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Abstract

Spectrometric techniques for the analysis of trace cadmium have developed rapidly due to the increasing need for accurate measurements at
extremely low levels of this element in diverse matrices. This review covers separation and preconcentration procedures, such as electrochemical
deposition, precipitation, coprecipitation, solid phase extraction, liquid–liquid extraction (LLE) and cloud point extraction (CPE), and consider the

features of the their application with several spectrometric techniques.
© 2007 Elsevier B.V. All rights reserved.
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. Introduction

The word cadmium derives from the Latin cadmia (now
nown as “calamine”) and the Greek kadmeia. Cadmuim, a
ilvery grey metallic, is a naturally occurring metallic element
0.16 mg kg−1 in the earth’s crust) and it is found in mineral
tructures combined with other elements such as oxygen, chlo-
ine or sulphur. All soils and rocks, including coal and mineral
ertilizers, contain cadmium at variable concentration levels
1–5].

Cadmium was discovered in 1817, in Germany, by F.
tromeyer and cadmium sulfide (CdS) was used as a paint pig-
ent as early as 1850, and appeared prominently in the yellow

olors of the Vincent Van Gogh paints. Their industrial applica-
ions were developed in the late 19th and early 20th century. The

ain uses of cadmium is in nickel–cadmium batteries, invented
y Thomas A. Edson in the early part of the 20th century, and
n cadmium coatings for the corrosion protection of steel [1,6].

Our environment contains countless sources of cadmium and,
n the modern world, this element is ubiquitous in food, water and
ir. The most human cadmium exposure comes from the tobacco
moke and from ingestion of food, which most of that arises
rom the uptake of cadmium by plants from fertilizers, sewage
ludge, manure and atmospheric deposition [5,7]. Cadmium is
ot regarded as essential to human life, otherwise, cadmium
s now known to be extremely toxic [2,8] and accumulates in
umans mainly in the kidneys for a relatively long time, from
0 to 30 years [1]. Prolonged intake, even of very small amounts,
eads to severe dysfunction of the kidneys. At high doses it is
lso known to produce health effects on the respiratory system
nd has been associated with bone disease. More recently, the
ossible role of cadmium in human carcinogenesis has been
lso studied. In human body, cadmium acts by binding to the
SH group of cysteine residues in proteins and so inhibits –SH
nzymes. It can also inhibit the action of the zinc enzymes by
isplacing the zinc [5,6].

Cadmium will invariably be present in our society, either in
seful products or in controlled wastes. Nowadays, its heath
ffects are well understood and well regulated, so that there is
o need to restrict or ban cadmium products. On the other hand,
he environmental safety will only be attained after the establish-

ent of analytical protocols devoted to cadmium determination
n different matrices (soil, water, vegetation, air, food, beverages
nd biological fluids). These aspects are discussed in the next
ections.

.1. Cadmium determinations by using atomic
pectrometry techniques and preconcentration procedures

The following principles are general for all metallic ions and
re also applicable to specific case of the cadmium.

Atomic spectrometry techniques – mainly flame atomic
bsorption spectrometry (FAAS), graphite furnace atomic

bsorption spectrometry (GFAAS), inductively coupled plasma
ptical emission spectrometry (ICP-OES) and inductively cou-
led plasma mass spectrometry (ICP-MS) – are extensively
mployed in the cadmium determination and, for this reason; the
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iscussions established in this review are based on the applica-
ions of them. Eventually, techniques used in smaller frequency,
s thermospray flame furnace atomic absorption spectrometry
TS-FF-AAS), hydride generation atomic absorption spectrom-
try (HG-AAS) and hydride generation atomic fluorescence
pectrometry (HG-AFS) are cited in the text.

From the analytical tools above listed, FAAS presents low
osts, operational facility and high sample throughput. The
etermination of cadmium by flame atomic spectrometry is free
f interference and this can be easily atomized in air-acetylene
ame. In the resonance line 228 nm, the characteristic concen-

ration is 0.02 mg L−1. The analytical line at 326.1 nm is suitable
or determining higher Cd concentrations and the characteristic
oncentration is about 6 mg L−1, so that excessive dilution can
e avoided [9].

Cadmium can be determined by CV AAS where atomic Cd
apor is measured by AAS in an unheated quartz cell. LOD
f 80 ng L−1 was obtained which can be further improved by
orking at low temperature. The sensitivity can be increased

ollecting the atomic Cd vapor in a graphite tube pre-treated
ith palladium at 150 ◦C and then reatomizing at 1600 ◦C [1].
old vapor generation coupled to atomic absorption spectrom-
try with flow injection (FI-CV AAS) was evaluated as a rapid
nd simple method for the determination of cadmium [10].

The determination of cadmium by ETAAS was, for a long
eriod, difficulty because the cadmium is an element with high
olatility [11]. Several alternatives can be used to improve these
onditions by using fast heating rate; STPF conditions; Zeeman-
ffect to eliminate spectral interferences; Pd–Mg as a modifier,
ossibly with the addition of ammonium nitrate. The maximum
yrolysis temperature is about 800 ◦C. In a longitudinally-heated
tomizer at an atomization temperature of 1500–1700 ◦C the
haracteristic mass is about 0.4 pg. If the attainable sensitivity
s too high at the primary resonance line, as is often the case for
irect solids analysis, the only usable alternate line is at 326.1 nm
ith a lower sensitivity by a factor of about 300 [9]. The use
f modifier stabilizes cadmium allowing for its determination
ithout causing matrix effects. The Pd–Mg with the addition of

mmonium nitrate as a modifier is the one more commonly used,
owever permanent chemical modifier as W + Rh can be used
nd the results indicate its effectiveness and its performance is
qual or superior than that verified for the universal chemical
odifier [12].
ICP-OES offers the great advantage of multi-elemental

etection, but does not present detection limits compatible
ith cadmium trace determinations. Finally, ICP-MS associates
ulti-elemental quantification and detection limits exception-

lly reduced.
Related to sample composition, FAAS and ICP-OES exhibit

olerances higher than that presented by GFAAS and ICP-MS.
hus, some matrices as seawater with elevated saline contents
an make the quantification of metallic ions difficult. In this
pecific case, atomisation is damaged in GFAAS while, in ICP-
S, it is possible to observe salt deposition on the equipment
nterfaces [13].

To solve the small sensitivity of the FAAS and ICP-OES tech-
iques and the concomitant effects observed in the GFAAS and



360 S.L.C. Ferreira et al. / Journal of Hazard

Table 1
Cadmium preconcentration by electrochemical deposition

Matrix Preconcentration
factor

Technique Reference

Fresh waters 26 FAAS [22]
Natural waters 20 FAAS [23]
Groundwater and tap water 60 GFAAS [24]
Seawater 8 GFAAS [25]
Urine and river water – GFAAS [26]
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AAS: flame atomic absorption spectrometry; GFAAS: graphite furnace atomic
bsorption spectrometry.

CP-MS, numerous preconcentration and/or separation proce-
ures are described in the literature [14].

In spite of the success attributed to direct determinations
15–21] by ICP-OES, preconcentration/separation procedures
hould be employed in order to eliminate concomitants able
o provoke spectral interferences. For cadmium determina-
ion, some of its sensitive emission lines (214.38, 228.802 and
26.502 nm) cannot be used in the presence of iron, aluminium
nd arsenic, respectively. For iron and aluminium, spectral
nterferences are especially dangerous because of their high
oncentrations in numerous samples as environmental and bio-
ogical matrices. In this sense, cadmium determinations in the
ited samples are affected by a considerable sensitivity decrease.

In order to complement the information set about cadmium
reconcentration procedures coupled to atomic spectrome-
ry techniques, this review considers publications related to
olid–liquid and liquid–liquid extractions (LLE), electrochemi-
al deposition, coprecipitation, as well as precipitation.

. Modalities of cadmium preconcentration procedures

.1. Electrochemical deposition

This modality utilises the electrolysis laws in which cationic
pecies are deposited on the electrodes surface. When an elec-
rolytic cell composed by three electrodes (reference, work and
uxiliary) is used, it is possible to attained selective separation
nd preconcentration of cadmium. As example, Bulska et al.
22] achieved an enrichment factor of 26 for Cd(II) in fresh

aters. This selective preconcentration was possible by operat-

ng the cell during 2 min in a system coupled to flame atomic
bsorption spectrometer. Abdullin et al. [23] also preconcen-
rated Cd(II) from natural waters and obtained an enrichment

a
T
f
b

able 2
admium preconcentration by coprecipitation or precipitation

atrix Modality Coprecipitation or precipitation a

atural waters and soils CP DDTC-Cu(II)
olluscs P Iodine and quinine
ialysis concentrate CP DDTC-Co(II)
eawater CP DDTC-Co(II)
eawater CP Mg(OH)2

oils CP BP and DBQ

P: Coprecipitation; DDTC: diethyldithiocarbamate; P: precipitation; BP: Benzop
pectrometry; ICP-MS: inductively coupled plasma mass spectrometry.
ous Materials 145 (2007) 358–367

f 20 times by means of coupling a flame atomic absorption
pectrometer to an electrolytic device. Table 1 contains others
ublications concerning with electrochemical preconcentration
f cadmium. In spite of the desirable features of this modality, it
lso presents some drawbacks associated with laborious system
peration and hydrogen generation in more negative potentials
or acidic samples.

.2. Coprecipitation and precipitaton

Precipitation comprises the generation of cadmium insoluble
ompounds from matrix samples. Generally, the procedures are
arried out by adding to the samples reagents including NaOH
nd NH3 with a posterior acidic dissolution of the precipitate.
n the other hand, coprecipitation is used when cadmium is
resented at very low levels, thus not permitting that the sol-
bility product constants be attained. In these cases, cadmium
s retained on surface of precipitates as Al(OH)3, Mg(OH)2 and
rganic compounds [27]. Interesting publications related to cad-
ium enrichment by precipitation or coprecipitation are listed

n the Table 2.
These preconcentration modalities can involve sample con-

amination, because chemicals are employed in large quantities
hen compared with the cadmium concentrations generally pre-

ented at �g L−1 or ng L−1 levels.
Knotted reactors (KR) are generally made from PTFE tubing,

owever other materials can are used for on-line precipitation or
oprecipitation. They present internal diameter between 0.5 and
.5 mm and are made from tubing by tying interlaced knots. The
notted reactors were used for first time as filterless collectors of
rganic precipitates in on-line coprecipitation–dissolution sys-
ems coupled to flame atomic absorption spectrometer [33].
uring the investigation of the DDC complexes sorption on
18 microcolumns, a particular interaction of such complexes
ith hydrophobic tubing material was observed. The KR pro-
uced from PTFE tubes was able to retain metal complexes of
DC under appropriate experimental conditions and, since then,

everal works have been developed.
Two factors are responsible for retention of the complex

olecules on the wall of the knotted reactors. Firstly, these
olecular species are launched at inner wall of the KR’s for
ction of the centrifugal force generated by secondary flows.
he second reason is related to the nature of the material that

orm the KR and the nature of the complex [34]. The KR has
een successfully adapted for flow injection in on-line pre-

gents Preconcentration factor Technique Reference

26 FAAS [28]
32 FAAS [29]
75 FAAS [30]

225 FAAS [30]
40–90 ICP-MS [31]

400 FAAS [32]

henone; DBQ: 5,7-dibromoquinoline-8-ol; FAAS: flame atomic absorption
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Table 3
Cadmium preconcentration by using knotted reactor

Matrix Preconcentration
factor

Technique Reference

Rice and human hair 66 FAAS [34]
Drinking water 18 FAAS [36]
Water 23 FAAS [37]
Honey 40 FAAS [38]
Wine 18 ICP-OES [39]
Rain and sea water 33 FAAS [40]
Waters, soils, mussel

and human hair
65 FAAS [41]

Blood 26 GFAAS [42]
Waters and soils 26 FAAS [43]
Blood 16 GFAAS [44]
Biological samples 24 FAAS [45]
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AAS: flame atomic absorption spectrometry; GFAAS: graphite furnace atomic
bsorption spectrometry; ICP-OES: inductively coupled plasma optical emission
pectrometry.

oncentration with several spectrometric techniques for trace
etals analysis [35]. Table 3 lists publications about the KR

ses in on-line cadmium preconcentration from several types of
amples.

.3. Liquid–liquid extraction

LLE presents many applications related to determination of
lements at extremely low concentrations in complex matrices
uch as environmental or biological samples. The LLE proce-
ures are based on the relative solubility of the elements in two
mmiscible phases objecting both to improve the selectivity by
eparation of analyte and increase the sensitivity of the method.
his target can be attained concentrating or isolating the analyte
t the same phase where the analytical signal will be acquired

46].

To isolate the analyte by liquid–liquid extraction it is desired
hat the analyte to be quantitatively removed from aqueous

atrix sample by adding immiscible solvents. On other hand,

F
c
[
e

able 4
admium preconcentration by conventional liquid–liquid extraction

atrix Technique Complexation agents

able salt FAAS Dithizone
atural water FAAS APDC
stuarine water GFAAS PDC/DDC
ater ST PAN
ater FAAS HPMSP/DDA
ater GFAAS PC-88A
iological materials ICP-MS NaDDC
iver water FAAS DDTCj-MIBK
atural water FAAS Dithizone
atural water FAAS Dithizone
eawater ICP-MS DDC
ater FAAS APDC

hosphoric acid FAAS Kelex 100®

PDC: ammonium pyrrolidinedithiocarbamate; MIBK: methyl isobutyl ketone; P
yridylazo) naphthol; HPMSP: 1-phenyl-3-methyl-4-stearoyl-5-hydroxypyrazole; DD
ster; NaDDC: sodium diethyldithiocarbamate; FAAS: flame atomic absorption sp
pectrophotometry; ICP-MS: inductively coupled plasma mass spectrometry.
ous Materials 145 (2007) 358–367 361

he interferent species must remain in the aqueous phase. The
fficiency of this process depends on the affinity of analytes with
he extracting solvent, ratio between the phases and number of
xtractions. In spite of its efficiency for removing interferents,
LE is expensive, slow and presents high consumption of toxic
rganic compounds [47], which can be harmful to the environ-
ent and the public health. Analytical procedures for cadmium

eparation and preconcentration by LLE and determination by
pectrometric techniques are listed in Table 4.

.4. Cloud point extraction

The separations and preconcentrations of metal ions, after the
ormation of sparingly water-soluble complex, based on cloud
oint extraction (CPE) have been largely employed in analytical
hemistry. The cloud point procedure offers convenience and
implicity when compared with LLE modality, including higher
xtraction and preconcentration factors, lower cost and lower
oxicity for the analyst and the environment. The procedure is
ased on the properties of non-ionic or amphoteric surfactants
t levels upper to their critical micellar concentrations (CMC).
bove CMC, a system composed by a unique phase is separated

nto two isotropic phases if some condition such as temperature
r pressure is changed or if an appropriate substance is added to
he solution [61]. Micelles formed from surfactant molecules act
s organic solvents in liquid–liquid extraction and the analytes
re partitioned between the micellar and aqueous phases [62]. In
he micellar structure, there are numerous hydrophilic groupings
esponsible for a very efficient extraction of metallic species.
or a more detailed discussion about CPE phenomenon, it is
ecommended to consult the literature [63].

As already commented, the addition of electrolytes can
ncrease or decrease the surfactant cloud point, being these
ffects respectively known as “salting-in” and “salting-out”.

or micellar medium formed by pure non-ionic surfactants the
ited phenomenon has a minor magnitude. Coelho and Arruda
64] investigate a cloud point separation induced by NaCl for
xtracting and pre-concentrating cadmium ions in physiological

Solvent Preconcentration factor Reference

Ethanol 86 [48]
MIBK 155 [49]
Chloroform – [50]
Chloroform – [51]
Toluene – [52]
Kerosene 880 [53]
Chloroform – [54]
– – [55]
HNO3 331 [56]
Xylene – [57]
– – [58]
MIBK – [59]
Kerosene – [60]

DC: pyrrolidinedithiocarbamate; DDC: diethyldithiocarbamate; PAN: 1-(2′-
A: n-dodecylamine; PC-88A: 2-ethylhexyl phosphoric acid mono-2-ethylhexyl
ectrometry; GFAAS: graphite furnace atomic absorption spectrometry; ST:
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olution, mineral and lake waters and cigarette samples. A great
dvantage of this work comprises the low temperature (25 ◦C)
equired for forming the two phases. In this specific case, the
admium was quantified by FAAS technique.

Table 5 lists recent works concerning with cadmium precon-
entration by CPE and determination by atomic spectrometry
echniques.

.5. Solid–liquid extraction

This preconcentration category presents a remarkable set of
esirable characteristics when applied for quantifying cadmium
ons in samples such as waters, foods, pharmaceuticals, rocks,
oils, sediments as well as plant and animal tissues. The main
dvantages conglomerate facility of system operation as well as
xpressive preconcentration factors.

Numerous sorbents are employed in cadmium preconcen-
ration procedures based on solid–liquid extraction, including
ynthetic and natural materials. In addition, cadmium can also be
reconcentrated in knotted reactors where the analyte is retained
n the inner walls of small tubes.

.5.1. Use of synthetic sorbents
Many materials, such as divinylbenzene polymers, zeolites,

ullerenes and polyurethane foam are employed for preconcen-
ration of cadmium ions. From these materials, chelating resins
an be prepared by means of different procedures as discussed
elow. Chelating resins are especially interesting due to their
igher selectivity when compared with single polymeric matri-
es.

Complexing reagents can be introduced into the sorbent
y two different means: (1) the chemical bonding of these
eagents on existing sorbents (functionalized sorbents); and (2)
he physical binding of the chelating ligand on the sorbent by
mpregnating the solid matrix with a solution containing specific

olecules (loaded sorbents) [72]. Physical binding is the most
imple to be used in practice. However, chemical bonding allows
levated lifetime for column due to covalent bonds between the
igand and the support. This property avoids the possible flush of

he ligand molecule from the column during sample percolation
r elution steps. Several complexing reagents have been immobi-
ized on a variety of solid matrices and successfully used for the
reconcentration and determination of cadmium. The sorbents

w
u
s
n

able 5
admium preconcentration by cloud point extraction

atrix Complexing/sur

hysiological solution, mineral and lake waters and tobacco DDTP/Triton X
aters DDTP/Triton X

eawater PAN
iological materials DDTP/Triton X
aters TAN/Triton X-1
uman hair DDTP/Triton X
aste and waters Dithizone/Triton

eawater DDTC/Triton X

DTP: O,O-diethyldithiophosphate; TAN: 1-(2-thiazolylazo)-2-naphthol; DDTC: di
tomic absorption spectrometry; ICP-MS: inductively coupled plasma mass spectrom
ous Materials 145 (2007) 358–367

ost largely associated with complexing substances to produce
otential collectors of analytes are polystyrene-divinylbenzene
73], polyurethane foam [74], silica [75] and naphthalene [76].
able 6 contains interesting works concerning with the cadmium
reconcentration by using synthetic resins.

.5.2. Use of natural sorbents
Madrid and Cámara [100] described the characteristics

esponsible for the metallic ions retention on microbial cells.
his phenomenon is efficient because the cell membranes con-

ain many chemical groups able to catch ions [101]. In general,
his same structural feature is also valid for a great variety of dif-
erent natural substrates, including bark/tannin-rich materials,
ignin, chitin/chitosan, dead biomass, seaweed/algae/alginate,
anthate, zeolite, clay, fly ash, humified materials, bone gelatin
eads, leaf mould, moss, iron-oxide-coated sand, modified wool
nd cotton [102]. Further, extensive surface area and porosity
ttribute to natural sorbents excellent properties for retaining
ations or anions. However, natural materials present poor selec-
ivity due to the predominance of electrostatic forces among sites
placed on their surfaces) and analytes. In this sense, unspe-
ific retentions are observed. This limitation does not comprise
serious problem for wastewater treatment, where retentive-

ess of diverse pollutants is desired and it is necessary only
o increase sorbent masses when saturations are attained. In
his way, the literature [102] deals with the use of natural sub-
trates for treating effluents produced by industries and labora-
ories.

One another hand, preconcentration demands high selectiv-
ty for attaining desirable analytical performance. As already
ommented, natural materials are unspecific because of their
lectrostatic interactions with cationic species. In addition, these
orbents present low uniformity composition and, obviously, this
spect can damage the precision and accuracy of the results.
ereira and Arruda [14] reported a great number of procedures
evoted to metal preconcentration (including cadmium) based
n solid–liquid extractions. As expected, the majority of the
ited works employed synthetic sorbents, such as amberlites,
ctivated carbon, C18, fullerenes, polyurethane foam and PTFE,

hile microbial biomass comprised the main category of nat-
ral preconcentrators. In spite of the greater tendency in use
ynthetic sorbents, there are some interesting applications of
atural preconcentrators as described in Table 7.

factant Preconcentration factor Technique Reference

-114 – FAAS [64]
-114 29 ICP-MS [65]

120 FAAS [66]
-114 129 GFAAS [67]
14 58 FAAS [68]
-114 22 FAAS [69]

X-114 52 FAAS [70]
-114 52 GFAAS [71]

ethyldithiocarbamate; PAN: 1-(2-pyridylazo)-2-naphthol (PAN); FAAS: flame
etry; GFAAS: graphite furnace atomic absorption spectrometry.
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Table 6
Cadmium preconcentration by solid–liquid extraction (synthetic sorbents)

Matrix Sorbent Chelating material Technique Preconcentration
factor

Reference

Biological reference materials Amberlite XAD-2 TAM FAAS 108 [72]
Water Amberlite XAD-2 AT FAAS 28 [73]
Black tea, spinach leaves, natural and

tap water
PUF Me-BTANC FAAS 37 [74]

Water Silica gel 60 Aspergillus niger (Fungi) FAAS – [75]
Standard alloy, various biological

and environmental samples
NAP TAN-TPB DPP – [76]

Water, soil, and roadside dust
samples

Amberlyst 36 – FAAS 200 [77]

Fresh water Amberlite TAM FAAS 548 [78]
Biological reference materials PUF BTAC FAAS 41 [79]
Water Zeolite A4 – GFAAS – [80]
Milk products Chelite P AMPA FAAS 20.5 [81]
Stream sediment, sewage sludge and

sea water
Chelex 100 – FAAS – [82]

Water and salts Chromosorb-106 PAN FAAS – [83]
Water Silica gel Thioacetamide FAAS 200 [84]
Environmental and biological

samples
Silica gel Thiol FAAS 56 [85]

Biological samples Amberlite XAD-4 DDTP FAAS – [86]
Water Dowex 1-X10 Dithizone FAAS – [87]
– PUF DDTC FAAS – [88]
– QAE-Sephadex TATS GFAAS 200 [89]
– Chromosorb-107 APDC GFAAS – [90]
Tea Cyanex 923 – HG-AFS 200 [91]
Certified river sediment Imprinted resin (poly-Cd(II)-DAAB-VP – FAAS – [92]
Biological samples Amberlite XAD-2 CA FAAS 21 [93]
Soils NAP Xanthate and PN FAAS 200 [94]
Wine C-18 bonded silica gel ADDP FAAS 11 [95]
Water Amberlite XAD-16 PAN FAAS 200 [96]
Water Silica gel DHAQ FAAS – [97]
Saline matrices NAP Dithizone ICP-OES – [98]
Alloys and waters AC Zn-PDTC FAAS – [99]

TAM: 2-(2-thiazolylazo)-5-dimethylaminophenol; AT: 2-aminothiophenol; PUF: polyurethane foam; Me-BTANC: 2-(6-methyl-2-benzothiazolylazo) chro-
motropic acid; NAP: microcrystalline naphthalene; TAN: 1-(2-thiazolylazo)-2-naphthol; TPB: tetraphenylborate; BTAC: 2-(2′-benzothiazolylazo)-p-cresol;
AMPA: aminomethylphosphoric acid; PAN: 1-(2-pyridylazo) 2-naphthol; DDTP: O,O-diethyldithiophosphate; DDTC: diethyldithiocarbamate; TATS:
thiacalix[4]arenetetrasulfonate; APDC: ammonium pyrrolidinedithiocarbamate; CA: chromotropic acid; DAAB: diazoaminobenzene; VP: 4-vinylpyridine; PN: 1, 10-
p xyan
F c abso
g asma

m
h
p
s
(

s
c

T
C

M

M
M
–
W
A
D

F

henanthroline; ADDP: ammonium diethyldithiophosphate; DHAQ: 1,8-dihydro
AAS: flame atomic absorption spectrometry; GFAAS: graphite furnace atomi
eneration atomic fluorescence spectrometry; ICP-OES: inductively coupled pl

Pereira and Arruda [103] developed methodologies for deter-
ining Cd(II) in water and biological samples. In this case,
umic substances (vermicompost and purified humic acid), were
acked in small columns coupled to a flame atomic absorption
pectrometer. The authors obtained good stability of the column
for 100 successive analyse cycles, for both sorbents), but poor

m
e
h
a

able 7
admium preconcentration by liquid–solid extraction (natural sorbents)

atrix

ineral and tap waters, pharmaceuticals, fruit juice, pig kidney and beech leaves
ineral and tap waters, pharmaceuticals, fruit juice, pig kidney and beech leaves

aters
lloys
omestic sewage loam

AAS: flame atomic absorption spectrometry.
thraquinone; AC: activated carbon; Zn-PDTC: zinc-piperazinedithiocarbamate;
rption spectrometry; DPP: differential pulse polarography; HG-AFS: hydride

optical emission spectrometry.

electivity was observed when cadmium was preconcentrated
oncomitantly with others metallic cations, such as calcium,

agnesium, chromium, copper, nickel and zinc. Minamisawa

t al. [80] showed that it is possible to enrich Cd(II) on rice
usks also by employing on-line systems coupled to a flame
tomic absorption spectrometer. In this case, a theoretical pre-

Natural sorbent Preconcentration
factor

Technique Reference

Purified humic acid 83 FAAS [103]
Vermicompost 62 FAAS [103]
Rice husks 72 FAAS [104]
Yeast (S. cerevisiae) 10 FAAS [105]
Bacterium (E. coli) 10 FAAS [106]
Yeast (S. cerevisiae) 250 FAAS [107]
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oncetration factor of 72 was calculated. Nevertheless, foreign
ons presented strong competition with Cd(II) when real sam-
les were analysed. Again, this limitation reduced the sensibi-
ity.

In the both works above commented, calibration procedures
ased on the aqueous standard solutions were not possible. It
as necessary to adopt the standard addition procedure in order

o solve the serious effects presented by the matrices.

. Conclusions

It was possible to identify different possibilities for pre-
oncentrating cadmium ions from numerous matrices. Correct
hoices can be obtained by means of rigorous analyses asso-
iated with sample throughput and disponibility, cadmium
oncentration, desired preconcentration factors, among others.
n this context, solid–liquid extractions (by using synthetic
r natural sorbents) comprise a good alternative for cadmium
etermination in samples such as natural waters, foods and bev-
rages. One another hand, this modality is not recommended
or small quantities of samples as biological fluids. In these spe-
ific cases, cloud point extractions can be successfully employed
ue to their reduced requirements of sample volume. Conven-
ional liquid–liquid extractions present limitations with the use
f extensive toxic solvents and, for this reason, they tend to be
voided.

Coprecipitation and precipitation procedures offer attractive
haracteristics related to preconcentration capacity. Neverthe-
ess, special cautions should be considered in order to avoid
ontaminations derived from the great excess of added sub-
tances in the reaction medium. Electrochemical devices, when
dopted in cadmium preconcentration, are able to associate
ensibility and selectivity. In this way, matrices containing
any potential interferents (seawater, for example) can be

atisfactorily analysed by choosing the best electrodepositing
otential.

On-line systems are preferred due to the automatisation
acility. In addition, the lower sample and reagent consump-
ions are compatible with the green chemistry principles. Flame
tomic absorption and inductively coupled plasma optical emis-
ion spectrometers exhibits a greater number of applications
ith on-line preconcentration systems, because of their con-

inuous operation mode. In contrast, the equipments employed
n GFAAS require discontinuous heating programmes,
hus carrying out more sophisticated preconcentrations
ystems.

Finally, preconcentration procedures for cadmium comprise
n important tool for developing sensible methodologies with
conomic viability.
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