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study here the instability of the squeezing (SQ) mode where
We study the dynamics and rupture of lipid films perturbed in rupture may occur.

the symmetric mode squeezing through an electrohydrodynamical The formalism for describing the time evolution of the
approach. The lipid phase and the two surrounding aqueous surfaces of an aqueous film perturbed in the SQ mode and
phases are considered as incompressible Newtonian viscous fluids

subject to van der Waals body forces was detailed in a previ-submitted to van der Waals, steric, and electric body forces. A
ous work (3). In the present work, we recall that formalismnonlinear evolution equation for the film thickness, at the long-
to model a lipid film submitted to van der Waals, steric, andwavelength limit, is obtained for two symmetric cases: a film with
electric body forces. Basically, a general nonlinear evolutionequally charged surfaces with no potential drop and a neutral film
equation, valid in the long-wavelength limit, was derivedsubmitted to an external electric field. At the long-wavelength

limit, the electric term only influences the film evolution when the from the Navier–Stokes equation, considering the lipidic
electric field inside the film is nonvanishing. We solve numerically, and external phases as incompressible Newtonian viscous
as an initial value problem with periodic boundary conditions, the fluids. The equation is fully expressed in terms of the film
nonlinear evolution equation. The rupture time is obtained and thickness for the particular case of a film with tangentially
compared with analytical estimates. Sufficiently strong steric immobile surfaces. The electrohydrodynamical approach
forces prevent the film from narrowing beyond a minimum thick- takes into account that the lipid molecules that compose the
ness leading the film to a steady state different from the planar

film are submitted to attractive van der Waals forces, repul-one consistently with the nonlinear analytical approach. The pres-
sive steric forces due to the overlap of the hydrocarbonence of a transmembrane electric potential destabilizes the per-
chains of the lipid molecules, and electrical Coulombicturbed film as predicted by the linear and nonlinear approaches;
forces. The latter arise from the presence of charges both athowever, as expected, destabilization is not relevant at physiologi-
the surface of the film, since lipid head groups may have acal values of the potential drop. q 1997 Academic Press

net electric charge, and in the external environment, nor-Key Words: lipid bilayer; film stability; transmembrane electric
potential. mally an aqueous electrolyte solution. External electric fields

may be also present. Two symmetric cases are considered:
a film with equally charged surfaces (case I) and a neutral
film submitted to a potential drop (case II) .1. INTRODUCTION

Estimates of the rupture time are obtained analytically
through linear and nonlinear approximations. The formerThe lipid bilayer, composed of two lipidic monolayers,
consists of linearizing the evolution equation around a planarwhere proteins are embedded, constitutes the basic structure
state; then, the linearized equation admits solutions in normalof biological membranes (1) . Under normal physiological
modes, while the nonlinear approach is based on the per-conditions, this structure reaches a stable equilibrium due to
turbative method proposed by Sharma and Ruckenstein (4–the stabilizing interactions of the hydrocarbon chains inside
6) that linearizes the evolution equation around a nonuni-the bilayer, whereas in some nonequilibrium situations, the
form stationary state. These treatments provide a good quali-structure may break. Many cellular phenomena are associ-
tative idea about the influence of the physical parametersated with the movements, deformation, and rupture of bio-
that characterize the system both on rupture times and onmembranes, e.g., endocytosis, exocytosis, and cell division.
ranges of wavenumbers for stability. Although the secondThese phenomena take place when perturbations of the mem-
perturbative method preserves some finite-amplitude nonlin-

brane environment generate interfacial instabilities (2) . We
ear effects, both approaches apply to situations where the
disturbance amplitude is small compared with the film thick-

1 To whom correspondence should be addressed. ness, and therefore, they fail as the perturbation grows to
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314 RAMOS-DE-SOUZA ET AL.

where the vector V represents the velocity field. In Eq. [1] ,
PW , PW , and W are, respectively, the mechanical stress tensor,
the steric stress tensor, and the van der Waals potential. We
considered the steric tensor proposed in a semiphenomeno-
logical approach (8) that describes the steric forces in the
lipid phase. The van der Waals potential is assumed to have
the form adopted by William and Davies (3) . TW is the Max-
well stress tensor given in the form

TW Å 1
4p SeEE 0 1

2
E 2IW D , [3]

FIG. 1. Film model. Three bulk phases P1, P2 , and P3 separated by two
surfaces S1 and S2. The deformed film phase P2 is represented in the SQ
mode where the displacements of the film surfaces are 1807C out of phase. where E is the electric field, which describes the electrostatic

interactions due to both external applied electric fields and
amplitudes of the order of film thickness, precisely the situa- surface charge densities.
tion close to rupture. We treat the three bulk phases as isotropic, homogeneous,

Alternatively, the numerical solution of the film evolution and linear electrical media. In this way, in the internal phase
equation, also obtained in the present work, allows us to a scalar electric potential c satisfies the Laplace equation
follow the complete dynamics of the film up to rupture,
whenever concomitant, thus giving a better estimation of the Ç

2c Å 0, [4]
rupture time. Also, the film may reach a nonplanar steady
state and rupture does not occur. In both cases, numerical as there is no excess of charge inside the film. In the external
results are qualitatively consistent with those from the non- bulk phases, there occurs a spatial distribution of charges
linear analytical approach. due to competition between the thermal and electrostatic

energies of the ions. We consider ion diffusion large enough
2. ELECTROHYDRODYNAMIC MODEL to recover the Boltzmann distribution as the film surfaces

move, in such a way that the electrochemical potential in
We consider three bulk phases P1, P2 , and P3 separated the aqueous phases remains constant. Then, the electrostatic

by two surfaces S1 and S2 (Fig. 1) . The film is represented potential c * at the external phases satisfies the Poisson–
by the inner thin bulk phase P2 of mass density r, viscosity Boltzmann equation (7, 8)
m, and dielectric constant e, limited by two interfaces with
identical surface tension S. The external bulk phases P1 and
P3 consist of identical aqueous electrolytic phases with mass Ç

2c * Å 8pZ0C0

e
sinhSZ0c *

RT D , [5]
density r *, viscosity m*, and dielectric constant e*. The sur-
faces are considered two-dimensional material ones, located

where Z0 is the electrolytic molar charge, C0 is the ionicat z Å {h(x , t) /2, where h is the film thickness that depends
molar concentration at the external phases far away fromon both lateral coordinate x and time t .
the interfaces, R is the universal gas constant, and T is theThe film is submitted to long-range van der Waals forces,
absolute temperature.electric coulombic forces due to electrical double-layers (7,

Both movement and field equations are supplemented by8) in the external bulk phases, and steric forces due to the
suitable boundary conditions at the interfaces, which areoverlap of the hydrocarbon chains in the film phase (8) .
considered as discontinuity surfaces with intrinsic rheologi-These interactions are taken as body forces in an electrohy-
cal properties. We consider equilibrium of interfacial forcesdrodynamical approach and the three bulk phases are treated
such that an intrinsic momentum source g (for nonviscousas incompressible Newtonian viscous fluids. The movement
interfaces) plus the jump of the stress tensor across the inter-of a volume element in each bulk phase obeys the Navier–
faces vanishes (9)Stokes equation in the form

g / \ 0 PW / TW / PW \rn Å 0. [6]
r

dV
dt
Å ÇrPW / Çr(TW / PW ) 0 rÇW [1]

The jump of the electric displacement across the interfaces
is proportional to the surface charge density ss ,and the incompressibility condition reads

ÇrV Å 0, [2] \eE\ Å 4pss , [7]
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315NONLINEAR DYNAMICS OF LIPID FILMS

while the electric potential is taken as continuous across the where H Å H(X , t) is a nondimensional infinitesimal quan-
tity, and linearize in H to obtaininterfaces,

\c\ Å 0. [8]
Ht/

1
4 FHXXXX/HXX0 pHXX/ qS a

1/ aD
3

HXXGÅ 0,

Since the interfaces are located at z Å {h(x , t) /2, the
spatiotemporal evolution of the free surfaces is described by

[13]
the kinematic equation

where p Å 4P exp(0b) and we have taken b @ 1. We
£ Å {(ht / uhx) /2. [9]

assume a solution in normal modes for H(X , t) as

Inserting the solutions of the governing equations of the
H(X , t) Å B0exp( ikX / vlt) , [14]fluid in the kinematic equation [9] we obtain the spatiotem-

poral evolution of the film thickness (see Appendix) ,
where the nondimensional quantities B0 , k , and vl are, re-
spectively, the initial amplitude, wavenumber, and growth

Ht /
1
4 FH 3HXXX / H01HX 0 P

sinh(bH /2)
cosh3(bH /2)

H 3HX rate of the perturbation. Then, the dispersion equation reads

vl Å 0
k 2

4
[k 2 0 k 2

lc ] , [15]/ qS aH

1 / aHD
3

HXG
X

Å 0, [10]

where klc is the cutoff wavenumber verifying vl Å 0 (mar-where H is the adimensional thickness, X and t are the
ginal stability state) and is given byrescaled adimensional spatial and time variables, respec-

tively, and parameters P and b are related to steric forces
while q and a are related to electric ones, as defined in the

klc Å F1 0 p / qS a

1 / aD
3G1/2

. [16]Appendix. Note that Eq. [10] was derived for case II; how-
ever, case I can also be obtained from Eq. [10] when q Å
0. Equation [10] can be rewritten in the form

It is easy to show that the perturbation grows for 0 õ k
õ klc . In this region the dispersion relation has a maximum

Ht / 1
4[H 3[HXX / P(H)]X ]X Å 0, [11]

at the dominant wavenumber klm

where P(H) is the disjoining pressure (10). Here P(H) is klm Å klc /
√
2, [17]

given by

which satisfies dv /dk Å 0, and the corresponding fastest
rate of growth isP(H) Å 0 1

3
H03 / P

b cosh2(bH /2)
0 q

2 S a

1 / aHD
2

vlm Å 1
4k

2
lm . [18]

[12]

The growth rate, the cutoff wavenumber, the fastest rateand will provide either film rupture or a nonplanar steady
of growth, and the dominant wavenumber are independentstate depending on the film parameters (11).
of the amplitude of the perturbation. If the transmembrane
potential is negligible, we recover the results obtained for

3. APPROXIMATE ANALYTICAL SOLUTIONS a neutral lipid film without electrical constraints (12) that
corresponds to case I. Moreover, if the steric parameters are3.1. Linear Analysis
negligible, we recover the results for a neutral aqueous film
(3). The linear analysis does not allow us to obtain theEquation [10] is a nonlinear partial differential equation.

As it governs finite perturbations of the film surfaces, it also correct rupture time. Nevertheless, we estimate the linear
rupture time tl as the time necessary for the film surfacesgoverns infinitesimal ones. In this section, we employ a lin-

ear stability analysis to obtain the first information about the to collapse (H Å 0). Thus, taking the perturbation in the
form given by Eq. [14], the linear rupture time isdynamics of the system. We take H Å 1 / H in Eq. [10],
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316 RAMOS-DE-SOUZA ET AL.

Indexes l and n are used for identifying linear and nonlinear
tl Å 0

1
vlm

ln B0 . [19] quantities, respectively.
The dominant wavenumber is

From Eqs. [15] to [17], it follows that while steric forces
play a stabilizing role, electrostatic ones contribute to film
destabilization. The cutoff wavenumber and the fastest rate knm Å

knc/√
2

√
1 / Y

(1 0 D)3k 4
nc/

. [22]
of growth increase for larger values of the transmembrane
potential. Therefore, a neutral film submitted to a potential
drop, case II, is more unstable than a symmetric film with Finally, the rupture time derived from the nonlinear ap-
equally charged surfaces, case I. Note, from Eq. [19], that proximation is
the linear rupture time tl decreases as the initial amplitude
of the perturbation B0 increases. Also, the maximal growth

tn Å 0
1
vnm

ln
d

1 0 D
, [23]rate vlm may be interpreted as the inverse of the rupture

time; then, both van der Waals and electric forces accelerate
film rupture while the rupture time decreases due to steric

where vnm Å vn(knm) is the fastest growth rate and may beforces.
written as

3.2. Nonlinear Analysis

We perform a nonlinear analysis following the perturba-
vnm Å

1
16

(1 0 D)3S1 0 Y

(1 0 D)3k 4
nc/
D2

k 4
nc/ . [24]tive method proposed by Sharma and Ruckenstein (4–6)

where the nonlinear evolution equation is linearized around
a nonuniform stationary state. In this way, some nonlineari-
ties are preserved. We consider that the total initial amplitude Note that linear results are recovered in the limit D r 0.
of the perturbation is expressed as B0 Å D / d, where D Depending on the disturbance wavelength, for fixed pa-
and d are the amplitudes of the reference stationary state rameters of the attractive and repulsive interactions, different
and the time evolving part of the disturbance, respectively. stability regimes are observed. The range of stable wave-
In this way, we obtain the nonlinear dispersion relation lengths may be inferred from the dispersion relation; the

critical wavenumber kc yielding v(kc ) Å 0 determines the
vn Å 01

4(1 0 D)3(k 2 0 k 2
nc0)(k 2 0 k 2

nc/) , [20]
domains of stability. Following Eq. [15] (or Eq. [20] for
D Å 0), the linear analysis predicts three regimes: if thewhere the subindex c applies to critical wavenumbers, veri-
disturbance wavenumber is kú klc , the perturbation vanishesfying vn Å 0, and is given by
and the film goes back to the planar steady state; if k õ
klc , the perturbation grows until the film breaks and, in the

knc{ Å X

√
S1 {

√
1 0

4Y

(1 0 D)3X 4DY2, [21]
marginal case k Å klc , the perturbation remains stationary.

Let us analyze now the more general dispersion equation
[20]. A diagram of the nonlinear growth rate vn as a functionwith
of the wavenumber k and the amplitude of the reference

Y Å 0D(1 0 D)2k 2
lc (3k 2

lc / (1 0 D)04 stationary state D for the more simple case where steric and
electric interactions are absent was obtained from Eq. [20]0 3qa 3(1 / a(1 0 D))04

and is presented in Fig. 2a. The linear growth rate vl is
recovered when D Å 0. The nonlinear method indicates that,/ PH3

sinh(b(1 0 D) /2)
cosh3(b(1 0 D) /2) as the initial amplitude increases, both the range of unstable

wavenumbers stretches and the perturbation grows faster,
then, the film becomes more unstable. We will adopt values/ b(1 0 D)

1/2 0 sinh(b(1 0 D) /2)
cosh4(b(1 0 D) /2) JD for the film parameters considering reasonable ranges of

known characteristic parameters for lipid films (8, 12–25).
For m Å 1 P, m* Å 1002 P, r Å 1 g/cm3, r * Å 1 g/cm3, Sand
Å 5 dyn/cm, A Å 10013 erg, h0 Å 6 1 1007 cm,
1
2Ab *b * 2h 2

s Å 1014 dyn/cm2, b *01 Å 2.6 1 1008 cm, e Å
XÅ

√
(10D)040 P

sinh(b(10D) /2)
cosh3(b(10D) /2) 2.1, e* Å 82, C0 Å 10 mM, T Å 257C, and DcT Å 0100

mV, we have

/ qS a

1 / a(1 0 D) D
3

.
P É 108, p É 0.1, q É 0.1, and a É 40. [25]
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317NONLINEAR DYNAMICS OF LIPID FILMS

FIG. 2. Nonlinear growth rate vn as a function of the wavenumber k and the amplitude of the reference state D. Only positive values of vn ,
corresponding to the domains of instability, were plotted. (a) No steric nor electric forces. (b) Effect of steric forces with b Å 20.

To analyze first the effect of steric forces on the stability are reduced. The stabilizing role of these forces was already
well known from the linear analysis (12); however, fordiagram, electric forces will be neglected. A behavior quali-

tatively similar to the case p Å 0 is observed for sufficiently larger values of the steric forces (Fig. 2b), nonlinearities
become relevant and the domain of unstable wavenumberssmall steric forces (p £ 1004 , when b Å 20); i.e., the

stability diagram is qualitatively the same as in Fig. 2a but is shrunk in such a way that the system may be prevented
from reaching rupture.the domain of stability is enlarged and maximal growth rates

FIG. 3. Effect of steric forces on the evolution of the film. Film surfaces described by H{(X , t) Å {H(X , t) /2 as a function of X /DX , where the
dimensionless thickness H was obtained following the nonlinear Eq. [10] and DX Å lm/35. (a) Absence of either steric or electrostatic forces. (b)
Presence of repulsive steric forces with b Å 20 and p Å 1002 . In all cases, the perturbation with initial amplitude B0 Å 0.1 is in the km mode. Only one
period of the periodic perturbation is represented. The curves represent the film surface shape at successive times distant by intervals Dt as indicated
in each figure, except for the dotted curves corresponding to the last time preceding rupture when concerned. The rupture time tR is indicated in (a) .
In (b) , the film reaches a new steady state. Numerical integration was performed for time intervals dt Å 1003 (a) and 5 1 1004 (b) .
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318 RAMOS-DE-SOUZA ET AL.

As predicted by the linear approach, increasing values of
the electrostatic parameter q lead the system to a more unsta-
ble situation. For typical values of q , a behavior qualitatively
similar to that shown in Fig. 2a is observed but critical
wavenumbers are shifted toward greater values and growth
rates increased, i.e., an effect apparently opposite that of
small steric forces; however, steric and electric nonlinear
contributions to the dispersion relation are different and they
affect the phase diagram in different ways.

4. NUMERICAL RESULTS

We follow basically the numerical methodology employed
previously (3, 12). Equation [10] is solved as an initial value
problem considering spatially periodic boundary conditions
(PBC). This type of boundary conditions permits us to in-

FIG. 4. Scheme of the time evolution of the disturbance amplitude B as
vestigate the behavior of an ideal infinite film corresponding a function of log p , according to numerical results. The initial perturbation is
to the more realistic case of a film whose thickness is small in the km mode. The symbols (diamonds) correspond to values obtained

from simulations by measuring the amplitude of the final steady state forcompared with its length.
some fixed p . Filled circles represent the initial condition and the arrowsWe consider initial values of the periodic form
indicate the disturbance amplitude trajectory. Then, for sufficiently small
p the film reaches rupture, whereas for 1004 £ p õ 1 the film cannot break

H(X , 0) Å 1 / B0sin(kX ). for any initial amplitude, reaching a steady state different from the planar
one. Note that, for p Å 1, km Å kc Å 0, then, for p § 1, any perturbation
vanishes and the film goes to the planar state.Then, the bounded domain with PBC is 0 £ X £ 2p /k . We

note that, with this condition, the evolution is restricted to
wavelengths being integer submultiples of 2p /k . neglecting the electrostatic terms. As predicted by the stabil-

ity analysis, for sufficiently small values of steric parameterWe use finite-difference methods to solve Eq. [10], by
means of a FTCS scheme (26). An explicit scheme is ap- p , the film perturbed in the km mode evolves up to rupture

(similarly as in Fig. 3a, which corresponds to a film whereplied for the time derivative and centered staggered differ-
ences in space are used to obtain the successive derivatives steric and electric forces are negligible) , even if steric forces

have a stabilizing role which retards rupture, whereas forwith respect to X . Thereafter, the finite-difference represen-
tation of Eq. [10] is solved iteratively until H(X , t) £ 0 large values of p (p § 1004) , a minimum thickness is al-

lowed and the film reaches a steady state different from thefor some X , after which the model loses applicability. Then,
the numerical nonlinear rupture time tR is defined as the marginal planar one (Fig. 3b). Through numerical integra-

tions we observed that, for given values of the steric parame-first time for which H(X , t) vanishes at some point X .
To test the stability of the numerical scheme with respect ters, the same steady state is reached for any value of the

initial amplitude of the disturbance. Figure 4 is a diagramto time and spatial grid we use a procedure previously de-
scribed (3, 12) which basically consists of refining the grids outlining the evolution of the disturbance amplitude B in the

presence of steric forces. Increasing parameter b has a simi-within the limit set by the stability criteria (26). As a further
test of reliability for the numerical method, we have verified lar effect as increasing p .

Electrostatic effects were also analyzed. The evolutionthat the integral of H(X , t) over the period considered is
conserved throughout the evolution. of the film shape is qualitatively similar to the case where

electrostatic forces are absent (Fig. 3a); it is the inner partBy means of the numerical procedure described above,
we are able to follow the evolution of the perturbed film. of the wave that develops faster. The presence of a potential

drop across the film, however, turns the film more unstable;Since the perturbation is expected to rapidly tune the fastest
growth mode, we follow the evolution of waves with wave- i.e., the rupture time decreases, as anticipated by the analyti-

cal approaches. Increasing values of the electrostatic parame-number km where km Å klm is given by Eq. [17]; i.e., we
follow the evolution of waves with the maximal growth rate ter q accelerate film rupture. The rupture time decreases

almost exponentially with q (see Fig. 5a) and sigmoidallygiven by the linear approximation. Results from numerical
integration allow us to plot the shape of the film surfaces as with a (Fig. 5b).

In Fig. 6, we follow the evolution of the velocity fielda function of X at various times t.
We analyzed the effect of the different forces on the evolu- inside the film using Eqs. [A22] and [A23], for the same

conditions as in Figs. 3a and b. These diagrams allow us totion of the km mode. First we focused on steric effects by
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319NONLINEAR DYNAMICS OF LIPID FILMS

FIG. 5. Dependence of the rupture time tR on electrostatic parameters, for different values of the disturbance initial amplitude indicated in the figure.
(a) tR vs q , with a Å 40. (b) tR vs a, with q Å 0.5. Lines are guides to the eyes.

learn how fluxes originated. The symmetry properties de- proach. For increasing disturbance amplitude, the ratio be-
tween numerical and analytical rupture times decreasesrived from the SQ mode condition are verified: the tangential

velocity u 0 is symmetric about Z Å 0 vanishing at the film abruptly but the nonlinear ratio is higher, as expected.
We studied the evolution of a film perturbed in the squeez-surfaces, whereas the normal velocity £

0 is antisymmetric
about Z Å 0. Also, the SQ mode condition imposes, at the ing mode. In all numerical integrations we followed the

evolution of the film initially disturbed by single-mode sinoi-center of the film, zero normal velocity, £ 0(Z Å 0) Å 0, and
no variation along the z axis of the tangential velocity, dal perturbations corresponding to the fastest growth mode

according to the linear approximation. We could have alsou 0
Z(Z Å 0) Å 0. In the case of Fig. 6a where steric and

considered the nonlinear fastest growth mode instead of theelectric forces are absent we observe that, in the narrow
linear one. Figure 8 shows the dependence of tR on theregions of the film, flows are generated from the surface
wavenumber k for the case B0 Å 0.1 when steric and electrictoward both the center and the broad regions. In the latter,
forces are negligible. Note the flat shape of the numericallyfluxes are oriented toward the surface. Then, rupture arises
obtained plot around km. Therefore, in that case, there arefrom the flow of the fluid out from the region of initially
no significant differences concerning rupture times whethersmall thickness where velocities increase more rapidly than
we consider the linear or the nonlinear maximal wavenumberin the broad regions. Electric forces and steric ones allowing
in the numerical integration. As nonlinearities increase, how-rupture give place to velocity fields similar to those in Fig.
ever, depending on the values of the initial amplitude and6a. The effect of steric forces large enough to prevent rupture
the parameters, that choice may lead to somewhat differentis illustrated in Fig. 6b. Although not shown in the figure,
results. For instance, for larger initial amplitudes, the plotsfurther simulations show that flows tend to stop for suffi-
in Fig. 8 would be more peaky around km. Nonlinear criticalciently long times.
and maximal wavenumbers are dependent on the initial am-Figure 7 allows us to compare the values of the dimen-
plitude of the disturbance and, for a given value of the initialsionless rupture times obtained both by the numerical proce-
amplitude, nonlinearities normally shift the maximal wave-dure and by the analytical linear and nonlinear approxima-
number to greater values and growth rates are increased (seetions. Nonlinear rupture times were obtained assuming B0

Fig. 2) . This increase in instability will be reflected in theÅ 2D ( i.e., d Å D) , which seems to be the better choice.
smaller rupture times resulting from the nonlinear approxi-Figure 7 was obtained for the case where only electric forces
mation compared with the linear one (see Figs. 7 and 8).are present, but it is qualitatively representative of the behav-

In Fig. 9, we follow the evolution of a wave in the km/2ior of rupture times when light steric effects allowing rupture
mode. If the perturbation amplitude is sufficiently small (Fig.are present. The numerical rupture time tR decreases for
9a) , the km mode is tuned before rupture; however, ruptureincreasing values of the initial amplitude of the perturbation,
occurs at the point of initially smaller thickness. For higheraccording to the predictions of the linear and nonlinear ap-
amplitudes (for instance, B0 Å 0.1, in Fig. 9b), the tendencyproximations; however, the analytical treatments overesti-
to tune the km mode makes the outer part of the wave developmate rupture times. For disturbance amplitudes in the range
more slowly than in the km mode (Fig. 3a) and rupture is1003 to 1001 , the value of numerical rupture time is about

75% of that predicted through the analytical nonlinear ap- delayed but the film breaks before tuning the km mode. We
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320 RAMOS-DE-SOUZA ET AL.

FIG. 6. Evolution of the velocity field inside the film for the same parametric values and initial conditions as in Figs. 3a and 3b, respectively. (a)
Absence of either steric or electrostatic forces. (b) Presence of repulsive steric forces characterized by b Å 20 and p Å 1002 . Each graph corresponds
to the time indicated on the figure. At each grid site, an arrow indicates the direction of the velocity vector and a gray shade represents its intensity
(increasing from white to black).
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321NONLINEAR DYNAMICS OF LIPID FILMS

izing the governing equation [10] around a nonhomogeneous
stationary reference state while the linear analysis considers
a planar state as the reference one. Consequently, the nonlin-
ear approach preserves some nonlinear effects that are lost
in the linear analysis. In the former, the growth rate, the
cutoff wavenumber, and the fastest growth rate depend on
the amplitude of the reference state D. As expected, the
linear results are recovered for D Å 0.

The nonlinear approach shows that steric forces play a
special role in the film dynamics that is not detectable in
the linear analysis. For a given set of film parameters, the
film can be either stable or unstable, depending on D (Fig.
2) . There is a certain D0 such that the perturbation either
decreases if D ú D0 or increases if D õ D0 . This results
from the action of steric forces. Figure 2 shows that the
fastest rate of growth vnm increases with D if steric forces
are absent; however, if steric forces are operative vnm de-
creases from a certain value of D and vanishes for D Å D0 .

FIG. 7. Rupture time of a film subject to electric forces with a Å 40 The nonlinear approach indicates that there exists a set of
and q Å 0.5 as a function of the initial amplitude B0 . Steric forces were

nonplanar stationary states for D ú D0 . Indeed, numericalneglected. Short-dashed and dotted lines correspond, respectively, to the
solution of the nonlinear governing equations indicates that,nonlinear and linear rupture times obtained from Eq. [23]; in the former

case we assumed dÅDÅ B0 /2 and in the latter, DÅ 0 and dÅ B0 . Symbols for a given set of the film parameters, the film evolves to a
correspond to values obtained through numerical simulations. Insets: ratios unique spatially nonhomogeneous steady state independent
tR/tl and tR/tn vs log B0 . Lines are guides to the eyes. on the initial amplitude of the perturbation. Steric forces

stabilize the film, delaying rupture as predicted by the linear
and nonlinear approximations and also as already shown byalso verified numerically that for values of the wavenumber
other authors (8, 12); however, we also observed that strongk above kc , the perturbation vanishes.
steric forces prevent the film from narrowing beyond a mini-
mum thickness. This numerical result, consistent with the5. DISCUSSION
predictions of the nonlinear stability analysis, could be inter-
preted as the increase of ordering of the hydrocarbon chainsA nonlinear evolution equation for the film thickness, Eq.

[10], was obtained, at the long-wavelength approximation, inside the film as its surfaces approach each other, due to
the overlap of opposite chains. The linear analysis does notthrough an electrohydrodynamical approach. Bulk phases

are considered as incompressible viscous Newtonian fluids compute these nonlinear effects. Actually, the linear analysis
subject to van der Waals, steric, and electric bulk forces.
We consider films with tangentially immobile surfaces and
neglect lateral gradients of the surface tension and of the
order parameter related to steric forces. Then, we obtain the
governing equation [10]. Two electric cases are considered:
(I) a film with equally charged surfaces and no potential
drop, and (II) a neutral film under an external electric field.
At the long-wave approximation, the film dynamics is not
influenced by electric terms in case I. Nevertheless, in case
II, a transmembrane potential influences film movement due
to the discontinuity in the electric stress, even if the film has
negligible surface charge. In fact, such electric discontinuity
is a consequence of the difference of electric permittivity
between the film phase and the external media. The electric
term in Eq. [A20] holds for a transmembrane potential up to
4RT /Z0 . Then, it is a good approximation for transmembrane

FIG. 8. Dependence of the rupture time on the wavenumber. The initial
potentials below 100 mV at temperatures of 257C and below amplitude of the disturbance is B0 Å 0.1. Curves correspond to linear and
150 mV at 377C. nonlinear analytical values as indicated in the figure, and symbols corre-

spond to values obtained through numerical integration.The nonlinear stability analysis was performed by linear-
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FIG. 9. Film surfaces described by H{(X , t) Å {H(X , t) /2 as a function of X /DX , where the dimensionless thickness H was obtained following
the nonlinear Eq. [10] and DX Å 2lm/35. Either steric or electrostatic forces are absent. In all cases the perturbation is in the km/2 mode. The perturbation
initial amplitude is B0 Å 1007 (a) and 0.1 (b) . Only one period of the periodic perturbation is represented. Rupture times tR and time intervals Dt
between plots are indicated on each figure. Dotted curves correspond to the last integration step preceding rupture. Numerical integrations were performed
for time interval dt Å 5 1 1003 .

investigates the stability of the planar state and it does not ing the dependence of rupture time on parameter q }
(DcT )2 , we note that an increase in the transmembraneaccount for the increasing steric forces in the narrow regions

of the deformed film. Thus, the linear approach underesti- potential accelerates rupture. From this result one can infer
that membrane rupture may be induced by an electric signalmates steric effects. Moreover, both from the nonlinear ap-

proach and from numerical results, the values of p and b that originates a potential drop across the film. Indeed, a
procedure commonly used to insert foreign material into theallowing film rupture correspond to 1

2Ab *b * 2h 2
s É 1012 dyn/

cell is electropermeabilization (27, 28). When an electricalcm2 and b *01 É 2.3 1 1008 cm, which are in the range of
potential of order 1 V is induced across a cell membranethe smallest values usually adopted for the steric parameters
for a fraction of a second, membrane permeability increases(1012 dyn/cm2 £ 1

2Ab *b * 2h 2
s £ 1015 dyn/cm2 and 2.1 1

drastically, leading to leakage or uptake of molecules nor-1008 cm £ b *01 £ 3.4 1 1008 cm) (12). For larger values
mally excluded from membrane transport. As a special case,of the steric parameters, the film is stable and it does not
actual pores may be formed (electroporation). The presentbreak even when subject to van der Waals forces and electric
model cannot predict whether actual pores are formed. Theforces derived from a potential drop of order of 100 mV.
extension of the model to three dimensions could elucidateIn case II, electric destabilizing forces are operative due
that point. Even if charge densities are negligible, the electricto a transmembrane potential that results in a nonvanishing
stress due to the dielectric discontinuity at the film surfaceselectric field both inside the film and in the external bulk
yields film deformation leading to rupture. Salt effects arephases. Discontinuity of electric stress across the interfaces
expressed through the parameter a, inversely related to thecontributes to film destabilization. For a given transmem-
Debye length. The destabilizing effect of electrostatic forcesbrane potential, electric destabilizing effects increase with
becomes stronger as a increases. In fact, if salt concentrationthe electrolytic concentration in the bulk external phases.
increases, the Debye length decreases (hence, a increases)Since electric forces act as destabilizing ones, an initially
and the potential drop across the film (Dc0) grows closerstable film can become unstable if electric forces are large
to the transmembrane potential DcT , therefore increasingenough to counterbalance steric repulsive forces. It is shown
the electric stress. Taking into account the approximate rela-that transmembrane potentials up to 150 mV do not affect
tion Dc0 Å [aH / (1 / aH)]DcT , note that as H decreases,film stability; however, the approximation taken into account
Dc0 also decreases. Then, the electric destabilizing effect isfor the electric term does not hold for values of the potential

drop that could lead the film to rupture. From Fig. 5a, show- reduced as the film approaches rupture.
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From the choice of the relationship D Å d it is shown We develop each quantity in regular expansion in the form
that nonlinearities accelerate film rupture. Nonlinear rupture
time can be up to 10 times lower than linear rupture time

(uI , £I , pI ) Å ∑
`

nÅ0

u n(uI n , £I n , pI n) . [A2](Fig. 8) . For film parameters corresponding to Fig. 8, B0 Å
0.5 and S Å 5 dyn/cm2, the linear and nonlinear rupture
times approach, respectively, 140 and 476 ms. Indeed, nu- To obtain an approximate solution of the problem we have
merical results show that nonlinearities accelerate film rup- taken all the nondimensional equations and boundary condi-
ture more strongly than indicated by the nonlinear approach, tions at zero order of u. In this case, the x and z components
and in that case the numerically computed rupture time ap- of the Navier–Stokes equation [1] read, respectively,
proximates 25 msec. In fact, the nonlinear stability analysis
developed here does not allow us to follow completely the
film movement until film rupture; however, beyond calcula- FpI 0 fH 0 e 0 1

2
cH 2

zI 0 8pCH 0RH TH coshSZH 0cH

RH TH D / WH G
xItion of the rupture time, the nonlinear approach helps us to

understand the role of nonlinearities in film dynamics. Å ruI zI zI [A3]
The evolution of a perturbation is highly dependent on

initial amplitudes and wavenumbers. Thus, when dealing and
with actual disturbances originated either by some driving
force inducing the perturbation or by spontaneous fluctua-
tions due to thermal noise, and normally composed by a set FpI 0 fH 0 e 0 1

2
cH 2

zI 0 8pCH 0RH TH coshSZH 0cH

RH TH D / WH G
zIof interacting modes, it is necessary to know the whole initial

spectrum to follow correctly the evolution of the surface Å 0, [A4]
deformation. Here, we investigated the dynamics of the rup-
ture and its dependence on the different forces acting on the where we have used the Poisson–Boltzmann equation [5].
system when the film is perturbed in the km SQ mode which The subscripts x̃ and z̃ indicate partial derivatives and r Å
is expected to dominate the evolution. Observe from Fig. 9

n* /n. In the internal phase, r Å 1 and the hyperbolic term
that the km mode develops even when it is absent in the vanishes as there is no net electric charge. Otherwise, at the
initial wave. external bulk phases the steric potential f vanishes since

Analytical approximations give a clue to the qualitative hydrocarbon chains are absent.
effect of the different interactions on the rupture time; how- We have conveniently estimated each physical quantity
ever, they apply to situations characterized by initially small- responsible for the film instability to preserve the corre-
amplitude disturbances from the planar state. As depicted in sponding terms comparable to the viscous term at zero order.
Fig. 7, although the nonlinear approach yields results closer Then, we take
to the numerical ones, both analytical approximations lead to
overestimation of the rupture time relative to the numerically
obtained one. Therefore, rupture times depend strongly on fH Å u

h 2
0c

rn 2 , cH Å S u

4prn 2D1/2

c, CH 0 Å h 3
0C0 ,

the nonlinearities of the problem.

APPENDIX
ZH 0 Å S u

4pr *n 2h 2
0
D1/2

Z0 , RH TH Å u

4pr *n 2h0

RT ,
To solve the nonlinear hydrodynamic problem we put all

the equations in a dimensionless form (3, 12, 13, 29) using
the Stokes scale x * Å x /h0 , z * Å z /h0 , and t* Å nt /h 2

0 , where and WH Å u
h 2

0

n 2 W . [A5]
h0 is the mean film thickness and n Å m/r is the kinematic
viscosity. Instabilities are expected for perturbations with
wavelength l @ h0 (1, 14–17). Then, we rescale again At the long-wavelength limit, the incompressibility condi-
the equations and boundary conditions introducing a small tion [2] reads
parameter u Å h0 /l appropriate for the long-wavelength ap-
proximation, and the total scaling reads

£I xI / £I zI Å 0. [A6]

xI Å u
x

h0

, zI Å
z

h0

, t
H
Å u

nt

h 2
0

, hH Å
h

h0

, For the Laplace [4] and Poisson–Boltzmann [5] equa-
tions, we have, respectively,

uI Å
h0u

n
, £I Å u01 h0£

n
, pI Å u

h 2
0p

rn 2 . [A1]
fH zI zI Å 0 [A7]
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and where DcH Å cH 1 0 cH 2 is the transbilayer potential, i.e., the
potential difference between S1 and S2. The solution of the
Poisson–Boltzmann equation [5] at the long-wave approxi-

fH *zI zI Å
8pZH 0CH 0

e*
sinhSZH 0cH

RH TH D . [A8] mation gives the electric potential at the external phases P1

and P3,

Thus, in the long-wavelength approximation these equations
are second-order partial derivative equations in z only. At
the interfaces, we considered the boundary conditions at zero
order derived from the normal momentum balance (Eq. [6])

cH *Å cH *|`|
2RH TH

ZH 0

1/ tghSZH 0DcH *

4RH TH Dexp[{x
H

(zI { hH /2)]

10 tghSZH 0DcH *

4RH TH Dexp[{x
H

(zI { hH /2)]
,

for nonviscous surfaces, the electric displacement condition
(Eq. [7]) , the electric potential condition (Eq. [8]) , and
the equation for the order parameter (12).

Since we consider a film in the SQ mode, the normal
[A11]velocity components are antisymmetric and the tangential

ones are symmetric (3) . Moreover, we assume the continuity
of the velocity field across the interfaces (3) . Finally, we where x

H

Å (8pZH 2
0CH 0 /e*RH TH )1/2is the dimensionless inverse

considered the adimensional form of the kinematic condition of the Debye length. The plus–minus signs in Eq. [A11]
Eq. [9] at the long-wavelength limit. These conditions allow account, respectively, for phases P1 (upper) and P3 (down),
us to integrate the x component of the Navier–Stokes equa- and DcH * Å DcH *1 Å cH *0` 0 cH *1 in P1 while DcH * Å DcH *3 Å
tion [A3] and to obtain the components of the tangential cH *2 0 cH */` in P3.
velocity of the fluid elements. Then, we obtain the normal From Eqs. [A10] and [A11], the remaining electric term
components of the velocity by integrating the continuity in Eq. [A9] is
equation [A6] and using the SQ mode boundary conditions.
The substitution of the velocity components in the kinematic
condition [9] gives us the spatiotemporal nonlinear film 0 e

2
cH 2

zI /
r *

r

e*

2
cH * 2

zI 0 8p
r*

r
CH 0RH TH coshSZH 0cH

RH TH Dthickness evolution equation for a symmetric film:

Å 0 e

2 SDcH

hH D
2

. [A12]1
2

hH t
H

/ 1
3 HS hH

2D
3F3SH hH xI xI / 2fH 0 fH zI zI

2b 2 0
e

2
cH 2

zI

In agreement with the continuity of the potential across
/ r *

r

e*

2
cH * 2

zI 0 8p
r*

r
CH 0RH TH coshSZH 0cH

RH TH D the interfaces [8] , the potential difference across the whole
system (transmembrane potential, DcH T ) is

0 WH /
r *

r
WH *G

xI
J

xI

Å 0. [A9] DcH T Å cH *0` 0 cH */` Å DcH *1 / DcH / DcH *3 . [A13]

Substituting Eqs. [A10] and [A11] into Eq. [7] , we haveS̃ Å u 3(h0 /3rn 2)S is the inverse of the capillarity number
the following conditions at interfaces S1 and S2, respectively:and b Å b *h0 , where 1/b * measures the interaction range

between oriented hydrocarbon chains [8] .
Equation [10] is a nonlinear equation for the film thick- 2RH TH xe*

ZH 0

sinhSZH 0DcH *1

2RH TH D 0 e
DcH

hH
Å 04ps1 ,ness evolution at the long-wavelength approximation. To

solve it, we need to find the surface tension and the bulk
force potentials as functions of h(x , t) . We consider a film
with tangentially immobile surfaces in which there is no 2RH TH xe*

ZH 0

sinhSZH 0DcH *3

2RH TH D 0 e
DcH

hH
Å 4ps2 . [A14]

lateral gradient of surface tension, that is, SH xI Å 0.
The steric and van der Waals terms were obtained pre-

viously (12). The electric potential into the film satisfies the Here s1 and s2 are the surface charge densities on S1 and
Laplace equation [4] and is given by the expression S2, respectively.

For case I, a film with equally charged surfaces and DcH T

Å DcH Å 0, one gets from Eqs. [A14] that DcH *1 Å 0DcH *3 .cH Å DcH
zI
hH
/ cH 1 / cH 2

2
, [A10]

These considerations lead to the evolution equation
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It is also interesting to know the evolution of the ve-
Ht /

1
4 FH 3HXXX / H01HX 0 P

sinh(bH /2)
cosh3(bH /2)

H 3HXG
X

locity field inside the film. At the long-wavelength limit,
the dimensionless expressions at zero order for the tan-

Å 0, [A15] gential ( ũ ) and normal ( £̃ ) velocities may be obtained as
functions of the dimensionless spatial coordinates and

where we have defined new variables for space and time, time:

X Å (AH /SH )1/2xI , H Å hH , t Å (AH 2 /SH ) t
H
, [A16] uI (X , Z , t) Å 0(Z 2 0 (H /2)2) f /2, [A22]

£I (X , Z , t) Å ((Z 2 /3 0 (H /2)2) fX 0 (H /2) f HX )Z /2,and the nondimensional parameter

[A23]

P Å AH bbH
3hI 2

s

6AH
, [A17]

with

with Ãb Å Ab /rn 2h 4
0 and Ã Å uA /6prn 2h 2

0 , where A is the
f Å sSHXXX / H04HX 0 P

sinh(bH /2)
cosh3(bH /2)

HXHamaker constant.
Equation [A15] shows that in case I there are no electric

effects on the film evolution at the long-wave approxima-
tion, consistent with the results obtained from linear anal- / qS a

1 / aHD
3

HXD , [A24]
ysis (30 ) .

For case II, a neutral film submitted to an external constant
electric field, one obtains from Eqs. [A14] that DcH *1 Å where Z Å z /h0 is the dimensionless coordinate normal to

the symmetry plane and s Å 3( Ã 3 / S̃)1/2 .DcH *3 . Then, Eqs. [A13] and [A14] yield
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