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The global health systems are currently unable to adequately meet the high demand
for care for people with neurological disorders. This impacts the quality of treatment
offered, leading to issues such as the prescription of improper medications, difficulty
accessing treatment, late detection of diseases, and more. Neurological disorders in-
clude conditions such as dementia, epilepsy, Alzheimer’s, Parkinson’s, multiple sclero-
sis, and others. To improve the treatment of these diseases, devices for the acquisi-
tion of electrical biosignals have been developed to provide greater accuracy, patient
comfort, and, in some cases, lower costs. Recognizing this scenario, we aimed to in-
vestigate the possibility of using transfer learning among artificial neural networks to
address these problems. Additionally, we attempted to reduce the mathematical com-
plexity of electrical biosignal data by transforming it from time domain to frequency
domain, representing it as algebraic functions rather than sine functions. Based on
these ideas, we explored the potential of transfer learning to enhance the predictive
accuracy of a neural network model processing diverse electrical biosignals with non-
identical features and label spaces in a frequency domain. We integrated similarity
analysis between biosignals into our methodology to prevent negative transfer learn-
ing using the dynamic time warping (DTW) technique. We selected the long short-term
memory (LSTM) neural network to develop the proposed architecture, and the pub-
lic datasets used for the experiment were the TUEG EEG Corpora (electroencephalo-
gram), ECG Heartbeat Categorization (electrocardiogram), and EMG Classify Gestures
(electroneuromyography). Using the baseline outcomes as a reference, we selected
the ECG as the source domain. Then, we calculated the similarity between the biosig-
nals, trained the model with the features identified as having the lowest distance, and
transferred the weights and bias to the EEG and EMG models to process their own
dataset, named the target domain. In summary, we present two scenarios to experi-
ment and explore the potential of an effective transfer learning application with het-
erogeneous electrical biosignals in the frequency domain, from ECG to EMG and ECG
to EEG, respectively. We discovered a promising outcome in the first scenario when
the source and target datasets were balanced, even with a small target dataset. In
the second context, we observed a discreet decrease in performance, also referred to
as negative transfer learning, when utilizing a balanced source domain with an imbal-
anced and robust target dataset. Although we encountered some limitations, such as
the high computational cost of calculating the similarity between the biosignals and
the preprocessing strategy applied, among others detailed in this work, our experi-
ment demonstrated the potential for transferring learning between neural networks
processing heterogeneous electric biosignal datasets.
Keywords: Transfer learning, Electrical Biosignals, Recurrent Neural Network (RNN).
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RESUMO

Os sistemas de saúde globais atualmente não conseguem atender adequadamente à alta
demanda por cuidados de pessoas com distúrbios neurológicos. E essa lacuna impacta na
qualidade do tratamento oferecido, ocasionando problemas como a prescrição de medica-
mentos inadequados, dificuldade de acesso ao tratamento, detecção tardia de doenças,
entre outros. Os distúrbios neurológicos incluem condições como demência, epilepsia,
Alzheimer, Parkinson, esclerose múltipla, entre outros. Para melhorar o tratamento
dessas doenças, dispositivos têm sido desenvolvidos para a aquisição de biossinais elétricos
visando obter biosinais com maior precisão, conforto ao paciente e, em alguns casos, custos
mais baixos. Reconhecendo esse cenário, nosso objetivo foi investigar a possibilidade de
usar a transferência de conhecimento entre redes neurais artificiais para abordar os proble-
mas mencionados. Além disso, tentamos reduzir a complexidade matemática dos dados de
biossinais elétricos, transformando-os do domínio do tempo para o domínio da frequência
podendo assim representá-los através de funções algébricas em vez de funções senoidais.
Com base nessas ideias, exploramos o potencial da transferência de conhecimento para
melhorar a precisão preditiva de um modelo de rede neural que processa biossinais elétri-
cos com características e rótulos não idênticos. Para evitar a transferência negativa,
integramos a análise de similaridade entre biossinais em nossa metodologia usando a
técnica de dynamic time warping (DTW). Selecionamos a rede neural long short-term
memory (LSTM) para desenvolver a arquitetura proposta, e os conjuntos de dados públi-
cos usados no experimento foram o TUEG EEG Corpora (eletroencefalograma), ECG
Heartbeat Categorization (eletrocardiograma) e EMG Classify Gestures (eletromiografia
para classificação de gestos). Usando os resultados dos modelos base como referência,
selecionamos o ECG como domínio de origem. Em seguida, calculamos a similaridade
entre os biossinais, treinamos o modelo com as características identificadas com a menor
distância e transferimos os pesos e bias para os modelos EEG e EMG processarem seus
próprios conjuntos de dados, chamados de domínio alvo. Em resumo, apresentamos dois
cenários diferentes para experimentar e explorar o potencial de uma aplicação eficaz de
aprendizado de transferência com biossinais elétricos heterogêneos no domínio de frequên-
cia, do ECG para o EMG e do ECG para o EEG, respectivamente. No primeiro cenário,
descobrimos um resultado promissor quando os conjuntos de dados de origem e destino
estavam equilibrados, mesmo com um conjunto de dados de destino pequeno. No segundo
contexto, observamos uma diminuição discreta no desempenho, também referida como
transferência de aprendizado negativa, ao utilizar um domínio de origem equilibrado com
um conjunto de dados de destino desequilibrado e robusto. Embora tenhámos encontrado
algumas limitações, como o alto custo computacional para calcular a similaridade entre
os biossinais e a estratégia de pré-processamento aplicada, entre outras detalhadas neste
trabalho, nosso experimento demonstrou o potencial para realização da transferência de
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aprendizado entre redes neurais que processam dados bioelétricos heregeneous.

Palavras-chave: Transferência de Aprendizado, Biosinais Elétricos, Rede Neural
Recorrente (RNN).



ABSTRACT

The global health systems are currently unable to adequately meet the high demand
for care for people with neurological disorders. This impacts the quality of treatment
offered, leading to issues such as the prescription of improper medications, difficulty ac-
cessing treatment, late detection of diseases, and more. Neurological disorders include
conditions such as dementia, epilepsy, Alzheimer’s, Parkinson’s, multiple sclerosis, and
others. To improve the treatment of these diseases, devices for the acquisition of electrical
biosignals have been developed to provide greater accuracy, patient comfort, and, in some
cases, lower costs. Recognizing this scenario, we aimed to investigate the possibility of
using transfer learning among artificial neural networks to address these problems. Addi-
tionally, we attempted to reduce the mathematical complexity of electrical biosignal data
by transforming it from time domain to frequency domain, representing it as algebraic
functions rather than sine functions. Based on these ideas, we explored the potential of
transfer learning to enhance the predictive accuracy of a neural network model processing
diverse electrical biosignals with non-identical features and label spaces in a frequency
domain. We integrated similarity analysis between biosignals into our methodology to
prevent negative transfer learning using the dynamic time warping (DTW) technique. We
selected the long short-term memory (LSTM) neural network to develop the proposed ar-
chitecture, and the public datasets used for the experiment were the TUEG EEG Corpora
(electroencephalogram), ECG Heartbeat Categorization (electrocardiogram), and EMG
Classify Gestures (electroneuromyography). Using the baseline outcomes as a reference,
we selected the ECG as the source domain. Then, we calculated the similarity between
the biosignals, trained the model with the features identified as having the lowest distance,
and transferred the weights and bias to the EEG and EMG models to process their own
dataset, named the target domain. In summary, we present two scenarios to experiment
and explore the potential of an effective transfer learning application with heterogeneous
electrical biosignals in the frequency domain, from ECG to EMG and ECG to EEG,
respectively. We discovered a promising outcome in the first scenario when the source
and target datasets were balanced, even with a small target dataset. In the second con-
text, we observed a discreet decrease in performance, also referred to as negative transfer
learning, when utilizing a balanced source domain with an imbalanced and robust target
dataset. Although we encountered some limitations, such as the high computational cost
of calculating the similarity between the biosignals and the preprocessing strategy ap-
plied, among others detailed in this work, our experiment demonstrated the potential for
transferring learning between neural networks processing heterogeneous electric biosignal
datasets.

Keywords: Transfer learning, Electrical Biosignals, Recurrent Neural Network (RNN).
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1
“We all are in pursuit of one collective destiny. We all need just one. One dream. One day. One hour.

One minute. One second. One moment.” Sage Hasson

INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Neurological and mental disorders, along with those caused by substance use, ac-
count for 13% of the global disease burden. These disorders include dementia, epilepsy,
Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis, to cite a few (WHO,
2021). Given the widespread prevalence of these diseases and the critical importance
of proper treatment, it is essential to develop robust global health systems capable of
adequately treating these conditions. In response to this scenario, numerous research
projects have investigated brain functions to understand how neurological, mental, and
substance use disorders manifest in the body (PISANO et al., 2020; ABDOLLAHPOUR
et al., 2020; SHALBAF; BAGHERZADEH; MAGHSOUDI, 2020). These studies also
explore the correlations between brain functions and various psychological and physio-
logical factors, including musical stimulation (ER; ÇIĞ; AYDILEK, 2021) and emotional
responses (LI et al., 2020), as well as genetic and behavioral predispositions for alcoholism
(ZHANG et al., 2020b). Additionally, some studies address the problem of biomedical
signal processing, focusing on the connections and interactions among various types of
biosignals to better understand and interpret them (PHAN et al., 2020). Despite the
interest in this research area, access to data such as electroencephalogram (EEG), elec-
trocardiogram (ECG), electroneuromyography (EMG), electrooculography (EOG) and
others is highly restricted due to its classification as sensitive data (KARI; SCHURIG;
GERSCH, 2024).

The restrictions on data access are usually regulated by each country’s official medical
board, which sets rules for accessing patient profiles. Recently, some countries and states,
including Brazil1, California2, and the European Union3, have enacted specific laws to

1Brazil’s Law <http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709compilado.
htm>

2California’s Law <https://www.caprivacy.org/annotated-cpra-text-with-ccpa-changes/>
3EU’s Law <https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&

1
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protect personal data, including health data. There are also additional limitations associ-
ated with the global health system for neurological, mental, and substance use disorders.
These include the low number of specialized and general health professionals to meet the
demand, the poor quality of treatments, the lack of human and equipment resources,
and their inequitable distribution worldwide. These issues result in the late detection of
diseases and their stages of development, delayed onset of treatment, and the prescription
of inappropriate medications for patients’ needs (WHO, 2021). The legal restrictions on
collecting, processing, and sharing sensitive data, coupled with the high cost of hiring
qualified and specialized health professionals to evaluate and annotate the results, are
factors that directly impact the costs of the biosignal data (CAO et al., 2019; TAN et
al., 2019).

Given the aforementioned context, many researchers are exploring various approaches
to mitigate the data restrictions and achieve more precise results in artificial intelligence
methods for automatically classifying biosignals. One of the solutions is transfer learning
(ZHANG et al., 2021; XU et al., 2019), which is recommended in contexts with insufficient
data available to train a neural network and high costs associated with collecting and
annotating datasets. This approach consists of techniques based on reusing pre-trained
parameters from neural networks to improve performance in classification, regression,
segmentation, and clustering tasks (TAN et al., 2018). The pre-trained parameters are
a set of values that the neural network learns during its training phase. These include
weights and biases, representations of the layers within the network, the overall struc-
ture of the network, and hyperparameters. These pre-trained parameters can be used,
individually or together, to improve another neural network’s performance by transfer-
ring this learned knowledge. This set of parameters is used to fine-tune the function
f(.), which predicts the likelihood (or probability) of a specific event happening. For
instance, given a piece of data, xi, from a dataset, the function f(.) can estimate the
chance that a certain label y (which represents the event) will occur (PAN, 2014). It can
be expressed as the conditional probability P (X|Y ), which shows the probability of the
data X given the event Y (WAN et al., 2021). One dataset, referred to as the source
domain, is used to train a neural network to recognize and generalize features, thereby
providing the parameters for transfer. The other dataset is the target domain, which
the neural network will process using the pre-trained parameters. When the source and
target domains consist of the same data with identical features and labels, this is termed
homogeneous transfer learning. Conversely, when the datasets involve diverse collection
processes, different features, distinct labels, or represent different data, it is known as
heterogeneous transfer learning (WAN et al., 2021). In heterogeneous transfer learning,
the focus lies in understanding the characteristics of different datasets, establishing con-
nections among them, transferring pre-trained parameters to the target neural network,
and improving its outcomes.

In the context of biosignals, data can be classified according to their physical char-

from=EN>
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Figure 1.1: This sequential process describes the transformation of ECG, EMG, and
EEG electrical biosignals from the time domain to the frequency domain, followed by
the calculation of similarities between ECG and EMG and between ECG and EEG. This
process results in two datasets comprising the most similar ECG waves from ECG-EMG
and ECG-EEG.

acteristics, such as chemical, electrical, mechanical, and others (COHEN, 2006). We
focused our attention on electrical biosignals. Once the electrical biosignals are available
for research and the type of transfer learning – whether homogeneous or heterogeneous
– is defined, it is important to determine the domain in which the data will be analyzed.
There are three possible domains to analyze electrical biosignals: time, frequency, and
time-frequency. To better understand time domain behavior, sinusoidal functions can
be employed, whereas frequency domain analysis can utilize algebraic functions, which
often involve simpler equations compared to those in the time domain. Time-frequency
analysis employs both sinusoidal and algebraic functions. All studies referenced in this
dissertation that involve transfer learning are either in the time or time-frequency domain
in their investigations. In these studies, we have also observed limited experiments with
non-identical datasets. Presumably, this occurs based on the state-of-the-art assumption
in transfer learning that source and target datasets must lie within the same subject
area and have the same event distribution to enable effective transfer (WAN et al., 2021;
CHUANQI et al., 2018; WEISS; KHOSHGOFTAAR; WANG, 2016; PAN; YANG, 2010).
Additionally, we did not find, in the literature, a robust analysis regarding the negative
effects of transfer learning on their experiments, which usually occur when it leads to the
degradation of the target neural network performance (CAO et al., 2019; WAN et al.,
2021). This discussion is relevant for identifying situations where transfer learning should
not be conducted and/or indicating good practices to avoid negative transfer.

The perception of the previously mentioned shortcomings guided us to explore the
potential of heterogeneous transfer learning with different electrical biosignals. Our ini-
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tial step was to select three types of electrical biosignals: ECG Heartbeat Categorization
(MOODY; MARK, 2001), EMG Gesture Classification (ZHAI et al., 2017), and TUEG
EEG Corpora (OBEID; PICONE, 2016). We then decided that the analysis of these
biosignals would be conducted in the frequency domain to achieve a mathematical sim-
plification of wave representations, thereby facilitating their evaluation by a long short-
term memory (LSTM) model. We employed the discrete Fourier transform technique to
convert the biosignals from the time domain to the frequency domain. The next step was
to determine which dataset could be used to train an LSTM model that would provide
parameters to the other LSTM model processing the target domain.

In this process of selecting source and target datasets, our strategy was guided by
baseline outcomes. The dataset that was better mapped by the LSTM baseline, which
produced superior outcomes, was designated as the source domain, while others were as-
signed as the target domain. Consequently, due to the superior outcomes observed with
the ECG LSTM baseline, we selected the ECG dataset as the source domain, with EMG
and EEG designated as the target domains. After this selection, we applied the similarity
analysis method between the source and target domains to select the most similar ECG
waves to train the ECG LSTM model. That approach, named similarity analysis, was
conducted using the dynamic time warping (DTW) method due to its superior distance
measurement capabilities, which result from its consideration of variations in the waves’
time and amplitude. DTW resolves distortions and shifts in time series data by non-
linearly aligning the sequences, ensuring similar patterns are matched even if they occur
at different times (GIORGINO, 2009). We conducted two similarity comparisons: one
between ECG and EMG biosignals and another between ECG and EEG biosignals. Fol-
lowing this process, we created two new ECG datasets, each comprising the most similar
waves identified from the ECG-EMG and ECG-EEG comparisons (see Figure 1.1). This
process enabled us to observe how lower distances, indicating high similarity between the
biosignal waves, contributed to an improved understanding and generalization of biosig-
nals by the LSTM model and mitigated the negative transfer effects in our two transfer
learning scenarios. Finally, we trained two LSTM models, each using one of these ECG
datasets generated through the similarity comparison process, and implemented hetero-
geneous transfer learning.

We chose to use a model reuse strategy to implement the transfer learning. It involves
the reuse of all weights, biases, and parameters from all layers of the pre-trained LSTM
model, as illustrated in Figure 1.2. Reusing model parameters allowed us to capitalize
on previously acquired knowledge, reducing the need for extensive labeled data in the
target domain. This strategy facilitated the efficient configuration of neural network
architectures for novel tasks, thereby enhancing their ability to generalize and improve
overall performance. The transfer learning from ECG to EMG demonstrated positive
results, indicating a successful process. In contrast, transfer learning from ECG to EEG
exhibited a slight decline in performance, indicative of negative transfer. This outcome
suggests that state-of-the-art concepts in transfer learning may be extended by identifying
common characteristics across heterogeneous data. Further validation of this extension
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Figure 1.2: Two LSTM neural networks were trained using the most similar ECG datasets
identified during the similarity analysis, followed by the application of a transfer learning
approach using the reuse model strategy. This process involved transferring the trained
LSTM architecture, including its layers, weights, and biases, to process the EMG and
EEG biosignals in the frequency domain.

can be achieved through future complementary studies.

1.2 RESEARCH QUESTIONS

We formulated the following research question:

Does transfer learning between neural network models processing heterogeneous electrical
biosignals in frequency domain have the potential to increase the predictive accuracy of
the target model?

Additionally, we also addressed the following secondary questions:

Question 01: In which scenarios did negative transfer occur?

Question 02: Can processing data in the frequency domain mitigate the effect of
unbalanced data?

Question 03: Can the evaluation of similarity between the signals lead to gains in
the accuracy of the target model?

1.3 CONTRIBUTIONS

The main contributions of our research are as follows: We present an exploratory
study on heterogeneous transfer learning using three distinct electrical biosignal datasets
(ECG, EMG, and EEG) in the frequency domain. In this context, our findings suggest
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that it is feasible to apply transfer learning between neural networks processing different
types of electrical biosignals, particularly between ECG and EMG. Additionally, our
work indicates that processing data in the frequency domain can mitigate the effects of
unbalanced data; however, it was not sufficiently effective to avoid slight negative transfer
learning in the ECG-EEG scenario. Finally, our study highlights that the similarity
analysis did not significantly enhance the accuracy of the target models.

1.4 CHAPTER MAP

The next chapters are organized as follows:

Chapter 2 explains how the concepts of transfer learning were developed, defines
different transfer learning models, describes the characteristics of electrical biosignals,
details electroencephalogram, electrocardiogram, and electromyography biosignals, and
presents a literature review of transfer learning with electrical biosignals.

Chapter 3 describes our research process, detailing the methodology, baselines, and
measures used.

Chapter 4 describes the execution of the experiment phases, its outcomes, and the
analysis of the process and results.

Chapter 5 presents the concluding remarks, summarizing the significant learnings
achieved through this research and suggesting future work.
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2
“Education is our passport to the future, for tomorrow belongs to the people who prepare for it today.”
Malcolm X

BACKGROUND

2.1 TRANSFER LEARNING

Transfer learning encompasses a set of techniques that enable neural networks to
achieve enhanced performance by utilizing previously acquired knowledge, represented
through weights, biases, layers, the overall structure of the network, and hyperparameters
(WANG; YANG, 2019). Within this process, a source model is trained to recognize
information from one or more source domain datasets. The parameters acquired by the
source neural network model will subsequently be transferred, individually or collectively,
to a target neural network, aiming to facilitate the extraction of information from the
target domain (WEISS; KHOSHGOFTAAR; WANG, 2016). By leveraging this approach,
transfer learning enhances the reuse of pre-trained parameters across disparate domains.
This paradigm challenges the conventional assumption that data must reside within the
same feature space and possess an identical distribution to facilitate transfer. In contrast,
traditional concept maintain these assumptions as true, thereby limiting the applicability
of transfer learning techniques in real-world scenarios (HE; WU, 2020). In practice to
this view, it is not feasible to ensure a high level of equality between different application
domains due to the variability in projects, their objectives, and their data collection
methods.

2.1.1 Notations and definitions

We will explain the notations and definitions presented by Pan e Yang (2010), which
will help us understand the purpose of each element, as illustrated in Figure 2.1, and how
transfer learning processes them. The elements are as follows:

• Domain(D) - two elements express it: the feature space S and the marginal prob-
ability distribution P(X ), where S = {x1, x2, . . . , xn} ∈ X. The xi represents the
items that compose the feature space. In other words, xi is the i-th feature vector

7
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Figure 2.1: The components of transfer learning include the feature space, feature vector,
label space, and predictive function. The feature space corresponds to specific features of
the data. Feature vectors are represented as points in a multi-dimensional space, where
each point corresponds to a data instance with particular features. The label space is
the set of possible output labels for classification. The predictive function is the function
that maps feature vectors to their corresponding labels.

(instance) in the feature space. The marginal probability distribution is the prob-
ability distribution of the feature vector contained in the subset. It demonstrates
how the feature space’s data is distributed and allows us to explore the interre-
lationship between each feature in a domain (ASSUNCAO, 2021). To illustrate,
assume that our learning task is to classify epilepsy seizure phases using electroen-
cephalogram (EEG) scans. In the EEG dataset, each measured signal parameter is
a feature, so X is the space for all parameters in the set, where xi is the i-th feature
that correlates with the seizure phases. As a result, the domain representation is
D = {X, P (X)}.

• Task(T ) - two elements define the task: the label space Y and the predictive func-
tion f(.). Therefore, the representation of the task is T = {Y, f(.)}. The training
process of a model aims to learn how to determine the elements of the task, con-
sisting of pairs {xi, yi} where xi ∈ X and yi ∈ Y . The function f(.) can predict the
corresponding label of a new instance x with f(x). In summary, the function f(.)
receives a new instance x to infer the corresponding label with f(x). In a prob-
abilistic view, P(Y|X ) represents the function f(.), denoting the probability that
Y occurs under the condition X (conditional probability) (WAN et al., 2021). For
example, Y represents the states of an epileptic attack (GAO et al., 2020). Then,
a new instance x is provided to the function f(x) to predict the epileptic seizure
phase.

In possession of these notations, we can define the source domain (DS) and target
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domain (DT ) as:

DS = {(xS1, yS1), ..., (xSn, ySn)} (2.1)

DT = {(xT 1, yT 1), ..., (xT n, yT n)} (2.2)

in Equation 2.1, xSi
∈ XS and is the i-th data instance of DS . Just as ySi

∈ YS and
represents the class label for xSi

. We have a similar correspondence in Equation 2.2,
where xTi

∈ XT and is the i-th data instance of DT as well as yTi
∈ YT and describes

the class label for xTi
. Furthermore, TS represents the source task, TT , the target task,

fS(.), the source prediction function, and fT (.), the target prediction function (WEISS;
KHOSHGOFTAAR; WANG, 2016). Given this information, we can formally present the
main definition of transfer learning:

Transfer Learning: Given a source domain DS and learning task TS , a target
domain DT and learning task TT , transfer learning intends to help enhance
the learning of the target predictive function fT (.) in DT , using knowledge in
DS and TS , where DS ̸= DT , or TS ̸= TT (PAN; YANG, 2010).

Formally, given a domain D = {X, P (X)}, this definition specifies the condition
where DS ̸= DT assumes either XS ̸= XT or P(XS) ̸= P(XT ). Similarly, given a task T =
{Y, P (Y |X)} the condition that TS ̸= TT implies either YS ̸= YT or P(YS |XS) ̸= P(YT |XT )
(WEISS; KHOSHGOFTAAR; WANG, 2016).

Transfer learning can be applied to various real-world scenarios. The simplest sce-
nario involves a source domain DS and a target domain DT , as illustrated in Figure 2.2.
More complex structures can be modeled by incorporating additional source domains.
Consequently, transfer learning proposal have facilitated the use of data with different
spatial distributions or resources, enhancing the potential for parameters reuse among
models. This approach reduces the distance between the source and target domains and
ensures the sharing of similarities based on their feature spaces and/or labels (WAN et
al., 2021).

2.1.2 Heterogeneous transfer learning

Based on the previous concepts, Pan e Yang (2010) proposed three questions to ana-
lyze the feasibility of the transfer: What knowledge should be transferred? How can the
transfer be achieved? When is it appropriate to perform the transfer? The first question
guides us in analyzing the domains and tasks to identify the type of knowledge and what
can be transferred. The second question pertains to the selected transfer technique. Fi-
nally, the third question involves evaluating whether the learned parameters should be
shared across domains or tasks in the proposed scenario. If, after this analysis, we decide
to share incompatible knowledge between the source and target domains, the process
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Figure 2.2: The transfer learning process representation: training a model with the source
domain, transferring the acquired knowledge (weights and biases) to another learning
task, and subsequently processing the target domain, taken from (CHUANQI et al.,
2018).

may result in decreased learning performance in the target domain. This phenomenon is
known as negative transfer.

After analyzing the three questions mentioned, our research focused in the feature
types concept which examines the semantics in the source and target domains, DS =
{XS, P (XS)} and DT = {XT , P (XT )} to realize heterogeneous transfer learning. This
approach involves understanding the characteristics of different datasets, establishing con-
nections among them, transferring pre-trained parameters to the target neural network,
and ultimately improving its outcomes. The source and target datasets are considered
heterogeneous if they are created using diverse collection processes, have non-identical
features or labels, or represent different data. Essentially, the semantics and dimensions
of the domains are different (WAN et al., 2021), as detailed mathematically below:

Definition: Given a source domain DS and learning task TS , a target domain
DT and learning task TT , heterogeneous transfer learning aims to improve the
learning of the target predictive function fT (.) in DT using the knowledge in
DS and TS , where XS ∩ XT = ∅ and\or YS ̸= YT (PAN, 2014).

There are two strategies for developing heterogeneous transfer learning. The first is
called heterogeneous feature spaces, which offer two implementation possibilities: sym-
metric transformation, which attempts to learn a pair of feature mappings related to the
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source and target domains. The mapped features are then grouped into a common latent
space to compose a new feature space (WEISS; KHOSHGOFTAAR; WANG, 2016). The
other possibility is asymmetric transformation, which learns about the source domain
features and transfers them to the target domain (PAN, 2014). The second strategy
involves different label spaces. It observes the relationship between the label spaces of
the source and target domains. Based on this observation, the technique propagates
knowledge across the domains (PAN, 2014).

2.1.3 Advantages and disadvantages

The appropriate selection of source subjects and the ability to choose data with high
similarity to the target subject are crucial for establishing an effective environment for
transfer learning (LIANG; MA, 2020). This principle offers several advantages, including
knowledge reuse, cost reduction, and improved outcomes. Knowledge reuse entails trans-
ferring previously established parameters to other neural network models to enhance the
predictive function (fT (.)) of the target model (WANG et al., 2020). Cost reduction aims
to minimize the reliance of neural networks on extensive datasets for training and achiev-
ing broad generalization capabilities. Transfer learning can reduce expenses associated
with data collection, annotation, and the training process, making it more feasible, es-
pecially in scenarios with limited training data or high project costs (WANG et al., 2020).

However, the disadvantage of using transfer learning is known as negative transfer.
This occurs when the transferred parameters degrade the performance of the target pre-
diction function (fT (.)) (CAO et al., 2019). This phenomenon can arise when the char-
acteristics of the source and target domains are inadequately related. Incorrect data
selection may lead to the transfer of unrelated parameters, thereby reducing the likeli-
hood of successful transfer. Additionally, choosing an inappropriate transfer technique
can also contribute to negative transfer. Selecting an incorrect method for the data sce-
nario may compromise the entire transfer process, potentially exerting a more detrimental
effect on the target model’s performance than if no transfer had been attempted (WAN
et al., 2021; PAN; YANG, 2010; LIN, 2019).

2.2 ELECTRICAL BIOSIGNALS

Electrical biosignals are fluctuations of energy, produced by muscles and nerve cells,
that provide valuable information for understanding some parts of the complex patho-
physiological mechanisms of living systems (SEMMLOW; GRIFFEL, 2014; LIANG;
BRONZINO; PETERSON, 2012). These systems generate signals that encode various
aspects of the system’s health and human physiology (RUTH; NEILS, 2020) and allow
for the analysis of many internal structures of the body (KANT et al., 2020).
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Table 2.1: Biomedical signal characteristics are described as follows: Bioelectric classifica-
tion categorizes signals based on their segmentation according to frequency range groups.
Acquisition specifies the equipment used for biosignal collection. Frequency range defines
the spectrum of frequencies over which the signal exhibits significant activity or variation.
Dynamic range measures the amplitude or intensity range of a signal by calculating the
ratio between its largest and smallest detectable values. Comments provide additional
complementary information about the biosignals. (COHEN, 2006).

Bioelectric Classification Acquisition Frequency range Dynamic range Comments
Electroencephalogram (EEG)

Surface Surface electrodes 0.5–100 Hz 2–100 µV Multichannel (6 – 32) scalp potential

Delta range 0.5–4 Hz Young children, deep sleep
and pathologies

Theta range 4–8 Hz Temporal and central areas
during alert states

Alpha range 8–13 Hz Awake, relaxed, closed eyes
Beta range 13–22 Hz
Sleep spindles 6–15 Hz 50–100 µV Bursts of about 0.2–0.6 sec

K-complexes 12–14 Hz 100–200 µV Bursts during moderate and
deep sleep

Surface EMG (SEMG) Surface electrodes
Skeletal muscle 2–500 Hz 50 µV–5 mV
Smooth muscle 0.01–1 Hz

Electrocardiogram (ECG) Surface electrodes 0.05–100 Hz 1–10 mV

High-frequency ECG Surface electrodes 100 Hz–1 kHz 100 µV–2 mV Notchs and slus waveforms
superimposed on the ECG

2.2.1 Characteristics

There is a diversity of electrical biosignals, primarily categorized into permanent and
induced groups. The permanent group includes all electrical biosignals that manifest
without external stimulus, while the induced group requires artificial provocation for
manifestation (KANIUSAS, 2019; WANG et al., 2019a). Both groups share common
characteristics such as recording mode, representation, dynamic and frequency range,
embedded noise, and time-series data storage, and etc (COHEN, 2006), as presented in
Table 2.1.

2.2.1.1 Record mode typically categorizes a signal as either continuous or discrete.
A continuous signal, represented by the function s(t), spans a time interval and can as-
sume any real value and amplitude during this period (BROCKWELL; DAVIS, 2002;
??). In contrast, a discrete signal, represented by the function s(m), provides informa-
tion at specific points on the time axis with distinct levels of amplitude at each point
(SEMMLOW, 2017). The discrete function s(m) is derived from the continuous signal
s(t) through a process known as sampling
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s(m) = s(t)|t=mTs m = ..., -1, 0, 1, ... (2.3)

where m represents a point in the time axis and the sampling interval is given by Ts

in Equation 2.3 (COHEN, 2006).
2.2.1.2 Representation categorizes signals into deterministic or stochastic types. De-
terministic signals, accurately represented mathematically or graphically, do not typi-
cally correspond to real-world signals that often contain noise (COHEN, 2006). Their
predictable behavior allows forecasting based on previous records, represented as s(t)
(SEMMLOW, 2017), as expressed below

s(t) = s(t + nT ) (2.4)

where t is the given time, T is the period, and n ∈ Z. Stochastic signals represent
real-world scenarios where inherent uncertainty and randomness are present from their
inception (COHEN, 2006). As a result of this inherent randomness, stochastic signals
cannot be precisely represented by mathematical or graphical expressions. However, they
can be effectively described in terms of ensemble probabilities S(t), where the ensemble
maintains the same probability distribution despite individual signal variations (SEMM-
LOW, 2017). In this context, random variables are denoted by corresponding lowercase
letters s(t). The Nth order statistical behavior and interdependence of the process can
be described using the joint probability function

P [s(t1) ≤ s1, [s(t2) ≤ s2, ..., s(tN) ≤ sN ] = P (s1, s2, ..., sN) (2.5)

where sN represent the signal in its maximum duration in seconds.

2.2.1.3 Time and frequency domain analysis methods examine electrical signals
to extract characteristics useful for diagnosing, monitoring, or intervening in bodily events
such as diseases, organ behavior, and fitness (YANG et al., 2015; COHEN, 2006; BI-
ZOPOULOS; KOUTSOURIS, 2019; KHAN et al., 2020). The time domain facilitates the
extraction of features based on how signal changes occur along the time axis (BALAFAS;
RAJAGOPAL; KIREMIDJIAN, 2015; YANG et al., 2015; BROCKWELL; DAVIS, 2002).
These features reveal attributes of the waveform, such as kurtosis, amplitude, and pe-
riod (YANG et al., 2015). By deriving the joint probability function (Equation 2.5), the
joint probability density function (PDF) is obtained, which is often used to estimate the
probability distribution of the set (MOESLUND et al., 2020). The PDF is defined as

p(s1, s2, ..., sn) = ∂n

∂S1∂S2L∂Sn

[P (s1, s2, ..., sn)] (2.6)

where ∂n is the unit impulse function calculated for a given signal time n, also known
as the Dirac delta function (FENG et al., 2023). If we replace S(ti) for Si, we have an
abbreviation of the Equation 2.6

p(s, t) = ps1 ,s2 ,... ,sn (s1, s2, ..., sn) (2.7)
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The first and second order PDFs are the two relevant cases in PDF: considering m a
discrete point on the time axis, the expectation of the process S(t) is a mean statistical
function expressed as:

µS(t) = E[S(t)] =
∫ +∞

−∞
s(t) ∗ p(s, t) ds (2.8)

The Nth order moment (nth-order) is called expectation of the process Sn(t)(BALAFAS;
RAJAGOPAL; KIREMIDJIAN, 2015; COHEN, 2006) which is defined as

E[Sn(t)] =
∫ +∞

−∞
sn(t) ∗ p(s, t) ds (2.9)

There are some other statistical operations to extract information from the signal
ensemble, such as the Nth central moment (BALAFAS; RAJAGOPAL; KIREMIDJIAN,
2015; COHEN, 2006)

µn = E{(S(t) − ms)n} =
∫ +∞

−∞
(s(t) − ms)n p(s, t) ds (2.10)

The variance σ2, also denominated second central moment, is the square root of which
standard deviation

σ2 = µ2 = E{(S(t) − ms)2} =
∫ +∞

−∞
(s(t) − ms)2 p(s, t) ds (2.11)

The auto-correlation function rss is the second-order joint moment which is defined
by the joint PDF

rss(t1, t2) = E{(S(t1) − S(t2)} =
∫ +∞

−∞

∫ +∞

−∞
s(t1)s(t2) p(s1, s2) ds1ds2 (2.12)

The cross-correlation function also defined as the second joint moment of the signal
s at time t1, s(t1) and the signal y at time t2, y(t2)

rsy(t1, t2) = E{(s(t1) − y(t2)} =
∫ +∞

−∞

∫ +∞

−∞
s(t1)y(t2) p(s1, y2) ds1dy2 (2.13)

All the aforementioned functions can help to explore the stochastic signal and to
understand its behavior in time domain. The analysis in the frequency domain describes
the electric biosignal as a continuous set of sine waves characterized by their magnitude
and phase (COHEN, 2006). This is represented by the complex function S(ω), which is
given by:

S(ω) = |S(ω)| ejθ(ω) (2.14)

where |S(ω)| represents the amount of content the original signal has at the frequency
ω, and the complex exponential ejθ(ω) describes the magnitude and phase spectrum at
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frequency. To convert the perspective of an electric biosignal from the time domain to
the frequency domain, the fourier transform (FT) is used, as

S(ω) =
∫ +∞

−∞
s(t) e−jωt dt = F [s(t)] (2.15)

where the angular frequency is ω = 2πf and the fourier operator is represented by
F(*). The inverse fourier transform (IFT) transforms the signal perspective from the
frequency domain to the time domain

s(t) = 1
2π

∫ +∞

−∞
S(ω) ejωt dw = F −1 [S(ω)] (2.16)

The correlation function of the process is a deterministic function that is another
option of frequency representation. The correlation function produces a deterministic
frequency function when it is applied to the FT. As a result of the FT of the correlation
function, we have the power spectral density function (PSD) (BALAFAS; RAJAGOPAL;
KIREMIDJIAN, 2015; COHEN, 2006)

PSD[s(t)] = Sss(ω) = F [rss (τ)] =
∫ +∞

−∞
rss(τ)e−jωt dτ (2.17)

where Sss(ω) symbolize the power spectral density function which is always real and
non-negative, and the spectrum of a real valued process. And rss(τ) is the auto correlation
function. When we want to explore the relationship between two signals, we use the
cross-correlation function, as presented by Equation 2.13 in the time domain view. In
the frequency representation, the FT of the cross-correlation function generates the cross-
power spectral density function (C-PSD), also called cross-spectrum

Ssy(ω) = F [rsy (τ)] = |Ssy(ω)|ejθsy(ω) (2.18)

where s(t) and y(t) are understood as stationary signals. Hence, the cross-correlation
function is not on the time perspective but that of the time difference t. Similarly, the
auto-correlation function rsy (τ) is also not on the time perspective. This scenario makes
the FT of auto-correlation not real because is not possible transform it from frequency
domain to time domain. Another characteristic is that C-PSD require the absolute value
and phase. The absolute value of the C-PSD bound is:

|Ssy(ω)|2 ≤ Sss(ω)Syy(ω) (2.19)

The coherence function is the normalized absolute value of the C-PSD:

Y 2
sy

|Ssy(ω)|2
Sss(ω)Syy(ω) ≤ 1 (2.20)

2.2.2 Types of Biosignals

In the previous section, we mentioned that muscles and cells emit electrical signals
that propagate through the body (KANT et al., 2020). In this section, we detail the
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functioning of organs and muscles, the collection of the electrical signals, and the main
characteristics of the signals used in this research. The goal is to understand the generated
electrical signal and its characteristics.
2.2.2.1 Eletroencephalogram biosignal (EEG) The brain emits electrical waves
through nerve impulses, which propagate until they reach the scalp (WAN et al., 2021;
XU et al., 2019). The electroencephalogram is an instrument used to measure and record
the voltage oscillations of these electrical waves, employing electrodes strategically po-
sitioned as sensors (ABDELHAMEED; BAYOUMI, 2018). There are two methods to
register these biosignals: intracerebral electroencephalogram (iEEG), which is an inva-
sive procedure involving electrode implantation inside the cranial cavity directly onto
the brain surface (NEJEDLY et al., 2019), and standard EEG examination, which non-
invasively measures brain wave types using electrodes placed on the scalp (ROMAY et
al., 2020), see all scalp points map at the Figure 2.4. Both EEG and iEEG record brain
waves originating from specialized regions, each responsible for distinct functions: the
motor area controls voluntary muscle movements; the sensory area processes sensations
like temperature, pressure, and pain; the frontal lobe regulates movement, problem-
solving, concentration, thinking, behavior, personality, and mood; Broca’s area governs
speech production; the temporal lobe coordinates hearing, language, and memory; the
brainstem oversees consciousness, breathing, and heart rate; the parietal lobe manages
sensations, language, perception, body awareness, and attention; the occipital lobe han-
dles vision and visual perception; Wernicke’s area controls language comprehension; and
the cerebellum coordinates posture, balance, and movement (MANSOOR et al., 2020)
(see Figure 2.3).

2.2.2.2 Eletrocardiogram biosignal (ECG) The muscular contractions of the heart
generate an electrical biosignal (KACHUEE; FAZELI; SARRAFZADEH, 2018). This
biosignal is primarily produced by two types of specialized heart muscle cells: the my-
ocardium of the atria and the myocardium of the ventricles (RANGAYYAN, 2015). These
signals propagate through the body, and are recorded using electrodes during an electro-
cardiogram (ECG) examination. Some electrodes capture signals directly from the heart
muscle using intracardiac electrodes for precise cardiac signal recording (KANIUSAS,
2019), while others register the biosignal through contact with the skin of the upper
limbs, lower limbs, and chest (NAÏT-ALI, 2009). The heart operates by receiving deoxy-
genated blood from the upper and lower parts of the body is brought by the superior
and inferior vena cavae respectively, both leading into the right atrium. Here, the sinoa-
trial node serves as the heart’s natural pacemaker, initiating the electrical impulse that
begins each heartbeat. From the right atrium, blood flows through the tricuspid valve
into the right ventricle, which then pumps it through the pulmonary valve into the pul-
monary artery. This artery carries the blood to the lungs for oxygenation. Oxygenated
blood returns to the heart via the pulmonary veins, entering the left atrium. The left
atrium contracts, pushing blood through the mitral valve into the left ventricle, which
then pumps oxygen-rich blood through the aortic valve into the aorta. The aorta dis-
tributes this oxygenated blood throughout the body. Throughout these processes, the
atrioventricular node, bundle branches (including the right and left bundle branches and
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Figure 2.3: The brain is anatomically and functionally segmented into specialized re-
gions, each tasked with specific cognitive and physiological functions, including sensory
perception, motor control, language processing, and emotional regulation, taken from
(MANSOOR et al., 2020).

the His-Purkinje system), and various valves (such as the pulmonary and aortic valves,
as well as the tricuspid and mitral valves) ensure coordinated contractions of the heart
muscle (RANGAYYAN, 2015), see Figure 2.5.

The heart signal can have different waveforms and morphologies. Five types of waves
compose a typical ECG beat, as named cardiac cycle: the P wave represents atrial depo-
larization, characterized by a frequency range between 10 and 15 Hz, an amplitude of less
than 300 µV, and a duration of less than 0.120s. Following this, the QRS complex de-
notes ventricular depolarization, with an amplitude around 3 µV and a duration between
0.070s and 0.110s, marking the contraction of the right and left ventricles. The T wave
signifies ventricular repolarization, notable for its lower frequency characteristics. The
ST segment represents the period when the ventricles are in a depolarized state. The RR
interval provides insight into the heart rate and helps detect any arrhythmias during its
duration. Additionally, the PQ and QT intervals serve as crucial indicators in diagnosing
various cardiac conditions and abnormalities (KACHUEE; FAZELI; SARRAFZADEH,
2018). , see Figure 2.6. Each wave maps a heart moment which is useful to monitor the
heart functioning, to detect arrhythmias, and to prevent myocardial ischemia and infarc-
tions, and other intercurrences, taken from (RANGAYYAN, 2015; NAÏT-ALI, 2009).

2.2.2.3 Electromyography biosignal (EMG) The muscular activity, voluntary or
involuntary, generates electrical biosignal recorded by electromyography (EMG). The
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Figure 2.4: The EEG scalp map provides a topographical representation of electrical
activity across different regions of the scalp, following the international standard known
as the 10-20 system. Key landmarks include the nasion, which serves as a reference point
for frontal electrode placement; the vertex, positioned at the skull’s highest point; the
inion, located at the external occipital protuberance on the back of the skull; and the
preauricular points, situated in front of each ear. (a) It illustrates the side view of the
skull, highlighting these landmarks and points on the EEG scalp map. (b) It presents
a top view of the scalp map, defining the systematic placement of electrodes based on
these landmarks. (c) Electroencephalogram map points, taken from (GANDHI, 2014).

EMG registers the potential variation of the signal to investigate some specific diseases
related to the electrical activity of the muscle (NAÏT-ALI, 2009). Different from nerve
cells, muscles cells are large, their electrical signals are more intense, and give rise to
large potential gradients (KANIUSAS, 2019). There are two approaches to acquire these
signals from the muscle: electromyography with implanted electrode near the muscle cell
fiber and electromyography with external electrodes laced on the skin surface (BIRD et
al., 2020; KATIRJI, 2018).

In EMG analysis, several key concepts are essential for interpreting the biosignal. Ac-
tion potentials represent the electrical signals generated by muscles (PRESTON; SHAPIRO,
2012). The compound muscle action potential (CMAP) is the summary record of syn-
chronously activated muscle action potentials (KATIRJI, 2018). Amplitude denotes the
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Figure 2.5: Heart structures and main vessels, taken from (RANGAYYAN, 2015).

peak height of an action potential, measured in millivolts (mV) (WEISS; WEISS; SILVER,
2015) Typically, the baseline of amplitude is marked by a negative peak in the recorded
signal. Duration measures the time from the initial positive deflection to the first neg-
ative phase of the evoked potential, expressed in milliseconds (ms) (KATIRJI, 2018).
Antidromic conduction describes an action potential moving against the usual physiolog-
ical direction, while orthodromic conduction follows the expected path (WEISS; WEISS;
SILVER, 2015). Motor conduction velocity evaluates the speed of the fastest signal seg-
ment, calculated by dividing the distance traveled by nerve conduction time (PRESTON;
SHAPIRO, 2012). Lastly, latency refers to the time between signal emission and response
onset, encompassing nerve conduction, neuromuscular junction delay, and muscle depo-
larization times (PRESTON; SHAPIRO, 2012), see Figure 2.8. These parameters provide
critical insights into muscle function and nerve conduction.

2.3 RELATED WORK

The transfer learning approach is widely applied to achieve accurate results in various
areas of healthcare. Some reasons for the current increasing use of the approach are the
scarcity of labeled data available for training the models, the need to learn more detailed
data patterns, the need to predict random events such as seizure timing or early fatigue
stage to improve the individual’s quality of life, among many other situations.

In this section, we present how different transfer learning techniques have been ex-
plored between 2016 and 2024 to improve the accuracy of classification and prediction
models. This research is from the health field and uses electrical biosignals to diagnose
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Figure 2.6: The regular pattern of electrical impulses coordinates the contraction and
relaxation of the heart muscle. Each interval of the signal represents a specific aspect of
the cardiac cycle, taken from (NAÏT-ALI, 2009).

and monitor human health. Through these studies, we can visualize how the transfer
learning approach provides accurate answers. Thus, physicians have more robust sup-
port to help them mitigate problems caused by disease or bodily dysfunction. Another
advantage of these researches is allowing us to see the knowledge gaps that we can study
to elucidate them in our investigation.

2.3.1 Selection criteria

We searched papers from four repositories (IEEE 1, ACM 2, PubMed 3 and Scopus 4)
using the following key words: transfer learning, biosignal or signal, and electroencephalo-
gram or EEG. The repositories returned 146 papers. We applied seven exclusion criteria
listed below to filter out the documents useful to our investigation, if the paper: has no
results OR experimentation, is theoretical only (some exception for comprehensive sys-
tematic reviews), is not about the transfer learning or EEG, does not use computational
models, duplicated paper, is not in English or Portuguese, is outside of the health domain.
After filtering the retrieved articles, 50 articles were selected. We categorized them by
disease and focused our deep analysis on three points: the learning transfer technique,
the machine learning architecture developed and the result presented by the model. We
opted to study about electroencephalogram biosignals (EEG) characteristics and then
transfer its knowledge to another neural network model which work with others kind of

1http://ieeexplore.ieee.org
2http://portal.acm.org
3https://www-ncbi-nlm-nih.ez10.periodicos.capes.gov.br/pmc/
4https://www.scopus.com
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Figure 2.7: EMG of open/close hand movement. (a) Electrodes positioned on the arm
to capture biosignals during the movement. (b) Graph of the electromyography biosignal
recorded during open/close hand movements, showing normalized amplitude versus time,
taken from (NAÏT-ALI, 2009).

electrical signals as ECG and EMG.

2.3.2 Tranfer learning with electrical biosignals

After selecting the papers, we analyzed each one and provided a summary of the
themes discussed, organized by the disease studied as follows.

2.3.2.1 Alcoholism - Silva et al. (2020) suggested that alcohol addiction alters brain
behavior and consequently, its brain signal pattern. Based on this assumption, the au-
thors investigate the predisposition to alcoholism by image- transformed EEG signals.
They applied the transfer learning approach to diagnosing with more reliable results and
lower time costs. The architecture concept had a neural network layer, a feature extrac-
tion strategy, and a classical classified layer. Then they combined different Convolutional
Neural Networks (CNN) and classical classifiers and compared the results. The architec-
ture with the best outcome was MobileNet combined with the Support Vector Machine
(SVM) classifier.

2.3.2.2 Brain disorders - Zhang e Li (2019) proposed a model to detect attention-
deficit/hyperactivity disorder (ADHD). They transformed EEG signals into images and
created two models based on the visual geometry group (VGG-16) network. They trained
the first model (rVGG) from scratch. On the second model (tVGG), they applied pa-
rameters transfer learning techniques. The first layer of tVGG received the weights from
rVGG and was unchanged during the performance. The other layers used the gaussian
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Figure 2.8: EMG biosignal graph explaining the amplitude, which represents the magni-
tude of the electrical activity within the muscle, typically measured in microvolts (µV),
and indicates the strength of the muscle contraction. The duration refers to the length
of time a muscle activity event occurs, while the latency is the time interval between the
onset of a stimulus and the beginning of the muscle response, taken from (PRESTON;
SHAPIRO, 2012)

distribution to initialize their weights. The measured accuracy was 94.39% for the tVGG
model, but the sparse data sample limitation may indicate bias in this result.

Alhussein, Muhammad e Hossain (2019) investigated how to recognize brain patholo-
gies using EEG. The first step was to pre-process the EEG signal, by removing noise.
Then, they used the AlexNet model, a Convolutional Neural Network, pre-trained by
replacing its last layer with three fully connected Multilayer Perceptron Network (MLP)
layers to perform signal classification. In this model, the authors used AlexNet to ex-
tract the signal feature and transfer it to the classifier model, resulting in 78.12% model
accuracy.

Shalbaf, Bagherzadeh e Maghsoudi (2020) designed a Convolutional Neural Network
(CNN) model for detecting schizophrenia in patients for early diagnosis and treatment.
They converted EEG signals into images and submitted them to four different and pre-
trained CNNs (AlexNet, Resnet-18, VGG-19, and Inception-V3). A Support Vector Ma-
chine (SVM) classifier with tuned parameters replaced the classifier layer of all CNN. This
model implemented two transfer learning techniques: feature extraction and parameters
transfer learning. The Resnet-18/SVM showed the best results with 98.60% accuracy,
99.65% sensitivity, and 96.92% specificity.

2.3.2.3 Driver and mental fatigue - Shalash (2019) proposed an AlexNet model
applying transfer learning to identify driver fatigue through drowsiness signals on spe-
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Figure 2.9: The systematic review were conducted as follows: collecting papers from
repositories, establishing exclusion criteria, selecting papers based on these criteria, and
classifying the papers according to the diseases studied.

cific EEG signal channels. The transfer learning occurred at two points for the AlexNet
model: the first layer received the features extracted from the EEG signals by the CNN
model, and the fine-tuning technique updated the classification layer with a pre-trained
layer. First, the noise was removed from the biosignals, and the bandwidth was limited
between 0.5Hz and 45Hz. Then, the CNN model received them and acted as a feature
extraction layer. AlexNet model received the features learned by the CNN model and a
new, pre-trained classification layer replaced the untrained Alextnet classification layer.
The best result was obtained with FP1 and T3 channels. They presented an accuracy of
90% and 91%.

Different from Shalash (2019), Liu et al. (2019) presented a study on the performance
of cross-subject fatigue recognition focused on improving the calibration step. They built
and compared the result of three models: a Logistic Regression (LR), a Transfer Compo-
nent Analysis (TCA) with LR, and a deep learning-based classifier (EEGNet). The EEG
data pre-processing removed ocular and muscular noise, also called artifacts, by Auto-
matic Artifact Removal (AAR). They chose the TCA model because it mitigates the
imbalance of the distributions between source and target data, addressed by the homo-
geneous transfer learning approach. TCA + LR showed the best result (72.70% accuracy).

2.3.2.4 Epilepsy - many studies try to precisely identify if the EEG signal represents a
normal or epileptic signal. Jiang et al. (2020) researched a robust classifier model to detect
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when the EEG signal has a normal or epileptic frequency. They associated two trans-
fer learning strategies to the Takagi-Sugeno-Kang fuzzy system (TSK-FS) framework to
maximize model learning: Multi-Source Transfer Learning (MST) and Multi-Source Reg-
ularization (MR). Using Short-Time Fourier Transform (STFT) as the feature extraction
method, the accuracy was 0.971. The authors highlighted the time consumed by the grid
search and cross-validation and the use of a single fuzzy system as a weakness. Zhang
et al. (2020a) also investigated how to detect seizures in EEG signals using three CNN
models (VGG16, VGG19, and ResNet50). They duplicated each model structure and
trained one of each model. Then, they transferred the knowledge from the pre-trained
model to the upper layers (updating the weights) and kept the fully connected and the
softmax output layers with their trainable features. VGG16 performed the best classifi-
cation with 97.75% accuracy.

Continuing the search for the best model to classify brain signals, Xie et al. (2018)
designed a model focused on implementing transductive transfer learning for many tra-
ditional intelligent models to recognize epileptic EEG signals. The proposed Generalized
Hidden Mapping Model (GHMM) allows the unification of several classical intelligent
model representations. The GHMM identifies which traditional model has little EEG
data and allows an improved training model by transductive learning. The GHMM-TTL
(RBF-Ker) was the model with the highest level of accuracy (0.9805). Agrawal, Jana e
Gupta (2019) demonstrated an approach to classify EEG signals into seizure and non-
seizure based on deep transfer learning. They compared the performance of three CNN
networks (GoogleNet, Resnet101, and VGG-19) pre-trained with the ImageNet database
to present an extraction task and an SVM classifier. The model configuration with
GoogleNet and SVM showed the best accuracy (above 99%).

An epileptic seizure has different phases, and their knowledge can help physicians and
patients to propose measures to mitigate seizure effects. In accord with this viewpoint,
Gao et al. (2020) aimed to distinguish epileptic seizure states (interictal, preictal I, preic-
tal II, and seizure). They built an EEG signal classification model (EESC) and initially
set its parameters with the pre-trained weights from the ImageNet dataset, and dur-
ing PSDED images processing, the model weights were updated. This transfer learning
approach allows the EESC network to start its validation using already learned knowl-
edge. The preictal phase of the epileptic seizure was the phase best classified by the
model. Ilakiyaselvan, Khan e Shahina (2020) used another seizure phase classification.
Furthermore, they proposed to model the nonlinear dynamics of the EEG signal using the
reconstructed phase space (RPS) technique. Based on this, they could classify the signal
into two groups: (1) seizure and non-seizure or (2) normal, interictal, and ictal precisely.
They adopted a pre-trained AlexNet (CNN) network as a transfer learning technique.
They then re-trained the AlexNet with RPS images. The accuracy of the models for
seizure and non-seizure was 98.5% and for normal, interictal, and ictal was 95%.

Other studies try to detect the early preictal stage of seizure. On this basis, patients
would have the necessary time to take important measures to avoid accidents. Daoud e
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Bayoumi (2019) designed a model to automatically extract the relevant features from the
raw EEG signals and then accurately detects in real-time the state of the preictal brain
accurately. A pre-trained Autoencoder (AE) generalized the knowledge of the preictal
seizure model and avoided the overlap effect. This transfer learning technique aimed to
mitigate optimization problems. The model predicted the preictal stage with 99.6% accu-
racy. Wang et al. (2019b) proposed a classification model with a lower granular time scale
of the preictal phase of the epileptic seizure. They selected the mean amplitude spectrum
(MAS) of the subband signal with 0.3-70 Hz from the EEG and transformed it into an im-
age. Afterwards, they applied the feature extraction technique using three CNN models
(Inception-v3, Resnet152, and Inception-Resnetv2) to learn about this subband pattern.
The best performing model composition was MAS and Inception-Resnet-v2 network with
94.21% accuracy. Abdelhameed e Bayoumi (2018) developed a semi-supervised system to
predict the onset of seizures in an epileptic patient based on EEG signals. They trained
an autoenconder model with unlabeled data to extract feature data. Then they trans-
ferred these features to a bidirectional short-term recurrent neural network to classify the
EEG signal. The sensitivity rate of the model was 87.8%.

Researches are also focusing on epileptic signals according to the brain region where
they occur. It can help diagnose or monitor where and how epileptic activity happens.
Qu e Yuan (2019) presented a method based on deep CNN with transfer learning to
detect the epileptogenic region in the brain. The signals from the brain area that emit
the epileptic signals are called focal signals. Based on them, the model detected auto-
matically whether the EEG signal referred to a focal signal or a non-focal signal. The
authors used a pre-trained AlexNet model to perform feature extraction of the EEG sig-
nals. Then they transferred to another AlexNet network the parameters of the last three
layers to classify the data. The accuracy of the model was 95%. Narin (2020) researched
a method to accurately predict the location of the epileptic seizure in the brain and
whether the stage was focal or non-focal epileptic. She pre-trained the AlexNet, Incep-
tionV3, Inception-ResNetV2, ResNet50, and VGG16 models with images from the Keras
and MATLAB websites. Afterwards, she used the models to classify 2D-scalogram images
from EEG signals. After comparing their results, the InceptionV3 model showed the best
accuracy (92.27%). Bajaj et al. (2019) also researched a model to identify the affected
portion of the brain with an unexpected electrical disturbance. They adopted the deep
feature extraction technique to pre-train a CNN model and transfer this knowledge to the
KNN classifier. They experimented with four CNN models (AlexNet, VGGG16, VGG19,
and Resnet50) to measure their performance in learning the EEG pattern. AlexNet,
VGGG16, and Resnet50 had 99.8% accuracy results.

We also identified research on specific manifestations of epilepsy. Pisano et al. (2020)
proposed a model to detect a specific type of epilepsy seizure, called nocturnal frontal
lobe epilepsy (NFLE). They used a ResNet architecture with a fine-tuning transfer learn-
ing technique to improve performance due to the scarcity of NFLE data. The accuracy
of the model was 94%. And Jiang, Chung e Wang (2019) aimed to build a method to
recognize the multiclass epileptic EEG signal. They implemented a label space inductive
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transfer learning model to improve the model learning about different seizure types. The
solution performed effectively. However, the authors believe that some model structures
can be further investigated to improve the classification of epileptic multiclass, such as
optimizing hyperparameters of the model and reducing computational costs.

2.3.2.5 Motor and speech imagination - based on the mental stimulus to imag-
ined speech recorded by EEG, García-Salinas et al. (2019) provided a new model to verify
the possibility of symbolizing new words while maintaining training costs the same level.
Inductive transfer learning was the approach taken by their model. At first, they de-
veloped a genetic algorithm to obtain the representative features of the data, called a
codebook. Then they created a network to extract the features from the EEG signals
and used the codebook information to help in the classification layer. The model did
not score higher than the baseline model. The authors considered that the codebook did
not represent the new words accurately. Therefore, the classification task had a lower
performance. Tamm, Muhammad e Muhammad (2020) aimed to classify EEG signals
associated with the imagination of pronouncing vowels. They developed a CNN model
replicated from other research using the same dataset as the original models, but with a
simpler architecture than the original models. They applied fine-tuning technique with
three different approaches. The result did not perform desirable that was inferior to the
replicated models. The main limitation noted was the complexity of the EGG and the
effort required to process it.

Motor imagery is widely researched to enable communication between the brain and
the computer. There are several approaches to improve the model accuracy and to cope
with this type of EEG signal. The improvement of the classification rate is one of these
studies and Parvan et al. (2019) investigated a combination of a four-layer CNN model
with two fine-tuning strategies, applying preprocessing techniques, and data augmenta-
tion to find the best classification architecture for EEG motor imagery. In fine-tuning
step, the weights used for knowledge transfer came from a pre-trained symmetric model.
The preprocessing phase included removing the EOG noise with a regression algorithm,
and the authors decided not to remove the other noises, such as heartbeats. Then they
found the best model configuration with EEG without EOG, data augmentation, and
the progressive fine-tuning application. Taheri e Ezoji (2020) prepared 3D EEG repre-
sentations to realize two tasks: increasing the classification rate and identifying the right
hand and right foot imaginary motor tasks. They performed resource extraction with a
pre-trained AlexNet network and transferred their knowledge to a 5-layer CNN network.
The accuracy of the model was 98.5%, but the training dataset had only five subjects
that might suggest an overfitting scenario.

Lee et al. (2020) were looking for a solution to improve the task of classifying arm
movement by imagining and executing the movement at the same time. They proposed
a model based on a 3D convolution neural network (3DCNN) to extract the knowledge
from the EEG datasets. Then, the relation network received the feature and calculated
the similarities between the datasets. The developed model, called the BCI-Transfer
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learning method based on Relation Network (BTRN), performed the classification step.
The authors found that the result was consistent and relatively effective. Shovon et al.
(2019) were also researching how to increase the motor imagery EEG classification with
transfer learning and neural networks architecture. They transformed the EEG signal
into 2D images and augmented them to generate more samples. After, they fed a multi-
input CNN, a pre-trained ResNet-50, to extract the data features and transfer them to
a deeper CNN, which learns about the complex structures of the features and classifies
the imagery movement. Wu et al. (2019) presented a neural network architecture to
classify accurately motor EEG images for small datasets. They developed two transfer
learning techniques applied in two steps: first, extracting EEG features in the temporal
and spatial domains and extracting band power-related features from the first extraction.
Secondly, a CNN network classifies the signal based on the feature extraction data. In
the best-case scenario, this model had an accuracy of 75.8%.

Li et al. (2023) introduced an Improved Label Space Alignment (ILA) method, com-
bined with heterogeneous transfer learning, to enhance sample data utilization in sce-
narios where the label space is heterogeneous. The approach involves aligning the class
centers of the source and target domains through clustering, class matching, and data
alignment. The method was validated using three classification techniques in a binary
classification heterogeneous scenario, which yielded accuracy rates of 20.88%, 10.69%,
and 5.59%. Zhan et al. (2022) introduced a method utilizing the sequential coding exper-
imental paradigm in brain-computer interfaces to reduce the burden of data acquisition.
The proposed Multi-Band Data Stitching with Label Alignment and Tangent Space Map-
ping (MDSLATSM) algorithm, a novel heterogeneous transfer learning approach, bridges
the source and target domains by stitching filtered multi-band data and aligning their
covariance matrices. The method achieved an average classification accuracy of 64.01%.

Jiang, Fares e Zhong (2019) researched how the EEG signals and the images used
to generate the brain signal are linked to the brain image classification task. They de-
veleped a model that used two transfer learning techniques for extracting knowledge from
the datasets. One technique is the Long-Term Memory Network (LSTM) to process the
EEG signals and learn the features of the signals. Another is the CNN that process
the most representative images to learn about the visual features of the EEG. This en-
coded knowledge was transferred to a third model to perform the classification task. The
best result achieved was with a butterfly image and signal with 90% accuracy. Kant et
al. (2020) investigated how different deep learning networks associated with continuous
wavelet transform (CWT) can improve the EEG classification task. The transfer learning
technique applied was to replace the fully connected layer and the output layer with the
layers of the model pre-trained with EEG signals. The VGG16 model showed the best
accuracy of 95%. For future work, they consider including a feature extraction step and
the use of other classification methods.

After the training step, the challenge is to calibrate the model to an appropriate re-
sponse, considering the nuances in the collected EEG signals for each individual. Dagois
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et al. (2019) proposed to reduce the calibration requirements at the brain-computer in-
terface. Then they developed a transfer learning algorithm to extract information about
mental rotation from EEG and word generation. Next, they transferred the knowledge
to three models: linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), and support vector machine (SVM). The LDA model had the best result with
an average accuracy of 0.8222. Azab et al. (2019) aimed to decrease the calibration
time and maintain the classification rate of motor imagery-based brain-computer inter-
face systems. They used a weighted logistic regression to learn about three data sets
and then transferred the knowledge to a support vector machine and a logistic regression
model based on multi-task learning to classify the signal. The classifier model showed
good statistical results by the authors. Liang e Ma (2020) aimed to improve the results
of calibrating the brain-computer interface system with some current user data. They
developed a multi-source fusion transfer learning (MFTL) algorithm to classify the EEG
motor images based on the Riemannian manifold framework. Feature extraction was the
transfer learning technique applied in deep learning networks. The model performance
was superior to previous models used as the baseline. Roy et al. (2020) showed a concept
of Mega Blocks associated with a CNN to lead with inter-subject variations in the EEG
of the motor imaging task to develop a calibration-free model. The implemented transfer
learning technique used the Mega Blocks to update the parameters of the CNN. Then,
they fed a CNN with the Mega Blocks so that the model could learn more about the
micro features of the EEG. The optimization methods used were Adam and SGDM, and
the model had an accuracy of 72.63% and 73.13%, respectively. The authors considered
the reduction in calibration time a significant point in this research.

Many studies deal with different motor imaging problem scenarios. Xu et al. (2019)
proposed a model to deal with the need for a large volume of labeled data, the high pro-
cessing costs, and the time to train a model. They used a pre-trained VGG-16 model to
extract features from EEG images. Transfer learning occurred in two steps: transferring
the parameters from VGG-16 to a CNN model and feeding the CNN with extracted fea-
ture data. The average accuracy realized by the model was 74.2%. Zhang et al. (2020c)
proposed a framework to handle fluctuation in the distribution of electroencephalogram
(EEG) features for the motor imaging task. They used instance transfer learning to ana-
lyze the spectrogram of EEG signals and measure the similarity between subjects. They
then transferred this knowledge to a CNN network to decode and classify the signal. The
experiment showed an accuracy of 94.7%. Fauzi, Shapiai e Khairuddin (2020) presented a
framework to handle a compact training dataset and realize higher accuracy of the brain-
computer interface system. The idea was to use the common spatial pattern (CPS) as a
transfer learning technique to compress the domain dataset and increase the performance
of the training dataset in an extreme learning machine (ELM). As a result, the accuracy
was 83%. Zhang et al. (2021) presented a model to handle personal differences in the
EEG signal of various subjects. The model developed was a hybrid deep neural network
with transfer learning (HDNN-TL) that combined a convolutional neural network (CNN)
and a long short-term memory (LSTM). The implementation of transfer learning was by
fine-tuning the fully connected layer that received the processed data from the CNN and
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LSTM networks. The accuracy achieved by the model was 81%. Wang e Yang (2019)
proposed a model found on transfer learning to demonstrate that participants performed
the motor imagery task correctly. They trained a CNN model with an EEG signal with
a subject group dataset, joined the dataset with another EGG dataset (with the same
left and right-hand motor imaging task), and classified them with the pre-trained model.
The model classification had an improvement in model accuracy. Özdenizci et al. (2019)
aimed to provide a model to improve the communication between the individual with
various neuromuscular disorders and the brain-computer interface. Therefore„ they used
an EEG motor imagination dataset and applied a domain adaptation technique from a
transducer transfer learning approach to achieve better accuracy. The model used the
conditional variational autoencoder network to learn the data representations and trans-
fer it is knowledge to the adversarial conditional variational autoencoder network. The
average accuracy found was 63.8%.

2.3.2.6 Neuro muscular disorders - Tan et al. (2019) presented a brain-computer
interface framework to help patients with robotic rehabilitation. An autoencoder frame-
work consisting of a joint adversarial network (VGG16 and VGG19) and multiple reg-
ularized constraints make up this framework. The autoencoder layer implemented the
transfer learning strategy. This network had to learn simultaneously to encode the source
and target domain accurately. To mitigate the occurrence of negative transfer, the regu-
larized manifold constraint attempted to prevent the geometric structure of the manifold
in the target domain from being undone by the source domain. The model with VGG19
achieved a better result. Kundu e Ari (2019) proposed a model to improve the per-
formance of the brain-computer interface speller method with sparse data for training.
They developed the multiscale convolutional neural network (MsCNN) architecture com-
posed of multi-resolution deep features, feature selection technique (Fisher ratio), and
an ensemble of support vector machines (ESVMs) to classify the signal. In this model,
homogeneous transfer learning followed the rule adaptation (RA) approach (all classifi-
cation rules implement a single strategy). The proposed model had better result than
the baseline models.

2.3.2.7 Sleep - Vilamala, Madsen e Hansen (2017) presented two models to create
sleep pattern images that are easy to read from EEG signals to solve visual recognition
tasks of scoring sleep stages. The VGG16 model was the basis for building the architec-
ture of the proposed networks. The first model, called VGG16-FE, assumed a feature
extraction function and was trained from scratch. In the second model, named VGG16-
FT, they fine-tuned and updated all the weights in the network. The values of weights
used to update VGG16-FT came from a pre-trained ILSVRC-2014 model. VGGG16-FT
showed higher accuracy than VGGG16-FE. Chambon et al. (2018) designed a new CNN
model for sleep stage classification. The approach sought to acquire knowledge from three
types of signals (EEG, EOG, and EMG) end-to-end without considering the spectrograms
or hand-crafted feature extraction. The transfer learning strategy developed used the first
stage of CNN as a feature extraction of the signals. The model achieved higher accuracy
than other state-of-the-art models and with low computational cost and runtime usage.
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Phan et al. (2019) developed the SeqSleepNet consisting of three blocks: an attentional
RNN network (ARNN), a sequence-level RNN, and a classification layer. The study ap-
plied three transfer learning strategies: parameter model by fine-tuning, example base
of different EEG datasets, and different label spaces for EEG and EOG datasets. The
fine-tuning model shows the best result with an accuracy of 85.5%. Phan et al. (2020)
presented SeqSleepNet+ and DeepSleepNet+ responsible for gaining knowledge from a
large dataset and transferring that learning to help automatic sleep preparation with a
small dataset. Fine-tuning was the technique used to transfer the learning. The approach
treated different transfer scenarios with groups of homogeneous and heterogeneous signal
datasets (EEG, EOG, and EMG) and fine-tuning strategies. The result revealed that
SeqSleepNet+ had the best results in most scenarios. Abdollahpour et al. (2020) intro-
duced a new method for sleep stage classification by transferring EEG and EOG datasets
knowledge. Two feature groups organized features extracted from the datasets, and each
feature vector was converted into a horizontal visibility graph (HVG). The generated
image fed a transfer learning convolutional neural network for data fusion (TLCNN-DF,
proposed model) to classify the sleep stage. The authors found an accuracy of 93.58%.
Jadhav et al. (2020) proposed a CNN and Squeezenet model for sleep stage classification
based on a single EEG channel without manual feature extraction. They adopted pre-
trained weights from the CNN model to perform the fine-tuning process in Squeezenet
and implemented a back-propagation model. The proposed model observed relevant gen-
eralization ability.

2.4 SUMMARY

This chapter provides a detailed overview of the literature related to transfer learning,
particularly in the context of heterogeneity. It also presents the characteristics of elec-
trical biosignals, with specific details on electrocardiogram (ECG), electroencephalogram
(EEG), and electromyography (EMG), which are the types of electrical biosignals used
in this work. Additionally, we review publications that have applied transfer learning
concepts in relation to electrical biosignals.

We discuss fundamental concepts of transfer learning and focus on the issue of hetero-
geneous data to provide a theoretical foundation for the research. The principal methods
for examining the characteristics of electrical signals are presented to expand the un-
derstanding of how this type of data can be analyzed. Finally, we review related works
that demonstrate various approaches to applying transfer learning between heterogeneous
data.

The main conclusions of this chapter are that there is a need to deepen the under-
standing of the possible applications of transfer learning between neural networks dealing
with data from heterogeneous sources, yet within the same category.

The following chapter outlines our research process, explaining the methodology, base-
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lines, and metrics employed.





Chapter

3
“For progress to be made, I think it’s necessary to reach out to people who don’t necessarily agree.”

Chimamanda Ngozi Adichie

HETEROGENEOUS TRANSFER LEARNING:
PROPOSAL AND OUTLINE

As mentioned in Chapter 1, this research investigated whether transfer learning using
heterogeneous electrical biosignals in the frequency domain could enhance the predictive
accuracy of the target model, see proposed architecture. Additionally, it contributes to
mitigating the dependence on large datasets for training and calibrating models, present-
ing an alternative method to generalize electrical biosignal data in the frequency domain
to be better mapped by LSTM neural networks.

3.1 METHODOLOGY

Our approach to investigate the possibility of transfer learning between non-identical
electrical biosignals is illustrated in Figure 3.1. To evaluate the outcomes, we consid-
ered the balanced distribution of events in both the ECG and EMG datasets. We then
employed the RMSE metric. In the following sections, we explain the electrical biosig-
nal datasets, preprocessing, similarity analysis, and heterogeneous transfer learning steps.

3.1.1 Electrical biosignals datasets

This section describes the datasets used to investigate our proposed research question.

TUEG EEG Corpora1 - the electroencephalogram (EEG) records obtained from
the Temple University Hospital (TUH) between 2002 and 2019 (OBEID; PICONE, 2016).
The dataset consists of 412,400 EEG recordings, acquired using groups of channels (24 to
36, 64 and 128 channels), sampled at 250 Hz with 16 bits per sample, and without noises.

1<https://isip.piconepress.com/projects/tuh_eeg/> - accessed on 17/06/2024
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Figure 3.1: The architecture for transfer learning between heterogeneous electrical biosig-
nals. After preprocessing, we conducted a similarity analysis, resulting in two ECG
datasets: one with waves most similar to EMG and the other with waves most similar
to EEG. We then trained two ECG models using the respective ECG datasets individu-
ally. Subsequently, we implemented a reuse model strategy, transferring the trained ECG
LSTM parameters, along with their layers, weights, and biases, to EMG and EEG models
to process EMG and EEG biosignals.

The recordings were annotated and registered in a European Data Format (EDF+), en-
suring compatibility with existing EEG analysis software. This file’s type has three parts:
header, signals header and signal data (see details in table 3.1). The annotated document
presents a succinct and comprehensive summary of the patient’s medical history, diagnose
(as in table 3.2, and prescribed medications, as prepared by a specialist physician.

ECG Heartbeat Categorization2 - during the period between 1975 and 1979, the
Massachusetts Institute of Technology (MIT) and the Beth Israel Hospital in Boston
(now the Beth Israel Deaconess Medical Center) collaborated to create the MIT-BIH
Arrhythmia Database (MOODY; MARK, 2001). This database comprises electrocar-
diogram (ECG) recordings from 47 different subjects, with approximately 60% of the
recordings obtained from inpatients and the remaining 40% from outpatients at Boston’s
Beth Israel Hospital. The dataset consists of 123,998 ECG recordings, each of which was
sampled at a frequency of 125Hz and characterized by 188 features. Two or more cardiol-
ogists independently annotated each recording, resulting in a classification into one of five
possible categories (see table 3.3). The signal features were stored in a comma-separated
values (CSV) format (KACHUEE; FAZELI; SARRAFZADEH, 2018).

2<https://www.kaggle.com/datasets/shayanfazeli/heartbeat> - accessed on 06/27/2023
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Table 3.1: The TUEG EEG file structure follows the European Data Format (EDF+).
The header contains patient and examination details. The signal header provides in-
formation about the electrical activity across different regions of the scalp, using the
international standard known as the 10-20 system scalp map, illustrated in Figure 2.4 in
Chapter 2. The signal data records the EEG values captured.

EDF Files Strutucture
Header Signal Header Signal Data

Version Number Label to Identify Type of Signal Data Records
Patient ID Reserved
Gender Number of Data Records
Date of Birth Duration of a Data Record in Seconds
Patient Name Number of Signals in a Data Record
Patient’s age at time of study EEG Fp1, Fp2 (electrodes position)
"Startdate" Label EEG F3, F4 (electrodes position)
Start Date EEG C3, C4 (electrodes position)
EEG Nº EEG P3, P4 (electrodes position)
Technician Name EEG O1, O2 (electrodes position)
EEG Machine Used EEG F7, F8 (electrodes position)
Additional Subfields EEG T1, T2, T3, T4, T5, T6 (electrodes position)
Start date (dd.mm.yy) EEG Fz, Cz, Pz (electrodes position)
Start time (hh.mm.ss) EEG EKG1 (electrode position)

IBI, Bursts, Suppr
EDF Annotations
Signal Physical Dimension
Signal Physical Minimum
Signal Physical Maximum
Signal Digital Minimum
Signal Digital Maximum
Signal Prefiltering

EMG Classify Gestures3 - the acquisition of electromyography (EMG) signals was
motivated by the goal of supporting an open-source prosthetic control project that sought
to enhance the functionality of prosthetic devices by enabling them to operate with multi-
ple degrees of freedom4 (ZHAI et al., 2017). To this end, an armband equipped with eight
sensors was used, which were placed on the surface of the skin to measure the electrical
activity generated by the underlying muscles.

The EMG signals were recorded at a sampling rate of 200 Hz with a total of 11,678
recordings and yielded 64 features that were used to classify four possible gesture classes,
as in table 3.4.

3<https://www.kaggle.com/datasets/kyr7plus/emg-4> - accessed on 06/27/2023
4<https://github.com/cyber-punk-me> - accessed on 06/27/2023



36 HETEROGENEOUS TRANSFER LEARNING: PROPOSAL AND OUTLINE

Table 3.2: The EEG biosignal classification describes elements of the label space that
were annotated in the summary of the patient’s medical history analyzed by a specialist
physician.

EEG Biosignal - Classification
Category Classification

1 • Normal
• No definitive electrographic seizures

2 • Abnormal

3

• Seizure
• Spike and slow wave
• Generalized periodic epileptiform discharge
• Periodic lateralized epileptiform discharge
• Eye movement
• Artifact

10 • Not informed

3.1.2 Preprocessing

We preprocessed the datasets (EEG, ECG, and EMG) using the same method. First,
we conducted feature exclusion to remove instances with missing values, which is nec-
essary due to the neural network’s restriction in handling this type of data. The EEG
dataset did not contain missing values in specific rows, but it had columns comprising
patients’ session data and some signal channels without any values. We removed all these
columns, thereby reducing the dataset from sixty-one to twenty features. The ECG and
EMG datasets did not have any instances of missing values. In the next step, we sep-
arated the feature space from the label space and removed the noise from the biosignal
by defining a frequency range between 10 and 15 Hz for the ECG and between 0.15 and
40 Hz for the EMG. This step allowed us to retain only the relevant signal information
to feed the our model. The EEG dataset did not require this procedure because it was
already cleaned from noise when the dataset was created, maintaining frequencies higher
than 13 Hz. We also decided to trim the EEG waves to reduce its time series size and
computational cost for processing this volume of data. The EEG time series originally
had an average length of five minutes of recording. We applied the strategy to reduce
the time series to 15 seconds for each sample, starting from the 181st second.

Then, we normalized the biosignal values between zero and one, and applied the
Fourier transform method to convert them from the time domain to the frequency do-
main. In the last step, we segmented the datasets into folds with twenty features to
maintain uniformity in the input vectors across the three biosignals. This segmentation
was performed following the sequence of features in the dataset. This resulted in nine
folds for ECG, three folds for EMG, and one fold for EEG.
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Table 3.3: The ECG heartbeat classification details elements of the label space that were
independently annotated by two or more cardiologists at the Massachusetts Institute of
Technology (MIT) and Beth Israel Hospital in Boston.

ECG Heartbeat - Classification
Category Classification

N

• Normal
• Left/Right bundle branch block
• Atrial escape
• Nodal escape

S

• Atrial premature
• Aberrant atrial premature
• Nodal premature
• Supra-ventricular premature

V • Premature ventricular contraction
• Ventricular escape

F • Fusion of ventricular and normal

Q
• Paced
• Fusion of paced and normal
• Unclassifiable

Table 3.4: The EMG gesture classification represents the elements of the label space
obtained from an open-source prosthetic control project.

EMG Gesture - Classification
Category Classification

0 • Rock
1 • Scissors
2 • Paper
3 • OK

3.2 BASELINES

Given the absence of similar research developing methods to process non-identical
electrical biosignals in the frequency domain using transfer learning techniques, we built
the baseline models from scratch. We developed a lean architecture model due to limita-
tions in the computational resources available.

After processing each baseline, we compared the test outcomes and identified the low-
est RMSE among the EEG, ECG, and EMG models. We then selected the biosignal with
the lowest RMSE as the source domain. Folds from this dataset were used to calculate
the distance between it and the folds from the other two biosignals. The lowest distance
results determined which baselines trained by the source domain folds would provide pa-
rameters for implementing transfer learning between the biosignals.

In the next sections, we detailed the architecture of each baseline along with its hy-
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Figure 3.2: Architecture of the EEG model: 6 bidirectional LSTM layers, 5 LSTM layers,
4 dropout layers, and 1 dense layer.

perparameter configuration. All baselines were trained for seven epochs (20, 50, 100, 150,
200, 300, and 400).

3.2.1 EEG

The EEG baseline was defined with a input bidirectional LSTM layers, five LSTM
hidden layers, five bidirectional hidden layers, four dropout layers, and a dense layers, see
figure 3.2. The hyper parameters defined were: adam optimizer, dropout = 0.2, suffle =
false (do not allow mix the time serie data), train batch size = 540000, and test batch
size = 14000.

3.2.2 ECG

The ECG baseline was defined with a bidirectional LSTM input layers, five LSTM
hidden layers, four dropout layers, and a dense layers, see figure 3.3. The hyper param-
eters defined were: adam optimizer, dropout = 0.2, suffle = false (do not allow mix the
time serie data), train batch size = 11000, and test batch size = 2200.

3.2.3 EMG

The EMG baseline was defined with a input LSTM layers, four LSTM hidden layers,
four bidirectional LSTM hidden layers, three dropout layers, and a dense layers, see figure
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Figure 3.3: Architecture of the ECG model: 1 bidirectional LSTM layer, 5 LSTM layers,
4 dropout layers, and 1 dense layer.

Figure 3.4: Architecture of the EMG model: 4 bidirectional LSTM layers, 5 LSTM layers,
3 dropout layers, and 1 dense layer.

3.4. The hyper parameters defined were: adam optimizer, dropout = 0.2, suffle = false
(do not allow mix the time serie data), train batch size = 2800, and test batch size = 700.

3.2.4 Similarity analysis

As our experiment involves a heterogeneous dataset consisting of non-identical feature
and label spaces, we integrated similarity analysis to mitigate the occurrence of negative
transfer learning. This approach allowed us to observe how lower distances, indicating
high similarity between biosignal waves, improved the LSTM model’s understanding and
generalization of biosignals, thereby mitigating negative transfer effects in our two trans-
fer learning scenarios.
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We selected the dynamic time warping (DTW) method for its superior distance mea-
surement capabilities, which account for variations in wave time and amplitude. DTW
addresses distortions and shifts in time series data by non-linearly aligning sequences,
ensuring similar patterns are matched even if they occur at different times (GIORGINO,
2009). Based on this concept, we conducted an evaluation of the similarity between ECG
and EMG biosignals, as well as between ECG and EEG biosignals, resulting in the cre-
ation of two ECG datasets with the most similar waves identified in the process.

3.2.5 Heterogeneous transfer learning

In the heterogeneous transfer learning process, the two ECG datasets with the most
similar waves with EMG and EEG biosignals, identified in similarity analysis process,
were selected as the source domains. They were submitted to their respective ECG
model, with the same architecture than ECG baseline model. Then the ECG models pa-
rameters calculated were transferred, which were weights, biases, layers, and the overall
structure of the network, to the EMG and EEG models, respectively.

This proposed transfer strategy, known as model reuse, facilitated the efficient con-
figuration of neural network architectures for new tasks, thereby enhancing their ability
to generalize new types of data and improve overall performance. Additionally, this ap-
proach aimed to reduce the need for extensive labeled data in the EMG and EEG target
domains, as the knowledge obtained through these parameters encompasses a general
understanding of electrical biosignals.

After the transfer of the ECG LSTM parameters, the EMG and EEG datasets were
preprocessed following the steps described in Section 3.1.2 and then submitted to their
respective models to train. As in the baseline process, the ECG and EMG models were
trained at seven epochs (20, 50, 100, 150, 200, 300, and 400). Finally, the models calcu-
lated the value of each metric for each epoch.

3.3 MEASURES

Then we compared the results found with statistical methods to evaluate the results
of the models. The method selected was root mean squared error (RMSE) to measure
the results, as described below (WANG et al., 2023; ZHANG et al., 2020b; SILVA et al.,
2020).

• Mean squared error - represents the mathematical measure of the average squared
distance between the observed and predicted values, see 3.1.

MSE = Sum of Squared Errors
Number of Predictions (3.1)

• Root mean squared error - serves as a metric for assessing the accuracy and quality
of predictive outcomes, as in equation 3.2.
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RMSE =
√

MSE (3.2)

Finally, we reviewed and analyzed which approach presented the best results to prove
our hypotheses.

3.4 SUMMARY

This chapter provides a detailed description of the methodology proposed in this work.
We begin by presenting the characteristics of the datasets and the steps required to pre-
pare the data for processing by neural networks. We then describe the architectures of
the baseline models, the objectives, and the application of similarity analysis between
electrical biosignals, as well as the implementation of transfer learning between heteroge-
neous data. Finally, we detail the metrics used to evaluate the obtained results.

In this way, we provide a thorough description of the steps required to investigate the
feasibility of performing transfer learning with non-identical data, based on the analysis
of the obtained results. Furthermore, upon execution of the outlined methodology, it will
also be possible to address the secondary research questions.

The following chapter details the experiment phases, their outcomes, and the analysis
of both the process and results.
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4
“I wanted you to know that I am ready to go”, Childish Gambino

TRANSFER LEARNING WITH HETEROGENEOUS
ELECTRICAL BIOSIGNALS: EXPERIMENTAL

ANALYSIS

The primary objective of this chapter’s experiments is to investigate how transfer learning
can enhance the predictive accuracy of LSTM neural networks when processing diverse
electrical biosignals. Our analysis is structured around the key research questions, which
focus on scenarios where negative transfer might occur, whether processing data in the
frequency domain can alleviate the effects of unbalanced data, and whether assessing the
similarity between signals can significantly improve the accuracy of target LSTM models.

4.1 IMPLEMENTATION DETAILS

The experiment1 utilizes the following tools: Jupyter Notebook version 6.4.12, Python
version 3.9.13, along with the Keras and DTW libraries. The computer used was an Intel
Core i5 with 2.60GHz x 8, 16GB memory, and Ubuntu 22.04.03 LTS.

4.1.1 Preprocessing

During the preprocessing stage, our primary focus was to prepare the diverse datasets
to construct uniform and valid feature spaces for processing by an LSTM neural network.
We transformed the biosignal datasets from time to frequency domain, aiming to reduce
the mathematical complexity of the data (from mathematical sine functions to algebraic
functions). Considering that, we investigated whether simplifying and generalizing the
biosignal dataset could result in effective transfer learning outcomes in most of the pro-
posed scenarios, including with unbalanced datasets. One benefit of this process was that
even when using heterogeneous datasets with non-identical sources and labels, since they

1Code files - <https://github.com/DeinhaLeao/Master_Degree.git>
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belong to the same category of data (electrical signals), we could analyze and apply simi-
lar preprocessing strategies to them. Our unique divergent treatment was to address the
specific noise frequencies inherent in each biosignal. This standardization in preprocess-
ing suggests that we could incorporate an even broader range of non-identical electrical
biosignals without increasing the complexity or high cost associated with adapting the
preprocessing techniques.

In terms of dataset composition, a significant portion of the EEG feature space had
to be excluded due to the presence of numerous entries with missing values. This issue
arose because the EEG dataset was collected over different periods using various equip-
ment and channel configurations (64 and 128 EEG channels), including the most common
configurations used in research, which range from 24 to 36 channels (OBEID; PICONE,
2016). Additionally, it lacked balanced treatment. Conversely, both the ECG and EMG
datasets exhibited no missing values within their respective feature spaces. We chose
to preserve these EEG characteristics — namely, the low number of features and imbal-
anced datasets — to observe the behavior of the LSTM model in the context of transfer
learning. Our aim was to verify if improvements in outcomes could be obtained through
the simplification of biosignal complexity in the frequency domain, even under these con-
ditions, and to answer our secondary question about the LSTM’s ability to mitigate the
effect of unbalanced data.

4.2 BASELINE RESULTS

In regard to the baseline outcomes, we presumed that the mathematical simplification
of the waves in the frequency domain would improve the LSTM model’s ability to gener-
alize the biosignals, resulting in lower root mean squared error. However, this hypothesis
was not confirmed by the results with EEG and EMG dataset scenarios. The EEG base-
line results demonstrated that, even in the frequency domain, the model struggled to
accurately map the imbalanced data. Its RMSE rate underscored the low accuracy and
quality of predictive outcomes, as is commonly understood in the state-of-the-art (WAN
et al., 2021). We also considered another factor that might have influenced the accuracy:
the preprocessing step involving the selection of the EEG segment for this experiment.
Specifically, we chose a 15-second interval following the initial 3 minutes of the recording.
It is possible that certain samples within this time frame may not accurately represent
the occurrences of labeled brain disorders. This discrepancy could negatively impact the
LSTM model’s ability to comprehend and classify EEG biosignals efficiently.

In the EMG dataset scenario, the data was not unbalanced, but it had a limited num-
ber of samples for each event in the label space. The EMG baseline outcomes indicated
that the smaller number of label samples adversely affects its training task, as is widely
recognized in current research (ZHANG et al., 2021; TAN et al., 2018; XU et al., 2019).
Contrary to our initial assumptions, the mathematical simplification of the EMG waves
was insufficient for the model to mitigate the effects of the low sample size in the label
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Figure 4.1: Comparison of the best RMSE baseline results, represented by ECG fold 5,
EEG fold 1, and EMG fold 1.

space. Upon comparing the outcomes of both baselines, which process the EMG and
EEG datasets, we found that, in our context, an unbalanced dataset presents a greater
challenge for the neural network than a balanced dataset with a limited number of sam-
ples for each event in the label space.

The baseline obtained over the ECG dataset yielded the best outcomes in the context
of our research. The ECG dataset exhibited characteristics such as balanced data and a
substantial number of occurrences for each event in the label space. Among the nine ECG
folds generated during the preprocessing stage, the baseline’s outcome metrics for ECG
fold 5 (see Figure 4.3d) demonstrated a slightly better understanding of ECG biosignals
compared to the other processed ECG folds, as evidenced by the RMSE rate.

Upon examining the ECG and EMG baseline outcomes for each fold, we observed sim-
ilar levels of accuracy, with minor variations in RMSE. Initially, we anticipated varying
results for each fold, given that each was assigned a unique segment of the biosignal. We
assumed that certain segments might more accurately represent heart and muscle activity
than others. However, since these datasets were preprocessed and segmented beforehand
by their creators to better represent heart and muscle states, we observed stable metric
results across the processed ECG and EMG folds. After analyzing the baseline outcomes,
we compared the testing RMSE results (see Fig. 4.1) and identified that the ECG model
trained with ECG fold 5 presented the lowest RMSE. Based on this result, we selected
the ECG dataset as the source domain and the EEG and EMG datasets as the target
domains. We then calculated the distance between the ECG-EEG and ECG-EMG pairs.
The shortest distance in each case determined which ECG baseline, trained on the differ-
ent ECG folds, provided the best parameters for implementing transfer learning to the
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Figure 4.2: (a) Details of the EEG baseline model, including the parameters for each
layer and a summary of the total number of trainable and non-trainable parameters in
the entire model. (b) Comparison of the baseline outcomes of the LSTM model for EEG
fold 1 during the training and testing process for each epoch.
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EMG and EEG models.

The baselines shared some hyperparameter configurations, which are beta_1 = 0.9,
beta_2 = 0.999, epsilon = 1e-08, and decay = 0.0, with the activation function set to
sigmoid. The specific details about each baseline architecture are described as follows.
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Figure 4.3: (a) Details of the ECG baseline model, showing the parameters for each
layer and summarizing the total number of trainable and non-trainable parameters in the
entire model. The figures from (b) to (j) represent the comparison of baseline outcomes
of the LSTM model for the ECG folds during the training and testing process across each
epoch, where the figures represent (b) ECG Fold 1. (c) ECG Fold 2. (d) ECG Fold 3.
(e) ECG Fold 4. (f) ECG Fold 5. (g) ECG Fold 6. (h) ECG Fold 7. (i) ECG Fold 8. (J)
ECG Fold 9.
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4.2.1 EEG

We designed the EEG model, which comprises a total of 2,207,905 trainable param-
eters (refer to Figure 4.2a). The EEG TUEG dataset was collected and made available
by Temple University Hospital (TUH) for various research purposes involving this type
of biosignal. There is no recommended data split for training and testing in the projects.
Therefore, we segmented the dataset, allocating 80% (329,920 registers) for training and
20% for testing (82,480 registers. The training batch size was set to 54,000, while the
testing batch size was set to 14,000. The outcomes obtained for each epoch are detailed
in Figure 4.2b.

4.2.2 ECG

We designed ECG model, which comprises 633,105 as a total trainable parameters
(refer to Figure 4.3a). Following the dataset creators’ guidelines, we executed the training
and test phases with its specific dataset, which contains 102,106 and 21,892 registers,
respectively. The training batch size was set to 11,000, and the testing batch size was
set to 2,200. The results obtained for each epoch of the folds are detailed in Figures 4.3b
through 4.3h.

4.2.3 EMG

We designed the EMG model, which consists of 557,569 trainable parameters (refer to
Figure 4.4a). Similar to the EEG dataset, the creators of the EMG dataset did not suggest
a specific percentage for splitting the dataset. Therefore, we followed the same strategy
used with the EEG dataset and segmented the EMG dataset into 80% for training (9,342
records) and 20% for testing (2,336 records). The training batch size was set to 2,800,
and the testing batch size was set to 700. The results obtained for each epoch of the folds
are detailed in Figures 4.4b, 4.4a, and 4.4b.

4.3 EXPERIMENTAL RESULTS

We evaluated the performance of heterogeneous transfer learning using root mean
squared error (RMSE), as detailed in Chapter 3. We chose the RMSE metric because
it allowed us to analyze the impact on the distance between the outcomes of the base-
line model and those of the heterogeneous transfer learning model, and to evaluate the
possibility of transferring knowledge between heterogeneous electrical biosignals.

4.3.1 Similarity analysis

Our first step in trying to improve the quality of the source domain selected was to
implement a similarity analysis based on the DTW method. However, due to the high
computational cost of this operation, we decided to calculate the waves distances using
only a sample of the datasets. We calculated the distances between the ECG and EEG
signals, as well as between the ECG and EMG signals. Therefore, we selected 8% of the
ECG and EEG datasets, as well as the entire EMG dataset. We calculated the distances
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between the nine ECG folds and the EEG, as well as the three EMG folds, and then
standardized them to a range between zero and one.

After calculating the distance among all the folds, we selected the ECG fold with the
lower distances for ECG-EEG (as shown in Table 4.1) and ECG-EMG (as shown in Table
4.2), to be used a source domains to the EEG and EMG models.
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Figure 4.4: (a) Details of the EMG baseline, showing parameters for each layer and
summarizing the total number of trainable and non-trainable parameters. The figures
from (b) to (d) represent the comparison of baseline outcomes of the LSTM model for the
EMG folds during the training and testing process across each epoch, where the figures
represent (b) EMG Fold 1, (c) EMG Fold 2, and (d) EMG Fold 3.
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Table 4.1: Results of the similarity analysis between ECG folds and EEG fold using the
dynamic time warping (DTW) method.

[c]0.5

Similarities ECG-EEG
ECG Folds ECG-EEG Fold 1

1 0.69
2 0.10
3 0.16
4 0.59
5 1
6 0.58
7 0.47
8 0.19
9 0

Table 4.2: Results of the similarity analysis between ECG folds and EMG folds using the
dynamic time warping (DTW) method.

[c]1
Similarities ECG-EMG

ECG Folds ECG-EMG Fold 1 ECG-EMG Fold 2 ECG-EMG Fold 3
1 0 0.97 0.97
2 0.57 0 0.43
3 0.59 0.44 0
4 0.86 0.80 0.80
5 1 1 1
6 0.80 0.78 0.79
7 0.72 0.67 0.68
8 0.58 0.47 0.49
9 0.49 0.33 0.36

4.3.2 Transfer learning

Based on our methodology, we observed the outcomes of the similarity analysis and
selected the best ECG baseline models to determine the dataset folds that would serve
as the source domains for the transfer learning process.

For the EEG model, we used the parameters from the ECG baseline trained on ECG
fold 9 with 20 epochs, as presented in Figure 4.5a. For the EMG model trained on EMG
fold 1, we utilized the ECG baseline parameters trained on ECG fold 1 with 20 epochs,
with results shown in Figure 4.5b. For the EMG model trained on EMG fold 2, we
employed the parameters from the ECG baseline trained on ECG fold 2 with 20 epochs,
as shown in Figure 4.5a. Finally, for the EMG model trained on EMG fold 3, we used
the ECG LSTM parameters trained on ECG fold 3 with 20 epochs; see Figure 4.5b for
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the results.
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Figure 4.5: Outcomes of heterogeneous transfer learning from the ECG model trained on
ECG fold 9 to the EEG model.
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Figure 4.6: Comparative analysis of outcomes between the baseline model and the model
with pre-trained parameters: (a) Comparison between the EEG baseline model and the
EEG model with pre-trained ECG LSTM parameters from ECG fold 9; (b) Comparison
between the EMG baseline model trained on EMG fold 1 and the EMG model with pre-
trained ECG LSTM parameters from ECG fold 1; (c) Comparison between the EMG
baseline model trained on EMG fold 2 and the EMG model with pre-trained ECG LSTM
parameters from ECG fold 2; (d) Comparison between the EMG baseline model trained
on EMG fold 3 and the EMG model with pre-trained ECG parameters from ECG fold 3.
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To analyze the transfer learning outcomes, we conducted a comparison between the
baseline for each biosignal and its respective transfer learning model that received the
pre-trained parameters from the most similar biosignal fold, see Figures from 4.6a to 4.6b.

4.4 DISCUSSION

To address the research questions, we modeled transfer learning between LSTM neu-
ral networks using heterogeneous electrical biosignals, specifically ECG-EMG and ECG-
EEG, with ECG as the source domain and EMG and EEG as the target domains. The
proposed method is divided into similarity analysis and heterogeneous transfer learning
processes.

About similarity analysis using DTW, we investigated whether utilizing features from
the most similar signal segments, even in a heterogeneous dataset context, as a source
domain could improve the target model outcomes. The computational cost of calculating
the similarity analysis limited us to analyzing only 8% of all ECG and EEG database
samples.Unlike the EMG dataset, which was small enough to be processed in its entirety.
We suspect that this limitation distorted the similarity result and interfered with our
database segment selection process. We calculated the similarity between all ECG folds
(1 to 9) and the EEG fold, as well as the three EMG folds, using DTW. In the results,
we observed a consistently high dissimilarity across all scenarios, which emphasized the
heterogeneous characteristics between the EEG, ECG, and EMG electrical biosignals.
We also noted that the ECG-EEG fold exhibited the highest distance compared to all
ECG-EMG folds, as indicated in Tables 4.1 and 4.2.

Observing the similarities results, we visualized the difficulty of avoiding the effect of
negative transfer when dealing with a heterogeneous dataset with non-identical features
and label spaces in the transfer learning context, as pointed out by the state-of-the-art
studies (CAO et al., 2019; LIN, 2019). Then, to mitigate this tendency, we implemented
heterogeneous transfer learning using the reuse model strategy, considering that reusing
all weights, biases, and parameters from all layers of the pre-trained ECG model could
improve the performance of the target task. In parallel, when we transformed the datasets
into the frequency domain, we aimed to reduce their mathematical complexity, making
them easier to represent with algebraic functions. Additionally, we performed feature
selection based on the results of the similarity analysis. These processes were intended to
facilitate the generalization of the electrical biosignals by the predictive function. After
training the target EMG and EEG models with the ECG LSTM parameters, we observed
a positive transfer learning result in all ECG-EMG transfer learning scenarios, as shown
in Figures 4.6b, 4.6a, and 4.6b.

In the ECG-EEG transfer learning context, we observed a slight decrease in the EEG
model performance, as indicated in Figure 4.6a. We suspected that this decrease was
influenced by our preprocessing segment strategy, the dataset’s imbalance characteris-
tics, and the high dissimilarity with the ECG biosignal (see Table 4.1), which resulted in
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a negative transfer outcome. The difference between the results presented in the EEG
baseline model and the ECG-EEG transfer learning model was small (-0.0077 in RMSE).
Despite the high dissimilarity between the biosignals, we realized that the transfer of
generalized knowledge from ECG did not result in a complete misunderstanding of the
EEG biosignal by its model. We suppose that using another strategy for EEG prepro-
cessing, specifically segmenting to obtain the most representative of the event into the
biosignal wave, could improve its outcomes in the transfer learning context, even with
the substantial dissimilarity between the ECG and EEG biosignals.

We also noted that the similarity analysis did not produce the expected effect on the
model results. We anticipated the best transfer learning outcomes would occur from the
ECG model trained on ECG fold 1 to the EMG model trained on EMG fold 1, from the
ECG model trained on ECG fold 2 to the EMG model trained on EMG fold 2, and from
the ECG model trained on ECG fold 3 to the EMG model trained on EMG fold 3, as
indicated in Table 4.2. Instead, the best results were observed in the models: from the
ECG model trained on ECG fold 3 to the EMG model trained on EMG fold 3, from the
ECG model trained on ECG fold 1 to the EMG model trained on EMG fold 1, and from
the ECG model trained on ECG fold 2 to the EMG model trained on EMG fold 2. We
suspect that the computational cost limitation, which forced us to reduce the volume of
data used to calculate the distance between the biosignals, distorted these results.

Finally, despite the previously mentioned limitations, we demonstrated that applying
different strategies together effectively showed the feasibility of generalizing knowledge
from one biosignal dataset and transferring it to enhance the predictive accuracy of
another model, as in the ECG-EMG scenario. Furthermore, our findings suggest that
processing data in the frequency domain can mitigate the effects of unbalanced data.
However, it was not sufficiently effective to prevent slight negative transfer learning in
the ECG-EEG scenario.

4.5 SUMMARY

In this chapter, following the execution of each step of the methodology described
in the previous chapter, we conducted an analysis of the obtained outcomes. We first
present the infrastructure used to process the data and then provide a detailed discus-
sion of our observations regarding the preprocessing stages, baseline models, similarity
analysis, and, finally, the heterogeneous transfer learning.

Through this analysis, we identified that it is possible to apply transfer learning be-
tween neural networks processing heterogeneous electrical biosignals in the frequency
domain, resulting in increased accuracy of the target model. However, we also found that
the scenario where ECG served as the source domain and EEG as the target domain led
to negative transfer. This suggests that generalizing the data by transforming signals
into the frequency domain was insufficient to mitigate the effects of unbalanced data.



62TRANSFER LEARNING WITH HETEROGENEOUS ELECTRICAL BIOSIGNALS: EXPERIMENTAL ANALYSIS

Another key finding was that the evaluation of similarity for selecting ECG data as the
source domain for training the model and transferring its parameters to the target model
did not yield a significant positive impact.

In the following chapter, we provide concluding remarks, summarizing the key find-
ings of this research and proposing directions for future work.



Chapter

5
“I’m gonna stand up and say out loud: yes honey I’m here, I’m black and I’m proud!” Nelle

CONCLUSION AND FUTURE WORK

In this study, we propose and validate a transfer learning approach between neural net-
work models, each one designed to process heterogeneous electrical biosignal data; the
common data representation was in the frequency domain. To validate our approach,
we organized a methodology into four stages: preprocessing the ECG, EEG, and EMG
biosignals datasets; building baselines from scratch; calculating the similarity with the
DTW method between ECG-EMG dataset, as well as between ECG-EEG; and executing
the heterogeneous transfer learning.

5.1 CONCLUSION

Throughout this dissertation, we have addressed the main research question: ’Does
transfer learning between neural network models processing heterogeneous electrical biosig-
nals in the frequency domain have the potential to increase the predictive accuracy of
the target model?’. To this question, our findings suggest a viable approach to applying
transfer learning between neural networks processing non-identical electrical biosignals,
specifically ECG as a source domain and EMG as a target domain, thereby improving
the accuracy of the target LSTM model. The strategy of simplifying the mathematical
representation of waves in the frequency domain effectively addressed the limited number
of samples per event in the EMG target dataset.

We also examined three secondary questions. The first is, ’In which scenarios did neg-
ative transfer occur?’. Our results indicate that while processing data in the frequency
domain can mitigate the effect of unbalanced data, but it was insufficient to prevent slight
negative transfer learning, particularly when using ECG as the source domain and EEG
as the target domain. This suggests that proper preprocessing to address unbalanced
data could enhance the LSTM model’s performance.

The second question is, ’Can processing data in the frequency domain mitigate the
effect of unbalanced data?’. The outcomes demonstrate that this simplification positively
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impacted the generalization of biosignals in restrictive scenarios by the LSTM model.
This finding is significant as it suggests the potential to reduce dependency on large
datasets for training and calibration, thereby overcoming challenges in heterogeneous
transfer learning.

The last question is, ’Can the evaluation of similarity between the signals lead to gains
in the accuracy of the target model?’ Our analysis revealed that the similarity evalua-
tion did not yield significant gains in target model accuracy. The high computational
cost necessitated a substantial reduction in data volume for this activity. This highlights
the need to explore methods that balance computational cost and accuracy in similarity
assessments, taking into account distortions and shifts in time series data during DTW
calculations.

To address the research questions, we explored various scenarios to develop the pro-
posed methodology. Initially, inspired by architectures in the reviewed papers, we imple-
mented LSTM models for each biosignal with more than fifteen hidden layers. However,
due to the large data volume, limited computational resources without GPU support, and
the complexity of deep neural networks, we had to reduce the model architecture. We
also devised a strategy to reduce the size of EEG and ECG biosignals to decrease their
volume and enable feasible processing. During this process, we tested various parameter
combinations and activation functions, ultimately selecting the sigmoid activation func-
tion.

The exploration process allowed us to investigate the feasibility of applying trans-
fer learning between neural networks processing different types of electrical biosignals.
We emphasized the importance of designing LSTM architectures with consideration of
available computational resources and understanding the specific characteristics of each
dataset to adjust neural network parameters effectively, thereby leveraging the model’s
learned knowledge. Despite certain limitations, such as limited computational resources,
the high cost of calculating distances between biosignals, and others detailed in Chapter
4, our experiment demonstrates the potential to enhance the predictive accuracy of the
LSTM model by reusing pre-trained parameters. As a result, this research opens avenues
for exploring additional methods to achieve heterogeneous transfer learning.

All implemented algorithms have been published as an open-source package and
are available online for free at <https://github.com/DeinhaLeao/Master_Degree.git> or
<https://drive.google.com/drive/folders/1ciEtKhUUlkcFcNVOhXeM9E29qUGFjixT?usp=
sharing>.

5.2 FUTURE WORK

The proposed experiment has raised some open questions and suggested potential re-
search directions. The following points are listed for further exploration and development
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of this study:

• Enhance the preprocessing step to use multiple techniques to extract relevant fea-
tures and obtain the most representative biosignal segment.

• Explore alternative methods for calculating the distance between biosignals, aiming
to reduce the computational cost of the process and facilitate the utilization of a
substantial volume of data in this measure.

• Replicate the methodology using other kind of neural network, as Transformer.

• Perform a similar architecture appling datasets in the time domain and compare
the outcomes in time and frequency scenarios.

• Investigate techniques to mitigate the imbalance dataset effect;

In a broader research timeline, it is possible to study in detail the effects of transfer
learning on imbalanced electrical biosignal datasets. Other future works, for example,
may focus on enhancing the robustness of model architectures and optimizing the hard-
ware used to improve generalization results.

Another critical area for future research involves interdisciplinary cooperation. Col-
laborations across diverse fields such as medicine, physics, and among physicians can
contribute to enhancing the selection of representative biosignal segments and the anal-
ysis conducted by both baseline and transfer learning models. If positive results are
confirmed, future research could propose a methodology for implementing this solution
in public health policies, with careful attention to ethical considerations in healthcare
applications.
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