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Carbon fibers are widely used in many industrial applications due the fact of their excellent
properties. Carbonaceous mesophases are liquid crystalline precursor materials that can be spun
into high performance carbon fibers using the melt spinning process, which is a flow cascade con-
sisting of pressure driven flow-converging die flow-free surface extensional spinline flow that modifies
the precursor molecular orientation structure. Carbon fiber property optimization requires a better
understanding of the principles that control the structure development during the fiber formation
processes and the rheological processing properties. This paper presents the elastic and continuum
theory of liquid crystals and computer simulations of structure formation for pressure-driven flow
of carbonaceous liquid crystalline precursors used in the industrial carbon fiber spinning process.
The simulations results capture the formation of characteristic fiber macro-textures and provide
new knowledge on the role of viscous and elastic effects in the spinning process.

Keywords: carbon fibers, carbonaceous mesophases, liquid crystalline precursors, Ericksen-
Leslie theory

mesophase pitch is an active area of research due to its sig-
nificance in optimization and control of carbon fiber prop-
erties. Since carbon fibers are the material of choice for
high performance structural composites, significant indus-
trial and academic research efforts are being conducted in
many countries4,5.

The manufacture of pitch carbon fibers uses carbo-
naceous mesophases precursors in conjunction with the fiber
melt spinning process. Carbonaceous mesophases are tex-
tured anisotropic viscoelastic liquid crystalline materials
formed by disc-like aromatic molecules. Therefore, this
material is a discotic nematic thermotropic liquid crystal,
that exhibits orientational order and positional disorder. Fig-
ure 1 shows a schematic of the discotic nematic liquid crys-
talline phase, where the unit normals to the molecular discs
(u) orient more or less parallel to the director n (n.n=1).

The melt spinning process consists of a flow sequence
that induces unique textural transformations in the mesophase.
Figure 26 shows a schematic of the classical melt spinning
process, consisting of a sequence of capillary Poiseuille flow,
converging Jaffrey-Hamel flow, an extrusion Poiseuille flow,
and finally the spinline extensional flow. Fiber melt spinning

1. Introduction

Carbon fibers are advanced materials widely used in
aerospace, chemical, electronic, sportive, construction, and
transportation industries due to their unique features such
as low density, high thermal conductivity and shock resist-
ance, low thermal expansion and high modulus. For instance,
since the 1970s the civil and military aerospace industry
has been progressively using a wide range of carbon-based
materials in aircraft structures and disk brakes, rockets noz-
zles and re-entry nose tips, and space shuttle components
to improve structural efficiency and weight reduction with-
out compromising the structural strength1-3.

Carbon fiber composites are manufactured by
densification of carbon fiber precursors with a matrix of
polymer, carbon or metal. Carbon fiber can be produced by
vapor growth and by carbonization of polyacrylonitrile
(PAN). Since 1977 a new technique of melt spinning natu-
ral and synthetic mesophases pitches has been introduced4.
This carbon fiber family has ultra-high module and a very
high thermal and electrical conductivity values3-5. The
processing flow-induced textural transformations in
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of carbonaceous mesophase precursors usually lead to a va-
riety of cross-sectional fiber textures, such as the folded, ra-
dial, bipolar, and onion-skin textures, that give specific prop-
erties to the fibers and its composites5,7.

 A typical folded texture and its molecular organization
are shown in Fig. 38. If we neglect the oriented core, the
texture consists basically of a set of rings located at L, whose
thickness T decreases towards the fiber rim. The mecha-
nisms that lead to concentric ring textures needs to be elu-
cidated for the eventual optimization and control of pitch

based carbon fiber textures. This paper uses theory and simu-
lation to formulate a flow-induced texture formation proc-
ess, applicable to mesophase pitches subjected to capillary
flow.

Theory and simulation for liquid crystalline flows is an
active area of research9 given the importance of these mate-
rials in structural, electromagnetic, sensor, lubrication,
foams, and display applications. The most widely used
mechanical theory is that of Ericksen-Leslie10-12, in which
mass, linear momentum balance equations are coupled to
angular momentum balance equation. The latter is basically
a torque balance equation, in which viscous torques are
balanced by elastic torques. Since the discotic mesophase
display orientational order, the average orientation or di-
rector is affected by external flow, a mechanism known as
flow-induced orientation. In addition, these materials are
elastic, such that spatial gradients of the director increase
the energy. The three basic elastic storage modes, shown in
Fig. 413 are: splay, twist, and bend, respectively. The tem-
perature-dependent modules for each mode are K11, K22,
and K33. Thus any imposed processing flow creates trough
the balance between flow-induced orientation and elastic
torques, a unique texture. The cross-sectional texture for
mesophase fibers is just the spatial distribution of the direc-
tor field: n = function (r,θ),  where (r,θ) are the polar coor-
dinates. In this paper we focus on how the average molecu-
lar orientation n is affected by a steady capillary Poiseuille
flow.

Figure 2. Processing sequence of mesophase carbon fibers. Adapted from McHugh6.

Figure 1. Discotic nematic liquid crystalline phase showing
uniaxial disc-like molecules with unit normal vector (u) and di-
rector vector (n).
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The specific objectives of this paper are: (1) to model
the ring texture formation process for discotic mesophases
subjected to steady pressure-driven capillary flow; (2) to
characterize the processing conditions that lead to the emer-
gence of ring patterns in the fiber cross-section, and (3) to
characterize the pattern sensitivity for increasing pressure-
drops.

This paper is organized as follows. First, we review the
elastic and continuum theory of liquid crystals for uniaxial
discotic nematic thermotropic liquid crystals, which is the
case of the mesophase pitch, then we applied it to capillary
Poiseuille flow, followed by discussions of flow-induced
macro-textural phenomena.

2. Elastic and Continuum Theory of Liquid
Crystals

As mentioned previously, in flowing liquid crystal sys-
tems the elastic and the viscous stresses are normally both

important. The static continuum theory of elasticity of liq-
uid crystals developed by Oseen and Frank10,11, takes into
account external forces that introduce deformations in the
relative orientations and can distort the equilibrium con-
figurations of liquid crystals. These deformations are called
curvature strains, as opposed to the displacement strains
present in isotropic materials. The anisotropic material re-
sponds to such deformations with the appearance of restor-
ing elastic torques. By assuming an orientation Hooke’s law,
a free energy density Fd is defined by the following expres-
sion10-11:

(1)

where the director vector (n) and the elastic parameters (K)
were defined in Figs. 1 and 4.

The dynamical continuum theory of uniaxial liquid crys-
tals was developed by Ericksen and Leslie10-12. In this theory
the microstructure of the material is explicitly taken into
account. Assuming that the fluid is incompressible and that
the director vector has the magnitude of a unit, the balance
equations of micro-continuum mechanics are:

• Conservation of mass:

(2)

• Conservation of linear momentum:

(3)

• Conservation of energy:

(4)

• Director equation:

(5)

where,

(6)

(7)

(8)

D/Dt is the substantial derivative operator
(D/Dt = ∂/∂t + v.∇), ρ is the mass density, v is the linear
velocity, f is the body force per unit volume, σσσσσ is the total
stress tensor, U is the internal energy per unit volume, A is

Figure 4. Schematic representation of the three elastic modes in
discotic nematic liquid crystals. (a) splay (K

11
); (b) twist (K

22
); (c)

bend (K
33

). Adapted from Sokalski and Ruijgrok13.

Figure 3. Schematic representation of the microstructure of fractured
surfaces: a) shows the zig-zag pattern of folding becoming sharper
and narrower toward the fiber edge (adapted from Pennock et al.8);
b) shows the ring structure, its thickness (T) and its location (L).
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the rate of deformation tensor, W is the spin tensor, πππππ is the
director stress tensor, N is the angular velocity of the direc-
tor relative to that of the fluid, M is the gradient of
N ( ), G is the external director body force
(torque per unit volume), g is the intrinsic director body
force, ρ1 is the moment of inertia per unit volume.

The Ericksen-Leslie constitutive equations for the stress
tensor intrinsic director body force, and director stress ten-
sor, developed by using the entropy production arguments
are as follows10-12:

, (9)

 , (10)

 , (11)

where,

γ
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(13)
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(15)

p is the pressure, I is the unit tensor, γ1  is the rotational
viscosity that is positive, γ2 is the irrotational torque coeffi-
cient, βββββ is a Lagrange multiplier vector, λ is the reactive
parameter, θal,n is the flow-alignment angle that exist when
λ<-1, and {αi}, i=1…6, are the six Leslie viscosity coeffi-
cients of a nematic liquid that are linked by one relation
(Eq. 13), and by the follows inequalities10-12:

α
4
 ≥ 0 (16)

2α1 + 3α4 + 2α5 + 2α6 ≥ 0 (17)

2α4 + α5 + α6 ≥ 0 (18)

(α3 - α2)(2α4 + α5 + α6)  ≥ (α2 - α3)
2 (19)

In the case of DNLC the follows additional inequalities
are also verified:

α3 > α2 (20)

α2 > 0 (21)

The Ericksen-Leslie theory predicts that for sufficiently
large deformation rates, the director orients in the shear plane
along the flow-alignment angle10-12. When the director field
is homogeneous (∇n = 0) and oriented at the alignment
angle, the viscous and elastic torques vanish. Eq. 15 shows
that the alignment angle is not unique. The primary
alignement angle (n = 0) defines the primary solution de-
noted by Po, and secondary alignement angles (n > 1) de-
fine secondary solutions denoted by Sn.

The Leslie viscosity coefficients are related with the
Miesowicz’s viscosities10, which are measured in a steady
simple shear flow between parallel plates with fixed direc-
tor orientations along three characteristic orthogonal direc-
tions by applying a strong magnetic field. For orientation
parallel to the flow: η

1 
= (α

3
 + α

4
 + α

6
)/2, parallel to the

velocity gradient: η
2 
= (-α

2
 + α

4
 + α

5
)/2, and perpendicular

to both the flow and velocity gradient: η3 = α4/2. For discotic
nematic liquid crystals the relative ordering in magnitude
of the Miesowicz’s viscosities is η

1 
> η

3 
> η

2
.

The stress asymmetry expresses the fact that moment of
momentum is not conserved, but the sum of both external
and internal angular momentum is10. The conservation equa-
tions for internal and external angular momentum are cou-
pled by the antisymmetric part of the stress tensor. This fact
is a direct result of the non-radial mechanical interaction
between adjacent fluid regions and should be accounted for
in cases where the internal structure describes the
kinematical state of a fluid.

3. Capillary Poiseuille Flow

Here we present some results of the Poiseuille capillary
flow of discotic nematic liquid crystals computed using the
Ericksen-Leslie equations (Eqs. 1-11) with the objective of
capturing flow-induced macro-textural phenomena that lead
to a concentric ring texture. The system is assumed isother-
mal and at steady state. In addition, the director orientation
vector is confined to the (r, z) plane and the velocity field v
is in the axial direction, as follows11:

n(r) = (sinθ(r), 0, cosθ(r)) (22)

v(r) = (0, 0, v(r)) (23)

More general field dependencies are possible but be-
yond the scope of this paper.  The resulting governing equa-
tions in dimensionless form for the director tilt angle (θ)
and axial velocity component ( ) are14:

(24)
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(25)

where ,

(26)

(27)

(28)

(29)

(30)

(31)

ε is the ratio of the bend and the splay Frank elastic con-
stants, Er is the ratio of viscous flow effects to long-range
elasticity effects, and is known as the Ericksen number,

dzdp  is the given pressure drop in the capillary per unit
length,  is the dimensionless radial distance ( ), i

are the dimensionless Leslie viscosities coefficients,  is
the average Miesowicz’ viscosity, R is the capillary radius,
and  is the scaled velocity ( ).

The orientation equation (Eq. 24) was solved numeri-
cally using the Galerkin Finite Element method, and its in-
tegrals were computed using three points Gaussian
quadrature. The resulting set of non-linear equations was
solved using the Newton-Raphson iteration scheme, and
mesh independence was established using standard mesh
refinement criteria15. The velocity profiles in the capillary
(Eq. 25) were calculated by using Gaussian quadrature in-
tegration.

The simulations were carried out using the parameters
showed in Table 1, which correspond to the Frank elastic
constants measured to hexakis(dodecanoyloxy)truxene and
the six scaled Leslie coefficients calculated from non-equi-
librium molecular dynamics simulations16. The macro-tex-
tural phenomena discussed in this paper are independent of
the exact values of the viscoelastic parameters, but arises
whenever λ<-1. The orientation in the center of the capil-
lary and the anchoring angle at the wall was assumed to be
zero. The former is due to symmetry and the latter due to
usual strong anchoring at the walls10.  For velocity we use
the classical assumption of no slip at the wall.

4. Simulation of Flow-Induced
Macro-Textural Phenomena

The texture formation due to elastic effects fails17 to cap-
ture the length scales gradients that are shown in real fibers.
This paper presents the texture formation model, which is
driven by flow effects, and retains the elastic effects. As shown
below the length scale distribution in the predicted flow-in-
duced texture, in contrast to the elastic-induced texture17, is
consistent with experimental data, shown schematically in
Fig. 3.

Figure 5a shows the director orientation (θ), obtained
from Eq. 24, as a function of dimensionless radial distance
for Er = 10000 for the primary (n = 0) and five selected sec-
ondary (Sn, n=+4, +5, +9, +14, +16) solutions. The corre-
sponding five dimensionless velocity profiles ( ), obtained
from Eq. 25, of the secondary solutions are shown in Fig.
5b.  It should be noted that the missing secondary solutions
below the secondary solution S

+16
 are not included for the

sake of clarity, but they exist and are stable14. Figure 5a
shows that higher order solutions exhibit a narrow align-
ment region in between core and rim regions over which
the director vector exhibits also the same orientation peri-
odically. On the other hand the low order solutions exhibit
alignment over a wide annular region and narrow core and
rim regions.  A unique feature of liquid crystals is the cou-
pling of velocity and orientation. Figure 5b is a typical ex-
ample of how a periodic orientation field is reflected on the
velocity profile. The velocity profile is locally and periodi-
cally perturbed from the Newtonian parabolic profile due
to the periodic orientation changes.  The number of local-
ized perturbation is equal to the order of the solution. For
example, the S

+9
 profile has nine localized perturbations.

The solution multiplicity can help to explain macro-tex-
tural phenomena, such a multiple concentric ring forma-
tion, found in the flow processing of carbon mesophases.

Table 1. Parameter values16.

Dimensionless Leslie viscosities coefficients

1
0.000

2
0.341

3
1.765

4 1.293

5 -0.705

6 1.402

Frank elastic constants (10-12 N)

K
11

3.50
K

33
5.75
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Figure 6 shows computed gray scale plots of the orienta-
tion profile shown in Fig. 5a, for the n = 16(a), 14(b), 9(c),
5(d), and 4(e) secondary solutions. In the figures black cor-
responds to θ = 1.157+kπ radians and white corresponds to
θ = 0 + kπ radians. The computed visualization of the ori-

Figure 5. a) Director angle θ as a function of dimensionless radial
distance  for the principal P

0
, and five second secondary

 (S
n
; n = +4, +5, +9, +14, +16) solutions for θw= 0. b) Dimensionless

velocity  as a function of dimensionless radial distance  for five
secondary solutions (S

n
; n = +4, +5, +9, +14, +16).

entation profiles give a ring texture with a characteristic ring
thickness that is a function of position. The figures show
that the number of rings is equal to the order of the solu-
tion. For example the n = 4 solution has four rings, and so
on.  All the textures have three regions: (1) a small core
region surrounding the fiber axis, (2) a large ring (black
band) in the central annular region, and (3) an outer rim
region dense with thin rings. As n increases the width of the
annular region decreases and the number of rings in the rim
region increases.

Figure 7 shows the computed rings thickness (T) as a
function of its radial position (L) as it is defined in Fig. 3b
for n = 4, 5, 9, 14, 16 secondary solutions, and Er = 10000.
The figure shows the presence of the three regions. As the
order of the solution (n) increases, more thinner rings ap-
pear close to the rim. Thus the model predictions are con-
sistent with experiments. The rim region has a thin struc-
tural length scale, while the core region has a large struc-
tural length scale. The origin of the texture length scale is
set by the orientation gradient length scale. For higher or-
der solutions, as the director rotates from θ

al 
to zero, the

texture length scale T is set by the magnitude of the orienta-
tion gradient:

(32)

where β is of order one.
The previous discussion took into consideration the role

of higher order solutions on the generation of the ring tex-
ture. Next we consider the role of the pressure drop on the
texture length scale T. Figure 8a shows the director
angle (θ) as a function of the dimensionless radial distance
for the secondary solution S+4, for Er = 2728, 5000, 7500,
and 10000. The figure shows that as Er increases the aligned
annular region increases, and the rim region exhibits sharper
and sharper gradients. The core region remains almost un-
affected by pressure drop increases. Figure 8b show the cor-
responding velocity profiles ( ). The local perturbations
from the Newtonian parabolic profile reflect the areas of
large orientation gradients. As Er increases, the perturbations
move to the rim with diminished amplitude. Figures 9 show
the corresponding computed visualizations, for the para-
metric conditions shown in Fig. 8. Again, in this plot, black
corresponds to θ = 1.157+kπ radians and white corresponds
to θ = 0+kπ radians. The figure shows that as Er increases,
the number of rings remains constant, but they move to-
wards the rim. Figure 10 shows the ring thickness (T) as a
function of radial position (L), as defined in Fig. 3b, using
the parametric conditions of Fig. 8. The picture shows that
as Er increases T decreases, and the rings pile up at the rim.
These predictions agree with the fact that as the higher shear
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rates close to the wall, it will refine the texture length
scale T. The pressure drop has almost no effect at the core
because at the center the shear rate vanishes and the struc-
ture remains unaffected by the flow.

Figure 11 shows the thickness and location of the annu-
lar region for the S

+4
 solution. The figure shows that as the

pressure drop increases the location and thickness of the
aligned annular region increases monotonically. Thus lower
pressure drops produce more uniform textures than larger
pressure drops. Since the number of rings remains constant,
an increase in the annular region will result in compression
of the rim region.

5. Conclusions

Further progress, optimization, and control of the in-
dustrial spinning of high performance mesophase carbon
fibers will be based on cost-effective accurate models based
in liquid crystal science. In this paper we have presented

Figure 7. Ring thickness (T) as a function of ring location (L) for
the five secondary solutions (S

n
; n = +4, +5, +9, +14, +16),

Er = 10000 and ε = 1.64.

Figure 6. Scientific visualisation for the fibre cross section shown the average orientation, where the black color corresponds to alignment
with the stable Leslie angle (θ = 1.157+kπ radians) and the white color correspond to the orientation in the flow direction
(θ = 0+kπ radians). for Er = 10000 and ε = 1.64. a) Secondary solution S

+16
; b) Secondary solution S

+14
; c) Secondary solution S

+9
;

d) Secondary solution S
+5

; e) Secondary solution S
+4

.

Figure 8. a) Director angle θ as a function of dimensionless radial
distance  for secondary solution S

+4
 at Ericksen Numbers 2728,

5000, 7500, and 10000. b) Dimensionless velocity  as a function
of dimensionless radial distance  for secondary solution S

+4
 at

Ericksen Numbers 2728, 5000, 7500, and 10000.
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representative modeling results of an ongoing research pro-
gram that aims at developing the fundamental rheological
and processing flow principles needed to establish a sci-
ence-based fiber manufacturing. We have shown modeling
results that capture macro-textural phenomena, such as ring
formation on carbon fiber textures of carbonaceous
mesophases.
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