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In view of the particular attention recently devoted to hindered rotations, we have tested reduced

kinetic energy operators to study the torsional mode around the O–O bond for H2O2 and for a series

of its derivatives sHOOCl, HOOCN, HOOF, HOONO, HOOMe, HOOEt, MeOOMe, ClOOCl,
FOOCl, FOOF, and FOONOd, for which we had previously determined potential energy profiles
along the dihedral ROOR8 angle fR ,R8=H,F,Cl,CN,NO,Me s=CH3d, Et s=C2H5dg. We have
calculated level distributions as a function of temperature and partition functions for all systems.

Specifically, for the H2O2 system we have used two procedures for the reduction in the kinetic

energy operator to that of a rigid-rotor-like one and the calculated partition functions are compared

with previous work. Quantum partition functions are evaluated both by quantum level state sums

and by simple classical approximations. A semiclassical approach, using a linear approximation of

the classical path and a quadratic Feynman–Hibbs approximation of Feynman path integral,

introduced in previous work and here applied to the torsional mode, is shown to greatly improve the

classical approximations. Further improvement is obtained by the explicit introduction of the

dependence of the moment of inertia from the torsional angle. These results permit one to discuss

the characteristic time for chirality changes for the investigated molecules either by quantum

mechanical tunneling sdominating at low temperaturesd or by transition state theory sexpected to
provide an estimate of racemization rates in the high energy limitd. © 2008 American Institute of

Physics. fDOI: 10.1063/1.2992554g

I. INTRODUCTION

A systematic quantum chemical investigation of mol-

ecules containing the peroxidic bond has been reported

recently.
1–3
The emphasis was on the characterization of the

torsional mode, which is responsible for the stereomutation,

namely, the exchange between chiral enantiomers through

the trans and cis barriers, a motivation being the understand-

ing of the possible role of a collisional mechanism for such

processes.
4
We also estimated torsional levels and their

populations as a function of temperature.

Interest on the specific features of torsional modes has

been renovated recently: See, for example, Refs. 5–10 for

spectroscopic investigations of separation of internal and ro-

tational motions. With respect to the calculation of partition

functions, of relevance both for thermodynamical and reac-

tion kinetic problems, see Refs. 11–16 and references

therein. In this paper we compute the partition functions ac-

cording to well established recipes by explicit use of the

calculated torsional levels and also give a test for simple

classical and semiclassical approximations. In the calculation

of the classical partition function we found it important to

consider a correction proposed in Refs. 17 and 18 which uses

features of the linear approximation of the classical path

sLCPd approach and the quadratic Feynman–Hibbs sQFHd
approximation of the Feynman path integral.

For H2O2, two schemes are considered for the calcula-

tions of the levels, and while overall agreement is found with

a recent paper,
14
advantages of using orthogonal vectors

1
and

the explicit dependence of the effective moment of inertia on

the dihedral angles are pointed out. Another important aspect

of the calculation of the classical torsional partition function

is the dependence of the moment of inertia on the geometri-

cal parameters and of the dihedral angles. For discussions

and calculations of the effective moment of inertia of mol-

ecules with internal rotation see, for example, Refs. 14 and

19 and references therein. In the present work we tested al-

ternative expressions for the moment of inertia which can be

considered as a constant only in a first approximation. How-

ever, a more general approach based on the kinetic energy

operator takes into account the dependence from the dihedral

angle. An additional case corresponds to the diatom-diatom

approach using orthogonal vectors: In this case, the moment

of inertia does not depend on the dihedral angle. We have

verified that the explicit introduction of such a dependence

on the dihedral angle improves the classical approximations

for the torsional partition functions.

Furthermore, the results presented is this paper allow us

to characterize the racemization rates, namely, for the pro-

cess of stereomutation
20,21

between the two enantiomeric

forms connected by torsion around the O–O bond. Computed

level splittings provide the time for quantum mechanical tun-

neling, which is the mechanism responsible for the chiralityad
Electronic mail: carla@dyn.unipg.it.
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changing process at low temperatures, while for high tem-

peratures the time of racemization is estimated by transition

state theory using the computed partition functions.

The scheme of the paper is as follows. In the next sec-

tion, we report the methodology regarding the torsional level

calculations. Section III reports the quantum, classical, and

semiclassical formulas used to evaluate the torsional parti-

tion functions. Section IV presents calculated results and dis-

cussions, in particular, regarding racemization times. The last

section contains further remarks and some conclusions.

II. TORSIONAL LEVELS

In previous articles
1–3
we have presented a systematic

study by quantum mechanical methods of a series of mol-

ecules, corresponding to substitutions of one or both hydro-

gens in hydrogen peroxide. First we have studied the effects

of the substitution by one or two alkyl groups sCH3OOH,
C2H5OOH, and CH3OOCH3d,

2
by halogen atoms sHOOF,

HOOCl, ClOOF, FOOF, and ClOOCld, and by NO and CN.3

Data relevant to the present work are listed in Table I for the

equilibrium cis and trans configurations. We have calculated

the energy profiles along the torsional angle w, ranging from

0° sthe cis configurationd to 180° sthe trans configurationd
with a step of 1° optimizing the geometry at each angle. The

resulting values are fitted to a cosine expansion

Vswd =o
k

Ck cosskwd , s1d

where k=0,1 ,2 , . . .. The coefficients Ck are obtained by a

Newton–Raphson fitting to the calculated potential energy

points and are given in Table II. An illustration of the distri-

bution of levels obtained as described below is presented in

Fig. 1 for the case of the HOOF molecule. References 1–3

provide further details.

A. Valence-type coordinates

The effective kinetic energy operator that we have em-

ployed for the calculation of energy levels is of the type used

for example by Likar et al.
22
for the HOOR systems. We

have applied it for general ROOR8 systems, where R and R8

can be an atom or a group of atoms. Coordinates are de-

scribed in Fig. 2. Then the kinetic energy operator can be

written in the Hermitian sself-adjointd form

TABLE I. Equilibrium geometries and cis and trans barriers calculated with the B3LYP / /6-311+ +Gs3df ,3pdd method sRefs. 2 and 3d. a0 and a1 are

calculated using Eqs. s4d and s5d. The bond lengths are expressed in angstrom, the angles in degree, and the barriers and a in cm−1. In the case of the HOOH

we have also used the diatom-diatom approach sFig. 3d and "2 /2Iort=40.412 cm
−1, Vcis=2645.33 cm

−1, and Vtrans=396.81 cm
−1.

ROOR8 r1 ROO r2 u1 u2 w a0 a1 Vcis Vtrans

HOOH 0.966 1.447 0.966 100.8 100.8 112.5 40.150 8 0.658 787 2575.00 386.00

ClOOCl 1.748 1.362 1.748 111.5 111.5 84.8 2.258 21 1.102 3523.55 2174.54

FOOCl 1.497 1.281 1.802 108.0 112.9 86.1 2.671 24 1.162 58 6037.44 4713.87

FOOF 1.524 1.222 1.524 109.2 109.2 90.0 3.050 83 1.176 76 9717.72 8292.25

FOONO 1.494 1.308 1.662 106.9 107.0 88.6 2.470 51 0.881 361 4461.57 4575.85

HOOCl 0.970 1.410 1.730 102.4 110.1 88.8 21.264 6 0.950 122 2317.83 1618.94

HOOCN 0.970 1.475 1.290 99.6 108.5 111.9 21.337 1 0.806 641 1420.75 212.98

HOOF 0.973 1.359 1.467 103.8 106.2 84.9 21.777 8 0.909 959 3339.37 3545.44

HOONO 0.968 1.417 1.479 102.1 106.9 99.6 21.453 3 0.839 379 935.26 744.06

HOOMe 0.966 1.449 1.414 100.8 106.8 115.6 21.677 7 0.783 283 2080.00 151.92

HOOEt 0.966 1.451 1.424 100.4 107.6 114.5 21.334 9 0.797 795 2270.55 236.46

MeOOMe 1.410 1.460 1.410 105.2 105.2 180.0 3.071 79 0.722 354 3904.37 0.00

TABLE II. Coefficients of Vswd sFig. 2d of the expansion fEq. s1dg in cm−1.

Molecule C0 C1 C2 C3 C4 C5 rms

HOOH
a

835.52 1063.15 679.08 58.61 6.27 2.80 0.34

HOOH 830.01 1056.43 651.65 38.35 −1.50 0.76 0.36

ClOOCl 1622.33 417.49 1407.86 321.59 −185.75 −58.87 4.96

FOOCl 2995.76 268.38 2693.53 434.52 −307.62 −18.42 24.95

FOOF
b

4908.90 268.92 4643.32 434.07 −457.64 61.29 61.17

FOONO 2302.31 −34.37 2294.01 −44.55 −45.47 22.19 26.56

HOOCl 1002.60 232.26 982.22 114.78 −18.82 2.56 0.66

HOOCN 460.28 583.97 360.79 19.95 −4.07 −0.01 0.16

HOOF 1761.99 −252.53 1708.83 145.40 −26.82 6.01 2.05

HOONO 466.30 170.23 407.18 −68.42 −32.13 −5.52 1.49

HOOMe 608.96 874.86 493.68 85.50 12.92 3.80 0.55

HOOEt 668.62 918.60 549.89 83.49 22.95 8.35 4.27

MeOOMe 1170.03 1737.84 753.23 192.16 19.27 22.50 7.19

a
These coefficients refer to the expansion of the torsional energy profile VsFd as a function of the dihedral angle

F sFig. 3d of the orthogonal representation.
b
For the FOOF system, we also have C6=−148.80 cm

−1 and C7=−41.99 cm
−1.
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T̂swd = −
d

dw
aswd

d

dw
= −

d

dw
S "2

2Iswd
D d

dw
, s2d

with

aswd = a0 + a1 cos w , s3d

a0 =
1

mROr1
2 sin2 u1

+
1

mOR8
r2
2 sin2 u2

+
1

mOOROO
2

3scot2 u1 + cot
2 u2d −

2

mOROO
S cot u1

r1 sin u1
+
cot u2

r2 sin u2
D ,

s4d

a1 =
4 cot u1 cot u2

mOROO
2

−
2

mOROO
F cot u2

r1 sin u1
+
cot u1

r2 sin u2
G , s5d

where mO is the oxygen mass and m are reduced masses. All

the geometrical parameters are assumed to have their equi-

librium values as given in Fig. 2 and Table I. These equations

are obtained using the Appendix of Ref. 22 and the work of

Decius
23 sequation for gtt

4 on p. 1028d, who collaborated

with Wilson, Jr. et al. in a book.
24
In the rigid-rotor-like

kinetic operator s2d we have found it convenient to define an

effective moment of inertia I as an explicit function of the

torsional angle w,

Iswd =
"2

2aswd
. s6d

The values of the a0 and a1 parameters are listed in Table I.
These formulas are reasonable approximations provided that

the variations in the other geometrical variables sbond
lengths and bending anglesd remain small as the dihedral
angle varies. Therefore, for example, the cases of FOOF and

ClOOF should be considered more closely regarding the role

of ROO variation ssee Ref. 3d. The choice of the equilibrium
value for ROO is appropriate for the low levels of relevance

in this paper, but more accurate choices should be tested for

the higher ones.

B. Orthogonal coordinates

For the H2O2 system we can alternatively exploit an or-

thogonal set of coordinates that well describe the torsional

mode around the center of mass of the two fragments OH;
1,25

so the kinetic part of the Hamiltonian presents only the sec-

ond derivative of the angle F sFig. 3d that describes this
motion, scaled by a coefficient that depends of the masses of

hydrogen and oxygen atoms, and of the molecular geometry

at the equilibrium ssee Table I and Ref. 1d.
The torsional kinetic energy operator in orthogonal co-

ordinates was given in a previous work,
2
where we also point

out its advantages. It was obtained from the complete kinetic

energy operator written in the diatom-diatom vector scheme

fEq. s23d of Ref. 25g and fixing all degrees of freedom except
the dihedral angle F; then

T̂sFd = −
"2

mOHrOH
2 sin2 U

]2

]F2
, s7d

where mOH is the reduced mass of the OH system and rOH is

the distance that separates the two atoms. Q is the angle

obtained connecting the center of mass of the first OH frag-

(a) (b)

(c) (d)

FIG. 1. sColor onlined Illustration of the HOOF molecule in the sad cis w

=0° and 360°, sbd trans w=180°, and both chiral equilibrium configurations

scd w=84.9° and sdd w=275.1°. The figure also shows the torsional potential

and the levels for the HOOF molecule fdesignated as nt according the
nomenclature of the previous papers sRefs. 2 and 3dg.

FIG. 2. sColor onlined Illustration of the representations of the structure of
the ROOR8 molecules in terms of the usual valence-type coordinates, where

r1, R00, and r2 are the interatomic distances, u1 and u2 are the bond angles,
and w is the dihedral angle.
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ment to the other one and then pointing towards the second

hydrogen; this angle is close but not identical to the angle

HÔO, according to Fig. 3. Considering the moment of inertia

of the diatom OH

IOH = mOHrOH
2 , s8d

Eq. s7d can be written as

T̂ = −
"2

IOH sin
2 U

]2

]F2
= −

"2

2Iort

]2

]F2
s9d

since

Iort =
1

2 IOH sin
2 U . s10d

For H2O2, for the coefficient in Eq. s9d we obtain
"2 /2Iort=40.412 cm

−1, which is close to a0=40.150 cm
−1

sand a1 small, Table Id, the value used for the valence coor-
dinate reduced Hamiltonian. In Ref. 1 we also computed the

torsional potential energy profile VsFd in orthogonal coordi-
nates, which is conveniently expanded similarly to Vswd in
Eq. s1d, and the coefficients are listed in Table II ssee also
Ref. 2d.

C. Symmetry classes

In view of the symmetry of the torsional potential by

reflection with respect to w or F equal to both 0 and p,

corresponding to the two scis and transd planar configura-
tions, the problem block diagonalizes in four symmetry

classes sFloquet’s theoremd, denoted by the quantum label

t=1,2 ,3 ,4. Levels within each symmetry classes are de-
noted by the quantum number n=0,1 ,2 , . . .. Traditional basis

sets in terms of sine and cosine functions were used, giving

rise to secular equations, where the matrix elements are ana-

lytical integrals over trigonometric functions. So, for each

quantum number n, there are the four well known Mathieu

symmetries st=1,2 ,3 ,4d and the wave functions are corre-
spondingly expanded in orthonormal trigonometric basis sets

ssee, e.g., Ref. 26d.

III. TORSIONAL PARTITION FUNCTION

A. Quantum formulas

The level distribution as a function of temperature has

been calculated and already illustrated for some of the sys-

tems considered here in Ref. 2 and 3 using the formula

Nnt

N
=

e−bEnt

on8t8
e−bEn8t8

, s11d

where Ent is the energy of the torsional state n and symmetry

t. As usual, b=1 /KBT, where KB is Boltzmann’s constant

and T is the temperature.

The quantum mechanical torsional partition function

QqsTd can be evaluated at a given temperature from the en-
ergies of the levels

12,27

QqsTd =o
n

o
t=1,4

e−bEnt. s12d

According to previous work ssee, e.g., Ref. 14 and also Sec.
Vd, only levels having symmetries t=1 and 4 sRef. 26d are
included.

B. Classical formulas

Several approximations for the torsional partition func-

tion for H2O2 have been discussed and tested in Ref. 14. In

fact, when the temperature is sufficiently high, it is known

that the quantum partition function can be usefully approxi-

mated by the classical expression
14,28,29 sthe T dependence is

omitted from the notation for simplicityd

Qc =Î I

2pb"2
E
0

2p/s

e−bVswddw , s13d

where s is an index number depending on the symmetric

rotational group around the dihedral angle of the system, s

=1 in our cases. Equation s13d implies that the torsional
moment of inertia sSec. IId assumes a constant seffective or
averaged value.

Here we examine and assess some improvements that do

not spoil the basic requirement of simplicity of implementa-

tion.

In general, I is related to the value of aswd according to
Eq. s6d. To calculate the moment of inertia from Eq. s6d, as a
first approximation we consider only the a0 term, neglecting
a1; then

I =
"2

2a0
s14d

and expression s13d can be written as

Qa0

c =Î 1

4pba0
E
0

2p/s

e−bVswddw . s15d

However, accounting for the dependence of I and a on w

leads to an improved approximation inserting the explicit

functional dependence under the integral sign

FIG. 3. sColor onlined Illustration of the representations of the structure of
the H2O2 molecule in terms of the orthogonal local coordinates or diatom-

diatom vectors. r1 and r2 coincide with the OH bonds but R joins the centers

of mass of the two OH groups.
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Qa
c =Î 1

4pb
E
0

2p/s
e−bVswd

sa0 + a1 cos wd1/2
dw . s16d

This expression provides a more general equation for the

calculation of the classical partition function, which will be

shown below to lead to more accurate results.

C. Semiclassical formulas

We have also calculated the partition function semiclas-

sically using the formulation proposed in Refs. 17 and 18

sfor a systematic discussion of alternatives, see Ref. 14d. This
method uses features of the LCP approach and the QFH ap-

proximation to the Feynman path integral. This LCP/QFH

hybrid approach, which we denote by the superscript sc for

“semiclassical,” consists in using in Eqs. s13d, s15d, and s16d,
instead of Vswd, the following effective potential:

Vswd → Vswd +
"2b

48I
F d2

dw2
Vswd + bS d

dw
VswdD2G , s17d

where I is the moment of inertia. When I is calculated using

only a0, Eq. s15d, we have an approximation that we denote
Qa0

sc , while using Eq. s6d, which accounts for the dihedral

angle dependence, we have the approximation that we denote

as Qa
sc. In particular, for H2O2, when I is calculated using Eq.

s10d, we have the approximation that we denote as Qort
sc .

IV. RESULTS AND DISCUSSION

To provide the torsional potential curves we have calcu-

lated the coefficients of expansion s1d for maximum k equal

6 for all systems sHOOH, HOOCl, HOOCN, HOOF,
HOONO, HOOMe, HOOEt, MeOOMe, ClOOCl, FOOCl,

and FOONOd except FOOF where k up to 8 was needed in

order to minimize the root mean square srmsd deviation

rms =Î 1

N
o
i=1

N

fV0swid − Vswidg
2, s18d

where V0 is the potential energy calculated by quantum me-

chanical methods and V is the fitted potential at the dihedral

angle wi. Data from Refs. 2 and 3 were used. The total num-

ber N was determined by the available grid points, which are

spaced by 1°, in all cases, except for HOOH,
2,3
where the

spacing was 10°. The coefficients of expansion s1d are shown
in Table II.

In the following we discuss the effects of the substituents

on the potential energy profile along the torsional mode. The

structural parameters and cis and trans barriers for all sys-

tems that we have considered are shown in Table I.

A. Hydrogen peroxide

In a previous article on H2O2,
2
we have presented the

calculated torsional levels corresponding to both the geo-

metrical svalence-typed and orthogonal sdiatom-diatomd di-
hedral angles w sFig. 2d and F sFig. 3d, respectively. The
results from the two procedures are similar. In particular, to

study the statistical thermodynamics of torsional modes we

have calculated their temperature distributions and the tor-

sional partition functions. Obviously in the orthogonal

method, since there is a well defined expression for the mo-

ment of inertia, which is a constant as the torsional angle

varies, the calculation is reliable also for the delocalized lev-

els above the trans barriers. Table III shows the level distri-

butions as a function of the temperature for the H2O2 system,

evaluated by the orthogonal method sdiatom-diatom ap-

proachd.
In Table IV we list the torsional partition function at

different temperatures for the H2O2 system. Qort
q and Qort

c are

the quantum and classical partition functions using the

diatom-diatom approach. Qort
q and Qq are calculated using

Eq. s12d directly from the levels of the symmetries t=1 and
t=4 ssee Sec. III A for this choice and also the remarks in
Sec. Vd. Qort

c is calculated using Eqs. s10d and s13d. For Qa0

c

we use Eq. s15d and for Qa
c we use Eq. s16d. Finally Qa

sc and

Qa0

sc are calculated using the semiclassical or LCP/QFH ap-

proach described in Sec. III C. This approach turns out to be

extremely accurate even at surprisingly low temperatures

ssee Table V and additional materials available from the au-
thorsd.

B. Other systems

The features of the distribution of the torsional levels

depend on the potential energy profile strans and cis barriersd
and of the masses of the atoms smoment of inertiad.

Looking at the results for the other systems, one notes

that the lowest levels, one for each of the four symmetries,
26

are nearly degenerate, n=0, t=1,2 ,3 ,4, as shown in Figs. 1
and 4. This is particularly true when barriers sparticularly the
transd are high and wide, so that tunneling is negligible, as in
Fig. 1. Increasing n, this behavior persists under the lowest

stransd barrier, in proximity of which the degeneracy be-
tween the first two symmetries st=1 and 2d and the other two
st=3 and 4d is removed; in systems such as HOOCN the two
barriers are distant in energy and this effect is particularly

visible, see levels s1,1d, s1,2d, s1,3d, and s1,4d, in Fig. 4.
Going up with energy the levels encounter the higher scisd
barrier and here the effect on the symmetry is different. The

energy of the first symmetry increases more slowly than the

others, so that in the high energy limit it becomes degenerate

with the fourth symmetry of the previous layer; at the same

time, the levels with t=2 and 3 symmetries become degen-
erate. For energies close to the two barrier tops we notice an

accumulation of states, typical of the nonharmonicity of the

potentials.

Figure 1 exhibits the case of HOOF, where the cis and

trans barriers are approximately of the same height and the

behavior of the energy level sequence for the four symme-

tries is peculiar. Another limiting case is illustrated in Fig. 5,

where the trans barrier is absent, but also applies when the

trans barrier is so low that because of the masses involved no

levels are supported under it. The methyl and the ethyl

monosubstituted systems belong to this case.
3
For the levels

of these systems, degeneracy is appreciably removed even

for the lowest levels.

In Table VI we report the partition functions at various

temperatures for the HOOCl, HOOCN, HOOF, and HOONO
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systems. In Table VII there are the partition functions at vari-

ous temperatures for the ClOOCl, FOOCl, FOOF, and

FOONO molecules. In Table VIII we list the partition func-

tions at various temperatures for the HOOMe, MeOOMe,

and HOOEt systems. Qq are calculated using Eq. s12d di-
rectly as before using the levels of symmetries t=1 and t
=4 only. For Qa0

c we use Eq. s15d and for Qa
c we use Eq.

s16d, obtaining a substantial improvement.

C. Intramolecular chirality changing rates

As an important application of the results of previous

sections, Table IX shows the tunneling splittings and racem-

ization times for some of the investigated systems in the

spirit of Fehrensen et al.
21
The tunneling time is calculated

directly from the level splitting of the symmetries t=1 and
t=4 using the two level equation and the Heisenberg uncer-
tainty principle,

t0 .
h

2DE
. s19d

This can be interpreted as a racemization time at very low

temperatures where only the ground state is populated. In the

opposite limit of high temperatures the racemization time is

modeled as occurring by passage over the trans barrier using

TABLE III. Distribution of the levels for the H2O2 system, evaluated with the orthogonal method sdiatom-
diatom approachd.

Levels

n ,t

Temperature sKd

100 200 300 600 1000 2400

0,1 0.266 777 0.231 775 0.200 983 0.142 830 0.104 713 0.057 944

0,2 0.266 777 0.231 775 0.200 983 0.142 830 0.104 713 0.057 944

0,3 0.225 771 0.213 220 0.190 108 0.138 912 0.102 980 0.057 542

0,4 0.225 771 0.213 220 0.190 108 0.138 912 0.102 980 0.057 542

1,1 0.006 264 0.035 516 0.057 553 0.076 431 0.071 957 0.049 558

1,2 0.006 264 0.035 516 0.057 553 0.076 431 0.071 957 0.049 558

1,3 0.001 124 0.015 047 0.032 464 0.057 404 0.060 600 0.046 136

1,4 0.001 124 0.015 047 0.032 464 0.057 404 0.060 600 0.046 136

2,1 0.000 061 0.003 500 0.012 278 0.035 302 0.045 268 0.040 855

2,2 0.000 061 0.003 500 0.012 278 0.035 302 0.045 268 0.040 855

2,3 0.000 003 0.000 765 0.004 455 0.021 265 0.033 397 0.035 993

2,4 0.000 003 0.000 765 0.004 455 0.021 264 0.033 396 0.035 993

3,1 0.000 000 0.000 147 0.001 481 0.012 260 0.024 000 0.031 363

3,2 0.000 000 0.000 147 0.001 481 0.012 259 0.023 998 0.031 363

3,3 0.000 000 0.000 026 0.000 469 0.006 902 0.017 002 0.027 167

3,4 0.000 000 0.000 026 0.000 469 0.006 899 0.016 998 0.027 164

4,1 0.000 000 0.000 004 0.000 145 0.003 831 0.011 943 0.023 449

4,2 0.000 000 0.000 004 0.000 144 0.003 824 0.011 930 0.023 439

4,3 0.000 000 0.000 001 0.000 044 0.002 123 0.008 380 0.020 231

4,4 0.000 000 0.000 001 0.000 044 0.002 106 0.008 341 0.020 192

5,1 0.000 000 0.000 000 0.000 014 0.001 195 0.005 937 0.017 525

5,2 0.000 000 0.000 000 0.000 013 0.001 160 0.005 831 0.017 394

5,3 0.000 000 0.000 000 0.000 005 0.000 705 0.004 327 0.015 361

5,4 0.000 000 0.000 000 0.000 004 0.000 639 0.004 079 0.014 988

6,1 0.000 000 0.000 000 0.000 002 0.000 447 0.003 290 0.013 703

6,2 0.000 000 0.000 000 0.000 001 0.000 350 0.002 842 0.012 894

6,3 0.000 000 0.000 000 0.000 001 0.000 289 0.002 534 0.012 291

6,4 0.000 000 0.000 000 0.000 000 0.000 188 0.001 954 0.011 029

7,1 0.000 000 0.000 000 0.000 000 0.000 174 0.001 869 0.010 828

7,2 0.000 000 0.000 000 0.000 000 0.000 097 0.001 312 0.009 342

7,3 0.000 000 0.000 000 0.000 000 0.000 094 0.001 294 0.009 290

TABLE IV. Torsional partition functions at different temperature for the H2O2 system. Qort
q and Qort

c are the quantum and classical partition functions using the

diatom-diatom approach. Qort
q and Qq are calculated using Eq. s12d directly from the levels of the symmetries t=1 and t=4. Qort

c is calculated using Eqs. s10d
and s13d. Qa0

c uses Eq. s15d and Qa
c uses Eq. s16d. Qsc is calculated using the LCP/QFH approach.

T sKd Qort
q Qort

c Qort
sc Qq Qa0

c Qa
c Qa0

sc Qa
sc Qqa Qca

200 0.613 0.769 0.606 0.624 0.775 0.778 0.614 0.617 0.644 0.796

300 1.075 1.183 1.072 1.089 1.191 1.196 1.081 1.086 1.116 1.220

600 2.306 2.351 2.301 2.319 2.359 2.368 2.310 2.319 2.358 2.406

1000 3.713 3.738 3.712 3.735 3.748 3.760 3.723 3.735 3.786 3.811

2400 7.770 7.776 7.770 7.815 7.805 7.821 7.799 7.815 7.892 7.897

a
Reference 14.
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transition state theory with no tunneling correction
21

tT .
h

2kBT
QqsTdexpsEtrans/kBTd , s20d

where Etrans is the trans barrier height sgenerally lower than
the cis in the cases considered here, Table Id, kB the Boltz-

mann constant, and QqsTd the partition function for the tor-
sional mode, as given in Sec. III, Eq. s12d.

V. FURTHER REMARKS AND CONCLUSIONS

In this work we exploited recently obtained torsional po-

tential energy profiles for a series of ROOR8 molecules to

obtain torsional level distributions and partition functions as

a function of temperature in order to provide a phenomenol-

ogy of cases of qualitatively different profiles and barrier

heights. Of the schemes investigated, the orthogonal set of

coordinates is satisfactory for H2O2, but it is not obvious

how to implement it in the general cases. Explicit consider-

ation of the variation in the moment of inertia, suggested

within the classical approximation, has been shown to extend

the validity of the latter to lower temperatures. Further sub-

stantial improvement is obtained by the semiclassical

approach of Sec. III C, denoted as LCP/QFH in Refs. 17 and

18.

An extensive investigation similar to this one but for the

–S–S– bond, in the H2S2 and in a series of its derivatives,

illustrates the trends of properties of interest here: Torsional

barriers are in general higher than those encountered for the

–O–O– bonds, with the specific consequence, for example,

of lowering intramolecular racemization rates.

Additional remarks point out perspectives for future

work. In the calculation of partition functions, we followed

previous work ssee, for example, Ref. 14d, introducing only
levels with symmetry quantum numbers t=1 and 4, consis-
tently with the assumption that the total rotational angular

TABLE V. Partition functions for H2O2 system at low temperatures evalu-

ated using valence coordinates.

T sKd Qq Qa0

c Qa
c Qa0

sc Qa
sc

40 0.003 0.145 0.145 0.001 0.001

50 0.012 0.181 0.182 0.005 0.005

60 0.028 0.218 0.219 0.017 0.017

70 0.051 0.255 0.256 0.036 0.037

80 0.081 0.293 0.294 0.064 0.065

90 0.117 0.331 0.332 0.098 0.099

100 0.156 0.369 0.371 0.137 0.139

110 0.198 0.408 0.410 0.180 0.182

120 0.243 0.448 0.449 0.226 0.227

130 0.289 0.488 0.489 0.273 0.275

140 0.335 0.528 0.530 0.321 0.323

150 0.383 0.569 0.571 0.369 0.372

160 0.431 0.610 0.612 0.418 0.421

170 0.479 0.651 0.653 0.467 0.470

180 0.527 0.692 0.695 0.516 0.519

190 0.575 0.734 0.736 0.565 0.568

TABLE VI. Torsional partition functions at different temperatures for the

HOOCl, HOOCN, HOOF, and HOONO. Qq are calculated using Eq. s12d
directly from the levels of the symmetries t=1 and t=4. Qa0

c uses Eq. s15d
and Qa

c uses Eq. s16d. Qsc is calculated using the LCP/QFH approach.

T sKd 200 300 600 1000 2400

HOOCl Qa0

c 0.665 1.013 2.140 3.797 9.406

Qa
c 0.665 1.013 2.141 3.801 9.418

Qa0

sc 0.473 0.873 2.075 3.765 9.399

Qa
sc 0.473 0.873 2.076 3.769 9.411

Qq 0.480 0.877 2.077 3.769 9.411

HOOCN Qa0

c 1.463 2.180 4.097 6.329 12.362

Qa
c 1.476 2.199 4.128 6.366 12.401

Qa0

sc 1.374 2.124 4.075 6.319 12.360

Qa
sc 1.387 2.143 4.106 6.356 12.399

Qq 1.388 2.143 4.105 6.356 12.399

HOOF Qa0

c 0.506 0.757 1.536 2.646 6.967

Qa
c 0.505 0.756 1.533 2.642 6.960

Qa0

sc 0.277 0.575 1.437 2.591 6.952

Qa
sc 0.276 0.573 1.435 2.587 6.945

Qq 0.282 0.577 1.436 2.588 6.946

HOONO Qa0

c 0.977 1.531 3.358 5.712 12.032

Qa
c 0.980 1.536 3.367 5.724 12.046

Qa0

sc 0.836 1.443 3.328 5.700 12.030

Qa
sc 0.840 1.448 3.337 5.712 12.045

Qq 0.848 1.452 3.338 5.712 12.045FIG. 4. Torsional energy profile as a function of the dihedral angle w and

energy levels n, t for HOOCN.

FIG. 5. Same as Fig. 4 for MeOOMe slabels n, t omittedd.
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momentum contribution is separated out from the torsional

mode. Interestingly, very recent attention has been devoted to

the case of two coupled rigid rotors of different moments of

inertia.
6,30
The system considered in Ref. 6 is HOSH, and the

problem is that of the torsion around the –O–S– bond.

For the cases where the two moments of inertia are

equal, conservation of both energy and angular momentum

for a system viewed as involving either torsion plus external

rotation or interaction of two rotors requires correlation of

levels with symmetries t=1 and 4 with zero or even values

of the external rotation angular momentum quantum number

K in units of " ssee Table I of Ref. 26d. Conversely, levels
with the two other symmetries, t=2 and 3, correlate with
odd values. See also Ref. 10, where, however, reference to

t-labeled states is not explicitly made. As seen, for example,
in Ref. 26 the four t labels correlate with symmetries or
antisymmetry wavefunctions with respect to either trans or

cis barriers. In HOSH, the fact that the two rotors have dif-

ferent moments of inertia, see, e.g., Eq. s8d, causes further
level splitting for t=2 and 3 only. For the systems under

TABLE VII. Torsional partition functions at different temperatures for the ClOOCl, FOOCl, FOOF, and

FOONO. Qq are calculated using Eq. s12d directly from the levels of the symmetries t=1 and t=4. Qa0

c uses Eq.

s15d and Qa
c uses Eq. s16d. Qsc is calculated using the LCP/QFH approach.

T sKd 200 300 600 1000 2400

ClOOCl Qa0

c 1.461 2.162 4.423 7.930 22.149

Qa
c 1.434 2.126 4.392 8.025 23.129

Qa0

sc 1.340 2.083 4.387 7.912 22.145

Qa
sc 1.311 2.045 4.356 8.007 23.124

Qq 1.312 2.046 4.356 8.007 23.124

FOOCl Qa0

c 1.313 1.776 3.236 5.295 13.790

Qa
c 1.295 1.752 3.198 5.249 13.919

Qa0

sc 1.102 1.642 3.176 5.262 13.780

Qa
sc 1.081 1.617 3.137 5.216 13.909

Qq 1.083 1.618 3.138 5.217 13.909

FOOF Qa0

c 1.114 1.490 2.658 4.241 10.040

Qa
c 1.109 1.484 2.648 4.228 10.051

Qa0

sc 0.865 1.327 2.581 4.197 10.024

Qa
sc 0.860 1.321 2.571 4.183 10.035

Qq 0.859 1.320 2.572 4.184 10.035

FOONO Qa0

c 1.678 2.301 4.253 6.999 17.839

Qa
c 1.685 2.311 4.274 7.040 18.036

Qa0

sc 1.518 2.201 4.209 6.975 17.832

Qa
sc 1.525 2.212 4.230 7.016 18.029

Qq 1.526 2.212 4.230 7.017 18.029

TABLE VIII. Torsional partition functions at different temperatures for the HOOMe, MeOOMe, and HOOEt.

Qq are calculated using Eq. s12d directly from the levels of the symmetries t=1 and t=4. Qa0

c uses Eq. s15d and
Qa

c uses Eq. s16d. Qsc is calculated using the LCP/QFH approach.

T sKd 200 300 600 1000 2400

HOOMe Qa0

c 1.548 2.238 3.994 6.002 11.676

Qa
c 1.563 2.259 4.028 6.045 11.724

Qa0

sc 1.463 2.181 3.967 5.989 11.673

Qa
sc 1.478 2.203 4.001 6.031 11.721

Qq 1.476 2.201 4.000 6.030 11.721

HOOEt Qa0

c 1.362 2.024 3.764 5.770 11.465

Qa
c 1.375 2.043 3.796 5.812 11.516

Qa0

sc 1.261 1.959 3.735 5.755 11.462

Qa
sc 1.274 1.978 3.767 5.797 11.512

Qq 1.274 1.977 3.766 5.797 11.512

MeOOMe Qa0

c 3.512 5.019 8.855 13.225 26.244

Qa
c 3.893 5.529 9.645 14.261 27.678

Qa0

sc 3.492 5.003 8.845 13.219 26.242

Qa
sc 3.874 5.514 9.636 14.255 27.676

Qq 3.869 5.510 9.633 14.253 27.675

154316-8 Bitencourt et al. J. Chem. Phys. 129, 154316 ~2008!

Downloaded 31 May 2012 to 200.128.60.31. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



focus in this paper, this issue would arise for cases such as

HOOR or ROOR8, but for them the removal of the energy

degeneracy among levels under barriers is small, and more-

over the influence on the partition functions calculated not

including levels with t=2 and 3 becomes fully negligible.
However, this may not be always the case and the full picture

of separation of torsional modes in intramolecular dynamics

still requires further investigation.

Besides the intramolecular chirality changing processes

considered in this paper, alternative collisional mechanisms

involve explicit consideration of intermolecular effects.
31

Modeling of these latter phenomena so far rarely investi-

gated in the literature requires classical, semiclassical, or

quantum scattering calculations. See Ref. 32 for a study of

the H2O2–rare gas systems, a prototype of atom-flexible mol-

ecule interactions.
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