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In this paper we review and discuss some fundamental aspects of the random version of the Olami-Feder-
Christensen model, and its relevance for the understanding of self-organized criticality (SOC). We review the
universal character of the exponentτ = 3/2, related to avalanche size distributions in random SOC models, and
its connection to branching processes theory. We also generalize previous results, that had been obtained for
the random OFC model with four neighbors, to any coordination number. Finally we present some connections
between our generalization and recent discussions involving the branching rate approach to this model.

I Introduction

The concept of self-organized criticality was introduced by
Bak, Tang and Wiesenfeld [1] in 1987, as a possible expla-
nation of scale invariance in nature. To illustrate their ba-
sic ideas, they present a cellular automaton model that be-
came known as the sandpile model, because of an analogy
between its dynamical rules and the way sand topples and
generates avalanches, in a real sand pile. Since this semi-
nal work, a great number of cellular automata and coupled
map models have been investigated, in an attempt to eluci-
date the essential mechanisms hidden in such a wide class
of different non-linear phenomena whose statistics of events
(or ‘avalanches’) are governed by power-laws. However, de-
spite many efforts, up to now, one still lacks from a general
theoretical framework for self-organized criticality. Most of
the available results are purely numerical. Success in ana-
lytical investigations have been achieved mainly in the study
of a special class of models that became known as abelian
models [2], in mean-field type calculations [3-9] or through
a renormalization group approach [10].

In this paper we discuss the random neighbor version of
the Olami-Feder-Christensen (R-OFC) model. The original
OFC model introduced in 1992 [11] is a two-dimensional
coupled map model, defined on a square lattice, whose dy-
namical rules were inspired in a spring-block model [12]
proposed to describe the dynamics of earthquakes, which is
related to some empirical power-laws (like the Gutenberg-
Ritcher law). With each node of a square lattice we asso-
ciate a real state variable (or ’energy’)zi,j . The model is
globally driven, and each time the energy of a given site

(i, j) exceeds a threshold value, the system relaxes accord-
ing to specific rules that will be presented in detail in section
III. Within the OFC model there is a dissipation parameter
α. If α = 0.25 the dynamical variablezi,j of the model
is conserved during the avalanche process, in the bulk of
the lattice (there is always dissipation in the boundaries),
but if α < 0.25 there is some dissipation also in the bulk
of the system. Because of those facts, this model has been
widely studied in literature. It is, at the same time, a proto-
type of self-organization in systems with non-conservative
relaxation rules, and also a paradigm of the success of SOC
ideas, since it is able to reproduce important aspects of the
statistics of real earthquakes. The OFC model still attracts
the attention of many researchers [13-15], because the ex-
istence of SOC in the non-conservative models is not well
understood.

The random neighbor version of the OFC model (R-
OFC) has the same dynamical rules of the original OFC,
except by the fact that it is not defined on a lattice. Now, the
relaxation of any critical site affects four other sites cho-
sen at random, instead of affecting the nearest neighbors
defined by the lattice. It has been proved that the R-OFC
model is critical only in the conservative regime [5-7]. In
references [5] and [6] it was shown that, in the infinite-size
limit, the mean value of the avalanche size,< s >, is fi-
nite for all values ofα < 1/q, whereq is the connectivity
of each site of the system. They also showed that< s >

goes fast to infinity asα approaches1/q (the conservative
limit). In reference [5], Br̈oker and Grassberger proposed
and solved numerically an equation based on the mean value
of the avalanche size and the mean energy of unstable sites
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for infinite systems. This equation has an exact solution for
α = 1/q. Their simulation results are in very good agree-
ment with theoretical predictions. In reference [6] Chabanol
and Hakim also obtained the exact solution for the equa-
tion that governs the evolution of probability distribution
of energy sites, again for an infinite system. They derived
a master equation, assuming that, in this limit, during an
avalanche, the probability of a site relax twice is zero. Be-
cause the redistribution of energy of relaxing sites, in ran-
dom models, are independent events, they may be identified
with a branching process, and as a consequence, conserva-
tion is a essential ingredient to achieve criticality.

In 1996, in a controversial paper about the R-OFC model
[4], Lise and Jensen developed a formalism that enabled
them to perform some analytical calculations. The use of
an oversimplified approximation for the energy distribution
across the system (they considered a uniform distribution),
in the stationary state, lead them to incorrectly predict a
crossover between critical/noncritical behavior in the non-
conservative regime (they concluded that, forα ≥ 2/9, the
R-OFC model would be critical). However, although the re-
sult obtained by them is incorrect, the approach proposed in
this paper, based on the analysis of the branching rateσ is
correct, clever and interesting. It has been employed with
success in other works (see, for instance, [7-9,15]). Based
on that approach, we were able to show that the use of a
slightly better approximation for the distribution of energy
in the stationary state could lead to much more reasonable
results [7].

In this paper, we intend to generalize our previous anal-
ysis to deal with models with a generic coordination number
(or connectivity)q, and address some other aspects related
to the Lise-Jensen approach. Despite the fact that it had al-
ready been proved that the R-OFC model is not critical if
dissipative, we think that is important to understand exactly
why the ideas presented in [4] failed. We show that a bet-
ter approximation for the distribution of energy is enough
to lead to correct predictions. The approximation we pro-
pose for the distribution of energy in the stationary state,
although still simplified if compared to the real one, also al-
low most of the analytical calculations proposed in [4] and
can probably be useful in other situations. The paper is orga-
nized as follows: in section II, we review, with some detail,
a simple model that elucidates the connection between ran-
dom models with self-organized criticality and the theory
of branching process (and, of course, its fundamental sta-
tistical results). We show that, for this model withq = 2,
the probability of having an avalanche of sizes scales with
τ = 3/2, as obtained for other random conservative mod-
els with SOC. In section III, we present the dynamical rules
of the OFC and R-OFC models, as well as the Lise-Jensen
analytical approach. In section IV, we generalize our previ-
ous analysis to systems with any coordination number. We
also discuss our results in the context of other aspects of
Lise-Jensen approach, raised in a recent paper of Miller and

Boulter [15]. Finally, we present our conclusions in sec-
tion V.

II Self-organized criticality as a
branching process

The importance of the so called ’random neighbor’ versions
of models showing self-organized critical behavior was rec-
ognized since the introduction of this concept [16]. Because
in those random models there are no spatial correlations
(there is no lattice, and ‘neighbors’ are chosen at random),
they are usually considered a kind of mean-field approxi-
mation of the corresponding lattice model. In 1995, Zap-
peri, Lauritsen and Stanley [17] introduced a simple model,
called by them self-organized branching process (SOBP),
that made clear the relation between random conservative
SOC models (in the case, sandpile models) and a branching
process.

A branching process [18] can be characterized by a se-
quence of random variables{Zn}∞n=0, n ∈ N, in whichZn

represents the total number of individuals in thenth gen-
eration. The number of individuals in generationn − 1 is
related to the number of individuals in the next generationn

through a probabilitypi, that is the probability that a given
individual, belonging to a given generation, gives birth to
i descendants, (i = 1, . . . , q). This probability depends on
neither what has happened in the previous generations (it is a
markovian process), nor on the number of descendents that
other individuals, in the same generation, eventually give
birth to. Branching processes may be pictorially represented
in a tree, in whichZn represents the number of nodes of the
tree in each generation. The so called branching rateσ, de-
fined asσ =

∑∞
i=0 i pi corresponds to the average number

of descendants a single individual gives birth to. In this con-
text, a sequence of births can be thought as an ‘avalanche’,
and critical branching processes, for whichσ = 1, are de-
scribed by power laws.

Consider now the random version of the sandpile model.
In the limit of an infinite system, the probability that a site
topples twice in the same avalanche is zero, so it is rea-
sonable to assume that different sites topple independently.
However, because SOC models are constantly driven, the
existence of open boundaries plays a fundamental role in
the self-organizing process. The SOBP model was the first
to take that point into account. In this model, the number
of toppling sites is equivalent to the number of nodes in a
branching process. A node in the tree corresponds to an
active site that may generateq new active sites in the next
generation. Thus the sizes of an avalanche, usually iden-
tified with the number of sites that toppled, is equal to the
total number of sites that became active throughout the gen-
erations. Boundaries were introduced in the SOBP model
by allowing no more thann generations for each avalanche.

In this section, we calculate, with some detail, for the
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SOBP model withq = 2, the probabilityPn(s, p) of hav-
ing an avalanche of sizes, for any value ofp, in a system
with n generations. The generating function ofZn, in the
n-generation [18], is defined by

fn(x, p) =
∞∑

s=0

Pn(s, p)xs, (1)

in which x is the expansion variable of a power series
(|x| ≤ 1). For the SOBP model, in then = 0 generation,
there is only one active site (s = 1); in generationn = 1,
there is a probabilityp of having 2 active sites (s = 3) and
a probability1 − p of having no active site (s = 1). Hence,
we have, forn = 0 en = 1, respectively,

c
{

f0(x, p) = x;
f1(x, p) = f(x, p) = (1− p)x + px3 = x(1− p + px2). (2)

Sincefn+1(x, p) = f [fn(x, p)], for n ≥ 1, we can write a recursion relation betweenfn+1(x, p) andfn(x, p):

fn+1(x, p) = x[1− p + pf2
n(x, p)]. (3)

In the limit of n À 1 , fn+1(x, p) ' fn(x, p). Solving (3) forf(x, p) gives

f(x, p) =
1−

√
1− 4x2p(1− p)

2xp
. (4)

Expanding (4) in power series ofx aroundx = 0 and comparing this result with (1) leads to the following coefficients of the
first terms of the series





Pn(1, p) = 1− p;
Pn(3, p) = p(1− p)2;
Pn(5, p) = 2p2(1− p)3.

...

(5)

For a generics we have

Pn(s, p) = [4p(1− p)]
s+1
2

As

2p(s + 1)!
, (6)

whereAs = ds+1h/dys+1 |y=0, with h(y) =
√

1− y2. It is easy to see that, for even values ofs, As = 0. For odd values of
s we have

As = s(s− 2)As−2 = s

s−1∏

k=2

(s− k)2 =
(s!)2

2s−1s
[
( s−1

2 )!
]2 . (7)

The expression[4p(1− p)]s/2, presented in (6), can be re-written as

[4p(1− p)]s/2 = exp{ln[4p(1− p)]s/2} = exp
{

s ln[4p(1− p)]
2

}
= exp(−s/sc), (8)

in whichsc = −2/ ln[4p(1− p)]. Substituting (8) into (6) gives, for the probabilityPn(s, p),

Pn(s, p) =

√
4(1− p)

p

exp(−s/sc)As

2(s + 1)!
, (9)

whereAs is zero ifs is even, and defined by (7) ifs is odd.
Using the Stirling relation gives





s! ' √
2πs(s+1/2) exp(−s);

(s + 1)! ' √
2π(s + 1)(s+3/2) exp[−(s + 1)] ' √

2πs(s+3/2) exp[−(s + 1)];(
s−1
2

)
! ' √

2π
(

s−1
2

)s/2 exp[−(s− 1/2)] ' √
2π

(
s
2

)s/2 exp[−(s− 1/2)],
(10)



S.T.R. Pinho and C.P.C. Prado 479

and it is possible to write (7) as

As

2(s + 1)!
' 1√

2π
s−3/2. (11)

Finally, ass À 1, expression (9) becomes

Pn(s, p) =

√
2(1− p)

πp

exp(−s/sc)
s3/2

. (12)

This branching process is not critical in general. How-
ever, forp = pc = 1/2, sc →∞, andexp(−s/sc) → 1 and
the process is critical. In this case, expression (12) can be
written as

Pn(s, p = pc) =

√
2
π

s−3/2. (13)

This result is exactly the probability distribution of
avalanche sizes in the mean-field approximation [19, 20].
The same exponentτ = 3/2 was also obtained for other
random versions of conservative models, like, for instance,
the Bak-Tang-Wiesenfeld sandpile model [21] and it reflects
the absence of spatial correlations. Forq 6= 2, the proce-
dure presented above can be generalized and the associated
branching process will be critical forp = pc = 1/q.

Also, it is quite clear from the results presented above,
that we shall not expect to find criticality in non conserv-
ing models. Only in the conservative case, random self-
organized critical systems are related to a branching process.

III The Random Olami-Feder-
Christensen model

The original OFC model [11] is a lattice model that asso-
ciates to each site of the lattice a continuous state variable
Ei,j , initially in the interval[0, Ec), whereEc is a thresh-
old value. The system is slowly driven, and, every time the
energy of a site(i, j) exceedsEc, the system relaxes. All
or part of the energy of site(i, j) is then distributed among
its nearest neighbors. As a consequence, the energyE of
some of the neighbors may also exceedEc, and the process
goes on, generating an “avalanche”, untilE ≤ Ec again for
all sites in the lattice. We assume open boundaries. The
size of an avalanche is equal to the number of relaxation
events. In the random version of the OFC model, every time
a site becomes unstable and relaxes, “neighbors” are chosen
at random.

More specifically, for the R-OFC model, the rules are:

• driving dynamics: the energy of all the sitesi, i =
1, . . . , N is increased byδE, that is,

Ek → Ek + δE, k = 1, . . . N (14)

• Avalanche dynamics: If any sitei is unstable, i. e., if
its energyEi ≥ Ec, whereEc is the threshold value,
an avalanche is triggered and the system relaxes ac-
cording to the rules:

{
Ei → 0
Ern → Ern + αEi

, (15)

whereErn is the energy ofq sites chosen at random.
The dissipation parameterα is defined in the range
[0, 1/q]. If α = 1/q the model is conservative.

The R-OFC model, forq = 4, was studied in the con-
text of branching processes by Lise and Jensen [4]. They
were able to calculate, after making some hypotheses and
approximations, the branching rateσ of the R-OFC model,
and concluded, on the contrary of what was expected by the
arguments presented in the previous section, that the model
was critical in the nonconservative regime, forα ≥ 2/9.
Their result is not correct [5,6]. We showed, however,
that the problem was not in the approach used by Lise and
Jensen, but in the very poor approximation they employed
for the energy distribution in the stationary state [7]. We
recover the intuitive approach of Lise-Jensen’s paper, and
used, instead, a slightly better approximation for the energy
distribution. Before generalizing those results for a version
of the R-OFC model with a generic coordination number, we
will review the basic concepts proposed by Lise and Jensen
adapting them for a general connectivityq.

Consider the R-OFC model during an avalanche. We
will denote the energy of a generic stable sitek (that is, a
site for whichEk < Ec) by E−

k and the energy of an un-
stable site (Ek ≥ Ec) by E+

k . Note that, for a site that
is not toppling,E−

k ∈ [0, Ec]. A generic stable sitej be-
comes unstable during an avalanche after receiving a frac-
tion αEi of the energy of another sitei that was unstable
and relaxed in the previous generation. Hence, the proba-
bility that a generic site, with energyE−

k , becomes unstable
due to the relaxation of another site with energyE+ can
be defined as the fraction of sites with energyE such that
E ∈ [Ec − αE+, Ec]:

P+(E+) ≡

Ec∫
Ec−αE+

p(E) dE

∞∫
0

p(E) dE

, (16)

The branching ratioσ is defined as the average number
of new unstable sites generated by a single site that has just
relaxed. Since the probability that an active site (a node),
generatesq new active sites (branches) is〈P+〉, where we
average over all possible values ofE+ (E+ > Ec), the
branching ratio can be written as

σ ≡ q 〈P+〉 = q

∞∫
Ec

P+(E+) p(E+) dE+

∞∫
Ec

p(E+) dE+

. (17)

The branching process is subcritical whenσ < 1 (the
avalanches are always finite), supercritical whenσ ≥ 1
(the probability of having infinite avalanche is not zero and
< s >→ ∞), and critical if σ = 1. Sinceσ = q 〈P+〉,
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the branching process is critical whenp = 〈P+〉 = 1/q, in
agreement with what was obtained in the previous section
for the SOBP model.
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Figure 1. a) Probability distribution of energy per sitep(E) versus
energyE of R-OFC model, forq = 4 and for different values of
α: α = 0.21, 0.22 e 0.23; the width of the peaks decreases as
α increases. b) An approximation forp(E): p4(E) formed by 4
peaks (q = 4) in which ∆p is the half-width of the peaks,∆b is
the width of the gaps between the peaks, anda is the amplitude of
peaks. We assumeEc ≥ E∗ = 7∆p + 3∆b.

In order to employ equation (17) to calculate the branch-
ing ratio, it is necessary to estimate the probability distribu-
tion of energy per sitep(E), which depends onα. Fig. 1a,
obtained numerically, exhibitsp(E) for the R-OFC model
with q = 4, for three different values ofα. Lise and Jensen,
in their paper, approximatedp(E) by a uniform distribution
pu(E):

pu(E) =
{

a, for E ∈ [0, Ec]
0, for E ∈ (Ec,∞). (18)

Hence,

Pu
+(E+) =

Ec∫
Ec−αE+

pu(E) dE

Ec∫
0

pu(E) dE

=
αE+

Ec
(19)

and

σu =
qα

Ec

∞∫
Ec

p(E+)E+ dE+

∞∫
Ec

p(E+) dE+

=
qα〈E+〉

Ec
, (20)

where〈E+〉 is the average energy of active sites defined by

〈E+〉 ≡

∞∫
Ec

p(E+)E+ dE+

∞∫
Ec

p(E+) dE+

. (21)

Consider now a relaxing unstable sitei, that gives the
fraction αE+

i , of its energy to a stable sitej, with Ej ∈
[Ec − αE+

i , Ec], such that, afterwards,E+
j = E−

j + αE+
i .

Assuming that〈E+
j 〉 = 〈E+

i 〉 = 〈E+〉 (what is reasonable
in the stationary state and was another assumption made by
Lise and Jensen) gives

〈E+〉 =
〈E−〉
1− α

, (22)

where〈E−〉 is the average value of the energy of all stable
sites that may become unstable, and can be written as

c

〈E−〉 ≡

Ec∫
Ec−αE+

E−p(E−) dE−

Ec∫
Ec−αE+

p(E−) dE−
≈

Ec∫
Ec−α〈E+〉

E−p(E−) dE−

Ec∫
Ec−α〈E+〉

p(E−) dE−
. (23)

The assumption thatp(E) is uniform leads to

〈E−〉u =
E2

c − (Ec − α〈E+〉)2
2α〈E+〉 = Ec − α〈E+〉

2
, (24)

d
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and to

〈E+〉u =
2Ec

2− α
. (25)

Finally, substituting (25) into (20), we get, for the branching
rate

σu =
2qα

2− α
. (26)

The process is critical ifσ = 1, what happens if

α = αc =
2

2q + 1
. (27)

For q = 4, Lise-Jensen’s result is recovered, that is
αc = 2/9.

IV A better approximation for the en-
ergy distribution p(E)

Suppose that we now assume a slightly more realistic ap-
proximation forp(E),

pq(E) =
{

a, for E ∈ Ii, i = 1, . . . , q
0, for other cases

(28)

whereI1 = [0, ∆p] andIi = [(2i−3)∆p +(i−1)∆b, (2i−
1)∆p + (i− 1)∆b], i = 2, . . . , q. p(E) now is a distribution
characterized byq ‘square peaks’ of width2 ∆p (see figure
1b forq = 4). ∆b is the width of the gaps between the peaks.
Note thatE∗ = (q − 1)∆b + (2q − 1)∆p is the maximum
value ofE for whichpq(E) 6= 0, in other wordsEc ≥ E∗.

If ∆b → 0 and∆p → Ec/(2q−1), the uniform approx-
imation is recovered, sincepq(E) = pu(E). On the other
hand, if∆p → 0 and∆b → αEc, pq(E) tends toq delta
functions, that is what we would obtain in the conservative
case (see reference [5]).

We repeat the same steps exhibited in previous subsec-
tion, using now the distribution (28):

c

P+(E+) =

Ec∫
Ec−αE+

pq(E) dE

∞∫
0

pq(E) dE

=

Ec∫
Ec−αE+

pq(E) dE

(2q − 1)a∆p
, (29)

where the inferior limitEc − αE+ belongs to any of the intervalsIi, i = 1, . . . , q, the denominator is

∞∫

0

pq(E) dE =

∆p∫

0

a dE +
q∑

i=2




(2i−1)∆p+(i−1)∆b∫

(2i−3)∆p+(i−1)∆b

a dE


 =

= a∆p + (q − 1)(2a)∆p = (2q − 1)a∆p, (30)

and the numerator is

Ec∫

Ec−αE+

pq(E) dE =

(2i−1)∆p+(i−1)∆b∫

Ec−αE+

a dE + (q − i)2a∆p =

= a[(2q − 1)∆p + (i− 1)∆b − (Ec − αE+)i]. (31)

The superscripti indicates in which of the intervalsIi, i = 1, . . . , q, the expression(Ec − αE+) is located. Putting (30) and
(31) into (29), leads to

P i
+

(
E+

)
= 1 +

(i− 1)∆b

(2q − 1)∆p
− Ec

(2q − 1)∆p
+

αE+

(2q − 1)∆p
, (32)

and, for the branching ratio (17)

σi = q 〈P+〉i = q

[
1 +

(i− 1)∆b

(2q − 1)∆p
− Ec

(2q − 1)∆p
+

α 〈E+〉i
(2q − 1)∆p

]
, (33)

where〈P+〉i means the average over all possible values ofE+ such thatEc − αE+ ∈ Ii.
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Analogously to (22), we also have

〈E+〉i =
〈E−〉i
1− α

, (34)

where〈E+〉i and〈E−〉i are, respectively, the average values of energy of unstable and stable sites. From (28) and (23) we get

〈E−〉i =
(2q − 1)2∆2

p + (i− 1)2∆2
b + xi∆p∆b − [Ec − α〈E+〉i]2

2[(2q − 1)∆p + (i− 1)∆b − Ec + α〈E+〉i] , (35)

in which

xi = 2[(2i− 1)(i− 1) +
q−1∑

j=i

2j] =

= 2[(2i− 1)(i− 1) + (q − 1)q − i(i− 1)] =
= 2[(i− 1)2 + (q − 1)q], (36)

with i = 1, . . . , q. Substituting (35) into equation (34), we obtain a second-order equation whose solution is

〈
E+

〉i =
Ec

α (2− α)
− [(2q − 1)∆p + (i− 1) ∆b] (1− α)

α (2− α)
±

√
yi

2α (2− α)
, (37)

with

yi = 4{Ec(1− α)− [(2q − 1)∆p + (i− 1)∆b]}2 + 8α(2− α)[(i− 1)(i− 2q) + q(q − 1)]∆p∆b. (38)

Substituting (37) into (33) and imposing thatσ = 1 (critical condition), we get

−2qEc(1− αc) + 2(2q − 1)(q − 2 + αc)∆p + 2q(i− 1)∆b ± q
√

yi = 0, (39)

whereyi is given by the expression (38). It is possible to show, from (39), that

Aiα
2
c + Biαc + Ci = 0, (40)

where the constantsAi, Bi andCi are given by




Ai = 2q(2q − 1)Ec + (2q − 1)2∆p + 2q2[(i− 1)(i− 2q) + q(q − 1)]∆b

Bi = −6q(2q − 1)Ec + 2(q − 2)(2q − 1)2∆p+
+2q{(i− 1)[(2q − 1)− 2q(i− 2q)]− 2q2(q − 1)}∆b

Ci = 4(2q − 1)[qEc + (1− q)(2q − 1)∆p − q(i− 1)∆b]

. (41)

The polynomial (40) can be written as

Aiα
2
c + Biαc + Ci = (αc − 2)[Aiαc + (2Ai + Bi)] + Ri, (42)

whereRi = 4Ai + 2Bi + Ci = 0. The two solutions of (42) areαc = 2 andαc = −(2Ai + Bi)/ Ai. Since, in our case,
α ∈ [0, 1/q], only the second solution is valid.

The uniform distribution of energy,pu(E), is recovered if∆p → Ec/(2q − 1) and∆b → 0. In this case the coefficients
expressed by (41) become





Ai = A = (2q + 1)(2q − 1)Ec

Bi = B = −4(q + 1)(2q − 1)Ec

Ci = C = 4(2q − 1)Ec

. (43)

andαc = 2/(2q + 1), which is equal to (27); as expected, in the particular case ofq = 4, αc = 2/9.
Let now consider the other limit. If∆p → 0 and∆b → αcEc the energy distribution becomes a sequence of delta

functions, and that is exactly what is expected for the conservative R-OFC model. In this case the coefficients (41) become




Ai = qEc{2(2q − 1) + 2qαc[(i− 1)(i− 2q) + q(q − 1)]}
Bi = 2qEc{−3(2q − 1) + [(i− 1)(2q − 1)− 2q(i− 1)(i− 2q)− 2q2(q − 1)]αc}
Ci = 4q(2q − 1)Ec[1− (i− 1)αc]

. (44)
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and equation (40) becomes

a3α
3
c + a2α

2
c + a1αc + a0 = 0, (45)

with





a3 = 2q[(i− 1)(i− 2q) + q(q − 1))]
a2 = 2[(2q − 1)i− 2q(i− 1)(i− 2q)− 2q2(q − 1)]
a1 = −2(2q − 1)(1 + 2i)
a0 = 4(2q − 1)

.

(46)

Dividing (45) by(αc − 2) yields

b2α
2
c + b1αc + b0 = 0, (47)

where





b2 = 2q[(i− 1)(i− 2q) + q(q − 1)]
b1 = 2i(2q − 1)
b0 = −2(2q − 1)

. (48)

If i = q, we haveb2 = 0, andαc = 1/q. If i < q,
it is not hard to prove (see appendix) that the solutions of
equation (47) are such thatαc > 1/q or αc < 0, what is im-
possible. We conclude then that, in the conservative limit,
we must havei = q andαc = 1/q (for q = 4, αc = 1/4) as
expected.

In the generic case∆p ≥ 0, ∆b ≥ 0 with the restriction
thatE∗ ≥ Ec, that is,

E∗

Ec
= (2q − 1)γp + (q − 1)γb ≤ 1, (49)

whereγp = ∆p/Ec andγb = ∆b/Ec. The question we now
ask is: Are there any values ofα < 1/q for which σ may
be equal to1? In other words, if we approximatep(E) by
the distribution of energy given in (28), can the model still
display a critical behavior in the nonconservative case?

In this case, the second solution of (45) may be written
as

αc =
P

Q
, (50)

where

P = 1− (2q − 1)(q − 1)
q

γp − (i− 1)γb (51)

and

Q = 1 +
(2q − 1)

2q
γp +

q[(i− 1)(i− 2q) + q(q − 1)]
2q − 1

γb,

(52)
for all q > 0, γp ≥ 0, γb ≥ 0.

Let us consider the regions of the parameter spaceγp ×
γb, ∀ Ii, for which0 < αc ≤ 1/q, under the restriction (49).
In order to haveαc > 0, (51) must be positive, sinceQ > 0,
∀ i. This is guaranteed by inequality (49),∀ γp ≥ 0 and
γb ≥ 0, because

c

1 ≥ (2q − 1)γp + (q − 1)γb >
(2q − 1)(q − 1)

q
γp + (i− 1)γb. (53)

Supposing now thatαc ≤ 1/q, (50) leads to the following inequality:

1− (2q − 1)(2q2 − 2q + 1)
2q(q − 1)

γp − q[(i− 1)2 + q(q − 1)]
(q − 1)(2q − 1)

γb ≤ 0, (54)

d

that, for the particular case ofq = 4, takes the form

1− 175
24

γp − 4[(i− 1)2 + 12]
21

γb ≤ 0. (55)

This particular case was presented in Fig. 2, for each
of the intervalsIi, just to illustrate the general discussion
we will present below. In this figure, the shaded regions,
for each of the4 peaks ofp4(E), indicate pairs of values of
(γp, γb) compatible with the conditions imposed by inequal-
ities (49) and (55). They represents the values of(∆p, ∆b)
for which we cannot guarantee (based on logical arguments
and restrictions as the ones deduced above) that the model
is not critical. From now on we will call them “critical re-
gions” in the parameter space. For all values ofi we ob-
serve that there is a small shaded region, which shows us

that there is a non-zero, but small, probability of having crit-
icality, in the physically accessible range of the parameter
α. That probability decreases asi increases, since the prob-
ability that a stable site becomes unstable is higher for larger
value ofi.

From figures 2a and 2b, we see that the values ofγb as-
sociated with the shaded area (the values ofγp andγp for
which the model is possibly critical) are very small.γb is re-
lated to the size of the gaps between the peaks. That means
that, to allow criticality,p4(E) ∼ pu(E) and very far from
the expectedp(E) for α ≈ 0.25. In figures 2c and 2d, the
values ofγb are a bit larger, but still not compatible with the
range of values of those parameters that would approximate
the four peak distribution to the ‘real’ distribution shown in
figure 1a (whereγp ' 0.08 eγb ' 0.1).



484 Brazilian Journal of Physics, vol. 33, no. 3, September, 2003

0.00 0.10 0.20
γp

0.00

0.20

0.40

γ b

0.00 0.10 0.20
γp

0.00

0.20

0.40

γ b

0.00 0.10 0.20
γp

0.00

0.20

0.40

γ b

0.00 0.10 0.20
γp

0.00

0.20

0.40

γ b

(a) (b)

(c) (d)

Figure 2. The parameter space ofpq(E), with q = 4 in terms ofγp = ∆p/Ec andγb = ∆b/Ec. The shaded regions correspond to
limited regions by the interception betweenα ≤ 1/4 and7γp + 3γb ≤ 1. Depending on the value ofEc − αE+, there are 4 (q = 4)
cases: (a)Ec − αE+ ε [0, ∆p]; (b) Ec − αE+ ε [∆p + ∆b, 3∆p + ∆b]; (c) Ec − αE+ ε [3∆p + 2∆b, 5∆p + 2∆b]; e (d)Ec − αE+ ε
[5∆p + 3∆b, 7∆p + 3∆b].

In the case of a genericq we can state that:
a) there is no value ofq such that the lines, that limit the

critical regions, coincide, since the coefficients ofγb, for the
lines corresponding to inequalities (49) and (54), never have
identical values;

b) for anyi ≤ q, there is always a region, in the param-
eter space, for which the model may be critical. This can be
proved with the same argument employed in item a).

c) the smaller the value ofi, the smaller the region, in the
parameter space, for which the model may be critical; for the
highest value ofi, i = q, the shaded areaAq decreases with
q according to a power law given by

Aq =
1

2(q − 1)(2q − 1)
− 2(q − 1)

(2q − 1)(2q2 − 2q + 1)
=

=
1

2(q − 1)(2q2 − 2q + 1)
. (56)

Moreover,

lim
q→∞

Aq = lim
q→∞

1
2(q − 1)(2q2 − 2q + 1)

= 0. (57)

d) For anyq > 2, the lines that define the region, in

the parameter space, where we cannot exclude the critical
behavior, intercept each other fori < q − 1.
In order to see that, we compare inequalities (49) and (54).
The lines intercept when

(2q − 1)(q − 1)
q[(i− 1)2 + q(q − 1)]

>
1

q − 1
. (58)

This expression can be re-written in the following form:

qi2 − 2qi− q3 + 4q2 − 3q + 1 < 0. (59)

Solving this equation fori gives

i± = 1±
√

D

2q
, (60)

whereD = 4q(q3 − 4q2 + 4q − 1). For q = 1 we have
D = 0, soi = q = 1; for q = 2, it follows thatD < 0, so
there is no value ofi such that the lines intercept each other.
For q > 2, we see thatD > 0, what means that there is
some value ofi such that the lines intercept each other.i−
is always smaller than1. In this case, it is easy to prove, by
contradiction, thati+ < q − 1.

Recently, Miller and Boulter [15] used this branching-
rate approach in a more general discussion about the criti-
cality of the OFC model in the non-conservative regime.
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In order to argue that the OFC model indeed organizes
itself towards criticality (regardless of whether it is critical
or not), they calculated the branching rate and compared the
behavior of both OFC and R-OFC models. They revisited
Lise-Jensen’s approach, but now without assuming that

〈E+
j 〉 = 〈E+

i 〉 = 〈E+〉. (61)

Instead, they estimated a recursion relation connecting the
average energy of active sites between two successive gen-
erations in an avalanche, at the beginning of the organization
process. With this approach they were able to get, for the R-
OFC model, better fittings for the average energy of active

sites,〈E+〉 and, as a consequence, obtained also better re-
sults for the branching rateσ, versus the dissipation parame-
terα (than the one obtained with Lise-Jensen approximation
(61)).

We think that, even if we assume (61), what is reason-
able for the stationary state, the use of a better approxima-
tion for the energy distributionp(E), like the one suggested
by us (see (28)), will also led to better fittings for both〈E+〉
andσ versusα. In the particular case ofi = q - when the
probability of having criticality is greatest (see figure 2d) -
the expression (38) becomes

c

yi=q = 2|Ec(1− α)− [(2q − 1)∆p + (i− 1)∆b]2|, (62)

and the solutions (37) can be rewritten as

〈E+〉q(+) =
{

(Ec − E∗)/α, if α < 1− (Ec/E∗)
(Ec + E∗)/(2− α), if α > 1− (Ec/E∗) , (63)

〈E+〉q(−) =
{

(Ec + E∗)/(2− α), if α < 1− (Ec/E∗)
(Ec − E∗)/α, if α > 1− (Ec/E∗) , (64)

whereE∗ = (2q − 1)∆p + (q − 1)∆q.
Analogously, the expressions for (33) become

σq
(+) =

{
0, if α < 1− (Ec/E∗)

2q[E∗ − Ec(1− α)]/∆p(2q − 1)α(2− α), if α > 1− (Ec/E∗) , (65)

σq
(−) =

{
2q[E∗ − Ec(1− α)]/∆p(2q − 1)α(2− α), if α < 1− (Ec/E∗)

0, if α > 1− (Ec/E∗) . (66)

d

Examining theses expressions we notice that they also
do not increase linearly withα, as in what was called “ Lise-
Jensen approximation” in [15]. We think that this is an evi-
dence that, if we defineσ as a function ofσi, we also would
obtain, forσ × α, a curve much closer to the simulation re-
sults obtained by Miller and Boulter [15].

V Conclusions

In this paper, we discuss the importance, to the analysis of
random versions of models with self-organized criticality,
of the the branching rate approach introduced in ([4]). We
review the branching rate approach and we calculate, in de-
tail, the exponentτ that characterizes the probability distri-
bution of avalanche sizes. The result obtained,τ = 3/2,
corroborates the connection between random SOC models
and branching processes.

We concentrate our attention in the R-OFC model, gen-

eralizing our previous results to systems with an arbitrary
connectivityq. Our calculations made clear how sensitive
the results, to the approximation made for the energy distri-
bution, necessary to calculate the branching rateσ.

We were also able to show that, for the more realistic ap-
proximation to the energy distributionpq(E) in the station-
ary state (p(E) is approximated byq square peaks) there is
only a small region of parameter space,∆p×∆b, for which
we cannot exclude criticality in the non conservative case.
However, the values ofγp andγb for which our simplified
pq(E) is close to the distribution obtained from numerical
simulations do not belong to those regions.

We suggest that this better, but still simple approxima-
tion, might also be able to reproduce the numerical simula-
tions of the average energy of active sites and the branching
rate for R-OFC model as functions of the dissipation param-
eterα.
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Appendix

In that appendix we prove that ifi < q, the solutions of
(47) are such thatαc > 1/q or αc < 0. In other words, we
must assumei = q in order to haveαc ∈ [0, 1/q].

Dem] The solutions of (47) are given by

αc =
−2i(2q − 1)±√D

4q[(i− 1)(i− 2q) + q(q − 1)]
, (67)

with D = 4i2(2q − 1)2 + 16q(2q − 1)[(i − 1)(i − 2q) +
q(q − 1)]. Then, under the assumptioni < q, and setting

c

(i− 1)(i− 2q) + q(q − 1) = i2 − 2qi− i + 2q + q2 − q =
= (q − i)2 + (q − i) > 0. (68)

we get
√

D > 2i(2q − 1). This relation guarantees that, if one solution is negative, the other is positive.
Suppose now that the positive solution,αc > 0, is such thatαc ≤ 1/q; soα2

c ≤ 1/q2. Then the inequality can be written
as follows:

b2α
2
c + b1αc + b0 ≤ b2

q2
+

b1

q
+ b0. (69)

Using equation (47), (69) is then
b2 + qb1 + q2b0 ≥ 0. (70)

Putting the coefficients (48) into (70) leads to

b2 + qb1 + q2b0 = 2q[(i− 1)2 + q(q − 1)− (2q − 1)(i− 1) + i(2q − 1)− q(2q − 1)] =
= 2q[(i− 1)2 + q(q − 1)− (2q − 1)(q − 1)] =
= 2q[(i− 1)2 − (q − 1)2] ≥ 0 (71)

It is easy to see that, wheni < q, we have a contradiction. Therefore, fori < q, αc < 0 or αc > 1/q. 2

d
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