x, u)||p with p ≥ 1 and c > 0. The condition could consider only the
stage cost for the output L(h(x), u) ≥ c · ||(h(x), u)||p if the pair (f, h) is detectable with
L(0, 0) = 0. Thereby, the controlled system is stable if the following four conditions are
satisfied.
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1. Xf ⊂ X, and Xf is closed and contains the origin;

2. κf (x) ∈ U, ∀x ∈ X;

3. f(x, κf (x)) ∈ Xf , ∀x ∈ X;

4. [F (f(x, κf (x)) − F (x) + L(x, κf (x)))] ≤ 0, ∀x ∈ X.

The conditions 1. and 2. implies that the system constraints are respected in terms
of the terminal state and the local controller law κf(x). The statement in 3. uses the
state update function f(., .) in Equation (2.1) such as the terminal state constraint is an
invariant positively definite set, such as every state successor in Xf at instant k stays in
the terminal set at the next instant k + 1. Finally, 4. implies that the terminal cost F (.) is
a suitable Lyapunov function that describes the trajectory of the terminal state.

If assumptions 1., 2. and 3. are achieved by the proposed controller, it is guaranteed
that the terminal set is positively invariant and the recursive feasibility applies. This means
that P(x[k]) presents a feasible solution for x[k], then a solution for P(x[k+1]) exists. Also,
the last assumption implies that the cost function V (x[k], [u][k]) is a Lyapunov control
function as well. If the four assumptions are met for a given initial state x[0], then the
system is stable for a feasible solution and then guarantees stability. The set of possible
initial conditions that returns feasible solutions is defined as attraction domain, which will
be discussed in the next section.

2.3 MPC with artificial reference for asymptotic constant references
This MPC for tracking is done by adding an artificial steady state and input into

the cost function description which are treated as additional decision variables of the
optimization problem to be solved. The artificial variables are added by means of an offset
cost function that penalizes the error between the virtual steady state and the desired
target. Then, the stage cost now should consider the deviation between the predicted
outputs (or state evolution) and the artificial values. Furthermore, the strategy consider
extended stabilizing terminal conditions by adding a terminal constraint in both terminal
state and the new ingredients. This way, the controller is able to steer the system to any
admissible target. Moreover, the system will not lose feasibility if the required reference is
not reachable. In such case, the controller will drive the output to the closest admissible
steady state, defined by the minimization of the offset cost function.

To describe the controller, consider an undisturbed linear system described from
(2.1) and (2.2) (if the system is linear, x[k + 1] = Ax[k] + Bu[k] and y[k] = Cx[k] + Du[k]).
Assuming that the system is stabilizable and it is subject to hard constraints as disposed
in Equations (2.5) and (2.6).
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Assumption 1 The linear system (or pair (A, B)) is stabilizable.

The main objective of the MPC for tracking is to define a control law that is a
function of the current state reading or estimation and the desired target, in which should
steer the state (or output) as close as possible to the reference considering the constraints
imposed by the controller.

2.3.1 Characterization of the steady states and inputs

For any given output target yr imposed by the controller interface, there is a pair
of vectors xs and us associated to the desired reference that must attend the following
condition:

(A − In)xs + Bus = 0n,1, (2.19)
Cxs + Dus = yr. (2.20)

If Assumption 1 is met, then the solution for the pair zs =
[
x⊤

s u⊤
s

]⊤
∈ Rn+m can

be parameterized in terms of the vector θ ∈ Rm with suitable size such as:

zs =
Mx

Mu

 θ = Mθθ, (2.21)

yr = Nθθ. (2.22)

The solution for this problem could be defined on basis of any solution of the null
space of

[
(A − In) B

]
, thus the choice of θ defines any solution for zs. Moreover, for

the non-empty, compact and convex set Z = X × U, the parameter θ must respect the
constraints:

Mθθ ∈ Z. (2.23)

Defining the sets Xs = Projx(Z) and Us = Proju(Z), the set of admissible states and
inputs (xs, us) is the interior of Xs × Us. Consider the projection operation Projx(Z) =
{x ∈ Rn|∃u ∈ R(n+m), (x, u) ∈ Z} and the same applies to Proju(Z).

2.3.2 Invariant set for tracking

Considering that the controlled system is subject by the following control law

u[k] = K(x[k] − xs[k]) + us = Kx[k] + Lθ, (2.24)
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such as

L =
[
−K Im

]
Mθ. (2.25)

If the eigenvalues of the matrix (A + BK) are inside the unitary circle, there is
sufficient condition that the system state x is steered to the steady state xs with the
steady state input us, which can be found by any solution zs. Although, (SANTOS, 2018)
presents a trivial parametrization for Mθ, such as

Mx = (In − A − BK)−1B, (2.26)
Mu = I + KMx, (2.27)
Nθ = CMx + DMu. (2.28)

Notice that if the trivial definition of Mθ in (2.26) and (2.27) is used, then L = Im.
Therefore, a modified invariant set for tracking can be now defined in terms of the artificial
variables. The invariant set for tracking proposed here is the set of the initial states and
steady states/inputs that can be stabilized using the proposed control law in an admissible
way.

For this matter, define the augmented state for tracking q[k] =
[
x⊤ θ⊤

]⊤
. The

evolution of the augmented state is then defined by the autonomous system

q[k + 1] = Aqq[k], (2.29)

such as its dynamic is determined by Aq

Aq =
A + BK BL

0 Inθ

 . (2.30)

Consider the set Wλ as a convex polyhedron defined for the scalar λ contained in
the set (0, 1].

Wλ = {q = (x, θ) : (x, Kx + Lθ) ∈ Z, Mθθ ∈ λZ}. (2.31)

A set Ωq is an admissible invariant set for tracking if

q ∈ Ωq ⇒ Aqq[k] ∈ Ωq. (2.32)

Considering that Ωq ⊆ W1. In theory, the maximal admissible invariant set for
tracking Oq

∞ is then defined based on the set W1 for any value and evolution of the extended
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state q, that is Oq
∞ = {q : Ai

qq[k] ∈ W1, ∀i ≥ 0}. Since Aw has unitary eigenvalues, Oq
∞

might not be described by a finite number of constraints, thus the approximation Oq
∞,λ

Oq
∞,λ = {q : Ai

qq[k] ∈ Wλ, ∀i ≥ 0}, (2.33)

is a reliable polyhedral approximation of the maximal invariant set if λ is sufficiently close
to one (LIMÓN et al., 2008).

2.3.3 MPC for tracking formulation

The proposed MPC for tracking by (LIMÓN et al., 2008) is given based on three
ingredients on the optimization formulation: i) artificial steady states as additional decision
variables to the optimization problem, which defines; ii) an extended terminal constraint
based on the concept of the maximal invariant set for tracking, and; iii) the offset cost
function added to the problem which penalizes the deviation between the predicted states
and system target, will be properly described in this section. The strategy is defined on
the following assumptions from (LIMÓN et al., 2008):

Assumption 2 (1) Defining Q ∈ Rn×n, R ∈ Rm×m and T ∈ Rn×n as positive definite
matrices.
(2) Let P ∈ Rn×n be a positive definite matrix such that (A + BK)⊤P (A + BK) − P =
−Q − K⊤RK.
(3) The set X q

f ⊆ Rn+m is an admissible polyhedral invariant set for tracking for the system
(2.1), subject to constraints and a gain controller K.
(4) The offset cost function JO : Rp → R is a convex, positive definite and sub-differentiable
function and JO(0) = 0 (FERRAMOSCA et al., 2008).

The modified cost function of the MPC for tracking is calculated for a given state
reading x and state target xt at instant k. The vector of future inputs u(k) and artificial
variables θ(k) are added to the function according to (2.21).

JN(x[k], yt[k], u(k), θ(k)) =
N−1∑
i=0

(||x[i] − xs[k]||2Q + ||u[i] − us[k]||2R) + . . .

. . . + ||x[N ] − xs[k]||2P + ||ys[k] − yt[k]||2T , (2.34)

The cost function now has a modified stage cost function weighted by the tuning
parameters Q and R as prediction error and control effort respectively, and the terminal
cost function Jt(.) = ||x[N ] − xs[k]||2P also has a modification by adding the steady state.
Finally the offset cost function Jo(.) = ||ys[k] − yt[k]||2T is defined, which penalizes the
deviation between the artificial target and the desired reference using the weighting factor
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T . The minimum value J0
N of the proposed cost function is defined in terms of the optimal

input sequence u0 = [u0[k|k] . . . u0[N − 1|k]] (assuming that the control horizon is equal to
the prediction horizon for notation simplicity) and optimal value of the artificial variable
θ∗.

minimize
u(k), θ(k)

JN(x[k], yt[k], u(k), θ(k)), (2.35a)

subject to x[0] = x, (2.35b)
x[k + 1] = Ax[k] + Bu[k], (2.35c)
zs[j] ∈ Zs, ∀j = 0, . . . , N − 1, (2.35d)
zs = Mθθ, (2.35e)
(x[N ], θ) ∈ X q

f . (2.35f)

Since the region X q
f is a polyhedron that can be written by a finite set of inequalities

in terms of the decision variables, the optimization problem stated in (2.35a)-(2.35f) is a
standard QP problem which can be solved by any known specialized library or algorithm
such as (ANDERSSON et al., 2019). Despite the algorithm is more heavy in terms of
computational effort when compared to standard MPC (CAMACHO; ALBA, 2013), it
still belongs to the class of multi parametric solvers and its application can be applied to
systems with fast response times. The control law for this strategy is achieved by applying
the receding horizon principle, that is

κN(x, xt) = u[k|k]0. (2.36)

Respecting the Assumption 1 and Assumption 2, and for any feasible initial state
x[0] inside the invariant set for tracking, the controller proposed is stable for any target and
respect the constraints over time. If the target yt = Cxt is admissible, i.e. xt ∈ X w

f , then the
states converges to xt, such that limk→∞ ||y[k] − yt|| = 0. If the reference is not admissible,
then the system converges to be the closest reachable steady state z0

s =
[
x0

s
⊤

u0
s

⊤
]⊤

possible, determined by the offset cost function, where

y0
s = arg min

ys∈X q
f

JO(ys − yt), (2.37)

such as ys = Cxs Moreover, it is stated in (LIMÓN et al., 2008) that the proposed
controller has a larger domain of attraction when compared to the standard MPC. For
that, consider an MPC control law with the same ingredients, for instance, the weighting
factors Q, R, P , K (these two last are used for stability guarantees as per imposed in
(MAYNE et al., 2000)), and horizon N and maximal invariant set in terms of the desired
target O∞(xt). Additionally, consider the terminal constraint as O∞,λ with λ close to one.
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Since O∞(xt) ⊆ Projx(O∞,λ), the MPC for tracking has a larger domain of attraction
when compared to the standard MPC. The optimality of the controller is then discussed
in (LIMÓN et al., 2008), which shows that optimality is not guaranteed, but its loss could
be arbitrarily reduced with large values of the matrix T (ALVARADO, 2007), resulting
the local optimal control law defined by P , Q and R. Besides, (FERRAMOSCA et al.,
2008) proves that the closed loop evolution is locally optimal in the neighbourhood of the
external reference since it provides the best possible effort in terms of the cost function of
the MPC. Even though, the closed loop performance recovers an infinite horizon optimal
solution for an increasing horizon of the strategy (KÖHLER et al., 2023).

2.4 Conclusion
This chapter provided the theoretical basis for the upcoming MPC analysis in the

next chapters. Firstly, the general idea for most of the MPC family was set as a control law
that relies on the minimization of a given objective (usually recurring to a QP problem)
for a given current state of the system and decision variables to be set in order to achieve
such objective of the problem. Then, a set of optimal inputs are given, and the control
signal is applied by means of a receding horizon strategy, which takes only the first element
of the optimal sequence, restarting the whole process in the next control loop in order to
achieve success in regulation and disturbance rejection even with modelling mismatches.
The analysis for stability guarantees on MPC were discussed for constrained systems and
the fundamental conditions for achieving it were set based on the work done in (MAYNE
et al., 2000).

Finally, a modification of the standard MPC was presented based on the work of
(LIMÓN et al., 2008) and (FERRAMOSCA et al., 2008) to assess feasibility of the MPC
for tracking changes of references, since the conditions for feasibility and stability relies
on the concept of a terminal set that depends on the constant reference applied to the
controller. For that, the optimizer is modified to add artificial variables to the QP problem
together with an offset cost function and the addition of an invariant set for tracking,
allowing the controller to be feasible for any target, converging the output to its reference,
if admissible, or to the best reachable steady state possible, if the target is not admissible.
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3 Filtered DMC applied to systems with time-
varying references

This chapter will analyze the filtered DMC contributions when the reference varies
over time such that non-constant references can be considered. The additional filter imposes
an extra degree of freedom, which helps alleviate the effects of high-frequency disturbances
caused by measurement and modeling uncertainties. The discussions and results of this
chapter were published in (PEREIRA; SANTOS, 2023).

The predictive control algorithms such as DMC and its variants are useful in
practice since a data-based convolutional method could be used in its formulation (XU et
al., 2020). It is only necessary the step response data to describe the prediction model,
which simplifies the model characterization of industrial processes. Moreover, recent works
on data-based MPC have been demonstrated in practical application such as (KLOPOT
et al., 2018b; ZHANG; HU; GAO, 2022; FERNANDES et al., 2020b; PECCIN et al.,
2022; SHI et al., 2022). The whole foundation of MPC with prediction models based
on experimental data have been receiving constant attention from academic community,
which is motivated by the William’s fundamental Lema (WILLEMS et al., 2005) and the
behavioral system theory (MARKOVSKY; DÖRFLER, 2021).

MPC strategies allows to consider future references naturally in its optimization
problem, as seen in Section 2. Moreover, the implicit integral action proposed in various
MPC strategies may result in an unsatisfactory response when considering reference
tracking in the presence of time-varying objectives (SATOH et al., 2019). The design of
predictive controllers with implicit integral action has a fundamental role in time-varying
references since the prediction model and the cost function are established under the
premise of tracking constant references over time.

This way, controllers with elevated open-loop gains reduces the tracking error under
time-variant references, with the drawback of reducing its robustness margin and the
high-frequency noise attenuation might be severely compromised.

The filtered DMC (FDMC) deals with the balance between robustness and distur-
bance rejection without compromise the nominal performance (SANTOS; NORMEY-RICO,
2023). Therefore, the open-loop gains could be reduced without losing the efficiency on
the reference tracking issue in a scenario without uncertainties. Such additional degree of
freedom is particularly important in the case of aggressive tuning due to reduced reference
tracking error objectives.

This section proposes the filtered DMC to deal with the problem of output tracking
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under the condition of time-varying references. The FDMC allows to deal with constraints
and to optimize the tracking performance based on step response model at the same time
that an additional filter (LIMA; NORMEY-RICO; SANTOS, 2016) gives more freedom
on the context of robust tuning, which gives controller configurations with better nominal
performance.

Simulation results and a preliminary experimental analysis are given based on
a temperature control of a termoresistive sensor, which is shown to illustrate the main
benefits of the filtered approach in the context established.

3.1 Filtered DMC

The filtered DMC was firstly proposed as an alternative to improve the balance
between robustness and regulatory performance. Later, it was demonstrated that such
strategy could be used to stabilize the convolutional prediction model for open-loop
unstable processes, overcoming the main disadvantage of original DMC formulation.

In a simplified manner, the filtered DMC makes use of a filtered version of ηl(k),
represented by η̌l(k) = Z−1{Fl(z)Z{ηl(k)}} and Fl(z) is the transfer function of an
appropriate prediction filter.

The scope of this discussion is limited only to stable processes, such that only the
compromise between regulatory performance and robustness is discussed in a isolated way.
Therefore, the filtered output prediction of the output l is calculated as

ŷl[k + j|k] =
m∑

r=1

j∑
i=1

gl,r
i ∆ur[k + j − i]︸ ︷︷ ︸

Forced Response

+
m∑

r=1

Ñl,r∑
i=1

(gl,r
j+i − ǧl,r

i )∆ur[k − i] + y̌l[k]︸ ︷︷ ︸
Free Response

, (3.1)

with the increment of the input r defined as ∆ur[k] = ur[k]−ur[k −1] and also considering
ǧl,r

i and y̌l(k) as the filtered values of gl,r
i and yl[k] in (A.28) respectively. A vector form of

the filtered DMC prediction can be written by following the modifications applied in (3.1)
such as

Y⃗f [k] = G∆u[k] + G̃∆U [k] + ⃗̌
Y [k]. (3.2)

In this case, the optimal input increment sequence is defined by
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minimize
∆u

N∑
j=1

∥yr[k + j] − ŷ[k + j|k]∥2
Q +

Nu−1∑
j=0

∥∆u[k + j|k]∥2
R,

subject to Y⃗f [k] = G̃∆U [k] + ⃗̌
Y + G∆u[k],

ŷ(k + j|k) ∈ Y, j ∈ N[1,N ],

u(k + j|k) ∈ U, j ∈ N[0,Nu−1],

∆u(k + j|k) ∈ ∆U, j ∈ N[0,Nu−1],

(3.3)

and the FDMC control law follows the receding horizon principle, selecting only the first
element of each input increment, repeating the optimization process again in the next loop
instant.

3.2 Filtered DMC applied to time-varying references

The efficiency of the FDMC can be directly assessed from the cost function used
in the optimization step, as outlined in (3.3). This function can be divided into two terms,
allowing the efficiency to be analyzed when the system is subject to time-varying references:

J(k) =
N∑

j=1
∥yr(k + j) − ŷ(k + j|k)∥2

Q︸ ︷︷ ︸
Je(k)

+
Nu−1∑
j=0

∥∆u(k + j|k)∥2
R︸ ︷︷ ︸

J∆u(k)

. (3.4)

The tuning process for controllers with implicit integral action under systems
subjected to time-varying references could be interpreted by the cost function J(k) in
two terms: (i) J∆u(k) and (ii) Je(k). The first objective J∆u(k) demands the minimization
of the control effort, reaching its minimum by the condition ∥∆u(k + j|k)∥ = 0, j ∈
N[0,Nu−1]. Summarizing, the minimium of J∆u(k) requires the convergence to a fixed
equilibrium point for stable systems. Meanwhile, the second cost function Je(k) include an
objective that requires that the decision variables needs to be chosen in order to guarantee
∥yr(k + j) − ŷ(k + j|k)∥ = 0, j ∈ N[1,Nu]. Therefore, the cost Je(k) imposes an objective
that requires varying control increments in the presence of changing future references. In
summary, both Je(k) and J∆u(k) are conflicting objectives, which does not occur in the
steady state during the tracking of a constant reference. As consequence of the Internal
Model Principle, in the abscence of a future reference model in the context of internal
modes, the reference tracking error will depend on the predictive controller gain, which
depends exclusively on the tuning parameters and particularly by the relation between
matrix Q and matrix R.

The matrices Q and R are penalizing factors that allows to prioritize conflicting
objectives with the same cost. If Q >> R, and by consequence Je(k) >> J∆u(k), then
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the minimization of the future errors will predominate the overall minimization objective.
In such case, the DMC may provide sufficient results in varying references, even in the
absence of internal models. However, this strategy provides elevated gains, which potentially
compromises robust performance and tends to amplify measurement noises to undesired
levels. The original DMC does not have any additional degree of freedom to deal with the
reduction of the open-loop gain, despite other predictive controllers.

In this matter, the FDMC (LIMA; NORMEY-RICO; SANTOS, 2016) come as an
alternative to deal with time-varying references because the filter added in the prediction
error allows to modify the robust characteristic without compromising the nominal response
of the controller. The robustness of the FDMC is already been detailed in recent works as
in (LIMA; NORMEY-RICO; SANTOS, 2016; SANTOS; NORMEY-RICO, 2023).

In the sequence of this discussion, the role of the prediction error filter in the
presence of measurement noises will be discussed, which was not discussed in previous
works.

3.2.1 Analysis of the prediction error filter in the presence of noises

At this point, it is important to emphasize that the FDMC is a general case of the
DMC. If Fl(z) = 1, then by definition η̌l(k) = ηl(k), causing that the FDMC becoming
the DMC. This way, the impact of the noise in the FDMC will be analysed directly.

The FDMC cost function can be represented in a vector form based on the standard
DMC cost function in (A.35a):

J(k) = (Y⃗f [k] − W⃗)⊤Q̄(Y⃗f [k] − W⃗) + ∆u(k)⊤R̄u(k). (3.5)

To obtain the analytical solution for the unconstrained case, the substitution
Y(k) = G∆u(k) + G̃∆U(k) + ⃗̌

Y (k) (for ⃗̌
Y (k) being the filtered version of Y⃗ (k) defined

in (A.33)) is made in (3.5) and the derivative in terms of ∆u(k) is done. The optimal
solution ∆u0(k) is achieved by equalizing the derivative expression to zero, reaching to:

∆u0[k] = K
(

W⃗ − G̃∆U(k) − ⃗̌
Y (k)

)
, (3.6)

with K = (G⊤Q̄G + R̄)−1G⊤Q̄. The control law is given by selecting the first element of
the sequence of each input with K ∈ Rm×(mNu)

∆u(k) = K
(

W⃗ − G̃∆U(k) − ⃗̌
Y (k)

)
, (3.7)
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such as

K =


1 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0 . . . 0 0 . . . 0
... ... . . . ... ... ... . . . ... . . . ... ... . . . ...
0 0 . . . 0 0 0 . . . 0 . . . 1 0 . . . 0

 K. (3.8)

To conclude the analysis of the measurement noise with the robustness filter,
consider that the measurement of any output l (yl(k)) is composed by its value without
any disturbance (y∗

l (k)) and the signal that defines the disturbance itself (ξl(k)). This way,

yl[k] = y⋆
l [k] + ξl[k]. (3.9)

and since the discussion is about linear filters (Fl(z)), the superposition applies such as

y̌[k] = y̌⋆[k] + ξ̌[k], (3.10)

being y̌⋆(k) the filtered noiseless output and ξ̌[k] = [ξ̌1[k] ... ξ̌p[k]] obtained by applying
the prediction filter, that is ξ̌l[k] = Z−1{Fl(z)Z{ξl[k]}}. To simplify the analysis, consider
that the system is SISO. Moreover, the analytical solution for the FDMC control law in a
condition without constraints is rewritten by

∆u(k) = K
(
W⃗ − G̃∆U(k) − 1y̌⋆(k)

)
− K1ξ̌(k). (3.11)

The FDMC control law presented in Equation (3.11) allows to inspect directly the
noise effect in the control increment by means of −K1ξ̌(k) in the unconstrained scenario.
Controllers with elevated gains impacts directly on the amplification effect of the noise
related to the input increment.

In the non-filtered case (DMC), G̃ → G, y̌⋆(k) → y⋆(k) and ξ̌(k) → ξ(k), so there
is no degree of freedom to deal with the effect of ξ(k). In the formulation without the
filter, the feedback −K1ξ(k) may cause considerable issues in the noise amplifying if K
has elevated values.

On the other hand, in the filtered version, low-pass filters can attenuate high-
frequency noises without compromising the medium and low-frequency error estimation
modelling. Thus, filters with unitary static gains Fl(1) = 1 are selected to not impact on the
constant (D.C. level) prediction error, then it maintains the constant disturbance rejection
properties of the controller. First-order low-pass filters in form of Fl(z) = (1−α)z

z−α
with

α ∈ (0, 1) are simple alternatives that could lead to good results. The discrete bandwidth
is directly defined by α introducing a simple parameter that provides an extra degree of
freedom to handle output noise without interfering with the MPC gains. In particular,
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α = 0 would lead to a non-filtered DMC since Fl(z) = z
z

= 1. Implementation details could
be seen in related works as in (LIMA; NORMEY-RICO; SANTOS, 2016).

It is important to mention that filters with strictly small bandwidths could po-
tentially attenuate medium and low frequency information to undesired levels, which
could degrade the regulatory performance and compromising the reference tracking when
significant modelling errors are present. So the filter tuning should be done following
the principle of simplicity with the objective to only reduce the high-frequencies without
impairing the medium and low frequency responses.

3.3 Case study - Temperature control of an NTC sensor

The case under study concerns the temperature control of a thermoresistive sensor
of the NTC (Negative Temperature Coefficient) type. This is a nonlinear system in which
the sensor’s temperature is regulated by varying the power dissipated within it. These
sensors are used to measure various quantities such as temperature, fluid velocity, and
solar radiation. In the configuration with a sensor, the NTC temperature is intentionally
varied in such a way that the information about the difference in quantities is used to
estimate the desired measurement, providing a time-varying reference in cases of digitally
controlled sensors.

The dynamic model relating the dissipated power and the temperature of the NTC
sensor can be described as follows:

SH(t) + Ps(t) = Gth(Ts(t) − Ta(t)) + Cth
dTs(t)

dt
, (3.12)

where Ts(t) and Ta(t) are the temperatures of the sensor and the ambient environment,
respectively, Ps(t) represents the power of the sensor, Gth(Ts(t) − Ta(t)) describes the
power dissipated to the surroundings. In this model, Gth is the dissipation constant, SH(t)
represents the effect of external irradiation, while Cth describes the thermal capacity of
the sensor. The dissipated power can be defined as Ps(t) = Rs(t)Is(t)2, where Rs(t) is the
sensor’s resistance and Is(t) = v(t)/Ren is a current source regulated by the voltage v(t).

For temperature control purposes, u(t) = v(t)2 − v̄2 and y(t) = Ts(t) − T̄ are
considered. Simulations were conducted assuming A = 0.004625 Ω, B = 3988 K, Cth =
22.5 mJ/K, Gth = 1.5 mW/K(), Ren = 3.3 KΩ as parameters of an existing system (de J.
Souza; SANTOS, 2020). It is assumed that SH(t) = 0 mW and Ta = 303 K for simulation
purposes. The step response model was obtained around the equilibrium established by
v̄2 = 40 V 2 with steps of ±5 V 2 applied to u(k), using the average value of the unit step
responses (normalized by the input variation). It should be emphasized that the step
response is obtained from (3.12) considering the simulated case.
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The parameters of DMC and FDMC are h = 0.5 s (sampling period), N = 15,
Nu = 5, Ñ = 150, Q = 1, R = 10−2 or R = 10−5. Two first-order filters will be tested
in the case of FDMC, with α = 0.6 and α = 0.8, using F (z) = z(1−α)

z−α
. It’s necessary to

impose the constraint 1 V 2 ≤ u(t) ≤ 100 V 2, since v(t) ≤ 10 V is a system constraint,
and 1 V ≤ v(t) imposes a minimum current that allows resistance measurement without
compromising the signal-to-noise ratio (SANTOS; SANTOS, 2022). The reference signal
trajectory is described by a fifth-order motion law given by

f(t) =f0 + f3t
3 + f4t

4 + f5t
5, 0 ≤ t < Tf (3.13)

f(t) =f0 + f3(Tf − t)3 + f4(Tf − t)4 + f5(Tf − t)5, Tf ≤ t < 2Tf , (3.14)

considering f0 = 1, f3 = 10f0/(T 3
f ), f4 = −15f0/(T 4

f ), f5 = 6A/(T 5
f ) e Tf = 8 for this

problem. Thereby, the discrete reference signal is yr(k) = f(kh), 0 ≤ k < 2Tf/h with
periodicity defined yr(k + Nr) = yr(k) and Nr = 2Tf/h.

Comparative results of the DMC without filter with R = 10−2 and R = 10−5

are presented in Figure 1. It is easy to observe the need for aggressive control tuning
(R = 10−5) to reduce reference tracking error. The issue with delay estimation error (delay
of 0.3 s not considered within DMC formulation) and measurement noise (using Simulink
block 10.2 - "Band Limited White Noise" - Power = 10−3 - Seed 1) is depicted in Figure 2.
In this case, Ts(t) is shown, but Tϵ(t) = Ts(t)+ ϵ(t) represents the feedback quantity, where
ϵ(t) denotes the measurement noise. As discussed within this work, aggressive tuning is
more sensitive to uncertainties and high-frequency noise, which can be visualized through
the input voltage (v(t)).

The role of FDMC in the context of time-varying references can be observed in
Figures 3 and 4. The aggressive tuning was maintained (R = 10−5), but the control signal
increment is smoothed by including the filtered error. Thus, the benefits of aggressive
tuning can be preserved. Two performance indices will be used to conduct a more detailed
analysis as follows:

Je,sim =
200∑
k=0

(yr[k] − y[k])2, (3.15)

J∆v,sim =
200∑
k=0

∆v[k]2. (3.16)

These indices were chosen since they are directly established in the optimization
criterion of FDMC. When analyzing the results based on Table 1, it is important to
note that the filtered DMC allowed for a reduction in the quadratic error (Je,sim) and
voltage variation (J∆v,sim) compared to the unfiltered DMC. However, if the low-pass
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Figure 1 – Output and control signal response for different tuning of the DMC without
both noise and modelling error.
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Figure 2 – Output and control signal response for different tuning of the DMC with noise
and modelling error.

characteristic of the filter is too pronounced (i.e., the bandwidth is reduced), this tends to
degrade regulatory performance. Moreover, modeling errors will be compensated for more
slowly when compared to the original formulation. On the other hand, it is relevant to
highlight that tuning α = 0.8 reduced voltage variation, which may be desirable in certain
applications. This result illustrates the balance between regulatory performance and noise
attenuation capacity of the proposed controller.
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Figure 3 – Output and control signal response for different tuning of the FDMC with noise
and modelling error (R = 10−5).
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Figure 4 – Error signals and control increment with distinct filter configuration (R = 10−5).

3.3.1 Experimental results

The experimental case will be used to compare DMC and FDMC with the previous
tunings (R = 10−5 and α = 0.6) for tracking purpose by varying reference using only the
convolutional model. Similar systems have already been experimentally controlled with
DMC in works related to fault detection with constant reference (JUNIOR et al., 2013).
The experimental setup with the NTC sensor and the voltage-regulated current source is
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Table 1 – Performance indices.

Index Unfiltered α = 0.6 α = 0.8
Je,sim 0,27 0,24⋆ 0,29

J∆v,sim 257,1 98,9 80,6⋆

Je,sim + J∆v,sim 257,37 99,14 80,89

presented in Figure 5.

Figure 5 – Experimental control framework for NTC temperature sensor.

To attenuate high-frequency noises without modifying its phase signal, the experi-
mental step response data was filtered by means of an non-causal moving average system
of 5 samples

yf [k] = y[k − 2] + y[k − 1] + y[k] + y[k + 1] + y[k + 2]
5 . (3.17)

The estimated coefficients used to implement DMC and FDMC are presented in
Figure 6.

Starting from the convolutional model, the experimental results presented in Figure
7 are observed. In these cases, closed-loop control begins after 10 seconds, when the
operation mode switches from manual to automatic. It is worth noting that the proposed
DMC tuning does not allow for continuous operation due to a process of error amplification
from modeling and high-frequency noise. On the other hand, FDMC exhibits a closed-loop
experimental behavior that closely resembles the simulated results. The experimental
results reinforce the theoretical discussions and observations from simulated cases. The
significant advantage of the experimental outcome arises from the natural occurrence



3.3. Case study - Temperature control of an NTC sensor 55

0

0.05

0.1

0 50 100 150 200

Figure 6 – Estimated coefficients from the step response for the convolutional model.
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Figure 7 – Experimental results with comparative responses between non-filtered DMC
(α = 0) and filtered DMC (α = 0.6).

of noise effects, modeling errors, and external disturbances during the step response
identification, as also observed during the control testing phases.

3.3.2 Conclusion

This chapter provided the discussion regarding the balance between tracking
properties of the DMC and robustness compromise, depending on the aggressiveness
of the MPC tuning. The filtered FDMC was evaluated as a model predictive control
algorithm for tracking time-varying references. The main contribution lies in the utilization
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of the prediction error filter to balance tunings capable of handling variant references and
ensuring sufficient robustness to deal with internal and measurement noise. The role of the
prediction error filter is analyzed from the perspective of unconstrained active set solution.
The theoretical evaluation is illustrated through simulated and experimental results. Yet,
no analysis for unstable cases where evaluated, which poses a potential challenge for open
work of this thesis.

Despite the interesting results provided by high-gain controllers in the presence of
non-constant references, the tracking performance is sensitive to the design parameters.
Furthermore, the tracking objective is achieved if the bandwidth is large enough in
comparison to the reference signal. The drawback is the reduced robustness margin which
may not be acceptable depending on the control problem. In the next chapter, an alternative
solution is proposed to reduce the tracking performance sensitivity in terms of the design
parameters.
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4 Receptance-based MPC with time-varying
references

The analysis and results contained in this chapter are based on the paper published
in (PEREIRA; SANTOS; ARAÚJO, 2024), which presents a receptance-based MPC
strategy and a modification of the standard cost function to improve reference tracking
properties. The receptance is a transfer matrix widely used for second-order MIMO systems
and can be obtained experimentally (RAM; MOTTERSHEAD, 2007).

The MPC has been widely used in industrial applications due to its ability to deal
with multivariable systems, compensate time delays naturally, handle constraints and even
impose performance optimization based on multiple objectives (QIN; BADGWELL, 2003).
To illustrate its practical motivation and relevance nowadays, several mechatronic control
problems have been illustrated in Chapter 1. Several advantages have been reported by
using this set of optimal controllers, such as the ability to deal with non-minimum phase,
under-actuated models, and even with systems that has future references disposed to the
control designer.

In terms of the tracking problem of the MPC, a trajectory tracking MPC has been
proposed for an under-actuated two-link multibody system in (BETTEGA; RICHIEDEI,
2023), which includes an embedded dynamic reference prediction that can be computed
from a pair of position and speed or a desired triplet of position, velocity and acceleration.
The results from experimental and simulation frameworks have shown the effectiveness
of the proposed strategy with periodic reference by considering a linearized second-order
model as basis of an augmented state-space model where mass, damping and stiffness
must be known, which is not always trivial to determine such parametric model. Thereby,
the receptance modelling is a successful alternative for that since it does not require
explicit knowledge of the model parameters. The strategy has been early proposed by
(MOTTERSHEAD; RAM, 2006; RAM; MOTTERSHEAD, 2007) and then used in relevant
applications for active vibration control (TEHRANI; MOTTERSHEAD, 2012; XIANG;
ZHEN; LI, 2016). The receptance method presents a natural lower order in its model
due to the choice of fewer natural frequencies of interest and the possibility of a model
identification framework that is entirely experimental and data-oriented. Therefore, the
receptance modelling can be directly used to obtain a system description, and then a
suitable prediction model for the DMC and GPC strategies.

This section provides receptance-based MPC controllers for trajectory tracking of
a multi-body system, in which its modelling parameters (mass, damping, and stiffness)
are not required. This way, the GPC autoregressive model and DMC model explained
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in Annex A are directly computed from the receptance transfer matrix. In terms of the
tracking of the system in a time-varying reference, the limitation of the nominal zero delay
during the tracking is analyzed and a modified objective function is proposed to improve
the sensitivity of the controller gains in terms of the reference tracking property.

4.1 Problem Statement for multibody control systems
For the model to be used in this chapter, consider a multibody, externally controlled

dynamical system (BETTEGA; RICHIEDEI, 2023) defined by

Mθ(θ)θ̈(t) + Cθθ̇(t) + Kθθ(t) + d(θ, θ̇) + g(θ) = Bu(t), (4.1)

where Mθ(θ) ∈ Rn×n, Cθ ∈ Rn×n, and Kθ ∈ Rn×n are the mass, damping and stiffness
matrices, respectively, θ(t) ∈ Rn represents the displacement vector, d(θ, θ̇) ∈ Rn describes
the gyroscopic and centrifugal effects, g(θ) determines the gravitational forces effect with
respect to the second-order multibody model, u(t) ∈ Rm is the vector of input forces, and
B ∈ Rn×m defines the control force distribution.

For an equilibrium point given by θe, the multibody system can be represented
around this equilibrium from a Taylor expansion first-order approximation as follows

Mẍ(t) + Cẋ(t) + Kx(t) = Bu(t) + q(t), (4.2)

where x(t) = θ(t) − θe is a translated displacement vector, M, C and K ∈ Rn×n, are
respectively mass/inertia, damping and stiffness matrices of the linearized model, and
q(t) ∈ Rn describes external disturbances and the modeling error due to linearization.
In most applications such as structural vibrations and multibody dynamics, the triplet
M, C, K is symmetric; moreover, it can also be positive (semi) definite (SCIAVICCO;
SICILIANO, 2012). It is well known that the case in which m < n is the underactuated
system. This case is the most frequent and challenging, for example, due to a cost
requirement or physical limitations for actuator placement.

The system receptance can be obtained from (4.2) by recurring to the unilateral
Laplace Transform, resulting in

X(s) = H(s)BU(s) + H(s)Q(s), (4.3)

in which H(s) = (Ms2 + Cs + K)−1 is the system receptance. In practice, H(s)B is
obtained experimentally such that the individual values of M, C, K are not necessary
(ARAÚJO; SANTOS, 2018; ARAÚJO; SANTOS, 2020; FRANKLIN; ARAÚJO; SANTOS,
2021).

In general, the external disturbance are unknown and unmeasured such that Q(s)
cannot be determined. Hence, the prediction model may be replaced by

X(s) = H(s)BU(s) + Hq(s)E(s), (4.4)
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where E(s) is also unknown, but Hq(s) is a modified disturbance model that can be
chosen as a tuning parameter. Actually, Hq(s) can be designed to achieve a regulatory
specification (ÅSTRÖM; WITTENMARK, 2013, Chapter 10) without the exact knowledge
of H(s) as Hq(s) is defined from the required steady-state performance.

4.2 Receptance-Based MPC with future reference knowledge
This section presents the condition to achieve the tracking of a position reference.

Then, a modified strategy to reduce the tracking error sensitivity with respect to the
design parameters is proposed. As initial statement, consider the optimization problem in
(A.35a)-(A.35d) and (A.61a)-(A.61d) for both standard DMC and GPC strategies. The
vector of predicted outputs Yk = Yfree

k + Ḡ∆u[k] is simply the composition of the free
and forced response, such as its free response and prediction parameters are defined for
the DMC and GPC as in (A.33) and (A.51) respectively.

For a given periodic output trajectory sequence Wk = {yr[k|k], yr[k +1|k], ...yr[k +
Nend|k]} with period Nr, such as yr[k] = yr[k + Nr], a standard MPC control law has to
achieve three necessary conditions to achieve null tracking error in steady-state:

1. null prediction errors in steady state to avoid issues caused by prediction errors;

2. the constraint should not be active in such condition, which means that the uncon-
strained solution is equivalent to the optimal constrained solution. This guarantees
that the sequence of desired target can be reached despite input and output con-
straints;

3. the cost function value in steady state should be null, which is the minimum achievable
value of (A.35a) and (A.61a), which ensures that the optimal solution drives the
output to the desired target.

In practice, condition 1. is not exactly ensured in the presence of time-varying
targets due to the uncertainties, but the modeling error may be mitigated by using good
descriptions of the dynamic system. Condition 2. is respected if the reference does not push
the system to achieve the neighborhood of the constraints in steady-state. Finally, the
condition 3. is commonly ensured in the presence of constant references, but the general
case with time-varying references deserves a careful attention.

A simple and useful way to achieve an almost ideal tracking with the standard
MPC (A.34a) is to use N = Nu and λmin{Q} ≫ λmax{R}, where λmin and λmax denotes
respectively the minimum and the maximum singular value of a matrix. If ∥ŷ[k + j|k] −
yr[k + j]|Q is significantly greater than ∥∆u[k + j|k]∥2

R, then the optimal solution is mainly
driven to reduce the output tracking error. However, this approach is sensitive to the
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MPC parameters as depends on tuning definitions, which may cause problems in practice
as reduced robustness margins. Another promising alternative is to use a modified MPC
using the new cost function Jm(∆uk; Wk, ∆Vk, Y free

k ) which is given by

minimize
∆u

N∑
j=1

∥yr[k + j] − ŷ[k + j|k]∥2
Q +

Nu−1∑
j=0

∥∆u[k + j|k] − ∆ν[k + j|k]∥2
R, (4.5a)

subject to ŷ[k + j|k] ∈ Y, j ∈ N[1,N ], (4.5b)
u[k + j|k] ∈ U, j ∈ N[0,Nu−1], (4.5c)

∆u[k + j|k] ∈ ∆U, j ∈ N[0,Nu−1], (4.5d)
∆u[k + j|k] = ∆νk+j|k, j ∈ N[Nu,N−1], (4.5e)

where ∆Vk = [∆ν[k|k]⊤ ... ∆ν[k +N −1|k]⊤]⊤ is a target for the future control increments
that nominally tracks the desired target Wk in steady-state. The partial cost defined
only by ∥∆u[k + j|k]∥2

R would demand an optimal solution given by ∆u[k + j|k] = 0m,1,
which provides an equilibrium condition. On the other hand, ∥yr[k + j] − ŷ[k + j|k]∥2

Q

demands a non-stationary steady-state solution in which the optimal value tends to
zero as k → ∞. Indeed, these are conflicting objectives in steady-state. However, if
∆u[k + j|k] = ∆ν[k + j|k] provides the desired evolution (yr[k + j] = ŷ[k + j|k]), then
the modified cost function in (4.5a) has non-conflicting elements in steady-state such that
limk→∞ Jm(∆uk; Wk, ∆Vk, Y free

k ) = 0 may be reached.

The optimization problem is similar to the previous case, but the control increment
target should be provided previously in order to define a non-conflicting objective in
steady-state. Once more, the unconstrained case can be solved from the minimization
of the modified cost function, i.e. Jm(∆uk; Wk, ∆Vk, Y free

k ) = (Wk − Yk)⊤Q(Wk − Yk) +
(∆uk − ∆Vk)⊤R(∆uk − ∆Vk) and the optimal explicit (unconstrained) solution is given by

∆uk = (Ḡ⊤QḠ + R)−1[Ḡ⊤Q(Wk − Y free
k ) + R∆Vk]. (4.6)

In which the term Ḡ is computed as follows in (A.33) and (A.51) for DMC and
GPC strategies respectively. In this modified strategy, a feed-forward term is naturally
included (Ḡ⊤Q(Wk − Y free

k ) + R∆Vk) to track the desired position due to the optimality
of the proposed solution. This additional implicit and optimal feedforward term provides
the tracking property of the modified MPC. The main benefit is to reduce the sensitivity
of the tracking error with respect to the design parameters.

However, a concern arises from the computation of ∆Vk from a given desired tra-
jectory Wk. The integer Nend describes the position checkpoints of the complete trajectory.
The trajectory is assumed to be periodic with period Nend such that a soft terminal bound-
ary condition is implicitly imposed from this assumption. Indeed, the periodic assumption
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is just imposed to simplify the definition of the control increment target (∆Vk), but this
approach is not unique.

The objective of this approach is to define ∆Vaux
k = [∆ν⊤[k − nb|k] ∆ν⊤[k −

nb + 1|k] ... ∆ν⊤[k + Nend − 1|k]]⊤ from Wk analytically. This problem can be handled
with different linear models (state space, convolutional model, transfer function). In this
work, any minimal state-space realization (Φ, Γ, Ψ, 0) for PC(z) z

z−1 can be used such that
PC(z) z

z−1 = Ψ(zI−Φ)−1Γ where Φ ∈ Rnξ×nξ , Γ ∈ Rnξ×m, and Ψ ∈ Rny×nξ with nξ = n+m

due to the integral action (control increment).

The control increment target can be obtained from the following unconstrained
optimization problem

minimize
∆Vaux, ξ

Nend∑
j=1

∥yr[k + j] − yaux[k + j|k]∥2 + ∥ξ[k|k] − ξ[k + N |k]∥2, (4.7a)

subject to ξ[k + j + 1|k] =Φξ[k + j|k] + Γ∆ν[k + j|k], j ∈ N[1,Nend−1], (4.7b)
yaux[k + j|k] =Ψξ[k + j|k], j ∈ N[1,Nend], (4.7c)

where ∆Vaux, and ξ[k|k] are free decision variables. The minimization of the partial
cost expressed by ∥ξ[k|k] − ξ[k + N |k]∥2 can be interpreted as a soft contour condition
for periodic trajectories which is an interesting and simple approach from a numerical
perspective. The analytical solution is given by

[ξ[k|k]⊤ ∆Vaux⊤]⊤ = Ω†θk, (4.8)

where † denotes the Moore-Penrose pseudo inverse, θk = [r[k]⊤ ... r[k + Nend]⊤ 0⊤
nξ,1]⊤ and

Ω =



ΨΦ ΨΓ 0ny ,m ... 0ny ,m

ΨΦ2 ΨΦΓ ΨΓ ... 0ny ,m

... ... ... . . . ...
ΨΦNend ΨΦNend−1Γ ΨΦNend−2Γ ... ΨΓ

ΦNend − Inξ,nξ
ΦNend−1Γ ΦNend−2Γ ... Γ


. (4.9)

As Ω† is computed offline, the desired steady-state control increment is obtained only by
implementing of a direct matrix multiplication. A terminal equality constraint can be
alternatively used as boundary condition, but the optimal solution is not so straightforward.
It is assumed that the control increment target provides an admissible solution in steady-
state which depends on the trajectory planning layer. This result allows the optimal implicit
feedforward action in order to reduce the sensitivity of the tracking error with respect to
the design parameters. It should be remarked that any minimal state space realization can
be used in this approach as ξ[k|k] is an artificial variable with no experimental meaning
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as the input-output relations are preserved with respect to the desired trajectory and only
the receptance information is required. Notice that this approach was developed to be
used in the receptance-based MPC, but the state-space MPC may be designed with the
same type of cost function modification.

A periodic reference was assumed thus it is possible to recover ∆ν[k] from yr[k]
from the solution of (4.7a)-(4.7c), but such premise is not necessarily needed. Another
alternative for systems with minimum or non-minimum phase with known future reference
is simply invert the virtual model used and recover ν[k] from yr[k] and calculate ∆ν[k] =
ν[k] − ν[k − 1].

4.3 Numerical case study

The simulation case study has been already investigated in relevant related work
(ARAÚJO et al., 2021; BETTEGA; RICHIEDEI, 2023) due to its interesting control
challenges. Considering the potential of its practical application, the multibody system
used to evaluate the receptance-based MPC is a two-link arm with revolute joints where
first one (A) is actuated by a DC motor and the other one (B) is a passive joint with a
torsional spring. This represents an under-actuated, non-square control problem which
can evaluate a challenging and applicable issue to robotics applications.

Two absolute rotation angles (θ1(t) and θ2(t)) define the degree of freedom (n = 2)
while the torque (Tm(t)) is the only control action (m = 1) as illustrated in Fig. 8.

The control objective is to perform a pick-and-place task in a repetitive cycle moving
of the tip point defined by the coordinate w1,tip from w1,pick = (l1 + l2)sin(20oπ/180o) to
w1,place = (l1 + l2)sin(−20oπ/180o). The variation in w2(t) is neglected in this problem
(BETTEGA; RICHIEDEI, 2023). As w1(t) = l1sin(θ1(t)) + l2sin(θ2(t)), then y(t) = w1(t)
is defined as the measured variable. The time interval between the w1,pick and w1,place

is defined by Ttask. The torque is assumed to be bounded by ∥Tm(t)∥∞ ≤ 0.40 Nm as
proposed in (BETTEGA; RICHIEDEI, 2023) where u(t) = Tm(t).

The control problem is nonlinear, constrained, underactuated with a non-minimum
phase description. For simulation purposes, the nonlinear model is given by

 Jℓ + Jd + J1 + m2,eql
2
1

1
2m2l1l2 cos (θ1(t) − θ2(t))

1
2m2l1l2 cos (θ1(t) − θ2(t)) J2

 θ̈1(t)
θ̈2(t)

 +
 1

2m2l1l2 sin (θ1(t) − θ2(t)) θ̇2(t)2

−1
2m2l1l2 sin (θ1(t) − θ2(t)) θ̇1(t)2

 +
c11 c12

c21 c22

 θ̇1(t)
θ̇2(t)

 +
(

1
2m1 + m2,eq

)
gl1 sin (θ1(t))

1
2m2gl2 sin (θ2(t))

 +
 ks −ks

−ks ks

 θ1(t)
θ2(t)

 =
1
0

 Tm(t),

(4.10)
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Figure 8 – Illustration of the two-link control problem.

where the parameters are presented in Table 2 from the similar problem seen in (BETTEGA;
RICHIEDEI, 2023).

Table 2 – System parameters.

System Parameters Units Values
ks

Nm
rad 0.1772

Jℓ kgm2 2.70 × 10−5

Jd kgm2 1.08 × 10−5

m1 kg 0.050
m2 kg 0.021
l1 m 0.170
l2 m 0.155
J1 kgm2 4.82 × 10−4

J2 kgm2 1.68 × 10−4

menc kg 0.100
mb kg 0.025
g m

s2 9.81
c11

Nms
rad 1.20 × 10−2

c12
Nms
rad 4.00 × 10−4

c21
Nms
rad 4.00 × 10−4

c22
Nms
rad 3.00 × 10−4

A linearized model around the equilibrium (θe = [0 0]⊤) was used in (BETTEGA;
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RICHIEDEI, 2023), but the knowledge of M, C, and K is demanded. In this work, the
receptance information can be directly applied such that P(s) = H(s)B is simply

P(s) = 1
s4 + 4.47s3 + 1521s2 + 3661s + 8.048 · 104


233.5s2 + 416.9s + 2.684 · 105

−384.5s2 − 555.8s + 2.462 · 105

,

(4.11)

and L = [l1 l2].

A fifth-degree motion law is used to interpolate the pick and place points in order
that the desired trajectory is define by the trajectory function f(t).

f(t) = f0 + f3t
3 + f4t

4 + f5t
5, 0 ≤ t < Ttask, (4.12)

or simply for a periodic trajectory,

f(t) = f0 + f3(Ttask − t)3 + f4(Ttask − t)4 + f5(Ttask − t)5, Ttask ≤ t < 2Ttask, (4.13)

in which f0 = w1,place − w1,pick, f3 = 10f0/(T 3
task), f4 = −15f0/(T 4

task), f5 = 6f0/(T 5
task).

The interpolation is a sampling procedure given by rk = f(kTs), 0 ≤ k < Ttask/Ts,
Nend = 2Ttask/Ts, and rk+Nend

= rk.

Since the velocity measurement is not needed for this type of position control
problem based on top of a receptance based MPC strategy, Euler’s approximation for
velocity estimation is not used such that the sampling period is defined as Ts = 100 ms in
this case instead of Ts = 1 ms that was used in (BETTEGA; RICHIEDEI, 2023). This
enlarged sampling interval alleviates the MPC computational time bounds and it also
requires smaller prediction and control horizons as the effective horizon time interval is
defined by TsN . The MPC prediction and control horizons are N = 15 and Nu = 5 for
the further analyses of this section, and Ñ = 100 (DMC only). These values are typical
prediction choices if the sampling period follows classical textbook rules (CAMACHO;
ALBA, 2013). In order to illustrate the MPC challenges, two set of typical matrix weightings
have been considered: design (i) - (Q = 1, R = 1) and design (ii) - (Q = 1, R = 0.01).

Moreover, two pick and place intervals are analyzed (Ttask = 1 s and Ttask = 3 s)
such that an enlarged sampling interval also reduces the number of samples for a trajectory
cycle (Nend = 20 and Nend = 60). All simulations are performed using Matlab’s Simulink
with the nonlinear model and a quantization error due to an optical encoder is also
considered for each angle θi(t) by assuming Nppr = 500 (consider the quantization interval
as 2π/Nppr s) (BETTEGA; RICHIEDEI, 2023). In order to clarify the novelties of the
modified strategy, the simulations are organized in two subsections, the standard MPC
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cases using the GPC and DMC proposed in Annex A and the modified MPC cases proposed
into this chapter.

4.3.1 Standard MPC

Firstly, Ttask = 1 s is considered with the standard GPC and DMC. Both designs
(i) and (ii) are investigated. Figure 9 shows the output responses and the tracking error of
the nonlinear system controlled with the GPC. This result illustrates that the tracking
error is very sensitive to the design parameters. If the pair (Q = 1, R = 0.01) is used, a
reduced steady state tracking error is verified despite the nonlinear effect and the encoder
quantization error. However, the design defined by (Q = 1, R = 1) generates a significant
steady state error. Notice that ∑N

j=1∥r[k + j] − ŷ[k + j|k]∥2
Q demands a tracking error

minimization while ∑Nu−1
j=0 ∥∆u[k + j|k] − ∆ν[k + j|k]∥2

Qu
imposes the minimization of the

control increment (torque variation). When Q = 1 and R = 0.01, then the tracking error
almost dominates the optimal solution as the control increment impact is significantly
small. As expected, the receptance-based GPC can be used to perform the pick and place
task, but the tracking error is really sensitive to the MPC design parameters. Similar
results are observed with the DMC as indicates in Figure 10. Indeed, as the modeling error
is not significant in this angle ranges, the DMC and the GPC present almost identical
closed-loop responses. In all scenarios with the modified receptance-based MPC, the
maximum absolute error is smaller than 2.5 mm and the computation time of the control
law is smaller than 10 ms which indicates the feasibility of the proposed strategy.

4.3.2 Modified MPC

The sensitivity of the tracking error may be significantly reduced by avoiding the
conflicting objectives with the new cost function. Therefore, simulated results for the
modified GPC and DMC responses are depicted in Fig. 11. As expected, the proposed
modified receptance-based GPC and DMC strategies were able to achieve a reduced
steady-state tracking error despite a conservative design (Q = 1, R = 1). A small transient
error is observed just after the pick and place task initialization due to the conservative
design, but the steady-state tracking error sensitivity is significantly reduced.

The performance was improved in steady-state because tracking error objective and
control increment costs are aligned. The control signals are depicted in Figure 12. Notice
that GPC/DMC with (Q = 1, R = 0.01) and the modified GPC/DMC with (Q = 1, R = 1)
presents similar control action responses in steady-state. Furthermore, the reference of
the torque increment and the torque increment responses are presented in Figure 13. The
standard GPC/DMC penalizes the torque increment signal in terms of the prediction error
based on the value weighting factors Q and R deals with a torque increment minimization
while the proposed strategy penalizes the difference between the torque increment (∆u[k])
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Figure 9 – Standard GPC comparison of the tracking error with alternative design pa-
rameters: top figures - (Q = 1, R = 1) and bottom figures - (Q = 1, R = 0.01).
Output responses (w1,tip): solid lines represent the trajectory target and dashed
lines describe the output responses.

and its new reference (∆V[k]), which is a non-conflicting objective, having its minimum
at (or close to) zero. The main result of this analysis can be observed from the evolution
of the cost function as shown in Fig. 14. Due to the absence of conflicts in steady-state
limk→∞ Jm(∆uk; Wk, ∆Vk, Y free

k ) ≈ 0, which does not happen in the standard GPC/DMC
strategies. Hence, the proper choice of the cost function is a relevant aspect of tracking
MPC for multibody systems with time-varying references.

To illustrate that the steady-state tracking error sensitivity is also reduced for
other task period, the design defined by (Q = 1, R = 1) was also used with Ttask = 3 s as
considered in (BETTEGA; RICHIEDEI, 2023). The results with Ttask = 3 s are shown
in Figure 15. Notice that the initial transient effect and the nonlinear modeling error in
steady-state were reduced as the pick and place task is slower in this case. Anyway, the
overall conclusions with respect to the steady-state responses are exactly the same as the
previous case with Ttask = 1 s. Details of the steady-state tracking errors are presented in
Figure 16. For the case with Ttask = 1 s the Root-Means Square (RMS) errors are 1.18 mm

(GPC) and 1.15 mm (DMC) while the case with Ttask = 3 s the modified receptance-based
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Figure 10 – Standard DMC comparison of the tracking error with alternative design
parameters: top figures - (Q = 1, R = 1) and bottom figures - (Q = 1, R =
0.01). Output responses (w1,tip): solid lines represent the trajectory target and
dashed lines describe the output responses.

strategies provided 1.10 mm (GPC) and 1.10 mm (DMC) RMS errors.

4.3.3 Discussions

4.3.3.1 Disturbance Rejection

The disturbance rejection property of the proposed MPC is observed in Figure 17.
The difference between GPC and DMC strategies is clear in such results, mainly because
the distinct disturbance models of both strategies. Whilst DMC uses a constant output
disturbance model, the GPC approach uses the CARIMA model, which generates different
behaviors when the system is subject to a constant input step disturbance at time t = 5s,
maintaining the reference tracking property. In this case, it is clearly seen the impact of
the input disturbance in the control signal for both standard methods.
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Figure 11 – Modified GPC and DMC comparison with (Q = 1, R = 1). Top figure -
GPC, bottom figure - DMC. Output responses (w1,tip): solid lines represent
the trajectory target and dashed lines describe the output responses.

4.3.3.2 Standard GPC with double integrator

A slight modification could be done in the GPC formulation in terms of the
disturbance model originally proposed in Appendix A.3. For that, it should be considered
the following input-output prediction model

˜̃A(z−1)Y(z) = (1 − z−1)Ã(z−1)Y(z) = B(z−1)∆2U(z) + E(z), (4.14)

where ∆2 = (1 − z−1 − z−2) is the double shift operator. As a matter of illustration,
if the system is SISO, the variables of decision are based on future values of ∆2u[k] =
u[k] − u[k − 1] − u[k − 2], which means that a double integrator is added to the GPC
solution. Therefore the standard cost function with double integrator J∆(∆2uk; Wk, Y free

k )
to be optimized is simply

J∆(∆2uk; Wk, Y free
k ) =

Nend∑
j=1

∥yr[k + j] − ŷ[k + j|k]∥2
Q +

Nu−1∑
j=0

∥∆2u[k + j|k]∥2
R. (4.15)
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Figure 12 – Torque comparison in several combinations. Design (i) - (Q = 1, R = 1) and
Design (ii) - (Q = 1, R = 0.01).
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Figure 13 – Torque comparison in several combinations. Design (i) - (Q = 1, R = 1) and
Design (ii) - (Q = 1, R = 0.01).

The results of the controlled system using the GPC with a ramp disturbance model
is shown in Figure 18 without the addition of the virtual reference, considering the same
conservative design, i.e Q = 1, and R = 1. Only the proposed modified GPC with a ramp
signal as a model disturbance has been evaluated to verify the tracking properties of the
solution.

As expected, the double integrator improves the tracking properties when compared
to the standard approach with the same conservative tuning (see Figure 9), since it provides
an increasing gain due to the additional integrator. However, error evolution shows that it
not fully solves the tracking problem since the contradiction on equilibrium cost still holds.

4.3.3.3 Main results

The standard strategies such as GPC, DMC and State Space can be effectively used
to control multibody systems if the design parameters are suitable. However, aggressive
control tuning may impose practical problems such as reduced robustness margins. It
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Figure 14 – Cost function comparison is several combinations. J stands for the standard
GPC/DMC costs while Jm represent the costs of the proposed strategies
(modified GPC/DMC).

should be highlighted that GPC and DMC are computed from input-output data with
input-output models. Hence, a receptance-based model can be directly used without any
additional state estimator.

The proposed modified receptance-based strategy has a remarkable property:
only the receptance model is required for the prediction mechanism. As emphasized in
Section 4.2, receptance models are quite simple to obtain, requiring only a few natural
frequencies and suitable degrees of freedom. Successful examples of this approach can be
found in (MOTTERSHEAD et al., 2012) and (DANTAS; DOREA; ARAUJO, 2021). In
(MOTTERSHEAD et al., 2012), a 3-DoF AugustaWestland W30 helicopter receptance
model is fully obtained through experimental procedures. In (DANTAS; DOREA; ARAUJO,
2021), experimental data is used to obtain the receptance model of the proposed system.
In the latter solution, the obtained model is applied to design state feedback controllers
for partial pole placement in a time delay scenario. The numerical results with a nonlinear
simulation model illustrates that the proposed approach is an interesting alternative to
the augmented state-space approach. The nonlinear simulation model with the encoder
quantization effect was previously validated in a recent work (BETTEGA; RICHIEDEI,
2023). Furthermore, the proposed cost modification may also be used to the augmented
state-space MPC due to the generality of the objective function modification. Hence, the
main benefit of the proposed approach comes from the fact that the MPC design problem
for multibody control is significantly simplified because the matrix weighting (Q and R)
becomes easier to define due to the cost function correction in steady-state.

4.4 Conclusions

This chapter proposes a receptance based MPC for control multibody systems
with time-varying references. The GPC and the DMC have been used with a receptance
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Figure 15 – Modified GPC and DMC comparison with (Q = 1, R = 1) - case with
Ttask = 3 s. Top figure - GPC, bottom figure - DMC. Output responses
(w1,tip): solid lines represent the trajectory target and dashed lines describe
the output responses.

modelling framework for multibody systems in order to simplify the identification process
and to alleviate the modelling requirements. The conditions to provide negligible error
with almost zero delay have been presented in the proposed framework. A modified MPC
for the receptance-based MPC with time-varying references is also proposed to significantly
reduce the sensitivity of the tracking error with respect to the design parameters. It is
shown that the new strategy implicitly imposes an optimal feedforward control in terms of
the desired input increment set by the known sequence of future references. The linear
MPC is simulated with a nonlinear model to illustrate the usefulness of the analysis and
the benefits of the proposed modified algorithms.

The approach proposed in this chapter successfully avoids the conflict of the cost
function used when the system is subject to non-constant references since it reduces the
sensitivity of the tuning parameters. However, the proposed GPC and DMC do not assure
recursive feasibility to robust constraint satisfaction. Therefore, a robust approach will be
presented in the next chapter.
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Figure 16 – Steady-state tracking error in steady-state (after 3 s) with different task
intervals.
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Figure 17 – Comparison between modified GPC (left) and DMC (right) output (top) and
input (bottom) when the system is subject to a step disturbance in t = 5s.
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Figure 18 – Standard GPC with double integrator (Q = 1 and R = 1). Output evolution
(top), control signal (middle), and error evolution (bottom).
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5 Linear Robust MPC for tracking dynamic
target signals

The concept of dynamic operation has been elaborated in (KÖHLER; MÜLLER;
ALLGÖWER, 2024), in which could be determined as an operation that is non-stationary,
references (or modes of operation) are unpredictable and its behavior could change online
without prior knowledge of the controller, and the desired mode of operation is not directly
determined based on a given sequence of setpoint of the system state.

This definition means that the state trajectory from a given cost function is non-
trivial, thus the objective does not simply steers the state optimally from the initial state
to a desired setpoint. Therefore, dynamic target signals can represent periodic targets,
but the opposite is not true. The path following problem and the trajectory control of
dynamic target needs to be faced as different concepts from control perspectives (AGUIAR;
HESPANHA; KOKOTOVIC, 2005) since trajectory tracking needs to follow time and
position jointly.

The issue of the MPC while dealing with time-varying references has been theoreti-
cally been explored recently, by studying applications on periodic targets, as in (LIMÓN et
al., 2015; PEREIRA et al., 2016b), targets defined as dynamic signals imposed by a virtual
model (KÖHLER; MÜLLER; ALLGÖWER, 2020; KÖHLER; MÜLLER; ALLGÖWER,
2019), and path following missions as seen in (FAULWASSER; FINDEISEN, 2015) and
(SÁNCHEZ et al., 2023). Such theoretical studies are motivated by practical applications
such as trajectory tracking control (FAULWASSER et al., 2016) applied to robotics, control
of renewable energy systems (XU et al., 2019), and other system with periodic behaviors
(PEREIRA et al., 2016a).

In general, setpoint tracking MPC are able to achieve null tracking error if the
target is defined to be piecewise constant. Even though, such strategies could not succeed
in the tracking of time-varying references. In such condition, a tracking error is expected
from the Internal Model Principle since the optimization cost function is based on the
assumption that the future reference is constant.

It has been seen along this work that various MPC strategies are able to deal with
time-varying references, but a computational complexity may be added in both offline stage
(KÖHLER; MÜLLER; ALLGÖWER, 2019) or during online execution (SÁNCHEZ et al.,
2023), since stabilizing ingredients (See Section 2.2) and the optimization problem should
deal with the nature of the target. To illustrate such affirmation, if an artificial target
approach is used, as seen in (2.35a) and used in (LIMÓN et al., 2015; PEREIRA et al.,
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2016b; KÖHLER; MÜLLER; ALLGÖWER, 2020; SÁNCHEZ et al., 2023; PEREIRA et
al., 2016a), the number of additional decision variables linearly depends on the prediction
horizon chosen.

Nominal trajectory tracking control of periodic references have been considered
in the state of the art, but always limited to particular optimal strategies. For instance,
a tracking scheme for linear systems was applied in (LIMÓN et al., 2015) and a robust
extension is found in (PEREIRA et al., 2016b). The nonlinear MPC for trajectory tracking
was proposed in (KÖHLER; MÜLLER; ALLGÖWER, 2020) and a robust extension is
discussed in the same work. The path following algorithms are explored in various works,
as in (FAULWASSER; FINDEISEN, 2015; FAULWASSER et al., 2016; SÁNCHEZ et al.,
2023), but these works does not consider a general approach, defining its solutions into
the scope of the respective MPC algorithm.

This chapter explores the trajectory tracking control of linear systems subject to
bounded disturbances, in which a robust approach needs to be considered. Apart from
the cited works, an analytical target modification method is proposed in a way that
any RMPC for tracking piecewise constant reference could use if recursive feasibility are
preserved during (mainly) in conditions of reference changes. The proposed analytical
modification can be interpreted as a modular reference computation layer that does not
depend on the RMPC algorithm. In this solution, the trajectory is not required to be
periodic as seen in related works (LIMÓN et al., 2015; PEREIRA et al., 2016b; PEREIRA
et al., 2016a) and the stabilizing objectives are simplified if compared to (KÖHLER;
MÜLLER; ALLGÖWER, 2020; KÖHLER; MÜLLER; ALLGÖWER, 2019) since only
piecewise constant reference tracking property is required.

The main drawback comes from the fact that the transient performance of (KÖH-
LER; MÜLLER; ALLGÖWER, 2020; KÖHLER; MÜLLER; ALLGÖWER, 2019) cannot
be achieved as the future reference is not considered in the optimization criterion. In
summary, the proposed analytical reference compensation is an alternative to provide
trajectory tracking properties to a class of RMPC strategies for set-point tracking with
reduced number of decision variables and simplified stabilizing ingredients.

To illustrate the benefits and drawbacks of the proposal, a simulation study on
an UGV will be presented, where the system will be driven in a leminiscate trajectory
and compared to the robust MPC proposed in (SANTOS; CUNHA, 2023) without the
target modification. Additionally, results on top of an experimental case are presented to
illustrate practical applicability, steady state and transient properties of the analytical
target modification.
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5.1 Preliminary statements
The original robust optimal controller based on (SANTOS; CUNHA, 2023) is

designed by considering the linear disturbed system shown in (2.1)-(2.2). Moreover, consider
the following assumptions to be considered:

1. the pair (A,B) is controllable;

2. the pair (A,C) is observable;

3. the state x[k] is measured, thus no observer is needed for the following proposal.

4. the states, inputs and disturbances are bounded by compact and convex sets, such
as x[k] ∈ X, u[k] ∈ U, and w[k] ∈ W

Then, a linear MPC for piecewise constant reference is defined by the control law

u[k] = κ(x[k], yt[k]), (5.1)

such as yt[k] is a piecewise constant output target to be tracked. The control law in (5.1) is
defined on a basis of a strictly convex optimization problem with a quadratic cost function,
as seen in many linear MPC strategies.

Several RMPC strategies provides offset free reference tracking in the presence
of asymptotic constant disturbances. This means that the algorithm aims to reach
limk→∞ yt[k] = yss and limk→∞ w[k] = wss, such as the set-point target is an admis-
sible steady-state target considering the disturbances and constraints. Therefore, the
controller achieves the condition limk→∞ ||y[k]−yss|| = 0 in steady state for any admissible
yss. Such condition is succeeded to reach offset-free tracking property for the condition
established, but potentially fail to reach null steady state tracking error when time-varying
references occurs, even in the absence of disturbances.

Therefore, this work defines the time-varying reference from a dynamic target signal
target taken from a linear nominal model (KÖHLER; MÜLLER; ALLGÖWER, 2020):

xt[k + 1] = Axt[k] + But[k], (5.2)
yt[k] = Cxt[k], (5.3)

where the pair (xt, ut) defines the state and input target, and defines an admissible target
candidate, that also should consider system constraints in its definition.

The definition of the pair (xt[k], ut[k]) from a given output sequence yt[k], k ≥ 0 can
be interpreted as a simple inversion problem or an unknown input observer if the system has
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minimum phase. An extra attention should be taken in the case of a non-minimum phase
system in order to guarantee input convergence as seen in (GEORGE; VERHAEGEN;
SCHERPEN, 1999; NADERI; KHORASANI, 2018). Moreover, such solution for non-
minimum phase systems could be applied with no loss of generality. Since the system is
observable, the observability matrix

O =
[
C⊤ (CA)⊤ . . . (CAj)⊤

]⊤
, (5.4)

and the controllability matrix is defined as

B =
[
0n,n (CB)⊤ . . . (CAj−1B)⊤

]⊤
. (5.5)

The controllability is full rank for a suitable j ≤ n − 1. Therefore, from the vector
of future output targets Yt(k) =

[
yt[k]⊤ yt[k + 1]⊤ . . . yt[k + j]⊤

]⊤
and the vector of

future input targets ut(k) =
[
ut[k]⊤ ut[k + 1]⊤ . . . ut[k + j]

]⊤
, a nominal observer can

be achieved by the following:

xt[k] = O†(Yt(k) − But(k)), (5.6)

where the O† is the pseudo-inverse of O. This reference observer can be used since the
reference is not subject to uncertainties and noise effects, thus it can be applied to generate
dynamic target signal from the output reference for a minimum phase system. In that case,
the sequence defined from ut[k − d] (defining d the discrete delay that ensures a causal
output-to-input relationship) can be recovered from yt[k], and xt[k] can be recovered from
both ut[k] and yt[k] from the nominal observer shown in (5.6).

From the various robust strategies for dealing with offset free tracking objectives
presented, the artificial target idea from (LIMÓN et al., 2010) brings interesting characteris-
tics, such as: (i) recursive feasibility for any target value; (ii) enlarged domain of attraction
when compared to standard MPC for regulation; (iii) the number of decision variables is
similar to a standard MPC for regulation. Since recursive feasibility does not depend on
the target at instant k, an RMPC strategy will be revisited so further discussions could
be done regarding potential applications of the proposed target modification layer.

5.2 RMPC for tracking piece-wise constant references with artificial
targets
The proposed robust MPC for tracking is described in this section based on (SAN-

TOS; CUNHA, 2023) with no loss of generality from other RMPC strategies that follows
the strategy that limits the constraints based on the worst-case scenario of disturbances.
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The system is subject to the control law in (2.24), thus the strategy is defined on
top of the following assumptions:

Assumption 3 (1) The matrices Q ∈ Rn×n, R ∈ Rm×m and T ∈ Rn×n and Q ≥ 0, R > 0,
and T > 0.
(2) The tuned system (pair (Q1/2, A)) is detectable.
(3) The matrix P ∈ Rn×n be a positive definite matrix such that (A+BK)⊤P (A+BK)−P ≤
−C⊤QC − K⊤RK.
(4) X∞,inner ⊂ X∞ and U∞,inner ⊂ U∞.
(5) Zf is an augmented robust invariant set for tracking such that

(x, θ) ∈ Zf ⇒ ((A + BK)x + BLθ + (A + BK)Nw, θ) ∈ Zf , ∀w ∈ W,

where x ∈ XN , Kx − Lθ ∈ UN , Mxθ ∈ λX∞,inner, and Muθ ∈ λU∞,inner, for 0 < λ < 1.

Notice that from Assumption 3-(4) and 3-(5), the artificial state and input target
never reaches the boundary of the constraint set by X∞ and U∞. Therefore, the tighter
sets for robust constraint satisfaction and recursive feasibility are defined from the initial
sets X0 = X and U0 = U1 as follows:

Xj = Xj−1 ⊖ (A + BK)j−1W, (5.7)
Uj = Uj−1 ⊖ K(A + BK)j−1W, (5.8)

which are used recursively as constraints of the RMPC problem, similar to the MPC for
tracking proposed in (2.35f).

minimize
u(k), θ(k)

JN(x(k), yt(k), u(k), θ(k)), (5.9a)

subject to x[0|k] = x[k], (5.9b)
(xs[k], us[k]) = Mθθ(k), (5.9c)
ys[k] = Myθ(k), (5.9d)
x[i + 1|k] = Ax[i] + Bu[i], i ∈ N[0,N−1], (5.9e)
x[i|k] ∈ Xi, i ∈ N[0,N−1], (5.9f)
u[i|k] ∈ Ui, i ∈ N[0,N−1], (5.9g)
(x[N ], θ) ∈ Zf , (5.9h)

1 Consider the Pontryagin set difference denoted by S ⊖ T = {s ∈ S|s + t ∈ S, ∀t ∈ T}.
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where the cost function JN (x(k), yt(k), u(k), θ(k)) is similar to the formulation of the MPC
for tracking proposed in (2.34).

JN(x(k), yt(k), u(k), θ(k)) =
N−1∑
i=0

||x[i|k] − xs[k]||2Q + ||u[i|k] − us[k]||2R + . . .

. . . + ||x[N |k] − xs[k]||2P + ||ys[i] − yt[k]||2T . (5.10)

The offset cost function in (5.10) uses a norm-2 (||ys[i] − yt[k]||2T ) as discussed in
Section 2.3, but other norms can be used as disposed in (SANTOS; CUNHA, 2023) such
that conditions of the offset cost function Vo are fulfilled. Also, the robust invariant set Zf

for tracking is taken based on the inner sets X∞,inner and U∞,inner to avoid the artificial
reference to reach the constraint border.

By solving the optimization problem, the optimal sequence of inputs u0[0|k] available
and the receding horizon control law κ(x[k], yt[k]) is defined by

u[k] = κ(x[k], yt[k]) = u0[0|k]. (5.11)

The main objective of this chapter is to provide a simple analytical target modifi-
cation to be combined with the robust MPC algorithms for piecewise constant references,
which is taken from

ỹt[k] = h(xt[k], ut[k]), (5.12)
u[k] = κ(x[k], ỹt[k]). (5.13)

The target modification is done such that (y[k] − yt[k]) ∈ CX∞, for k = k0, k0 +
1, . . . , ∞, where k0 is the initial instant and X∞ is a Minimal Robust Positively Invariant Set
(minRPI). Notice that if x[k0]−xt[ko] ∈ X∞ and the sequence {yt[k0], yt[k0 +1], . . . , yt[∞]}
defines an admissible target, then the desired convergence is achieved.

5.3 Target modification for time-varying references
To propose the novel MPC strategy, some premises should be clarified to the scope

of this problem. First, it is assumed that the values of yt[k], xt[k], and ut[k] are known at
a given instant k. The values could be calculated from the output target yt[k] as discussed
in Section 5.1.

Consider that an RMPC could be synthesized from a general optimization problem
given by
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minimize
v

J(v, z) (5.14a)

subject to Fv ≤ Mz + l, (5.14b)

where v is the vector of decision variables, z represents a vector of known parameters, and
the cost function J(v, z) is quadratic in v and is a strictly convex function, i.e. δ2

δv2 J(v, z) > 0.
The constraints are represented by (5.14b) and represents a set Vz0 = Fz ≤ h which is
assumed to be non-empty and contains the origin in its interior. For instance, the RMPC
shown in Section 5.2 could be represented by selecting z = (x[k], yt[k]) and v = (u(k), θ(k)),
which reduces the optimization problem (5.14a)-(5.14b) to the problem stated in (5.9a)-
(5.9h).

If vo returns the optimal solution of the stated problem with no active constraints,
that is Fvo < Mz + l, then the problem converges to the unconstrained optimal solution
such as ∇vJ(vo, z) = 0. This conclusion allows to propose the target modification if
recursive feasibility is ensured by the RMPC for any output target yt[k]. Roughly speaking,
a new modified target is proposed such that u[k] converges to ut[k] if the tracking condition
(y[k] = yt[k]) is reached.

5.3.1 Target modification

The quadratic cost function J(v, z) could be rewritten generically in the form of

J(v, z) = 1
2v⊤Hv + z⊤Sv + f⊤v + hz(z) + c, (5.15)

with the matrices H, S and f⊤ properly chosen depending on optimization problem. The
optimal unconstrained solution is then defined by solving ∇vJ(v, z) = 0

vo = −H−1(S⊤z + f). (5.16)

Since z = (x[k], yt[k]) and v = (u(k), θ(k)) for the RMPC, the receding horizon
control law can be defined as follows:

u[k] = uo[0|k] = Kx[k] + Lyt[k] + r, (5.17)

for [K L] = [Im 0m,N.m]H−1ST and r = [Im 0m,N.m]f , with the matrices K ∈ Rm,n

and L ∈ Rm,m being simply the selection of the first m rows of H−1ST and f respectively.

The optimal solution is time-invariant (MAYNE et al., 2000) in the unconstrained
region of the state-space partition, then a reverse target computation can be used to find
a new value of ỹt[k]. This is only possible if det(L) ̸= 0. The proof for such condition is
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taken from defining (5.17) as the unconstrained control law that ensures piecewise constant
reference tracking in the absence of disturbance. Then, assuming that the constant steady
state target ȳt is

x̄t[k] = Ax̄t[k] + Būt[k], (5.18)
ȳt[k] = Cx̄t[k], (5.19)

and defining r = 0 and Lȳt[k] = ūt[k] − Kūt[k] to guarantee offset free tracking from
ūt[k] = K(x[k] − x̄t[k]) + ūt[k] in such condition. If the trivial parameterization of the
artificial target in (2.26) and (2.27) is used for x̄t[k] = Mxθ[k], ūt[k] = Muθ, and ȳt[k] =
CMxθ, thus Lȳt[k] = Muθ − KMxθ = θ or L(CMx)θ = θ. By consequence, LCMx = Im

which inflicts that both L and CMx are full rank matrices, which leads to det(L) ̸= 0.

Therefore, the reverse computation of the new output target ỹt[k] = h(xt[k], ut[k])
is

ỹt[k] = L−1(ut[k] − Kxt[k] − r). (5.20)

It is important to mention that the condition r = 0 is taken only to prove the
inversibility of L and is considered for constant set-point tracking and is maintained in
the final formulation for the sake of generality of the discussion.

The new target value is calculated such that

u[k] = Kx[k] + Lỹt[k] + r (5.21)
= K(x[k] − xt[k]) + ut[k]. (5.22)

Therefore, a minRPI set X∞ can be defined around the desired target from Equa-
tions (2.1), (5.2) and (5.22) based on the evolution of (x[k] − xt[k])

(x[k + 1] − xt[k + 1]) = (A + BK)(x[k] − xt[k]) + w[k], (5.23)

where the set X∞ is defined as follows

X∞ =
∞∑

j=0
(A + BK)jW. (5.24)

Finally, if the controller parameters and the sequence of targets are defined such
that {xt[k]} ⊕ X∞ × {ỹt[k]} is a subset of the optimal unconstrained partition, then
{x[k0] − xt[k0]} ⊕ X∞ ensures that {x[k] − xt[k]} ⊕ X∞ for any k0 ≥ 0. The controller
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gain K is not required to be the optimal infinite horizon solution of the unconstrained
optimization problem, but if local optimality property is assured, then K is the solution of
the LQR problem.

With the output target modification properly set, a concern on the characterization
of the unconstrained region should be considered for computational and algorithm synthesis
purposes. The partitions from the unconstrained control law (5.17) could be used to define
the admissible region, but computational cost to determine all inequalities may be avoided.
A simplified characterization can be directly derived from the unconstrained solution vo for
the generalized optimization problem presented in (5.14a)-(5.14b) and the cost function
(5.15), resulting in the set Vo as follows

Vo = {z ∈ Rnz | − (M + FH−1S⊤)z < FH−1f + l}, (5.25)

where nz is the dimension of the vector z. From the proposed target modification, z = (x, ỹt).
Defining the sequence µ[k] = (xt[k], ut[k], yt[k]), an augmented sequence µa[k] is obtained
from (5.17), such as µa[k] = (xt[k], ut[k], yt[k], ỹt[k]). From that, consider the following
conditions of admissibility and robust admissibility of the target.

• A target sequence is admissible if (xt[k], ỹt[k]) ∈ Vo, ∀k ≥ 0.

• The target sequence is robustly admissible if {xt[k]} ⊕ X∞ × {ỹt[k]} ⊆ Vo, ∀k ≥ 0.

The synthesis of an outer approximation such as X∞ ⊂ Xouter,∞ may be computa-
tionally expensive, thus a tighter set can be defined, such as V̄o can be computed by using
any particular set representation such as zonotopes and orthopes from the following

V̄o = Vo ⊖ (Xouter,∞ × {0}). (5.26)

Moreover, the proposed strategy follows a dynamic signal target tracking property,
in which an RMPC control law for piecewise constant reference tracking with recursive
feasibility such as (SANTOS; CUNHA, 2023) despite target changes is defined by the
control law u[k] = κ(x[k], yt[k]). Then, if the following conditions are met:

1. The modified target ỹt[k] is defined from the pair (xt[k], ut[k]) as in (5.20) with r = 0
to ensure offset free tracking;

2. The control law is a function of the current state and the modified target, i.e.
u[k] = κ(x[k], ỹt[k];

3. The pair of targets (xt[k], ỹt[k]) respects the set of constraints considering the effect
of the disturbance W, that is, (xt[k], ỹt[k]) ∈ V̄o, ∀k ≥ k0, and;
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4. (x[k0] − xt[k0]) ∈ X∞,

then the deviation (x[k] − xt[k]) remains in the minRPI set for any k ≥ k0.

For that, a general practical solution is to use a mode of operation to use a piecewise
constant reference during an initialization time interval 0 ≤ k < k0 such as the condition
(x[k0] − xt[k0]) ∈ X∞ is achieved. After such condition is achieved, the proposed solution
can be used to track the desired reference.

Also it is important to notice that the transient performance and the admissible
region are naturally degraded when compared to other MPC with time-varying reference
considered in the objective function as in (SANTOS; CUNHA, 2023). This remark is
accepted since the main objective of the target modification is to preserve online imple-
mentation complexity at the same time that the algorithm provide a simplified trajectory
tracking solution for RMPC strategies that are not able to avoid offset free tracking in the
presence of dynamic signal targets. This characteristic of the controller will be exposed in
simulation and experimental analysis in the next sessions.

Also, the simplicity and flexibility of the target modification proposed are useful
properties because it can be applied in several other strategies and applications. For instance,
avoidance features can be achieved by using the ideas of (SANTOS; FERRAMOSCA;
RAFFO, 2024), and chance constraints can be considered (D’JORGE et al., 2020), as
other RMPC strategies.

5.4 Case study - Motion control of a skid steered UGV
To illustrate the main characteristics of the RMPC combined with the general

target modification, a case study on the motion control of a skid steered UGV will be
studied in the the following section. Such class of mobile robots are widely used in various
applications such as autonomous outdoor navigation (YI et al., 2009) and indoor service
robotics (HASHEMI; HE; JOHANSSON, 2022) for transportation, logistic missions, and
others. For the scope of this work, a Clearpath Husky A200 unit will be used as object of
study, where a motion control interface is provided by using ROS framework. Figure 19
presents the UGV available at the Robotics Laboratory of the Electrical and Computer
Engineering Department of the UFBA.

5.4.1 Output tracking for skid steered UGV

Low-level controllers are available for the wheels in order to provide the desired
commands of linear velocity (vc(t)) and angular velocity (ωc(t)) of the robot. Figure 20
illustrates position and orientation of the UGV p(t) =

[
x(t) y(t) θ(t)

]
and a virtual

robot is considered following a desired trajectory with pr(t) =
[
xr(t) yr(t) θr(t)

]
.
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Figure 19 – Cleapath Husky A200 in Robotics Laboratory - UFBA.

Figure 20 – Coordinate system representation for controlled and virtual robot.

The kinematic model of the mobile robot with respect to the world frame, is
described as follows, considering the linear and angular velocity of the vehicle represented
by v(t) and ω(t) respectively. The same applies to the virtual robot that will be used for
reference computation.


ẋ(t)
ẏ(t)
θ̇(t)

 =


cos(θ(t)) 0
sin(θ(t)) 0

0 1


v(t)
w(t)

 . (5.27)

Therefore the following kinematic model considering the linear and velocity com-
mands of the robot will be used in the scope of this strategy:
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ẋ(t)
ẏ(t)
θ̇(t)

 =


cos(θ(t)) 0
sin(θ(t)) 0

0 1


vc(t)
wc(t)

 +


ϵx(t)
ϵy(t)
ϵθ(t)

 , (5.28)

where ϵx(t), ϵy(t) and ϵθ(t) are bounded disturbance signals that complies multiple sources
of modeling mismatches, external disturbances and measurement noises.

5.4.2 Feedback Linearization

In order to apply the robust linear strategies presented in this chapter, a feedback
linearization based on the strategy proposed in (SCIAVICCO; SICILIANO, 2012, Chap-
ter 11) is used for modeling simplicity. The linear feedback design is defined from the new
virtual states:

z1(t) = x(t) + b cos(θ(t)), (5.29)
z2(t) = y(t) + b sin(θ(t)), (5.30)

where b > 0 is a parameter freely chosen that defines a future virtual point displaced from
the center of the vehicle. The new kinematic model is defined by simply acquiring ż1 and
ż2, resulting in:


ż1(t)
ż2(t)
θ̇(t)

 =


cos(θ(t))vc(t) − b sin(θ(t))wc(t)
sin(θ(t))vc(t) + b cos(θ(t))wc(t)

wc(t)

 +


ϵz,1(t)
ϵz,2(t)
ϵθ(t)

 , (5.31)

and the new disturbance signals is

ϵz,1(t) = ϵx(t) − b sin(θ(t))ϵθ(t),
ϵz,2(t) = ϵy(t) + b cos(θ(t))ϵθ(t).

The relationship between the virtual signals u1(t) and u2(t) and the robot’s input
command signals are:

u1(t)
u2(t)

 =
cos(θ(t)) −b sin(θ(t))

sin(θ(t)) b cos(θ(t))

 vc(t)
wc(t)

 , (5.32)

such as the inverse transformation is simply
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vc(t)
wc(t)

 =
 cos(θ(t)) sin(θ(t))
− sin(θ(t))/b cos(θ(t))/b

 u1(t)
u2(t)

 . (5.33)

Thus, the partial input output linear model results in the model:

ż1(t)
ż2(t)

 =
u1(t)
u2(t)

 +
ϵz,1(t)
ϵz,2(t)

 , (5.34)

such as θ̇ = (− sin(θ(t))u1(t)+cos(θ(t))u2(t))/b+ϵθ(t) defines the zero dynamics. Therefore,
the control law is applied based on the discretized model, such as the control signal are
applied with a zero-order holder with the sampling interval Ts. This way, vc(t) = vc(kTs),
wc(t) = w(kTs), for kTs ≤ t < (k + 1)Ts. Appliying Euler’s discretization for sampled data
approximation was used, such as the discrete signals are x[k] = x(kTs), y[k] = y(kTs),
θ[k] = θ(kTs), z1[k] = z1(kTs), z2[k] = z2(kTs). Finally, the discrete model for the RMPC
design is given by

z1[k + 1]
z2[k + 1]

 =
1 0
0 1

 z1[k]
z2[k]

 +
Ts 0

0 Ts

 u1[k]
u2[k]

 +
η1[k]
η2[k]

 . (5.35)

The new disturbances η1[k] and η2[k] also includes discretization errors and the
the discrete evolution of θ can be either

θ[k + 1] = θ[k] + Tswc[k] + ηθ[k], (5.36)

or

θ[k + 1] = θ[k] + Ts[− sin(θ[k])u1[k] + cos(θ(t))u2[k]]/b + ηθ[k] (5.37)

5.4.3 Reference computation from feedback linearization

The transformed reference is defined from the position reference xr[k] = xt(kTs)
and yr[k] = yt(kTs). It is assumed the information of xr[k], xr[k + 1], xr[k + 2], yr[k],
yr[k + 1] and yr[k + 2] are known at a given instant k. This way, θr[k] = atan2(yr[k + 1] −
yr[k], xr[k + 1] − xr[k]) and θr[k + 1] = atan2(yr[k + 2] − yr[k + 1], xr[k + 2] − xr[k + 1]).
Finally, the transformed references are given by:
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zr,1[k] = xr[k] + b cos(θr[k]), (5.38)
zr,2[k] = yr[k] + b sin(θr[k]), (5.39)

ur,1[k] = zr,1[k + 1] − zr,1[k]
Ts

, (5.40)

ur,2[k] = zr,2[k + 1] − zr,2[k]
Ts

. (5.41)

From the new references, a state-feedback control law for nominal trajectory tracking
could be defined as follows

u1[k] = K(z1[k] − zr,1) + ur,1[k], (5.42)
u2[k] = K(z2[k] − zr,2) + ur,2[k]. (5.43)

Hence, the evolution of the error is calculated from e1[k] = z1[k] − zr,1 and e2[k] =
z2[k] − zr,2:

e1[k + 1]
e2[k + 1]

 =
1 + KTs 0

0 1 + KTs

 e1[k]
e2[k]

 +
η1[k]
η2[k]

 . (5.44)

The proposed linearizing state-feedback strategy does not deal naturally with
restrictions, which motivates the application of a robust approach. The next sections
presents a simulation analysis and experimental demonstration of the Robust MPC
proposed by (SÁNCHEZ et al., 2023) and the RMPC with the target modification
proposed in (5.20).

5.4.4 Simulation results

The trajectory of a skid-steering UGV is analyzed using the kinematic model in
(5.27) through numerical simulation to evaluate the nominal performance of the proposed
controllers.

The feedback linearization (5.29)-(5.30) is used such that the virtual model (5.35)
is used for the standard RMPC (5.9a)-(5.9h) and the proposed RMPC with the target
modification (5.20) are compared to evaluate the tracking properties with time-varying
trajectory when the system is subject to a lemniscate reference defined by:

xr[k] = xd − 2β
sin(kTsωn)

1 + (α/β)2 cos(kTsωn)2 , (5.45)

yr[k] = yd − 2α
sin(kTsωn) cos(kTsωn)
1 + (α/β)2 cos(kTsωn)2 , (5.46)
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with natural frequency ωn = 2π/40 rad/s, α = 1.3, β = 1.0, and xd = yd = 0 m. The initial
position and orientation vector is p0 =

[
0.0 0.0 −π/2

]
and the workspace is limited to

hard state constraints 2.0 ≤ x[k] ≤ 4.0 m and 2.0 ≤ y[k] ≤ 4.0 m. Input constraint in
both linear velocity 0 ≤ vc[k] < 0.7 (m/s) and angular velocity |ωc| < 1 (rad/s) are set
and a sampling interval Ts = 0.2 s is set.

By choosing the feedback linearization parameter b = 0.3, the constraints of the
workspace should be adjusted for the linearized model, considering the worst-case scenario
in (5.29) and (5.30). Therefore the set could be constricted in a conservative way such that
z1[k] and z2[k] never leads the position of the robot to outside of the defined workspace,
that is |x[k]| ≤ 1.7 (m), and |y[k]| ≤ 1.7 (m).

The MPC was designed with the tuning gains Q = R = diag(1, 1), with P and
K being the LQR solution, and T = 1000||P ||. The disturbances w were assumed to be
bounded such that |w| ≤

[
0.03 0.03

]⊤
.

In Figure 21, it can be seen the evolution of the UGV’s position (x(t) and y(t))
and orientation θ[k]. A difference between the the reference and the position/orientation
output is easily seen on the original RMPC method, while the proposed method reduces
the tracking error in steady state condition.
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Figure 21 – Comparison of the position and orientation evolution of the UGV in simulation
analysis.

Between 15 and 25 seconds, it is visible that the target converges to the closest
nominal admissible reference even if the reference chosen is not admissible. In such condition,
the target for both strategies presents a conservative optimal value caused by the robust
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constraint set adjustment such that |w[k]| < 0.03 in a way that the operation is safe
considering the worst-case scenario of disturbance during the entire operation, even when
the target is not valid from the workspace perspective. Additionally, Figure 21 presents
the lemniscate trajectory following of both strategies in the workspace plane, where it is
possible to observe that the modified strategy is able to track with null steady state error
while the target is admissible. When the target is not admissible, a necessary non-zero
tracking error is achieved to avoid the vehicle to crash on the limit of the workspace,
ensuring safe operation condition for the navigation mission.

Therefore, the enhancement in steady-state performance is significant, as anticipated
from the theoretical analysis presented in this chapter. However, it should be noted that the
transient response is slightly degraded compared to the original controller. This degradation
can be attributed to the suboptimal nature of the proposed solution, which does not
account for future reference signals in its design.
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Figure 22 – UGV’s lemniscate trajectory in simulation analysis.

Control inputs are depicted in Figure 23, which shows that constraints conditions
are respected during entire analysis. Moreover, the modified RMPC presents a more
aggressive control signal during initialization since the target modification proposal causes
an indirect feedforward signal based on the target reference chosen.

Figure 24 presents a comparison of the time needed to solve the optimization
problema in each simulation step. The Matlab’s quadprog function was used for this
analysis in a computational platform with the following configuration: intel Core i7
11800H, 16GB RAM, Windows 11. From this comparison, it is possible to conclude that,
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Figure 23 – Comparison of the control signals of linear and angular velocity commands in
simulation analysis.

despite the degraded transient performance, the proposed solution significantly improves
trajectory tracking under time-varying references and maintaining the computation time
when comparing to the original solution.

The performance between the two methods could be analyzed in Figure 25 that
shows the tracking error evolution. It is evident that the RMPC with analytical target
modification improves the tracking properties. Different from the standard RMPC for
tracking piecewise constant reference, the modified RMPC presents a null tracking error
when the target is admissible.

5.4.5 Experimental results

The experimental results of the trajectory tracking of the Cleapath Husky UGV
vehicle were execute on an epoxy industrial floor, in which the control law for both
strategies were calculated on a computational platform AMD® Ryzen® 7 5700u, 32GB
RAM, Ubuntu 20.04 LTS. To gather the global position and orientation of the robot, the
optical motion tracking system OptiTrack (NaturalPoint, 2024) was used. This system
estimates the pose p =

[
x(t) y(t) θ(t)

]⊤
related to the global reference frame Owx̂wŷw,
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Figure 24 – Comparison of the computation time of the optmization solution during the
entire simulation.
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Figure 25 – Tracking error evolution from simulation analysis.
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as shown in Figure 20. The optmization step was solved using the Python library qpsolvers
(CARON et al., 2024).

The same sampling interval is used (TS = 0.2 s and the linear and angular velocity
commands are bounded such as 0 ≤ vc[k] ≤ 0.7 (m/s) and |ωc[k]| < 1 (rad/s). Similar to
the simulated case, the workspace is limited by |x[k]| ≤ 2 (m) and |y[k]| ≤ 2 (m). The
parameters chosen for the lemniscate are α = 1.3, β = 1.0, xd = 0.0 m, yd = 0.0 m, and
the natural frequency of the trajectory is ωn = 2π/40 rad/s.

The MPC design parameters are similar to the one presented in the simulated
results. Q = R = diag(1, 1), P and K is the LQR solution, and T = 1000||P ||. The
disturbances w were assumed to be bounded such that |w| ≤

[
0.03 0.03

]⊤
. Also, the

same feedback linearization parameter was chosen (b = 0.3) and the hard constraints are
reorganized as follows (z1[k]| ≤ 1.7 (m) and |z2[k]| ≤ 1.7 (m)).

With the start point set to the center of the lemniscate trajectory, i.e. x[0] = 0,
y[0] = 0, Figure 26 and 27 show that the effectiveness of the modified RMPC in a practical
application, in which presents an offset free behavior when facing a time-varying (and
periodic) reference.
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Figure 26 – Experimental Lemniscate trajectory comparison of the UGV. Demonstration
of the experiment is available at <https://youtu.be/CfayXUjJWuw>.

The degraded transient performance is also observed in Figure 27 while recovering
from the unfeasible reference. The trajectory taken from the controller in such condition
is feasible even if the reference surpasses the hard constraint, which is done by the
optimization of the offset cost function chosen, selecting best possible target from the

https://youtu.be/CfayXUjJWuw
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optimization criteria.
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Figure 27 – Comparison of the position and orientation of the UGV.

Figure 28 presents the control inputs calculated from the optimal controller of the
modified RMPC (vc and ωc). Additionally, the result shows also the estimated linear and
angular velocity gathered by the OptiTrack, showing that some high-frequency signals are
imposed to the system as additive disturbances, in which the system responds as expected,
having an null-error offset tracking property even in such condition which is visible on the
tracking error evolution shown in Figure 29.

5.5 Conclusions
This chapter presents a synthesis of the RMPC that was proposed in (SANTOS;

CUNHA, 2023) to track piecewise constant reference in which the constraint tightening is
executed based on the propagation of the worst case of disturbance within the prediction
horizon. Such feature combined with the additional artificial target as in (LIMÓN et al.,
2008) provides a safe operation of the controlled system even if the desired target is not
admissible, converging to the closest admissible equilibrium given an offset optimization
criteria. The main contribution of this chapter is done by a new method for trajectory
tracking by means of a reverse target computation strategy.

The main benefits of the novel strategy is verified from a simulation analysis
and an experimental evaluation. An offset-free tracking error is evaluated from the new
approach, and is observed that steady-state performance is significantly improved for
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Figure 28 – Linear (vc) and angular (ωc) velocity.
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Figure 29 – Tracking error evolution from experimental analysis.
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admissible targets when the system is subject to a periodic lemniscate trajectory. Recursive
feasibility is ensured and average time to compute the control law is preserved from the
original formulation by comparing the time for solving the optimization on both strategies.
Sufficient conditions for target admissibility have been shown by forcing the reference to
activate hard constraints of the system and its feasibility on experimental cases have been
demonstrated by using a skid steered UGV.

Also, there is a difference between the simulated and experimental results since
the model used does not fully covers the skid steering model in a way that the lateral
slips seen in (HASHEMI; HE; JOHANSSON, 2022) are not considered. Despite that, the
robot is still able to track the reference with null offset tracking error when the target
is admissible, and following safely the closest admissible target set when the reference
activates the workspace restriction.
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6 Conclusions

This thesis presented contributions about simplified approaches for the application
cases of the MPC for tracking time-varying references. Initially, it was presented two
simplified strategies that were able to handle setpoints set by dynamic signals.

A DMC evaluation under the tracking problem of periodic references has been
done, in which the compromise between tracking index and robustness was analytically
demonstrated, such as tracking properties should be achieved with a direct loss of robustness
as consequence of an aggressive tuning. The filtered DMC is then analyzed for the tracking
properties. The prediction error filter then played a fundamental role on establish robustness
properties as an additional degree of freedom of the MPC, allowing the system to follow
references properly by reducing the effects of internal and measurement noises that an
aggressive standard DMC is not able to deal with without alleviating tuning configurations.
The theoretical analysis have been demonstrated through simulated and experimental
results of a nonlinear model of a temperature control of a thermorresistive sensor, which
was compared against the standard DMC. It has been seen that the effect of the reduced
bandwidth of the filter results in degraded regulatory performance, although the effect of
voltage (input) variation is significantly reduced in such scenarios. Experimental results
reinforced the simulated analysis and it was opportune due to the natural occurrence of
noise effects, modelling errors, and external disturbances in both step response identification
and test execution.

A receptance based MPC for tracking multibody system has been proposed as
a data-driven approach that is able to track time-varying targets successfully without
the full knowledge of the internal modelling parameters of the multi-body system and a
modified cost function was proposed in order to provide null tracking error for periodic
references. The premise stated for periodic references could be extended for some non-
periodic time-varying target under simple statement that the system is minimum phase.
It is also shown that the proposed strategy implicitly imposes an optimal feed-forward
control in terms of the desired input increments, which is defined by the known sequence
of future references. To evaluate the properties of the new proposal, a linear MPC is
simulated on a underactuated two-link system and its results was compared by standard
GPC and DMC approaches. The results illustrate the main advantages and benefits of the
strategy, in which the tracking properties are significantly improved under time-varying
references, while it is possible to alleviate sensitivity of the tracking error with respect to
the design parameters.

Finally, a new RMPC for tracking targets defined by dynamic signals has been
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proposed based on a simple target modification based on a reverse target computation.
Despite this work presents the main benefits of the modified approach on a specific RMPC
based on constraint tightening, such idea can be extended on any similar strategy following
the same concepts for tracking piecewise constant reference as in (SÁNCHEZ et al.,
2023; LIMÓN et al., 2010). The controller has been evaluated in both simulation and
experimental scenario, by testing its effectiveness on a Clearpath Husky A200 UGV vehicle.
The comparison from a standard robust optimal controller showed improvement of steady-
state trajectory tracking under admissible targets, and respecting safe operation when the
trajectory is not admissible, by converging naturally the target to an admissible target
considering a robust set of constraints. Despite the simplicity of the target modification,
computational complexity is maintained, showing potential extensions in other applications
such as obstacle avoidance features, and consideration of chance constraints. A preliminary
result regarding a stochastic approach has been presented in the Congresso Brasileiro de
Automática, but has not been discussed in this thesis, since the discussion is out of the
deterministic scope of this work, but it is an interesting topic for further research.

6.1 Main contributions

This thesis provided the following main contributions to the subject of MPC for
tracking time-varying references:

• The evaluation of the filtered DMC applied to output tracking under varying refer-
ences, whose prediction filter guarantees aggressive tunings in the same time that
robustness to deal with internal and measurement noise is assured;

• The role of high-noise disturbance effects was analyzed in the analytical solution
of the FDMC. Thus, a proper filter design allows to deal with such uncertainties
without interfere with the DMC control law, demonstrating the addition of the
degree of freedom in this controller;

• The conflicting objectives of the standard MPC cost function is discussed, showing
that it is not possible to achieve tracking properties with a null cost function value
under condition of time-varying references;

• A simple modification of the cost function is proposed to ensure null values of the
cost function while tracking non-constant references, such as the decision variables
(input increments) are penalized in terms of the deviation between the values chosen
and a virtual input target. The virtual target added can be defined by means of
an unconstrained optimization problem based on the premise that the reference is
periodic;



6.2. List of publications 99

• A receptance modelling framework for prediction of a DMC and/or GPC strategy.
The proposal have been applied to control a multibody mechanical system which
simplifies significantly the modelling process;

• A simple target modification has been proposed for a set of robust MPC for tracking
piecewise constant references, which improves the property of trajectory tracking of
the system when it is subject to periodic references, although it can be extended to
other dynamic operations;

• The experimental evaluation of MPC for tracking time-varying references have been
demonstrated, showing the effectiveness of a filtered DMC and a modified RMPC
on different types of application, showing promising and computationally efficient
solutions for other practical applications.

6.2 List of publications

The following lists presents the published papers developed within the scope of
this thesis.

6.2.1 Paper published in journal

• (Pereira; Santos; Araújo) Receptance-based model predictive control of multibody
systems with time-varying references. Meccanica. v. 59, n. 1, p. 33-48, 2024.

6.2.2 Accepted works in congress proceedings

• (Pereira; Santos) DMC filtrado aplicado ao controle de sistemas sujeitos a referên-
cias variantes no tempo. In: Anais do Simpósio Brasileiro de Automação Inteligente.
Brazil - Manaus, 2023.

• (Santos; Pereira) Analytical reference compensation for tracking dynamic target
signals with linear robust MPC strategies. In Proceedings of the American Control
Conference. Canada - Toronto, 2024.

• (Pereira; Santos) Indirect-feedback Stochastic MPC for tracking piecewise constant
references. In: Anais do Congresso Brasileiro de Automática. Brazil - Rio de Janeiro,
2024.
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6.3 Perspective for future investigation

• Evaluate an extension of the filtered DMC approach for tracking time-varying
references to unstable systems;

• Evaluate the applicability of the receptance-based MPC with a modified cost function
on practical applications;

• Investigate transient performance, the error evolution outside the admissible region,
and extensions to the nonlinear case of the modified RMPC;

• Extend the experimental analysis of the filtered DMC, the receptance-based MPC for
tracking, and the modified RMPC under influence of time-varying and non-periodic
references.

• Consider stochastic MPC approaches for tracking non-constant references.
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ANNEX A – Implementation Aspects of the
MPC

A.1 State Space MPC based on incremental control action
For the linear and time-invariant state space representation of a dynamic system

written in form of (2.1) and (2.2) such as f(.) = Ax[k] + Bu[k] and h(.) = Cx[k] + Du[k],
the prediction model is manipulated to consider ∆u[k] = u[k] − u[k − 1] as the new system
input,

ξ[k + 1] =Aaξ[k] + Ba∆u[k], (A.1)
y[k] =Caξ[k] + Da∆u[k], (A.2)

and ξ ∈ R(n+p) is the augment space vector such as ξ[k] =
[
∆x[k]T y[k]T

]T
. This

modification is widely used since it includes an integral action to the control law, which
allows constant (or asymptotic constant) reference tracking and guarantees disturbance
rejections (CAMACHO; ALBA, 2013).

Such predictor is presented in (WANG, 2009), and similar augmented representa-
tions are shown in (CAMACHO; ALBA, 2013). Consider that ∆x[k] = x[k] − x[k − 1] the
unitary difference of the system state. Despite the predictor modelling is slightly different
from the from the usual state space equation, such formulation filters white noise coloured
errors by inserting an integrator to the MPC formulation. Moreover regulation performance
of the proposed controller is improved. Since the proposed system is time-invariant, the
state evolution can be predicted from the iteration of (A.1) within a prediction horizon
Np.

ξ[k + 1|k] =Aaξ[k] + Ba∆u[k|k]
ξ[k + 2|k] =Aaξ[k + 1|k] + Ba∆u[k + 1|k]

=A2
aξ[k] + AaBa∆u[k|k] + Ba∆u[k + 1|k]

ξ[k + 3|k] =Aaξ[k + 2|k] + Ba∆u[k + 2|k]
=A3

aξ[k] + A2
aBa∆u[k|k] + AaBa∆u[k + 1|k] + Ba∆u[k + 2|k]

...
ξ[k + Np|k] =AN

a ξ[k] + ANp−1
a Ba∆u[k] + ANp−2

a Ba∆u[k + 1] + . . .

· · · + ANp
a Ba∆u[k + Np − 1].
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Summarizing, the output prediction in any future instant j, such as j < Np is
taken as follows

ŷ[k + j|k] = CaAj
aξ[k] +

j−1∑
i=0

CaA(j−i−1)
a Ba∆u[k + i|k]. (A.3)

Considering the sequence future input increments ∆u

∆u =
[
∆u[k|k] ∆u[k + 1|k] . . . ∆u[k + Np − 1|k]

]⊤
, (A.4)

the predicted output evolution is determined as

Y =
[
ŷ[k + 1|k] ŷ[k + 2|k] . . . ŷ[k + Np|k]

]⊤
. (A.5)

The output prediction y[k + i|N ] depends only by the current state ξ[k] and the
future control inputs to be properly chosen within an objective directive. For the sake
of computational efficiency, a control horizon Nc is inserted in the proposed predictor in
a way that ∆u[k + d − 1|k] = 0 for every d > Nc and Nc ≤ Np. Therefore, the control
horizon indicates how many future control inputs are available to steer the states and
outputs within a prediction horizon Np. Moreover, the sequence of future outputs in (A.5)
is rewritten

Y(ξ[k], ∆u) = Fξ[k] + Φ∆u, (A.6)

where the terms Fξ[k] and Φ∆u are the predicted free and forced responses respectively.
The naming of these terms is straightforward since the first is simply the evolution of the
system output without considering any input and taking account only its initial states
at instant k, while the second is the evolution of the output considering only the input
signals without considering any initial state. By simple inspection of (A.3) and considering
the control horizon, the prediction matrices are defined as

F =



CaAa

CaA2
a

CaA3
a

...
CaANp

a


, (A.7)
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Φ =



CaBa 0 0 . . . 0
CaAaBa CaBa 0 . . . 0
CaA2

aBa CaAaBa CaBa . . . 0
... ... ... . . . ...

CaANp−1
a Ba CaANp−2

a Ba CaANp−3
a Ba . . . CaANp−Nc

a Ba


, (A.8)

with the matrix 0 being a matrix with zeros and appropriated dimensions. The proposed
strategy considers that a objective function should be defined to have an optimal sequence
of control inputs in which could consider regulation properties or economical problems.
Independently from the choice of the objective function, the MPC controller usually
consider the evolution of the predicted output (as the one shown in (A.6)) in its formulation.
Inherent input delay should be considered in the predictor dynamics of the forced response
matrix Φ by properly changing the general output prediction formulation (A.3) as stated
in (SANTOS et al., 2011).

A.1.1 Objective function

For now, consider that the aim of the controller is that the future output y is
steered to a reference signal yr[k] and the control effort ∆u is simultaneously penalized
within the prediction and control horizon. Thus, a common used objective function is
quadratic as follows

J(Np, Nc, yr, ∆u) =
Np∑
j=1

||ŷ[k + j|k] − yr[k + j]||2Q +
Nc∑
j=1

||∆u[k + j − 1|k]||2R, (A.9)

where Q ≥ 0 is the penalizing matrix that balances the quadratic error between future
outputs and references, and R > 0 penalizes the control effort ∆u. Without loss of
generality for multivariable systems, consider that Q ∈ Rp×p and R ∈ Rm×m. Defining the
sequence of future references W

W =
[
yr[k + 1] yr[k + 2] . . . yr[k + Np]

]T
, (A.10)

the cost function is reinterpreted in a vectorized form

J = (Y − W)T Q(Y − W) + ∆uT R∆u, (A.11)

such as Q and R are augmented forms1 of Q and R respectively, as follows:
1 Matrices Q and R are diagonally repeated Np and Nc respectively.
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Q =



Q 0 0 . . . 0
0 Q 0 . . . 0
0 0 Q . . . 0
... ... ... . . . ...
0 0 0 . . . Q


, (A.12)

R =



R 0 0 . . . 0
0 R 0 . . . 0
0 0 R . . . 0
... ... ... . . . ...
0 0 0 . . . R


. (A.13)

Therefore, the objective function proposed is defined as a scalar, positive definite
function that consider the square of the prediction errors, and the squared value of
increment of control inputs, both penalized by weighting matrices Q and R respectively.
For now, the terminal cost is set to zero (i.e. F (.) = 0).

A.1.2 SSMPC Receding Horizon Control Law

The MPC strategy is done by finding the minimum of the cost function (A.11),
subject to the constraints exposed in (2.8), resulting in an optimal sequence of input
increments. The solution for the constrained problem is usually achieved by solving a
general constrained QP problem stated as

minimize
∆u

∆u⊤H∆u + b∆u + f0,

subject to ŷ[k + j|k] ∈ Y, j ∈ N[1,N ],

u[k + j|k] ∈ U, j ∈ N[0,Nu−1],

∆u[k + j|k] ∈ ∆U, j ∈ N[0,Nu−1],

(A.14)

where the decision variable ∆u in the statement (A.14) results in the sequence of optimal
inputs ∆u0. Various solutions of the constrained QP problem is available at (CAMACHO;
ALBA, 2013), hence this is not the focus of this work. Also, constructive aspects of the
restrictions in (A.14) are depicted in (NORMEY-RICO, 2007).

The predicted outputs within a time horizon N are function of the initial state and
the sequence of future input increments to be chosen as in (A.6), the cost function is then
redefined in terms of ∆u from (A.11):

J = ∆uT (R + ΦT QΦ)∆u + 2(Fξ[k] − W)T QΦ∆u + f0, (A.15)
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such as b and the hessian matrix H is determined by inspection. Since the matrix (R +
ΦT QΦ) is quadratic and positive definite, there is a minimum of J(.) and the solution for
optimal sequence of control inputs exists under an admissible set of constraints ∆ũ ∈ U

Albeit the minimization of the cost function provides the control sequencing along
the control horizon at a given instant k, only the first element of the optimal sequence is
applied as the control input. A new optimal sequence is then calculated again at instant
k + 1 time and the new first element applied, repeating this process at each sampling time.
Such procedure defines the receding horizon control law of the MPC. Defining the optimal
sequence ∆u0 that provides a solution for the optimization problem

∆u0 =
[
∆u0[k|k] ∆u0[k + 1|k] . . . ∆u0[k + Nc − 1|k]

]
, (A.16)

the implicit state space MPC control law is the accumulation of the input increments
∆u0[k|k] over time, i.e.

u[k] = u[k − 1] + ∆u0[k|k], (A.17)

considering the horizons Np and Nc, and the penalizing gains Q and R, as offline tuning
parameters of the proposed controller.

A.1.3 Explicit control law

As mentioned before, the solution of the implicit control law is done by means
of QP solving. Still, an explicit control law may arise in a condition that no restrictions
are imposed to the optimization problem, which is interesting to evaluate the closed-loop
characteristics of the MPC.

Under the premise of no restrictions (i.e. X ∈ Rn and U ∈ Rm), if Q > 0 and R ≥ 0,
the inequality (R + ΦT QΦ) > 0 is also true and the minimum of V exists and can be
analytically given by solving

dV (.)
d∆ũ

= 2(R + ΦT QΦ)∆ũ − 2ΦT Q(W − Fξ[ki]) = 0, (A.18)

therefore the optimal control increment sequence is

∆u0 = (R + ΦT QΦ)−1ΦT Q(W − Fξ[ki]). (A.19)

Still following the receding horizon principle, the control law is done by selecting
the first m elements of ∆u0. Therefore an explicit expression for ∆u0[ki|ki] is achieved by
taking the first m rows of (A.19).
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∆u0[k|k] =

Nc︷ ︸︸ ︷[
Im 0m 0m . . . 0m

]
∆u0, (A.20)

and is reduced to the form

∆u0[k|k] = KrW − KMP Cξ[k]. (A.21)

for Im being an identity matrix with and 0m a square matrix of zeros with both having
dimension m × m.

Moreover, from (A.21), the unconstrained state space MPC should be interpreted
as composition of linear state feedback control law and a feed-forward gain in terms of
the future references, relying to be equivalent to a Internal Model Controller (MARQUIS;
BROUSTAIL, 1988). The control law hereby stated is proposed on a premise of a measurable
state, but a proper observer could be designed if the states are observable (WANG, 2009).
Following such premise, if the state information is not directly available, a proper observer
should be designed to feed the control loop.

The closed loop dynamics can be analyzed by substituting the control law (A.21)
in the augmented state dynamics (A.1), resulting in

ξ[k + 1] = (A − BKMP C)ξ[k] − BKyW , (A.22)

having the closed-loop dynamics determined by the eigenvalues2 of the matrix (A −
BKMP C), the unconstrained MPC operates akin to a state feedback control law. This
allows for the placement of closed-loop poles in terms of KMP C , enabling the state space
MPC to effectively handle unstable and non-minimum phase systems. This capability
relies on having a sufficiently accurate state space model that represent the plant dynamics
under the necessary conditions of controlability and observability.

Despite the implication that MPC ensures stability even in unstable systems, this
assertion is untrue in constrained scenarios, as optimality does not guarantee stability,
particularly in nonlinear and constrained cases as stated in (MAYNE, 2000). However, it
holds true that the optimal constrained solutions coincide with the unconstrained ones
when any restrictions are activated within the MPC horizon.

The MPC exhibits an intriguing property, particularly evident in the initial con-
troller and consistently observed in subsequent ones. The explicit control law clearly
demonstrates the consideration of all future reference values within the prediction horizon
during input calculation, achieved through the use of the reference gain Ky applied to the
vector of future setpoints in (A.21). This feature offers a significant advantage, especially
2 the eigenvalues λ are obtained by solving det(λI − (A − BKMP C)) = 0.
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in systems with anticipated references, such as robotics and industrial processes. Moreover,
if only the current reference is available to the controller, the vector W is simply the
repetition of this value over the prediction horizon.

A.2 Dynamic Matrix Control

Consider the SISO system with input u[k] as input signal and output y[k] or the
sake of simplicity for initial understanding of the DMC algorithm, The main property
of the DMC is the data-driven model for prediction that can be entirely defined from
the response of a known input signal. Thereby the convolutional model output without
disturbance is given by:

ȳ[k] =
∞∑

i=1
gi∆u[k − i], (A.23)

defining ∆u[k] the input increment at instant k, ȳ[k] the expected nominal output of y[k]
without disturbances, and gj is the effect of the step signal on the output of the system
measured in the instant j ≥ 0. Therefore the convolutional model presented depends only
by the step response coefficients gi which could be achieved by using process data and is
non-parametric, being able to represent any process behavior (SANTOS; NORMEY-RICO,
2023).

A.2.1 DMC Prediction Model

For generalization, the superposition principle is applied to consider the MIMO case.
The multivariable step response from the input r ∈ [1, . . . , m] is defined as gr

k = [g1,r
k . . . gq,r

k ],
in which gl,r

j represent the step response coefficients from a single input r to the output
l ∈ [1, . . . , p], measured at instant j ≥ 0. The MIMO convolutional model can be defined
by simple experiments by applying isolated steps from each input at a time and gathering
the effect of each output, resulting in

ȳl[k + j|k] =
m∑

r=1

∞∑
i=1

gl,r
i ∆ur[k + j − i] (A.24)

A disturbance model is typically defined in the prediction formulation of the MPC
in order to achieve offset-free tracking responses in steady-state considering constant
disturbances (CAMACHO; ALBA, 2013). Assume the prediction error ηl[k] = yl[k] − ȳl[k]
at instant k. A candidate predictor is defined considering a constant prediction error:

yc
l [k + j|k] =

m∑
r=1

∞∑
i=1

gl,r
i ∆ur[k + j − i] + ηl[k], (A.25)
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and rewriting substituting the prediction error:

yc
l [k + j|k] =

m∑
r=1

j∑
i=1

gl,r
i ∆ur[k + j − i] + . . .

· · · +
m∑

r=1

∞∑
i=j+1

gl,r
i ∆ur[k + j − i] −

m∑
r=1

∞∑
i=1

gl,r
i ∆ur[k − i] + yl[k] (A.26)

=
m∑

r=1

j∑
i=1

gl,r
i ∆ur[k + j − i] +

m∑
r=1

∞∑
i=1

(gl,r
j+i − gl,r

i )∆ur[k − i] + yl[k]. (A.27)

Moreover, the candidate predictor can be easily split into the forced and free
response, in a way that the first part depends only by the future input increments, while
the latter depends on the initial output measurement and past inputs. From the premise
that the open-loop system is stable, the approximation (gl,r

j+i − gl,r
i ) ≈ 0 is true for j ≥ Ñl,r,

considering Ñl,r a MPC parameter of the truncation time long enough to oversee the
system dynamic behavior. Then the DMC predictor is given by:

ŷl[k + j|k] =
m∑

r=1

j∑
i=1

gl,r
i ∆ur[k + j − i]︸ ︷︷ ︸

Forced Response

+
m∑

r=1

Ñl,r∑
i=1

(gl,r
j+i − gl,r

i )∆ur[k − i] + yl[k]︸ ︷︷ ︸
Free Response

(A.28)

The following predictor shown in (A.28) is only valid for asymptotically stable
systems. Otherwise, the value (gl,r

j+i − gl,r
i ) does not converges to zero as time goes to Ñl,r

and the predictor can’t withhold the system dynamics. Thus the DMC will not solve the
regulate problem. An extension of the DMC is applied for integrative systems, considering
the approximation (gl,r

j+i − gl,r
i ) ≈ kl as true after the transient time, in which kl is the

velocity gain of the model (SANTOS; NORMEY-RICO, 2023).

For a given response of the output l occurred from the input r within a time horizon
N , the expression is reinterpreted for a matrix form of (A.28). First, consider the vectors

Yl[k] =
[
ŷl[k + 1|k] . . . ŷl[k + N |k]

]⊤
, (A.29)

∆ur[k] =
[
∆ur[k|k] . . . ∆ur[k + Nu − 1|k]

]⊤
, (A.30)

∆Ur[k] =
[
∆ur[k − 1] . . . ∆ur[k − Ñmax]

]⊤
, (A.31)

as the predicted values of output l, the future values of the input increment r, and past
values of the same input respectively. For a generalization of the MIMO system, first
consider the the response matrices of the output l from the input r, Glr and Glr

f :
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Gl,r =


gl,r

1 0 . . . 0
gl,r

2 gl,r
1 . . . 0

... ... . . . ...
gl,r

N gl,r
N−1 . . . gl,r

N−Nu+1

 ,

Gl,r
f =


gl,r

2 − gl,r
1 glr

3 − gl,r
2 . . . gl,r

Ñmax+1 − glr
Ñmax

gl,r
3 − gl,r

1 gl,r
4 − gl,r

2 . . . gl,r

Ñmax+2 − gl,r

Ñmax... ... . . . ...
gl,r

N+1 − gl,r
1 gl,r

N+2 − gl,r
2 . . . gl,r

Ñmax+N
− gl,r

Ñmax

 ,

Thus, the MIMO DMC predictor is


Y1[k]
Y2[k]

...
Yp[k]

 =


G1,1 G1,2 . . . G1,p

G2,1 G2,2 . . . G2,p

... ... . . . ...
Gp,1 Gp,2 . . . Gp,m




∆u1[k]
∆u2[k]

...
∆um[k]

 + . . .

. . . +


G1,1

f G1,2
f . . . G1,p

f

G2,1
f G2,2

f . . . G2,p
f

... ... . . . ...
Gp,1

f Gp,2
f . . . Gp,m

f




∆U1[k]
∆U2[k]

...
∆Um[k]

 +


1y1[k]
1y2[k]

...
1yp[k]

 , (A.32)

or in a reduced form:

Y⃗ [k] = G∆u[k] + G∆U [k] + Y⃗ [k] (A.33)

The DMC predictor algorithm is then expressed in terms of the forced response
matrix G and free response matrix G. Additionally, consider that 1yl[k] is the measured
output repeated N times in a column vector. As mentioned before, the prediction is
only valid for stable system or integrative processes (the last one if an approximation is
done by considering the velocity gain of the model. To handle with this issue, (SANTOS;
NORMEY-RICO, 2023) proposes a filtered predictor that allows to consider unstable
systems for DMC formulation.

A.2.2 Objective Function

The DMC strategy is defined from the optimal control sequence resulted from
the minimization of the optimization problem that considers the future references, the
weighting matrices (R > 0 and Q ≥ 0) and its convex sets (Y,U and ∆U) that describes
the system restrictions, as follows:
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minimize
∆u

N∑
j=1

||ŷ[k + j|k] − yr[k + j]||2Q +
Nu−1∑
j=0

||∆u[k + j|k]||2R, (A.34a)

subject to ŷ[k + j|k] ∈ Y, j ∈ N[1,N ], (A.34b)
u[k + j|k] ∈ U, j ∈ N[0,Nu−1], (A.34c)

∆u[k + j|k] ∈ ∆U, j ∈ N[0,Nu−1], (A.34d)

defining the vector of predicted outputs ŷ[k] = [ŷ1[k] . . . ŷp[k]]⊤ and yr[k] = [yr,1[k] . . .

yr,p[k]]⊤ the output references. Alternatively, considering the vector of future references
W⃗ = [W1 W2 . . . Wp]⊤ for the DMC strategy, such as Wl = [yr,l[k + 1] . . . yr,l[k + N ]]⊤

and yr,l[k] the reference of the output l at instant k. This, way, the minimization problem
(A.34a)-(A.34d) can be rewritten, as follows

minimize
∆u

(Y⃗ − W⃗)⊤Q̄(Y⃗ − W⃗) + ∆u⊤R̄∆u, (A.35a)

subject to Y⃗ ∈ Y, (A.35b)
u ∈ U, (A.35c)

∆u ∈ ∆U. (A.35d)

The optimal control sequence ∆u0 = [∆u[k|k]⊤ . . . ∆u[k+Nu −1|k]⊤ is the solution
of the problem stated in (A.35a)-(A.35d) which is weighted by the future errors and the
control effort, considering the tuning parameters Q and R as quadratic and positive definite
matrices, which are inserted in the augmented matrices

Q̄ =


Q1 0N . . . 0N

0N Q2 . . . 0N

... ... . . . ...
0N 0N . . . Qp

 , (A.36)

R̄ =


R1 0Nu . . . 0Nu

0Nu R2 . . . 0Nu

... ... . . . ...
0Nu 0Nu . . . Rm

 . (A.37)

Differently from the state space formulation, caution must be taken during the
DMC design, considering the matrices Qi and Ri quadratic matrices with the ponder value
for the selected output and input respectively, having the appropriated size for each case.

Defining the sequence of future inputs as u = [u1[k] . . . um[k]] such as ur[k] =
ur[k − 1] + ∆ur[k|k] for any input of the system, the selected input to the system is defined
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as the first element of each optimal input sequence after solving the optimization problem
stated in (A.34a)-(A.34d) or (A.35a)-(A.35d) (which are equivalent), and the optimization
process occurs again in the next control loop for a new measured output and past inputs
following the receding horizon principle.

A.3 Generalized Predictive Control
Defining the discrete dynamic system model from the continuous transfer function

P (s) of the process to be controlled, where Ts defines the sampling period, u[k] = u(kTs),
x[k] = x(kTs), u(t) = u(kTs) for kTs ≤ t < (k + 1)Ts, the nominal zero-order hold
discretized model is defined by

X(z) = P(z)U(z) + Hd(z)E(z), (A.38)

where z denotes the unilateral Z-transform, P(z) = Z{L−1{P(s)/s}|t=kTs} is the zero-
order hold discretization of P(s) = H(s)B, and Hd(z) is a disturbance model that can be
directly defined in discrete-time as shown in (ÅSTRÖM; WITTENMARK, 2013, Chapter
10).

The Controlled Auto Regressive and Integrated Moving Average (CARIMA) model
is an established representation used in GPC applications. Initially consider a Matrix
Fraction Description given by P(z) = A−1(z−1)B(z−1), then the Controller Auto-Regressive
Moving-Average (CARMA) model is given by

A(z−1)X(z) = B(z−1)U(z) + A(z−1)Hd(z)E(z), (A.39)

excluding any input delay of the system. If a dead-time is considered, the model is simply
modified by adding a discrete shift operator z−d at each input fraction described in B(z−1)
where d is the dead-time of the system.

The CARIMA model is obtained from the disturbance model defined by Hd(z) =
A−1(z−1)T(z−1)/(1 − z−1), where T(z−1) is freely specified. Notice that the process open-
loop poles are preserved in the disturbance model and an implicit integrative action
was included to represent constant disturbance effect. In general, e(kts) = Z−1{E(z)} is
assumed to be a white noise with null mean and T(z−1) may be used to modified the
white noise properties.

Moreover,

A(z−1)(1 − z−1)X(z) = B(z−1)(1 − z−1)U(z) + T(z−1)E(z), (A.40)

or simply
Ã(z−1)X(z) = B(z−1)∆U(z) + T(z−1)E(z), (A.41)
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where Ã(z−1) = A(z−1)(1 − z−1), and ∆U(z) = (1 − z−1)U(z) as discussed in
(CAMACHO; ALBA, 2013, Chapter 4). If T(z−1) ̸= I, then the GPC is commonly
identified as GPC-T (CAMACHO; ALBA, 2013, Chapter 4).

Now assume that Ã(z−1), B(z−1), and T(z−1) are given by

Ã(z−1) = In×n + Ã1z
−1 + ... + Ãna+1z

−na−1, (A.42)
B(z−1) = z−1(B0 + B1z

−1 + ... + Bnb
z−nb), (A.43)

T(z−1) = T0 + T1z
−1 + ... + Tntz

−nt . (A.44)

In this representation, na + 1, nb, and nt defines the polynomial order of the CARIMA
model.

A classic solution of the GPC (or GPC-T) prediction is defined by the recursive
solution of the Diophantine equation

In×n = Ej(z−1)Ã(z−1) + z−jFj(z−1), (A.45)

and the prediction of x[k + j|k] is taken based on the elements of Ej(z−1) and Fj(z−1),
leading to :

x̂[k + j|k] = Fj(z−1)x[k] + Ej(z−1)B(z−1)∆u[k + j − 1] + Ej(z−1)e[k + j], (A.46)

such as the term Ej(z−1)B(z−1)∆u[k + j − 1] can be separated in future inputs to be
chosen by the optimal solution and past inputs. In other words, since the Diophantine
equation does not depend on the current states of the plant, the GPC prediction is simply
separated from the measured state (or output if a proper linear transformation is applied,
i.e. y[k] = Cx[k]) and past inputs - defining the free response evolution of the system, and
future input increments which summarizes the forced response in (A.46).

Alternatively, The GPC-T predictions could be given recursively based on CARIMA
polynomials

x̂[k+j|k] = −
na+1∑
ℓ=1

Ãℓx[k+j −ℓ|k]+
nb∑

ℓ=0
Bℓ∆u[k−1+j −ℓ|k]+

nt∑
ℓ=0

Tℓe[k+j −ℓ|k], (A.47)

where:

1. x̂[k + j|k] represents a prediction for x̂[k + j] = x((k + j)Ts) given the information
available at k;

2. x̂[k + j|k] = x[k] if j ≤ 0;

3. ∆u[k + j|k] = u[k + j|k] − u[k + j − 1|k] is the expected control increments;
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4. ∆u[k + j|k] = ∆u[k + j] = u[k + j] − u[k + j − 1] if j < 0;

5. e[k + j − ℓ|k] = e[k + j − ℓ] if j ≤ ℓ, and;

6. e[k + j − ℓ|k] = 0 if j > ℓ.

The vector [x̂[k + 1|k], x̂[k + 2|k], ..., x̂[k + N |k]] defines a finite horizon prediction
window and N is the prediction horizon.

Due to the linearity of the prediction model, the prediction is separated in terms
of its free and forced response, that is x̂[k + j|k] = xfree[k + j|k] + xforced[k + j|k], where
xfree[k + j|k] is given by the prediction evolution without future control variation and
xforced[k+j|k] is the isolated effect of the future control variation. To distinguish both terms,
firstly define the discrete time step function given by 1j = 0, j < 0, and 1j = 1, j ≥ 0.
Therefore, from xfree[k + i|k] = x[k + i], i ≤ 0 and xforced[k|k] = 0n×n, then the prediction
model may be expressed as follows

xfree[k + j|k] = −
na+1∑
ℓ=1

Ãℓxfree[k + j − ℓ|k] +
nb∑

ℓ=0
1ℓ−jBℓ∆u[k − 1 + j − ℓ] + . . .

· · · +
nt∑

ℓ=0
1ℓ−jTℓe[k + j − ℓ], (A.48)

xforced[k + j|k] =
nb∑

ℓ=0
1j−ℓ−1Bℓ∆u[k − 1 + j − ℓ|k]. (A.49)

Actually, only u[k|k], u[k + 1|k], .... u[k + N − 1|k] are considered in the forced response.

The forced responses from the control increment to the output prediction are
equivalent (GPC, DMC, State Space) as the nominal input-output relationships do not
depend on the disturbance model. On the other hand, the free response is not unique due to
the disturbance effect. In any case, the prediction vector (Xk = [x̂⊤[k+1|k] ... x̂⊤[k+N |k]]⊤)
may be decomposed as follows

Xk = X free
k + G∆uk, (A.50)

where G is a suitable matrix which can be defined offline either experimentally or analyti-
cally, ∆uk = [∆u⊤[k|k] ... ∆u⊤[k + N − 1|k]]⊤, and X free

k = [xfree⊤[k + 1|k] ... xfree⊤[k +
N |k]]⊤. In the general case, a reduced control horizon is commonly used (Nu < N) with
∆u[k + Nu|k] = 0, ∆u[k + Nu + 1|k] = 0, ...., ∆u[k + N − 1|k] = 0 without losing the
generality of (A.50).

An output for the linearized model may be given by y[k] = Cx[k], where C ∈ Rp×n

defines a linear combination of the displacement vector and p is the output dimension.
This kind of approach is particularly useful for underactuated systems (n < m) as the
tracking objective may be expressed with respect to the output. It is commonly assumed
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p = m in order that the output (y[k] ∈ Rp) can effectively track the desired output target
(r[k] ∈ Rp). Then, the state prediction can be converted to output prediction as follows

Yk = CX free
k + GC∆Uk, (A.51)

where GC = CG and C is given by

C =


C 0p,n ... 0p,n

0p,n C ... 0p,n

... ... . . . ...
0p,n 0p,n ... C

 . (A.52)

In some applications, only y[k] is measured while x[k] is not available, which defines
an output feedback control strategy. Then, Y free

k = CX free
k can be directly computed from

the alternative factorization defined by CP(z) = A−1
C (z−1)BC(z−1) where

yfree[k + j|k] = −
na+1∑
ℓ=1

ÃC,ℓyfree[k + j − ℓ|k] +
nb∑

ℓ=0
1ℓ−jBC,ℓ∆u[k − 1 + j − ℓ] + . . .

· · · +
nt∑

ℓ=0
1ℓ−jTC,ℓe[k + j − ℓ], (A.53)

where the modified CARIMA polynomials are described as follows

AC(z−1)(1 − z−1) = In×n + ÃC,1z
−1 + ... + ÃC,na+1z

−na−1, (A.54)
BC(z−1) = z−1(BC,0 + BC,1z

−1 + ... + BC,nbz
−nb), (A.55)

also yfree[k + j|k] = y[k + j], j < 0, and TC,ℓ(z−1) is a disturbance model that defined the
GPC-T. The choice TC,ℓ(z−1) = Ip is commonly used in the GPC. Moreover, GC = CG
can be directly obtained from the step response of PC(z) = CP(z).

A.3.1 Computation of the forced response

Considering the prediction vector Xk defined in (A.50), and the vector of future
inputs ∆uk = [∆u⊤[k|k] ... ∆u⊤[k + N − 1|k]]⊤. Assume that gr

k represents the step-
response vector at instant k from the input r to the state vector with gk = [g1

k ... gm
k ]

where k = 0 defined the initial instant. Such vector could be either obtained analytically
or measured from a experimental framework. As the model is linear and time-invariant,
then

G =


g1 0n,m ... 0n,m

g2 g1 ... 0n,m

... ... . . . ...
gN gN−1 ... g1

 , (A.56)
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where G ∈ RN ·n×N ·m.

For the sake of generality, if the control horizon (Nu) is smaller than the prediction
horizon (N), then ∆uk = [∆u⊤[k|k] ... ∆u⊤[k + Nu − 1|k]]⊤ and G ∈ RN ·n×Nu·m is given
by

G =


g1 0n,m ... 0n,m

g2 g1 ... 0n,m

... ... . . . ...
gN gN−1 ... gN−Nu+1

 . (A.57)

Notice that G may be either obtained from an experimentally or computed from a step-
test simulation with the zero-order hold discretization of P(s) = H(s)B, namely P(z).
Furthermore, if Nu = N , then (A.57) becomes equivalent to (A.56).

If only the output measurement (y[k]) is available, then the step response of
PC(z) = CP(z) can be used to obtain GC = CG. The output step response is represented
by gout,k = [g1

out,k ... gm
out,k], then

GC =


gout,1 0n,m ... 0n,m

gout,2 gout,1 ... 0n,m

... ... . . . ...
gout,N gout,N−1 ... gout,N−Nu+1

 . (A.58)

Similarly from other strategies (state space and DMC), the control law is defined
by minimizing a cost function that considers the quadratic future errors and the control
effort. Through the optimal sequence of control inputs, the control law is set by selecting
the first sequence element, respecting the receding horizon principle and a new optimal
vector is defined once again in every loop.

A.3.2 Objective function

The GPC control law is not different from the others presented in this work. The
objective function here is simmilar from the presented in the optimization problem (A.34d)
with the difference of the organization of the sequence of future inputs and estimation of
future states. For that, consider the cost function that penalizes the control effort by means
of the variance of the input increment signal and the quadratic error between predicted
outputs and future references.

J(N, y[k], W , ∆u, ∆Uk) =
N∑

j=1
||ŷ[k + j|k] − yr[k + j]||2Q +

N−1∑
j=0

||∆u[k + j|k]||2R, (A.59)

or simply in a vector form
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J(y[k], W , ∆u, ∆Uk) = (Yk − W)⊤Q(Yk − W) + ∆u⊤R∆u, (A.60)

such as the predicted outputs is given by the GPC prediction model (A.51). Similar with
the DMC algorithm, the cost function depends on the values of the past inputs ∆Uk since
the free response depends on such values and composes the estimated future values of the
output.

A.3.3 GPC Receding Horizon Control Law

Finally, the GPC strategy is reduced to the same optimization problem as the
other strategies shown until now,

minimize
∆u

(Yk − W)⊤Q(Yk − W) + ∆u⊤R∆u, (A.61a)

subject to Yk ∈ Y, (A.61b)
u ∈ U, (A.61c)

∆u ∈ ∆U, (A.61d)

which gives the sequence of optimal inputs ∆u0 = [∆u0[k|k]⊤ . . . ∆u0[k+N−1|k]⊤]⊤

that minimize the cost function under the restrictions imposed. The receding horizon
principle is applied by selecting only the first element of each input increment. The control
law at a given time ki is then defined as

u[ki] = κGP C(y[ki], W) = u[ki − 1] + ∆u0[ki|ki], (A.62)

and the whole process of prediction and minimization is restarted in each control loop.
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