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Increasing worldwide market competitiveness and reduced profit margins are pressing
chemical and process industries to move towards a predictive control approach, based
on first-principles mathematical models, as well as plant dynamic optimization. In this
perspective, the paper focuses on the development of a nonlinear model predictive
control (NMPC) to manage the copolymerization process of methyl methacrylate
(MMA) with vinyl acetate (VAc), consisting of a jacketed continuous stirred tank
reactor, a separator, and a recycle loop. This system presents a highly complex
behavior, thus making difficult the success of controllers based on linear models. A
detailed differential and algebraic mathematical model consists of 53 equations and is
implemented in Fortran 90/95 to simulate the plant and setup the NMPC. The numerical
solution is performed by using IMSL library. NMPC is proved to be superior to a linear
model predictive control approach and appears to hold a considerable promise for such
a reactor system.

Keywords: Nonlinear Model Predictive Control; Dynamic Optimization Problems;
Grade Change Transition; Copolymerization.

1. Introduction

A typical feature of chemical process control is the existence of various operative
constraints due to economic, environmental, and safety concerns as well as restrictions
related to valve sizes and actuator dynamics. As a result, all these issues limit the
expected performance of the controlled system. The problems increase in the control of
polymerization processes, which exhibit highly interactive nonlinear, time-varying and
difficult mathematical modeling of their dynamic behavior. This means that such
reactions must occur to severely strict conditions to match the product quality and the
market demand.
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To cope with this fact and for the inadequate performances offered by the conventional
feedback control scheme, there is a good deal of literature focusing on the importance of
advanced control techniques applied in the polymerization reactors (Soroush and
Kravaris, 1992; Maner and Doyle III, 1997, Ozkan et al., 2006 among others). Model
predictive control (MPC) methodologies have become very popular in the chemical
process industry. This fact is basically due to flexible constraint-handling capabilities on
the input and output variables of MPC and to its robustness properties as well
(Bemporad and Morari, 1999). However, the most of MPC algorithms are based on
linear models and they are not able to control effectively and precisely the nonlinear
systems within a wide range with steady-state multiplicity or desired operating regions
with distinctly different input-output behavior. These features basically comprise all the
polymerization processes. Therefore, in recent years, many researches have been
accomplished looking for extending linear MPC approach to obtain a nonlinear model
based predictive control (NMPC) (Haeri and Beik, 2005; Manenti and Rovaglio, 2008).
The present research activity deals with the development and the implementation of a
NMPC controller to manage the temperature of a jacketed CSTR (Continuous Stirred
Tank Reactor), where the copolymerization of methyl methacrylate with vinyl acetate
takes place. This kind of reactors are known to be an interesting challenge to application
of advanced control techniques, presenting operational problems due to complex open-
loop behavior such as input and output multiplicities and nonlinear oscillations as well.
The reactor jacket temperature is selected as manipulated variable. A deterministic
model and process operating conditions are both obtained from the literature. This
model is assumed to be an adequate representation of the system and it is implemented
in Fortran 90/95 to simulate the plant and setup the NMPC. The proposed control
scheme has shown to overcome a linear MPC (i.e. DMC — Dynamic Matrix Control) to
the regulatory response of a SISO loop (Single-Input / Single-Output). NMPC search
both satisfy the manipulated variable constraints and to provide the desired output
value, even in the presence of unmeasured disturbances.

2. Nonlinear Model-Predictive Controller

The predictive control generates a manipulated variable profile by means of the
minimization of some performance indexes over the time. The feedback loop is
incorporated in the control structure because the measurements are used to update the
optimization problem for the next time step. The objective of the NMPC method is to
calculate a set of CH (Control Horizon) future input moves such that the sum of the
squared deviations between the output projections, over a PH (Prediction Horizon)
future time intervals, and the desired values is minimized, using a moving horizon
methodology. Thus, the future outputs are driven close to the reference trajectory. The
basic idea of the SISO predictive algorithm is to: I. Calculate the reference trajectory
(y*); II. Estimate the closed-loop output predictions (y““”*’) using the process

prediction model. In NMPC this model is formulated in the form of nonlinear
differential equations; III. Compute the errors between predicted and reference
trajectories; and IV. Estimate the sequence of the future controls to the movements of
the manipulated variable () through the minimization of the objective function J,
expressed by the Eq. (1):
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where: Au, =u, —u, ; u?™" = vector of steady-state target of the manipulated variable

at the sampling time j; f = suppression factor to the movements of the manipulated
variable; and w;, w, = weights. In this study, the reference trajectory is calculated by a
first order filter: y¢ = g.y*™ 4+ (1 - )", where y“"= vector of current measured

SET —

value of the controlled variable at the sampling time i-1; y*

vector of setpoint of the

controlled variable at the sampling time i—1; and & = reference trajectory parameter,

CL, pred

with 0 < @ < 1. The predicted values y in Eq. (1) can be obtained directly from a

nonlinear model of the process with j-rred i L.nonlinear - However, when this model is

not perfect (and this is generally true), the control strategy will be not sufficiently
robust. Thus, the following correction is applied:
yi(”L.pr‘c«/ — yIF”L,rr4)rr/frr¢*zll' + (yumml/ _ y(*L,non/incur‘). In Eq (1)’ only the ﬁrst element Of the

i-1 i-1

vector Ay, is implemented. At this point, the data vectors are shifted at the time so that

the calculations can be repeated at the next sample instant.

3. Case Study

The process considered in this paper is the solution copolymerization of methyl
methacrylate with vinyl acetate in a CSTR (Congalidis et al., 1989; Maner and Doyle
II1, 1997; Lima et al., 2007). Figure 1 is a flow diagram of a copolymerization reactor
with a recycle loop. Monomer A is methyl methacrylate (MMA), monomer B is vinyl
acetate (VAc), the solvent is benzene, the initiator is azobisisobutyronitrile (AIBN) and
the chain transfer agent is acetaldehyde. The monomer stream may also contain
inhibitors such as m-dinitrobenzene (m-DNB). Monomers A and B are continuously
added with initiator, solvent and chain transfer agent. In addition, an inhibitor may enter
with the fresh feeds as an impurity. These feed streams are combined (stream 1) with
the recycle stream (stream 2) and flow to the reactor (stream 3), which is assumed to be
a jacketed, well-mixed tank. A coolant flows through the jacket to remove the heat of
polymerization. Polymer, solvent, unreacted monomers, initiator and chain transfer
agent flow out of the reactor to the separator (stream 4). Here, polymer, residual
initiator and chain transfer agent are removed (stream 5). Unreacted monomers and
solvent (stream 6) continue on to a purge point (stream 7) that represents venting and
other losses. Purging is requested to prevent accumulation of inerts in the system. After
the purge, the monomers and solvent (stream 8) are both stored in the recycle hold tank
operating as a surge capacity to smooth out variations in the recycle flow and
composition. The effluent recycle (stream 2) is then added to the fresh feeds. The
separator and hold tank are modeled as first-order lags with constant level and residence
time equal to the reactor residence time. The important reactor output variables to match
the product quality are: the copolymer production rate (G,;), mole fraction of monomer
A in the copolymer (Y,,), weight average molecular weight (34,,), and reactor
temperature (7,). The steady-state operating conditions are summarized in Table 1.
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Figure 1. Process Layout (Congalidis et al., 1989).

The presence of the recycle stream introduces disturbances in the reactor feed.
Congalidis et al. (1989) implemented a feedforward controller in the process to
compensate for these disturbances by manipulating the fresh feeds in order to maintain
constant feed composition and flow to the reactor. Feedforward control of the recycle
stream allows the designer to separate the control of the reactor from the rest of the
process. Details on the feedforward control are given in Congalidis et al. (1989).

3.1 Mathematical model
The analyzed process has a nonlinear deterministic mathematical model and kinetic
parameters described in the literature. This model has been selected to simulate the plant
and setup the NMPC, especially because it has been already validate in the range of our
interest in the literature. Details on the deterministic model as well as system operating
point are given in Congalidis et al. (1989) and Maner and Doyle III (1997).

Table 1. Steady-state Operating Conditions.

Inputs Outputs
MMA feed rate (G,) = 18 kg/h G, =233 kg/h
VAc feed rate (Gy) = 90 kg/h Y, =0.56
AIBN feed rate (Gy) = 0.18 kg/h M,,, = 35,000 kg/kmol
Benzene feed rate (Gy) =36 kg/h T7,=353.01K

Acetaldehyde feed rate (Gy) = 2.7 kg/h

m-DNB feed rate (G,) = 0 kg/h

Reactor jacket temperature (7}) = 336.15 K
Reactor feed temperature (7,/) = 353.15 K
Purge ratio (&) = 0.05
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3.2 Selection of the control loop

The analyzed system consists of seven inputs (G, Gy Gis Gy, G G 1)) and four
outputs. 7,,1is considered constant and & is under action of the feedforward controller.
Thus, Lima et al. (2007) developed a factorial planning to discriminate the variables
with higher impact on the process performance. Through this analysis, the selected
control loop to this paper is: controlled variable = 7}, and manipulated variable = T;.

3.3 Control results

The deterministic mathematical model was solved by a Runge—Kutta algorithm type in
a software written in Fortran 90 language. Thus, the NMPC controller was developed
and implemented in the process. The closed-loop performance of NMPC was analyzed
for the rejection of unmeasured disturbances (regulatory problem). The disturbance
considered by Congalidis et al. (1989) was the presence of an inhibitor in the fresh feed.
This disturbance inhibits polymerization reaction. Since the polymerization reaction is
exothermic, less polymerization results in less heat being generated and the reactor
temperature decreases as well. Here, an inhibitor disturbance of 4 parts per 1,000 (mole
basis) in the fresh feed was applied. In order to assess the performance of NMPC, a
comparative study between NMPC and DMC was carried out. The DMC algorithm
utilizes in Eq. (1) a linear prediction model adjusted by a step perturbation. The NMPC
and DMC controllers were tuned by calculating the IAE (Integral of the Absolute value
of the Error) criterion, and observing the output response. Figure 2 illustrates the closed-
loop performance comparison of the two control strategies on the controlled and
manipulated variables to the evaluated disturbance. The parameters of nonlinear and
linear control systems as well as the IAE errors are summarized in Table 2.

3.4 Discussion

As it is shown in Figure 2, the reactor temperature remains very close to its desired
trajectory under the action of NMPC controller. On the other hand, the DMC control
causes some oscillations at the beginning of the disturbance. The DMC scheme brings
the reactor temperature to its specification after 10.88 h, while NMPC strategy needs
only 3.88 h. Also, the behavior of reactor jacket temperature with time is given in
Figure 2. As observed, the NMPC and DMC responses are both satisfactory. However,
it should be noted that DMC structure provides some fluctuations.
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Figure 2 — Closed-loop and open-loop simulations to inhibitor disturbance.
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Table 2. Tuning parameters and IAE errors for predictive control structures.

Parameters NMPC DMC
Prediction horizon - PH 4 2
Control horizon - CH 1 1
Suppression factor - f 0.001 0.001
Reference trajectory parameter - & 0.0001 0.0001
Weights - w;, w, 0.00064, 0.00010  1.00000, 0.00010
Sampling time (h) 0.25 0.25
IAE (K) 0.38658 1.80454

4. Conclusions

In the present paper the problem of nonlinear model predictive control for complex
processes has been tackled. In particular, a solution copolymerization process has been
considered for analysis. A NMPC control algorithm was developed and applied to a
jacketed CSTR for tracking the reactor temperature. The regulatory behavior of NMPC
strategy has been presented and compared for load effects against DMC controller. The
simulation results show excellent performance for NMPC scheme and confirm the
potential and robustness of this technique to reduce off-specifications during
disturbances in nonlinear systems.
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