UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

SÍNTESE ESTRUTURAL E ANÁLISE MODAL DE PÓRTICOS ESPACIAIS COM DIFERENTES GRAUS DE REDISTRIBUIÇÃO DE ESFORÇOS SOLICITANTES

ENGº. PEDRO CLÁUDIO DOS SANTOS VIEIRA

ORIENTADOR : ELDON LONDE MELLO CO-ORIENTADOR : LUCIANO MENDES BEZERRA

DISSERTAÇÃO DE MESTRADO EM ESTRUTURAS E CONSTRUÇÃO CIVIL PUBLICAÇÃO E.DM-12A/99

BRASÍLIA - DF DEZEMBRO / 1999

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

SÍNTESE ESTRUTURAL E ANÁLISE MODAL DE PÓRTICOS ESPACIAIS COM DIFERENTES GRAUS DE REDISTRIBUIÇÃO DE ESFORÇOS SOLICITANTES

ENG⁰. PEDRO CLÁUDIO DOS SANTOS VIEIRA

DISSERTAÇÃO DE MESTRADO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA UNIVERSIDADE DE BRASÍLIA, COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE.

APROVADA POR:

ELDON LONDE MELLO, PhD (UnB) (ORIENTADOR)

LUCIANO MENDES BEZERRA, PhD (UnB) (CO - ORIENTADOR)

GUILHERME SALES S. DE A. MELO, PhD (UnB) (EXAMINADOR INTERNO)

RAUL ROSAS e SILVA, PhD (PUC - Rio) (EXAMINADOR EXTERNO)

BRASÍLIA, 16 DE DEZEMBRO DE 1999

Ficha Catalográfica

VIEIRA, PEDRO CLÁUDIO DOS SANTOS

Síntese Estrutural e Análise Modal de Pórticos Espaciais com Diferentes Graus de Redistribuição de Esforços Solicitantes [Distrito Federal] 1999.

xx, 134 p., 297 mm (ENC/FT/UnB, M.Sc., Estruturas, 1999)

Dissertação de Mestrado - Universidade de Brasília. Faculdade de Tecnologia. Departamento de Engenharia Civil e Ambiental.

- 1. Estruturas
- 3. Plasticidade
- 5. Concreto Armado
- 7. Otimização
- I. ENC/FT/UnB

2. Estruturas de Concreto

- 4. Síntese Estrutural
- 6. Redistribuição de Esforços Solicitantes
- 8. Análise
- II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA

VIEIRA, P. C. dos S. (1999). TITULO, Publicação nº E.DM-12A/99, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 134p.

CESSÃO DE DIREITOS

NOME DO AUTOR: Pedro Cláudio dos Santos VieiraTÍTULO DA DISSERTAÇÃO DE MESTRADO: Síntese Estrutural e Análise Modal dePórticos Espaciais com Diferentes Graus de Redistribuição de Esforços Solicitantes.GRAU: MestreANO: 1999

É concedida à Universidade de Brasília a permissão para reproduzir cópias desta dissertação de mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação de mestrado pode ser reproduzida sem autorização por escrito do autor.

Pedro Cláudio dos Santos Vieira Av.: Cônego Cardoso n.º 691 Bairro Oeiras Nova - CEP 64500-000 Oeiras - Piauí – Brasil

AGRADECIMENTO ESPECIAL

À Deus porque "Pela fé, entendemos que foi o universo formado pela palavra de Deus, de maneira que o visível veio a existir das cousas que não aparecem" Heb 11:3 "Aquele que conhece a Deus e Sua Palavra por experiência pessoal ,tem uma firme fé na divindade das Santas Escrituras. Tem provado que a Palavra de Deus é a verdade, e que a verdade não se pode nunca contradizer a si mesma. Não prova a Bíblia pelas idéias e a ciência humanas; submete-as, a estas, à prova da infalível norma. Sabe que, na verdadeira ciência, nada pode haver que esteja em contradição com o ensino da Palavra; uma vez que procedem do mesmo Autor, a verdadeira compreensão delas demonstrará sua harmonia. Seja o que for, nos chamados ensinos científicos, que contradiga o testemunho da Palavra de Deus, não passa de conjectura humana." White, Ellen G. 'A Ciência do Bom Viver', pp.462, 1998.

DEDICATÓRIA

Dedico aos meus Pais, Inácio e Maria Creusa. Com o exemplo de suas vidas pude aprender que devemos sempre ir avante para alcançar os objetivos firmados. A minhas duas irmãs Marinacy e Maricleyd, por Deus ter dado a benção de ser irmão de vocês. A minha grande família representada por Ester, Rita, Natividade, Maria Martins, Antonia, Julia, Maria, Fátima, Sebastião, João, José Gomes, Rosa,Benedito etc.; A minha querida tia Elisa Martins e tio Albismar por suas grandes participações na minha vida e a todos meus primos dentre os quais destaco: Jadson, Jadilson, Jaqueline, Solange, Wilton Cesar, Maria do Socorro, David, Olimpio, Neto, Benetino, Benetina, Bernadete, Amélia, Conceição, Claudionor, Marcela, Mariana, Ramon Sideral e aos meus afilhados. Finalmente aos meus grandes amigos Jonathan, Jesse James, Benigno pelos quais tenho um grande carinho.

AGRADECIMENTOS

Ao Prof^o Eldon Londe Mello, por sua orientação e pelas suas importantes lições no conhecimento de estruturas.

Ao Prof^o Luciano Mendes Bezerra, por sua orientação e disponibilidade nas questões envolventes a parte da análise dinâmica desse estudo.

Aos professores do Mestrado em Estruturas da Universidade de Brasília, pelos seus trabalhos numa tão importante missão: "Professor".

Ao CNPq pelo auxílio financeiro.

Aos meus colegas do Mestrado em Estruturas da Universidade de Brasília: Anne, Iêda, Jorge, Kleber, Ana Elisa, Anne, Aleide, Cecília, César, Chênia, Feijão, Felipe, Francely, Henrique, Márcia, Márcio (Caratinga), Milton, Ricardo, Rodnny, Selênio, Silvana, Soraya, Suzana, Nelvio, Flávio Roldão, Moacyr (Moa), Luciano, Miguel, Islen etc.

Aos grandes amigos de mestrado: Rayol, Gustavo, Lourival, Janes Cleiton, Gilberto, Mário (Super Mário Bross), Marcus Vinicius companheiros nas discussões de estudo.

Aos professores da Universidade Federal do Piauí, onde destaco: Prof: Fernando Drumond e Paulo de Tarso, pelos seus esforços no ensino de Engenharia Civil.

Aos grandes amigos de graduação: João Batista, Juvêncio, Liana Almeida e Coelho pelos maravilhosos momentos, no tempo da universidade.

Aos grandes amigos e irmãos de fé: Marlucy, Tonho, Madayr, Betinha, Aninha, Márcia, Pituca, Albuquerque, Luige, Cícero, William, Winam, Neca, Rosa, Milton, Fernando, Conceição, Vânia, Gerson, Emília, Judite, José, Akio, Eldon, Vilma, Simone, Cristina, Efraina, Raquel, Rebeca, Nilda, Ruth, André, Thadeu, Emmanuela, Auto, Brésia, Efrain, Moisés, Judite, Raniery, Malton etc., pelos momentos de comunhão, oração e companheirismo. Posso destacar alguém que conheci faz pouco tempo, mesmo assim já tenho grande carinho e apreço, a minha querida Eliane Lutércia.

A todos amigos, aqueles que algum dia cruzaram pelo meu caminho, os quais não posso declarar, aqui, porque são muitos, obrigado. Deus possa estar convosco todos os dias até a consumação dos séculos.

RESUMO

Os métodos convencionais de redistribuição de esforços solicitantes envolvem simplificações estabelecidas para vigas continuas e pórticos planos pelas normas vigentes. Geralmente são aplicados métodos iterativos para obtenção da redistribuição em estruturas com vários carregamentos, tornando o emprego da redistribuição trabalhoso.

Neste trabalho, faz-se a redistribuição de esforços solicitantes usando um método alternativo aos iterativos, que utiliza uma função convexa de redistribuição como uma combinação linear de duas soluções, uma elástica e outra plástica para a obtenção de soluções redistribuídas condicionadas à solução elástica de forma que atendam aos dois estados limites, de utilização e último. Para tanto, obtêm-se soluções elásticas baseadas no método de rigidez analítico que apresenta matrizes de equilíbrio (L), rigidez (K) e rotação (R) para o elemento desconexo. Duas soluções plásticas são obtidas: a do critério de mínimo peso (regime rígido-plástico) aplicando programação matemática linear (PL) e a da teoria das inversas generalizadas que utiliza uma função de mínima norma euclidiana (regime elástico-plástico). Considera-se a estrutura discretizada em elementos de barra.

É feita a análise incremental (regime elasto-plástico) para detectar a ordem de formação das rótulas plásticas, fator de carga de colapso plástico, deslocamentos e compara-se a capacidade de rotação plástica das seções com os critérios estabelecidos nas normas atuais. Acompanhando a formação das rótulas plásticas, faz-se a análise das frequências naturais e modos de vibração para caracterizar o comportamento dinâmico da estrutura projetada.

A formulação descrita foi implementada em programas computacionais, e posteriormente são apresentados e discutidos exemplos numéricos mostrando a eficácia da metodologia alternativa proposta.

ABSTRACT

The conventional methods of stress redistribution in frames and continuos beams involve mathematical norm simplifications. Generally, for obtaining stress redistribution in structures with various loading condition cumbersome iterative methods are used.

In this work, an alternative method proposed by Mello (1995) is employed using a convex redistribution function written as a lineal combination of elastic and plastic solutions. In this way, the achieved redistribution solution which is conditioned to the elastic state satisfies both the ultimate and serviceability limit states. Elastic solutions are based on an analytical stiffness method which makes use of equilibrium (L), stiffness (K) and rotation (R) matrices written for each element. Two plastic solutions (in rigid-plastic regime) are then obtained: one using the minimum weight criterion through lineal mathematical programming (PL) and the other using the theory of the generalized inverse which uses a function of Euclidian minimum norm. The structure to be analyzed is discretized in member elements of finite length.

The structural safety is studied with incremental analyses performed in elastic-plastic regime. With these analyses the order of plastic hinge formation, the plastic failure load factor, the displacement field, and so on can be acknowledged. In addition, the plastic rotation capacity of member sections are compared with specific norm criteria. For each plastic hinge formation a modal analysis is performed so that the natural frequencies and vibration modes can be used to characterize the dynamic behavior of the designed structure.

The described formulation were implemented in computer programs and at the end of this work some numerical examples are presented and discussed showing the effectiveness of the proposed alternative methodolgy.

ÍNDICE

Página

Capítulo

1 - INTRODUÇÃO	1
1.1 - MOTIVAÇÃO	1
1.2 – OBJETIVOS	2
1.3 – DESCRIÇÃO DA DISSERTAÇÃO	2
1.4 – HIPÓTESES BÁSICAS	3
2 – REVISÃO BIBLIOGRÁFICA	5
2.1 – INTRODUÇÃO	5
2.1.1 – Métodos de redistribuição na análise estrutural	6
2.2 – ESTÁTICA E CINEMÁTICA	8
2.3 – ANÁLISE ELÁSTICA	9
2.4 – PROJETO VIA CRITÉRIO DE MÍNIMO PESO	14
2.4.1 – Teorema do limite inferior	15
2.4.2 – Teorema do limite superior	16
2.4.3 – Teorema da unicidade	17
2.4.4 – Geração dos modelos para a programação linear	17
2.5 – PROJETO VIA MÍNIMA NORMA EUCLIDIANA	22
2.6 – ANÁLISE ESTÁTICA E MODAL DE ESTRUTURAS ATRAVÉS DO	
ANSYS	25
2.6.1 – Iteração sub-espaço	29
2.7 – FUNÇÃO CONVEXA DE REDISTRIBUIÇÃO DE ESFORÇOS	
SOLICITANTES	31
2.8 – ANÁLISE ELASTO-PLÁSTICA – MÉTODO INCREMENTAL	35
3.1 – REDISTRIBUIÇÃO DE ESFORÇOS SOLICITANTES EM	
PÓRTICOS ESPACIAIS	39
3.1 - INTRODUÇÃO	39
3.2 – IMPLEMENTAÇÃO COMPUTACIONAL	40

3.2.1 – Programa para análise elástica 3D e mínima norma euclidiana	41
3.2.2 – Programa para geração automática do modelo de PL do mínimo peso	46
3.2.3 – Programa para geração automática da saída do LINDO, como uma	
entrada para o programa de redistribuição	48
3.2.4 – Programa de redistribuição de esforços solicitantes	48
3.2.5 – Programa de análise incremental e capacidade de rotação plástica da	
estrutura	50
4 – EXEMPLOS NUMÉRICOS	60
4.1 - INTRODUÇÃO	60
4.2 - EXEMPLOS	61
4.2.1 – Exemplo 4.1	61
4.2.2 – Exemplo 4.2	64
4.2.3 – Exemplo 4.3	72
4.2.4 – Exemplo 4.4	81
4.2.5 – Exemplo 4.5	90
5 – CONCLUSÕES E SUGESTÕES	118
5.1 - CONCLUSÕES	118
5.2 – SUGESTÕES PARA PESQUISAS FUTURAS	119
REFERÊNCIAS BIBLIOGRÁFICAS	120
A DÊNIDICE A	100
ALENDICE D	122
AI ENDICE D	133

LISTA DE FIGURAS

Figura

Página

2.1	Redistribuição de momentos em vigas continuas	6
2.2	Pórtico plano para aplicar a redistribuição	7
2.3	Tensões resultantes de membro e relações de equilíbrio – 3D	9
2.4	Rotação de um membro de pórtico espacial em torno do eixo x_m	11
2.5	Exemplo de pórtico plano para a PL	18
2.6	Relações constitutivas do modelo elástico-plástico	25
2.7	Funções convexas	32
2.8	Diagrama do momento-curvatura no modelo elastoplástico	35
2.9	Modelo de análise elasto-plástica incremental	36
2.10	Transformação da flexão composta obliqua em normal composta	37
3.1	Instruções usadas em programas de cálculo automático	40
3.2	Fluxograma da redistribuição de esforços solicitantes	40
3.3	Elemento desconexo biengastado	41
3.4	Elemento desconexo rotulado e engastado	42
3.5	Elemento desconexo engastado e rotulado	43
3.6	Elemento desconexo rotulado e rotulado	43
3.7	Fluxograma do programa para análise elástica 3D	45
3.8	Fluxograma do programa para geração automática do modelo de PL	46
3.9	Fluxograma do programa para geração automática de entrada para	
	redistribuição vinda da solução do mínimo peso	48
3.10	Fluxograma do programa de redistribuição	49
3.11	Fluxograma do programa de análise incremental e da capacidade de rotação	
	plástica – fase elástica	54
3.12	Fluxograma da obtenção do fator de carga da fase analisada	56
3.13	Fluxograma das subrotinas existentes dentro da subrotina RIGID	57
4.1	Viga engastada	61
4.2	Viga continua	64
4.3	Gráfico carga x deslocamentos verticais (Uy) do nó 6 (exemplo 4.2)	70

4.4	Gráfico do 1º modo de vibração da estrutura - Geometria inicial (exemplo		
	4.2) - (RMN e RMP)	71	
4.5	Pórtico espacial Gere & Wever	72	
4.6	Gráfico carga x deslocamentos verticais (Uy) do nó 6 (exemplo 4.3)	79	
4.7	Gráfico do 1º modo de vibração da estrutura (exemplo 4.3) - (RMN e RMP)	80	
4.8	Pórtico espacial Harrison	81	
4.9	Gráfico carga x deslocamentos verticais (Uy) do nó 2 (exemplo 4.4)	88	
4.10	Gráfico do 1º modo de vibração da estrutura (exemplo 4.4) - (RMN, RMP1		
	e RMP2)	89	
4.11	Pórtico espacial Wilson	90	
4.12	Gráfico carga x deslocamentos Uy do nó 19 (exemplo 4.5)	110	
4.13	Gráfico do 1º modo de vibração da estrutura (exemplo 4.5) - (RMN)	114	
4.14	Gráfico do 1º modo de vibração da estrutura (exemplo 4.5) - (RMP1)	115	
4.15	Gráfico do 1º modo de vibração da estrutura (exemplo 4.5) - (RMP3)	117	
A.1	Estática da seção não-armada (Mello, 1992)	123	
A.2	Curvas de Resistência e Interação (Mello, 1992)	126	
A.3	Estática da seção armada (Mello, 1992)	126	
A.4	Curvas de resistências equivalentes (Mello, 1992)	127	
A.5	Peça indeformada e arcos de circulo (Mello, 1995)	129	
A.6	Modelo da rotação das seções (Mello, 1995)	130	

LISTA DE TABELAS

Tabel	a	Página
4.1	Propriedades da estrutura (exemplo 4.1)	61
4.2	Deslocamentos nodais (exemplo 4.1)	62
4.3	Deslocamentos máximos (exemplo 4.1)	63
4.4	Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.1)	63
4.5	Propriedades da estrutura (exemplo 4.2)	64
4.6	Deslocamentos nodais (exemplo 4.2)	65
4.7	Deslocamentos máximos (exemplo 4.2)	65
4.8	Variáveis de projeto da estrutura (exemplo 4.2)	66
4.9	Peso total e características de redistribuição (exemplo 4.2)	66
4.10	Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.2) -	
	RMP	67
4.11	Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.2) -	
	RMN	68
4.12	Resultados da análise incremental (exemplo 4.2)	70
4.13	Resultados da análise de frequências naturais (exemplo 4.2)	71
4.14	Propriedades da estrutura (exemplo 4.3)	72
4.15	Deslocamentos nodais (exemplo 4.3)	73
4.16	Deslocamentos máximos (exemplo 4.3)	74
4.17	Variáveis de projeto da estrutura (exemplo 4.3)	74
4.18	Peso total e características de redistribuição (exemplo 4.3)	75
4.19	Valores das variáveis de projeto da estrutura (exemplo 4.3) - RMP	75
4.20	Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.3) -	
	RMP	76
4.21	Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.3) -	
	RMN	77
4.22	Resultados da análise incremental (exemplo 4.3)	78
4.23	Resultados da análise de frequências naturais (exemplo 4.3)	79

4.24	Propriedades da estrutura (exemplo 4.4)	81
4.25	Deslocamentos nodais (exemplo 4.4)	82
4.26	Deslocamentos máximos (exemplo 4.4)	82
4.27	Variáveis de projeto da estrutura (exemplo 4.4)	83
4.28	Peso total e características de redistribuição (exemplo 4.4)	83
4.29	Valores das variáveis de projeto da estrutura (exemplo 4.4) – RMP1	83
4.30	Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.4)-	
	RMP1	84
4.31	Valores das variáveis de projeto da estrutura (exemplo 4.4) – RMP2	85
4.32	Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.4) –	
	RMP2	85
4.33	Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.4)-	86
	RMN	
4.34	Resultados da análise incremental (exemplo 4.4)	87
4.35	Resultados da análise de frequências naturais (exemplo 4.4)	88
4.36	Discretização dos nós dos elementos (exemplo 4.5)	90
4.37	Propriedades da estrutura (exemplo 4.5)	91
4.38	Deslocamentos nodais (exemplo 4.5)	92
4.39	Deslocamentos máximos (exemplo 4.5)	93
4.40	Variáveis de projeto da estrutura (exemplo 4.5)	93
4.41	Peso total e características de redistribuição (exemplo 4.5)	95
4.42	Valores das variáveis de projeto da estrutura (exemplo 4.5) – RMP1	96
4.43	Esforços solicitantes elásticos, redistribuídos e plásticos para Tm – RMP1	97
4.44	Esforços solicitantes elásticos, redistribuídos e plásticos para Mym - RMP1	98
4.45	Esforços solicitantes elásticos, redistribuídos e plásticos para Mzm - RMP1	99
4.46	Valores das variáveis de projeto da estrutura (exemplo 4.5) – RMP3	100
4.47	Esforços solicitantes elásticos, redistribuídos e plásticos para Tm – RMP3	101
4.48	Esforços solicitantes elásticos, redistribuídos e plásticos para Mym – RMP3	102
4.49	Esforços solicitantes elásticos, redistribuídos e plásticos para Mzm – RMP3	103
4.50	Esforços solicitantes elásticos, redistribuídos e plásticos para Tm – RMN	105
4.51	Esforços solicitantes elásticos, redistribuídos e plásticos para Mym – RMN	106
4.52	Esforços solicitantes elásticos, redistribuídos e plásticos para Mzm – RMN	107
4.53	Resultados da análise incremental (exemplo 4.5)	108

4.54	Resultados da análise de frequências naturais (exemplo 4.5)	111
B.1	Tipos de máquinas e frequências	133
B.2	Tipos de movimentos humanos e frequências	134

LISTA DE SÍMBOLOS E ABREVIAÇÕES

Salvo indicação contrária, a notação seguinte é utilizada em todo este trabalho.

1. Matrizes e Vetores

Negrito indica matriz ou vetor

- **a** vetor de cargas nodais
- **B** matriz de auto-equilíbrio da descrição de malha
- **B**₀ matriz de equilíbrio da descrição de malha
- **F** matriz de flexibilidade dos elementos desconexos
- f vetor de ações nodais características
- He inversa generalizada reflexiva de mínima norma de L
- \mathbf{H}_{f} inversa generalizada reflexiva de mínima norma euclidiana de L
- I matriz identidade
- J_s, J_c matriz de incidência das exigências de projeto
 - **K** matriz de rigidez dos elementos desconexos
 - L matriz de equilíbrio da descrição nodal
 - **I**^T vetor dos comprimentos da estrutura
 - m vetor dos esforços seccionais
 - M matriz de massa da estrutura

m₁, m₂ vetor de esforços solicitantes em regime elástico e plástico, respectivamente

- **m**_d vetor das variáveis de projeto
- \mathbf{m}_{f} vetor de esforços seccionais de mínima norma euclidiana
- Q matriz ortogonal
- q vetor de iteração inicial para o método subespaco
- **R** matriz de rotação para o elemento
- S matriz de rigidez global da estrutura
- **u** vetor dos deslocamentos nodais
- **9** vetor dos hiperestáticos

- v vetor das descontinuidades associadas a ϑ
- δ vetor dos deslocamentos da estrutura
- θ vetor das deformações seccionais associados às cargas nodais
- $\boldsymbol{\theta}_0$ vetor das deformações seccionais associadas às cargas nos membros
- $\dot{\theta}$ vetor de deformações seccionais arbitrado como mecanismo
- m⁺_p Vetor dos momentos (esforços) de plastificação das seções transversais solicitadas positivamente
- m⁻_p Vetor dos momentos (esforços) de plastificação das seções transversais solicitadas negativamente
- ü vetor das acelerações nodais
- Φ matriz dos autovetores
- Λ matriz dos autovalores

2. Escalares

А	área da seção transversal da peça
A_s , A_{s1} , A_{s2}	Armadura da seção transversal, Armaduras principal e secundária
b	largura da seção transversal
C_x , C_y , C_z	co-senos diretores nas direções x, y e z, respectivamente
dθ	ângulo entre as duas seções
ds	distância original entre as faces paralelas
e	extensão linear de um membro
E	módulo de elasticidade
$e_{i,h}$, $e_{i,b}$	excentricidades iniciais
$f(v), f(\mu)$	funções de resistência
FA _{xm} , FA _{ym} ,FA _{zm}	forças em equilíbrio, aplicadas para o nó A nos eixos locais x, y e z,
	respectivamente
$FB_{xm}, FB_{ym}, FB_{zm}$	forças em equilíbrio, aplicadas para o nó B nos eixos locais x, y e z,
	respectivamente
fcd	resistência de cálculo à compressão
\mathbf{f}_{i}	i-ésima frequência natural (ciclos por unidade de tempo)

F_k	força nodal do grau de liberdade k
G	módulo de cisalhamento
h	altura da seção transversal
i _k	taxa correspondente a maior amplitude em relação a solução elástica
I _x	constante de torção para um elemento
I_y, I_z	momentos principais de inércia de uma seção de membro de pórtico
	espacial
Kkj	rigidez do termo relacionando a força para o grau de liberdade k com
	o deslocamento para o grau de liberdade j
K _{ys1} , K _{ys2}	percentagens de fyd
L, Lij	comprimento total do elemento, comprimento do elemento com
	extremidades: i e j
l ₀	Comprimento inicial da peça
M, Mik	momento fletor, momento fletor característico (k) i
$MAB_{ym,}MBA_{ym}$	Momentos aplicados para os nós A e B de um membro AB ao redor
	do eixo y local, respectivamente
MAB _{zm} , MBA _{zm}	Momentos aplicados para os nós A e B de um membro AB ao redor
	do eixo z local, respectivamente
MA _{xm} , MA _{ym} , MA _{zm}	momentos aplicados para o nó A e um membro AB em torno dos
	eixos locais x, y e z, respectivamente
MB _{xm} , MB _{ym} , MB _{zm}	momentos aplicados para o nó B e um membro AB em torno dos
	eixos locais x, y e z, respectivamente
Md, Md _i	momento fletor, momento fletor de cálculo i
n	número de esforços seccionais independentes
Nd	esforço normal de cálculo
nd^+ , nd^-	número de variáveis de projeto
P, Pi	carga concentrada, carga concentrada i
q	taxa de resistência da concreto por unidade de comprimento
Q, qi	carga distribuída, carga distribuída i
Qm	momento torçor para um membro de pórtico espacial
R ₁ , R ₂	ações equivalentes
t	tempo
Tm	força axial no elemento

uj	deslocamento nodal do grau de liberdade j
Ux, Uy, Uz	translações nas direções x, y e z, respectivamente
VAB _{ym} , VBA _{ym}	Forças normais de cisalhamento aplicados para os nós A e B de um
	membro AB na direção do eixo y local, respectivamente
VAB _{zm} , VBA _{zm}	Forças normais de cisalhamento aplicados para os nós A e B de um
	membro AB na direção do eixo z local, respectivamente
x, y , z	geralmente usado para denotar coordenadas dos nós de pórticos
x_p, y_p, z_p	coordenadas do ponto p referencial, para geração das matrizes de
	rotação no espaço
Z, z	braço de alavanca
X	distância da linha neutra ao ponto de maior encurtamento, na seção
	transversal de uma peça fletida
α	grau de indeterminação estática da estrutura
β	grau de indeterminação cinemática ou número de graus de liberdade
ϕ_{ABy}, ϕ_{ABz}	ângulo de rotação para extremidade A, de um elemento AB, relativo a
	linha reta de A a B para as direções y e z, respectivamente
$\phi_{\rm BAy},\phi_{\rm BAz}$	ângulo de rotação para extremidade B, de um elemento AB, relativo a
	linha reta de A a B para as direções y e z, respectivamente
λ	fator de carga
λ_{c}	fator de carga de colapso plástico
ω	frequência circular natural (radianos por unidade de tempo)
ϕ_x, ϕ_y, ϕ_z	rotações nas direções x, y e z, respectivamente
ε _{c1} ,ε _{c2}	deformações específicas do concreto na posição T e C,
	respectivamente
$\boldsymbol{\varepsilon}_{s1}, \boldsymbol{\varepsilon}_{s2}$	deformações específicas das armaduras na posição T e C,
	respectivamente
γc	coeficiente de minoração da resistência do concreto
γf, γ1, γ2	coeficiente de majoração (segurança) das cargas
γ_s	coeficiente de minoração da resistência do aço
σ_{sd}	tensão na armadura de tração em função da posição da linha neutra
α_x	posição relativa da linha neutra

3. Índices

determinante de matriz
norma de vetor
 · · · ·

- ()⁻ solicitação negativa
- ()⁺ solicitação positiva
- $()^{-1}$ inversa da matriz
- $()^{T}$ transposta da matriz (vetor)
- r() posto (ou rank) de matriz

4. Operadores

(··) segunda derivada em relação ao tempo

5. Abreviações

3D	tridimensional
ANSYS	analsys sytem
CEB	comitê euro-internacional do beton
LINDO	linear design optmization
NB1	norma brasileira
NBR	regulamentação da norma brasileira
PMN	solução plástica via mínima norma euclidiana
PMP	solução plástica via mínimo peso
RMN	solução redistribuida via mínima norma euclidiana
RMP	solução redistribuída via mínimo peso

CAPITULO 1

INTRODUÇÃO

1.1 - MOTIVAÇÃO

Estudos feitos sobre a redistribuição de momentos fletores mostram que em estruturas submetidas a carregamentos progressivos formam-se fissuras que alteram a rigidez das seções, fazendo com que os esforços atuantes nestas seções não possam ser mais resistidos em sua totalidade. A propriedade dúctil dos materiais empregados e a condição de serem estruturas hiperestáticas permitem que sejam redistribuídos os esforços de regiões mais solicitadas para outras menos solicitadas.

Nas pesquisas feitas por Leonhardt (1978) podemos denotar o emprego da redistribuição de momentos. Prado (1995) estudou a redistribuição de momentos em vigas de edifícios, onde apresentou estudos sobre as modificações possíveis na distribuição de momentos fletores, induzidas por um escolha adequada de relações entre as armaduras sobre os apoios e nos vãos. Geralmente empregam-se métodos iterativos na redistribuição de esforços, a partir da análise linear elástica de forma a encontrar uma nova configuração de equilíbrio com os carregamentos atuantes.

Mello (1997) propôs uma função convexa de redistribuição de esforços solicitantes para dimensionamento de estruturas que pode ser aplicada a pórticos espaciais sem o uso de métodos iterativos. A redistribuição fornecerá uma nova configuração de equilíbrio, permitindo prever possíveis alterações dos esforços nas seções da estrutura, dando assim mais segurança ao projetista, com relação a prováveis falhas na fase construtiva e ao longo da vida útil da estrutura.

Para uma avaliação do comportamento das estruturas projetadas em função das soluções redistribuídas pelo critério de mínima norma euclidiana (por exemplo, Mello, 1980) ou

mínimo peso (por exemplo, Horne, 1979), são feitas análises incrementais, investigando a estrutura quanto ao processo de formação de rótulas plásticas. Posteriormente, a cada formação de rótula plástica, efetua-se uma análise dinâmica para o estudo das alterações ocorridas nas frequências naturais e modos de vibração que ocorrem devido às mudanças das rigidezes das seções com rótulas plásticas.

1.2 - OBJETIVOS

Este presente trabalho tem o intuito de apresentar um critério de redistribuição a partir da análise linear sem o emprego de métodos iterativos.

Adotar o critério de mínima norma euclidiana (Mello, 1980) que dá uma solução plástica alternativa ao critério de mínimo peso, juntamente com o método de redistribuição proposto por Mello (1997) para o desenvolvimento de projetos que serão testados quanto aos estados limites, de utilização e último. Através de uma análise elasto-plástica incremental são determinados os fatores de carga, ordem de formação das rótulas plásticas, deslocamentos nodais e esforços seccionais até atingir o colapso plástico da estrutura. Posteriormente, são feitas analises dinâmicas das estruturas para obtenção das rótulas plásticas naturais e modos de vibração que se alteram ao longo do processo de formação das rótulas plásticas.

1.3 - DESCRIÇÃO DA DISSERTAÇÃO

O presente trabalho envolveu 5 capítulos. A seguir descreve-se o conteúdo dos mesmos.

O capítulo 2 trata da revisão bibliográfica. Apresenta aspectos de normatização sobre os tipos de redistribuição, incluindo métodos de redistribuição geralmente aplicados. Realizase uma breve revisão dos conhecimentos da análise estrutural sobre as relações da estática, cinemática e as relações constitutivas do material. Descrevem-se os tipos de soluções plásticas adotadas: uma baseada no critério de mínimo peso linearizado com a geração do modelo para ser empregado na programação matemática e a outra com a utilização da teoria das inversas generalizadas que usa uma função de mínima norma euclidiana para a obtenção da solução plástica. É descrita também a formulação usada na análise modal, sendo feito um breve resumo do método de iteração sub-espaço usado na extração dos autovalores e autovetores do sistema de equações de vibrações livres sem amortecimento. Foi utilizado o software ANSYS na parte da análise das frequências naturais e modos de vibração. Em seguida, descreve-se o método de redistribuição que usa uma função convexa como uma combinação linear de uma solução elástica e outra plástica para a obtenção de soluções redistribuídas condicionadas a solução elástica, atendendo aos dois estados limites, de utilização e último. Na obtenção das soluções redistribuídas não são utilizados métodos iterativos. Finalmente, é apresentado o modelo de análise elasto-plástica incremental para a obtenção do fator de carga de colapso plástico e as modificações para estruturas de concreto de pórticos espaciais.

No capítulo 3, descrevem-se as fases que envolvem a síntese, redistribuição, análise incremental e modal de estruturas de pórticos espaciais, assim como os programas desenvolvidos. Os programas são apresentados em forma de fluxogramas das subrotinas empregadas. São mostrados os modelos da matriz de rigidez empregados na análise incremental que se modificam em função das formações de rótulas plásticas e as diferenças no método de obtenção do fator de carga para pilares e vigas.

No capítulo 4, apresentam-se os exemplos numéricos com o intuito de verificar a aplicação do método de redistribuição. Dentro do trabalho é feita a síntese da estrutura com a verificação quanto aos dois estados limites, de utilização e último, a análise incremental testando-se a capacidade de rotação plástica das seções e a análise modal das soluções redistribuídas.

No capítulo 5, são apresentadas as conclusões obtidas com o presente trabalho e as sugestões para pesquisas futuras.

1.4 - HIPÓTESES BÁSICAS

Foram adotadas, neste trabalho, as seguintes hipóteses básicas:

• hipótese de Bernoulli-Euler: as seções transversais permanecem planas e normais;

- a resistência do concreto a tração é desprezada;
- o alongamento unitário máximo da armadura de tração é de 10‰ ;
- o encurtamento unitário de ruptura do concreto é de 3,5‰;
- Diagrama simplificado retangular NB1/78 (1978), com tensão constante de 0,85fcd e altura igual a 0,8x
- carregamentos proporcionais, aplicados estaticamente;
- as rótulas plásticas estão limitadas às chamadas seções críticas, localizadas nas extremidades dos elementos discretizados, não levando em consideração o espalhamento da plasticidade e nem o descarregamento plástico;
- elementos estruturais possuem seções retangulares com o dimensionamento das vigas à flexão simples ou normal composta; e os pilares, verificados à flexão composta oblíqua;
- considerou-se o comportamento elasto-plástico para o concreto armado;

Em se tratando de coeficientes de minoração e segurança, são adotados os coeficientes de minoração dos materiais, $\gamma_c=1,4$, para o concreto e $\gamma_s=1,15$, para o aço, considerando o cálculo no estado limite último. Para os fatores de majoração de ações, $\gamma_f=1,4$ (aplicandose para solicitações calculadas por método linear ou não linear).

CAPITULO 2

REVISÃO BIBLIOGRÁFICA

2.1 - INTRODUÇÃO

O CEB/90 (1991), no item 5.3.2, comenta que a análise global de uma estrutura pode ser feita de acordo com os seguintes métodos: análise não linear, análise linear, análise linear com redistribuição e análise plástica. O item 5.3.2.3 comenta que a redistribuição só acontece se os resultados derivados das ações de uma análise linear são redistribuídos na estrutura, atendendo as condições de equilíbrio e ductilidade.

No estado limite ultimo, quando a redistribuição é feita em vigas e pórticos planos (item 5.4.3 – CEB), é permitida a redução dos momentos nas seções sujeitas a grandes efeitos de ações, resultantes de uma análise linear; nas outras seções os momentos são incrementados para manter o equilíbrio. Em situações sujeitas a vários carregamentos, somente uma redistribuição pode ser assumida e a capacidade de rotação plástica não precisa ser verificada se forem seguidos os critérios dos coeficientes de redução.

A NB1 (1978), no item 3.2.2.3, alínea "c", permite calcular vigas continuas de edifícios por processo simplificado, em regime elasto-plástico, unicamente alterando-se a posição da linha de fecho determinada no regime elástico, de modo a reduzir os momentos sobre os apoios no máximo de 15%, não sendo necessário, neste caso, a verificação da capacidade de rotação plástica da estrutura. O Boletim n.º 105 do CEB (1991) indica que os momentos fletores nos apoios de vigas de edifícios podem ser diminuídos em até 25%, em função da posição da linha neutra e da porcentagem da armadura, onde os momentos fletores nos vãos devem ser aumentados atendendo as condições de equilíbrio.

2.1.1 - Métodos de redistribuição na análise estrutural

A redistribuição em vigas continuas é normalmente a mais adotada. Segue exemplo na figura 2.1.

Para pórticos planos, baseados na norma do CEB, aplica-se a redistribuição tomando-se somente um momento de referência em uma seção e faz-se a redistribuição por métodos iterativos devido a complexidade de se encontrarem os novos momentos nas outras seções, como por exemplo: o momento na seção 4 (M_{4d}) em relação ao momento de referência da seção 1 (M_{1d}) não pode ser encontrado simplesmente fazendo-se uma redução (vigas continuas) e calculando-se os novos momentos (ver fig. 2.2).

Fig. 2.2 - Pórtico plano para aplicar a redistribuição.

2.2 – ESTÁTICA E CINEMÁTICA

A solução de problemas da mecânica estrutural requer a aplicação de três leis básicas: as leis da estática, da cinemática e as relações constitutivas do material. Podem ser utilizadas duas maneiras distintas para descrever estas leis, a saber, a descrição de malha e a nodal, sendo mostrada a seguir uma relação entre elas (por exemplo, Harrison, 1973).

• Descrição Nodal

$$\mathbf{a} = \mathbf{L} \cdot \mathbf{m}$$

$$\mathbf{\theta} = \mathbf{L}^{\mathrm{T}} \cdot \mathbf{\delta}$$
(2.1a,b)

• Descrição de malha

Contém duas matrizes: **B**₀ com dimensões $(n \times \beta)$ e posto $r(\mathbf{B}_0) = \beta$, que é a matriz de equilíbrio da descrição; **B** com dimensões $(n \times \alpha)$ e posto $r(\mathbf{B}) = \alpha$, onde α é o grau de indeterminação estática da estrutura e $n = \alpha + \beta$

$$\mathbf{m} = \mathbf{B}_0 \cdot \mathbf{a} + \mathbf{B} \cdot \boldsymbol{\vartheta}$$

$$\mathbf{\delta} = \mathbf{B}_0^{\mathrm{T}} \cdot \boldsymbol{\theta}$$

$$\mathbf{v} = \mathbf{B}^{\mathrm{T}} \cdot \boldsymbol{\theta}$$
 (2.2a-c)

Deve-se observar que a relação de equilíbrio da descrição de malha deve satisfazer, evidentemente, a relação de equilíbrio nodal.

A matriz de equilíbrio L é unicamente determinada para uma estrutura, onde nenhum vínculo (interno ou externo) é violado na sua obtenção, já as matrizes B_0 e B variam conforme as bases adotadas (violação vincular: v) (por exemplo, Mello, 1983).

2.3 – ANÁLISE ELÁSTICA

O método utilizado neste presente trabalho foi o método de rigidez analítico que utiliza as matrizes de rigidez de membro **K**, equilíbrio **L** e rotação **R** para cada elemento desconexo (por exemplo, Harrison, 1973).

A matriz de rigidez S da estrutura é:

$$\mathbf{S} = \mathbf{R} \cdot \mathbf{L} \cdot \mathbf{K} \cdot \mathbf{L}^{\mathrm{T}} \cdot \mathbf{R}^{\mathrm{T}}$$
(2.3)

Empregou-se o método de rigidez analítico porque a matriz L é fundamental na síntese plástica por mínimo peso ou mínima norma euclidiana.

A discretização do continuo em elementos de barra no sistema de eixos locais (m) segue a formulação baseada na figura 2.3 (por exemplo, Harrison, 1973).

Fig. 2.3 - Tensões resultantes de membro e relações de equilíbrio -3D

A matriz de rigidez de membro **K**, sem a inclusão de termos de deformação por cisalhamento, para uma estrutura espacial, segue na equação (2.4).

$$\begin{bmatrix} T_{m} \\ MAB_{zm} \\ MBA_{zm} \\ MBA_{ym} \\ Q_{m} \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{4EI_{z}}{L} & \frac{2EI_{z}}{L} & 0 & 0 & 0 \\ 0 & \frac{2EI_{z}}{L} & \frac{4EI_{z}}{L} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{4EI_{y}}{L} & \frac{2EI_{y}}{L} & 0 \\ 0 & 0 & 0 & \frac{4EI_{y}}{L} & \frac{2EI_{y}}{L} & 0 \\ 0 & 0 & 0 & 0 & \frac{2EI_{y}}{L} & \frac{4EI_{y}}{L} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{2EI_{y}}{L} & \frac{4EI_{y}}{L} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{GI_{x}}{L} \end{bmatrix} .$$
(2.4)

 $\mathbf{m} = \mathbf{K} \cdot \boldsymbol{\theta}$, onde:

- " θ " é o vetor de deformações seccionais;
- "e", " ϕ " e " β " deformações dos membros.

A matriz de equilíbrio **L**, da equação (2.5), contém as relações entre as ações de extremidades de membro, no sistema de coordenada do membro, e as tensões resultantes.

	Γ					-]	
	1	0	0	U	U	U		
	0	$-\frac{1}{L}$	- 1 L	0	0	0	-	
	0	0	0	$\frac{1}{L}$	$\frac{1}{L}$	0		
FAym FA	0	0	0	0	0	- 1		
MA _{xm}	0	0	0	- 1	0	0		
MAym MAzm	0	- 1	0	0	0	0	MBA _{zm}	
^{FB} xm FB _{ym}	- 1	0	0	0	0	0	MAB _{ym} MBA _{ym}	(2.5)
FB _{zm} MB _{xm}	0	$\frac{1}{L}$	$\frac{1}{L}$	0	0	0	Q m	
MB _{ym} MB _{zm}	0	0	0	$-\frac{1}{L}$	$-\frac{1}{L}$	0		
	0	0	0	0	0	- 1		
	0	0	0	0	- 1	0		
	0	0	- 1	0	0	0		

 $\mathbf{a} = \mathbf{L} \cdot \mathbf{m}$

Fig. 2.4 - Rotação de um membro de pórtico espacial em torno do eixo x_m

Na figura 2.4, adota-se a técnica da entrada das coordenadas de um ponto p (por exemplo, Gere & Weaver, 1987) que existe em um dos planos principais do membro, mas que não esteja sobre o próprio eixo do membro. Este ponto definirá com o eixo x_m um plano no espaço conforme a figura 2.4. Obtendo-se, assim, as expressões, para o ângulo de rotação " α ", visto na figura 2.4, que aparecem nas matrizes de rotação dadas por (2.10) e (2.11).

Tomando-se as coordenadas do ponto p dadas no sistema global $(x_p, y_p e z_p)$ e as coordenadas do nó inicial do elemento $(x_A, y_A e z_A)$ que podem ser observadas na figura 2.3, chegam-se as novas coordenadas do ponto p em relação aos eixos da estrutura designadas por x_ps , $y_ps e z_ps$, dadas em (2.6):

$$x_{p}s = x_{p} - x_{A}$$

$$y_{p}s = y_{p} - y_{A}$$

$$z_{p}s = z_{p} - z_{A}$$
(2.6)

Em função das coordenadas do ponto p (x_ps , y_ps e z_ps), calculam-se as coordenadas em relação aos eixos " γ " que são mostrados a seguir:

$$C_{x} = \frac{X_{B} - X_{A}}{L}, C_{y} = \frac{Y_{B} - Y_{A}}{L}, C_{z} = \frac{Z_{B} - Z_{A}}{L}$$

$$X_{p\gamma} = C_{x}X_{ps} + C_{y}Y_{ps} + C_{z}Z_{ps}$$

$$Y_{p\gamma} = -\frac{C_{x}C_{y}}{\sqrt{C_{x}^{2} + C_{z}^{2}}} \cdot X_{ps} + \sqrt{C_{x}^{2} + C_{z}^{2}} \cdot Y_{ps} - \frac{C_{y}C_{z}}{\sqrt{C_{x}^{2} + C_{z}^{2}}} \cdot Z_{ps}$$

$$Z_{p\gamma} = -\frac{C_{z}}{\sqrt{C_{x}^{2} + C_{z}^{2}}} \cdot X_{ps} + \frac{C_{x}}{\sqrt{C_{x}^{2} + C_{z}^{2}}} \cdot Z_{ps}$$
(2.7)

Com isso, obtêm-se as expressões para o sen α e cos α , empregados nas matrizes de rotação para elemento inclinado (2.8a,b) e vertical (2.9a,b):

$$\sin \alpha = \frac{Z_{p\gamma}}{\sqrt{Y_{p\gamma}^{2} + Z_{p\gamma}^{2}}}$$

$$\cos \alpha = \frac{Y_{p\gamma}}{\sqrt{Y_{p\gamma}^{2} + Z_{p\gamma}^{2}}}$$

$$\sin \alpha = \frac{Z_{ps}}{\sqrt{X_{ps}^{2} + Z_{ps}^{2}}}$$

$$\cos \alpha = \frac{-X_{ps}}{\sqrt{X_{ps}^{2} + Z_{ps}^{2}}} \cdot C_{y}$$
(2.8a,b)
$$(2.8a,b)$$
(2.9a,b)

Empregando as relações (2.8a,b) e (2.9a,b), chega-se as matrizes de rotação para membros inclinados (2.10) e membros verticais (2.11).

$$\mathbf{R} = \begin{bmatrix} c_{X} & c_{Y} & c_{Z} \\ \frac{-C_{X}C_{Y}\cos\alpha - C_{Z}\sin\alpha}{\sqrt{c_{X}^{2} + c_{Z}^{2}}} & \sqrt{c_{X}^{2} + c_{Z}^{2}}\cos\alpha & \frac{-C_{Y}C_{Z}\cos\alpha + C_{X}\sin\alpha}{\sqrt{c_{X}^{2} + c_{Z}^{2}}} \\ \frac{C_{X}C_{Y}\sin\alpha - C_{Z}\cos\alpha}{\sqrt{c_{X}^{2} + c_{Z}^{2}}} & -\sqrt{c_{X}^{2} + c_{Z}^{2}}\sin\alpha & \frac{C_{Y}C_{Z}\sin\alpha + C_{X}\cos\alpha}{\sqrt{c_{X}^{2} + c_{Z}^{2}}} \end{bmatrix}$$
(2.10)

$$\mathbf{R} = \begin{bmatrix} 0 & C_{\mathbf{Y}} & 0 \\ -C_{\mathbf{Y}} \cos \alpha & 0 & \sin \alpha \\ C_{\mathbf{Y}} \sin \alpha & 0 & \cos \alpha \end{bmatrix}$$
(2.11)

As equações de equilíbrio dos nós (por exemplo, Harrison, 1973), para uma estrutura completa, ou apenas um membro são:

$$\mathbf{a} = \mathbf{L} \cdot \mathbf{m} \tag{2.12}$$

$$\mathbf{m} = \mathbf{K} \cdot \left(\mathbf{\theta} - \mathbf{\theta}_0 \right) \tag{2.13}$$

$$\boldsymbol{\theta} = \mathbf{L}^{\mathrm{T}} \cdot \boldsymbol{\delta} \tag{2.14}$$

A matriz de equilíbrio **L** tem as seguintes dimensões $(\beta \times n)$, onde β é o grau de indeterminação cinemática e n o número de esforços seccionais, com posto: $r(\mathbf{L}) = \beta$.

Substituindo-se as equações (2.13) e (2.14) em (2.12), obtém-se a equação (2.15):

$$\mathbf{a} = \mathbf{L} \cdot \mathbf{K} \cdot \mathbf{L}^{\mathrm{T}} \cdot \boldsymbol{\delta} - \mathbf{L} \cdot \mathbf{K} \cdot \boldsymbol{\theta}_{0}$$
(2.15)

Desenvolvendo-se (2.15), chega-se a equação (2.16):

$$(\mathbf{L} \cdot \mathbf{K} \cdot \mathbf{L}^{\mathrm{T}}) \cdot \boldsymbol{\delta} = \mathbf{a} + (\mathbf{L} \cdot \mathbf{K} \cdot \boldsymbol{\theta}_{0})$$
 (2.16)

Deve-se observar os seguintes termos retirados da relação (2.16):

- Ações de Engastamento: $-\mathbf{K} \cdot \mathbf{\theta}_0$ (2.17)
- Ações Equivalentes: $\mathbf{K} \cdot \mathbf{\theta}_0$ (2.18)
- Ações Equivalentes Nodais da Estrutura (Sistema Global): $\mathbf{L} \cdot \mathbf{K} \cdot \mathbf{\theta}_0$ (2.19)
- Vetor Total de Cargas Nodais: $\mathbf{a} + \mathbf{L} \cdot \mathbf{K} \cdot \mathbf{\theta}_0$ (2.20)

Os deslocamentos nodais δ são encontrados, calculando-se a inversa da matriz de rigidez da estrutura (**S**) e multiplicando-se esta pelo vetor de cargas nodais (2.20), ou seja, tomando-se as equações (2.16) e (2.20), obtém-se os deslocamentos nodais em (2.21).

$$\boldsymbol{\delta} = \mathbf{S}^{-1} \cdot \left(\mathbf{a} + \mathbf{L} \cdot \mathbf{K} \cdot \boldsymbol{\theta}_0 \right)$$
(2.21)

Os deslocamentos são encontrados primeiro (*Método dos deslocamentos*) e depois calculam-se as deformações seccionais vistas em (2.22).

$$\boldsymbol{\theta} = \mathbf{L}^{\mathrm{T}} \cdot \mathbf{S}^{-1} \cdot \mathbf{a} + \mathbf{L}^{\mathrm{T}} \cdot \mathbf{S}^{-1} \cdot \mathbf{L} \cdot \mathbf{K} \cdot \boldsymbol{\theta}_{0}$$
(2.22)

Os esforços seccionais elásticos (2.23) são obtidos substituindo (2.22) em (2.13), sendo estes necessários para a redistribuição da estrutura.

$$\mathbf{m} = \mathbf{K} \cdot \mathbf{L}^{\mathrm{T}} \cdot \mathbf{S}^{-1} \cdot \mathbf{a} + \mathbf{K} \cdot \mathbf{L}^{\mathrm{T}} \cdot \mathbf{S}^{-1} \cdot \mathbf{L} \cdot \mathbf{K} \cdot \boldsymbol{\theta}_{0} - \mathbf{K} \cdot \boldsymbol{\theta}_{0}$$
(2.23)

2.4 – PROJETO VIA CRITÉRIO DE MÍNIMO PESO

Para um projeto envolvendo um carregamento simples, qualquer distribuição de momentos que satisfaçam as condições de equilíbrio e escoamento, constituirá como uma possível base para o projeto. Atualmente existe um infinito numero de soluções para se projetar vigas continuas, e outros fatores como por exemplo: resistência, limites de deflexões, mínimo peso, disponibilidade das seções, conveniências de fabricação e mínimo custo poderão ser introduzidos para decidir qual o melhor projeto. Com isso, o *critério de mínimo peso* (por exemplo, Horne, 1979) foi adotado neste presente trabalho, sendo que o critério empregado é baseado no modelo rígido-plástico (por exemplo, Shames, 1964).

Segundo o critério adotado, o peso total da estrutura G composta de membros prismáticos obedece a relação vista em (2.24).

$$G = k \sum_{i} M_{i} l_{i}$$
(2.24)

Onde:

k = constante;M = momentos plásticos;

1 = comprimentos dos membros.

Existem três teoremas da plasticidade (por exemplo, Horne, 1979) que são aplicados:

- Teorema do limite inferior;
- Teorema do limite superior;
- Teorema da unicidade.

Um projeto de mínimo peso tem que satisfazer as seguintes condições:

- *Equilíbrio*. Os momentos fletores necessitam representar um estado de equilíbrio entre os carregamentos internos e externos;
- *Escoamento*. O momento plástico de resistência, determinado pelo valor da tensão de escoamento, não pode ser excedido;
- Mecanismo. O momento plástico de resistência necessita ser alcançado para um número suficiente de seções, para a formação do mecanismo de colapso;
- Rótulas plásticas.

Os teoremas são descritos da seguinte forma:

2.4.1 - Teorema do limite inferior

Também conhecido como teorema estático, descreve que o fator de carga λ , de um carregamento proporcional a, associado a uma distribuição estaticamente admissível **m**, é um limite inferior do fator de carga de colapso plástico da estrutura (λ_c), onde qualquer

projeto que satisfaça as condições mecanismo e rotulas plásticas para mínimo peso, fornece um limite inferior, isto é visto em (2.25a-c).

$$\mathbf{L} \cdot \mathbf{m} = \lambda \cdot \mathbf{a}$$
$$-\mathbf{m}_{p}^{-} \le \mathbf{m} \le \mathbf{m}_{p}^{+} \qquad (2.25a\text{-c})$$
$$\lambda \le \lambda_{c}$$

Sendo:

 $\mathbf{m} = \text{vetor de esforços (momentos) solicitantes;}$ $\mathbf{m}_{\mathbf{p}^{+}} = \text{vetor de esforços (momentos) plásticos das seções transversais solicitadas positivamente, } \mathbf{m}_{\mathbf{p}^{+}} \ge \mathbf{0};$

 m_p = vetor de esforços (momentos) plásticos das seções transversais solicitadas negativamente, $m_p \le 0$

2.4.2 - Teorema do limite superior

Conhecido também como teorema cinemático, descreve que o fator de carga λ , calculado a partir de um mecanismo de colapso plástico arbitrário, é um limite superior do fator de carga de colapso plástico λ_c expressado em (2.26), sendo que qualquer projeto satisfazendo as condições equilíbrio, escoamento e mecanismo, fornecerá um limite superior.

$$\lambda \ge \lambda_{\rm c} \tag{2.26}$$

Arbitra-se, assim, um mecanismo, baseado em (2.27):
$$\dot{\boldsymbol{\theta}} = \mathbf{L}^{\mathrm{T}} \cdot \dot{\boldsymbol{\delta}}$$
(2.27)

onde:

 $\dot{\boldsymbol{\theta}}$ = mecanismo para rótulas plásticas.

Depois, calcula-se o fator λ , na equação (2.28):

$$\mathbf{m}^{\mathrm{T}} \cdot \dot{\mathbf{\theta}} = \lambda \cdot \mathbf{a}^{\mathrm{T}} \cdot \dot{\mathbf{\delta}} \Longrightarrow \lambda = \frac{\mathbf{m}^{\mathrm{T}} \cdot \mathbf{\theta}}{\mathbf{a}^{\mathrm{T}} \cdot \dot{\mathbf{\delta}}} \Longrightarrow \lambda \ge \lambda_{\mathrm{c}}$$
(2.28)

.

2.4.3 - Teorema da unicidade

Descreve: se existe um fator λ que satisfaça os dois teoremas anteriores, ou seja, $\lambda = \lambda_c$, este atende, assim todas as condições necessárias (vistas anteriormente) para o colapso plástico.

Portanto, este fator será o *fator de colapso plástico* λ_c

2.4.4 - Geração dos modelos para a programação linear (PL)

Adotou-se, para o desenvolvimento de projetos de mínimo peso, um dos modelos de PL mostrados por Mello (1983), que usa o teorema estático com a descrição nodal. Na figura 2.5, descrevem-se as variáveis de projeto.

Fig. 2.5 - Exemplo de pórtico plano para a PL

O modelo de PL adotado para solução de mínimo peso foi o descrito para estruturas metálicas, mas seguem descrições usadas geralmente para estruturas de concreto e metálicas.

 \Rightarrow Para estruturas *metálicas*:

Deseja-se minimizar a função peso, vista na equação (2.29), baseada em (2.24).

$$\mathbf{G} = \mathbf{k} \cdot \mathbf{l}^{\mathrm{T}} \cdot \mathbf{m}_{\mathrm{d}} \tag{2.29}$$

onde:

- k constante;
- **l**^T vetor dos comprimentos da estrutura;
- $\mathbf{m}_{\mathbf{d}}$ vetor das variáveis de projeto.

Seguem-se, nas equações (2.30) e (2.31), as variáveis de projeto \mathbf{m}_d e a matriz de incidências \mathbf{J}_s para o exemplo dado na figura 2.5.

•
$$\Rightarrow \mathbf{m}_{\mathbf{d}} = \begin{bmatrix} \mathbf{m}_{d1} \\ \mathbf{m}_{d2} \end{bmatrix} \ge 0;$$
 (2.30)
• $\begin{bmatrix} \mathbf{m}_{p}^{+1} \\ \mathbf{m}_{p}^{+2} \\ \mathbf{m}_{p}^{+3} \\ \mathbf{m}_{p}^{+4} \\ \mathbf{m}_{p}^{+5} \\ \mathbf{m}_{p}^{+6} \\ \mathbf{m}_{p}^{+6} \\ \mathbf{m}_{p}^{+7} \\ \mathbf{m}_{p}^{+8} \end{bmatrix}_{(n\times1)} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}_{(n\times nd)} \cdot \begin{bmatrix} \mathbf{m}_{d1}^{+} \\ \mathbf{m}_{d2}^{+} \end{bmatrix}_{(nd\times1)} \Rightarrow \mathbf{m}_{p}^{+} = \mathbf{J}_{s}^{+} \cdot \mathbf{m}_{d}^{+}$ (2.31)
PERFIS LAMINADOS :
 $\mathbf{m}_{p}^{+} = \mathbf{m}_{p}^{-} = \mathbf{J}_{s} \cdot \mathbf{m}_{d}$

Na equação (2.32), é apresentado o modelo da PL aplicado no método.

$$\begin{array}{ll} \text{MIN} & \begin{bmatrix} \mathbf{I}^{\mathrm{T}} \vdots \mathbf{0}^{\mathrm{T}} \end{bmatrix} \\ & n \\ n \\ \mathbf{J}_{s} & -\mathbf{I} \\ \mathbf{J}_{s} & \mathbf{I} \\ \mathbf{0} & \mathbf{L} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{m}_{d} \\ \mathbf{m} \end{bmatrix} \geq \begin{bmatrix} \mathbf{0} \\ \mathbf{a}\lambda_{c} \end{bmatrix}$$

$$\begin{array}{l} n_{d} \\ n_{d} \\ \mathbf{m} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{a}\lambda_{c} \end{bmatrix}$$

$$\begin{array}{l} (2.32) \\ n_{d} \\ \mathbf{m} \\ \mathbf{m} \end{bmatrix} \geq \mathbf{0}$$

Onde:

n = numero de esforços seccionais independentes;

 β = numero de graus de liberdade;

a = vetor de ações solicitantes;

- \mathbf{J}_{s} = matriz de incidência das exigências de projeto;
- **I** = matriz identidade;
- **L** = matriz de equilíbrio;
- **m** = vetor de esforços solicitantes (sem restrição de valor)

 \Rightarrow Para estruturas de *concreto armado*:

A função peso adotada :

$$\mathbf{G} = \mathbf{k} \cdot \begin{bmatrix} \mathbf{I}_{d^{+}}^{\mathrm{T}} \vdots & \mathbf{I}_{d^{-}}^{\mathrm{T}} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{m}_{d}^{\mathrm{+}} \\ \mathbf{m}_{d}^{\mathrm{-}} \end{bmatrix} = \mathbf{k} \cdot \begin{bmatrix} \mathbf{I}_{d}^{\mathrm{T}} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{m}_{d} \end{bmatrix}$$
(2.33)

As variáveis de projeto são vistas na equação (2.34a,b).

$$\Rightarrow \mathbf{m}_{d}^{+} = \begin{bmatrix} \mathbf{m}_{d1}^{+} \\ \mathbf{m}_{d2}^{+} \\ \vdots \\ \mathbf{m}_{d(\mathbf{n}_{d}^{+})}^{+} \end{bmatrix}_{(\mathbf{n}_{d}^{+}\times 1)} \ge \mathbf{0}$$

$$\Rightarrow \mathbf{m}_{d}^{-} = \begin{bmatrix} \mathbf{m}_{d1}^{-} \\ \mathbf{m}_{d2}^{-} \\ \vdots \\ \mathbf{m}_{d(\mathbf{n}_{d}^{-})}^{-} \end{bmatrix}_{(\mathbf{n}_{d}^{-}\times 1)} \ge \mathbf{0} ;$$
(2.34a,b)

Os momentos plásticos obtidos em função da matriz de exigências de projeto são mostrados nas equações (2.35) e (2.36).

$$\begin{bmatrix} \mathbf{m}_{p}^{+1} \\ \mathbf{m}_{p}^{+2} \\ \mathbf{m}_{p}^{+3} \\ \mathbf{m}_{p}^{+4} \\ \mathbf{m}_{p}^{+5} \\ \mathbf{m}_{p}^{+5} \\ \mathbf{m}_{p}^{+7} \\ \mathbf{m}_{p}^{+8} \\ \mathbf{m}_{p}^{+8} \end{bmatrix}_{(n\times 1)} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix}_{(n\times n_{d}^{+})} \Rightarrow \mathbf{m}_{p}^{+} = \mathbf{J}_{c}^{+} \cdot \mathbf{m}_{d}^{+};$$
(2.35)
$$\begin{bmatrix} \mathbf{m}_{p}^{-1} \\ \mathbf{m}_{p}^{-2} \\ \mathbf{m}_{p}^{-3} \\ \mathbf{m}_{p}^{-4} \\ \mathbf{m}_{p}^{-5} \\ \mathbf{m}_{p}^{-6} \\ \mathbf{m}_{p}^{-7} \\ \mathbf{m}_{p}^{-8} \\ \mathbf{m}_{p}^{-8} \end{bmatrix}_{(n\times 1)} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix}$$
(2.36)

Segue em (2.37), o modelo empregado:

onde:

n = numero de esforços seccionais independentes;

 β = numero de graus de liberdade;

- **a** = vetor de ações solicitantes;
- \mathbf{J}_{c} = matriz de incidência das exigências de projeto;
- **I** = matriz identidade;
- **L** = matriz de equilíbrio.

2.5 – PROJETO VIA MÍNIMA NORMA EUCLIDIANA

A *Teoria de Inversas Generalizadas de Matrizes*, com suas aplicações para análise de estruturas, foi empregada por Mello (1980) para a obtenção de esforços solicitantes. O método trabalha com uma matriz de rigidez **K** que é substituída por uma matriz identidade **I**, de forma que ao projetar-se uma estrutura por mínima norma euclidiana não haverá a dependência das relações constitutivas do material.

O método determina uma inversa generalizada de mínima norma de um sistema de equações lineares visto na equação (2.38).

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b} \tag{2.38}$$

cuja solução, tenha a menor norma possível, sendo isto independente do vetor **b** (Mello, 1983) dada por (2.39a,b):

$$\mathbf{x}_{0} = \mathbf{A}^{-} \cdot \mathbf{b}$$

$$\|\mathbf{x}_{0}\| = \|\mathbf{A}^{-} \cdot \mathbf{b}\|$$
(2.39a,b)

onde:

 \mathbf{A}^{-} = inversa generalizada de \mathbf{A} .

Como existe a necessidade da resolução de um sistema de equações (2.38), deve-se comentar que existem 3 casos distintos a serem analisados:

\Rightarrow Caso 1

Apresenta condições: $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$, $r(\mathbf{A}) = n$ e dimensão das matrizes \mathbf{I}, \mathbf{A} : $(n \times n)$ Nessas condições existe uma única inversa \mathbf{A}^{-1} de forma que:

$$\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$$

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$$

$$\mathbf{A} \cdot \mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{A}$$

$$\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1}$$
(2.40a-d)

Tendo assim, uma única solução para a equação (2.38).

$$\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b} \tag{2.41}$$

Este tipo de situação corresponde a estruturas isostáticas.

 \Rightarrow Caso 2

• condições: $\mathbf{x}, \mathbf{b} \in \mathbb{R}^{n}$, $r(\mathbf{A}) < n$

Desta maneira a matriz A é quadrada e singular

• condições: $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{b} \in \mathbb{R}^{m}$ e m > n

A matriz **A** é retangular com m linhas e n colunas e as técnicas de solução levam a resolução de problemas de mínimos quadrados.

Para a mecânica estrutural este caso não é de interesse.

$$\Rightarrow$$
 Caso 3

• condições: $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^\beta$, $\beta < n \in r(\mathbf{A}) < \beta$

A matriz **A** é retangular com β linhas e n colunas

Esta situação ocorre para estruturas hiperestáticas. A solução é obtida segundo a teoria das inversas generalizadas, como visto anteriormente por \mathbf{A}^- . Rao (1971) apresenta uma formulação mostrando que existem várias inversas para matrizes retangulares, permitindo várias soluções que atendam o sistema. A solução é apresentada em função da mínima norma euclidiana de forma que pode haver mais de uma inversa generalizada reflexiva de mínima norma de \mathbf{A} , porém qualquer umas das inversas existentes conduzirá sempre a uma única solução \mathbf{x} de mínima norma do sistema de equações $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$.

A seguir, tem-se uma esquema das diferenças entre equações para as análises elástica e mínima norma euclidiana.

⇒ Elástica

$$\|\mathbf{m}\| = (\mathbf{m}^{\mathrm{T}} \cdot \mathbf{F} \cdot \mathbf{m})^{\frac{1}{2}}$$

$$\mathbf{m} = \mathbf{H}_{\mathrm{e}} \cdot \mathbf{a}$$
(2.42a-c)

$$\mathbf{H}_{\mathrm{e}} = \mathbf{K} \cdot \mathbf{L}^{\mathrm{T}} \cdot (\mathbf{L} \cdot \mathbf{K} \cdot \mathbf{L}^{\mathrm{T}})^{-1}$$

 \Rightarrow Euclidiana

$$\|\mathbf{m}_{f}\| = (\mathbf{m}_{f}^{T} \cdot \mathbf{m}_{f})^{\frac{1}{2}}$$

$$\mathbf{m}_{f} = \mathbf{H}_{f} \cdot \mathbf{a}$$
(2.43a-c)

$$\mathbf{H}_{f} = \mathbf{L}^{T} \cdot (\mathbf{L} \cdot \mathbf{L}^{T})^{-1}$$

Deve-se observar que:

 $H_{e} = \text{Inversa Generalizada Reflexiva de Mínima Norma Elástica de L ;}$ $H_{f} = \text{Inversa Generalizada Reflexiva de Mínima Norma Euclidiana de L ;}$

m = Norma dos esforços seccionais;

 $\|\mathbf{m}_{f}\|$ = Norma dos esforços seccionais, equilibrados com as cargas (**a**), de menor módulo possível;

 \mathbf{F} = Matriz de flexibilidade dos elementos desconexos, sendo que $\mathbf{K} = \mathbf{F}^{-1}$.

A solução da estrutura é feita por análise plástica limite adotando o modelo perfeitamente plástico visto na figura 2.6.

Fig. 2.6 - Relações constitutivas do modelo elástico-plástico

2.6 - ANÁLISE ESTÁTICA E MODAL DE ESTRUTURAS ATRAVÉS DO ANSYS

A análise da frequência natural e modo de vibração, que são de interesse para evitar a ocorrência problemas estruturais como a ressonância, foi feita empregando o software ANSYS (1995) que será utilizado também para a comparação dos esforços estáticos em regime elástico.

A resolução do sistema de equações simultâneas linear é feita pelo método de *solução frontal* ou *frente de onda* empregado no método dos elementos finitos. O número de equações que estão ativas depois de qualquer elemento ter sido processado durante a solução é chamado frente de onda (ANSYS, 1995).

As equações ativas são representadas por:

$$\sum_{j=1}^{L} K_{kj} \cdot u_{j} = F_{k}$$
(2.44)

onde:

 K_{kj} = rigidez do termo relacionando a força para o grau de liberdade k com o deslocamento para o grau de liberdade j;

u_j = deslocamento nodal do grau de liberdade j;

 F_k = força nodal do grau de liberdade k;

k = número da equação (linha);

j = número da coluna;

L = número de equações.

A formulação empregada pelo ANSYS na análise dinâmica modal é:

$$\mathbf{M} \cdot \ddot{\mathbf{u}} + \mathbf{K} \cdot \mathbf{u} = \mathbf{0} \tag{2.45}$$

Emprega-se, para as vibrações livres, um harmônico apresentado na equação (2.46).

$$\mathbf{u} = \boldsymbol{\phi}_1 \cos \omega_1 t \tag{2.46}$$

onde:

 ϕ_i = autovetor representando o modo de forma da i-ésima frequência natural

 ω_{1} = i-ésima frequência circular (radianos por unidade de tempo)

t = tempo

Substituindo-se (2.46) em (2.45), obtém-se a equação (2.47):

$$\left(-\omega_{i}^{2}\cdot\mathbf{M}+\mathbf{K}\right)\cdot\boldsymbol{\phi}_{i}=\mathbf{0}$$
(2.47)

A igualdade da equação (2.47) pode ser satisfeita se 1) ϕ_i é igual a zero ou 2) o determinante de $|\mathbf{K} - \omega^2 \cdot \mathbf{M}| = 0$ for zero. Quando ϕ_i é igual a zero tem-se a solução trivial, não sendo de interesse para engenharia. Assim, o segundo caso é apresentado na equação seguinte.

$$\mathbf{K} - \boldsymbol{\omega}^2 \cdot \mathbf{M} = 0 \tag{2.48}$$

Isto é um problema de autovalores que podem ser resolvidos para n valores de ω^2 e n autovetores ϕ_i que satisfazem a equação (2.47), onde n é o número de graus de liberdade.

As frequências naturais (f_i), obtidas em função das frequências circulares naturais, estão relacionadas segundo a equação (2.49).

$$f_{i} = \frac{\omega}{2\pi}$$
(2.49)

onde :

 f_{1} = i-ésima frequência natural (ciclos por unidade de tempo)

O software utiliza o elemento chamado *BEAM4 - 3-D*, que possui dois nós por elemento, 3 translações e 3 rotações por nó do elemento, a saber: Ux, Uy, Uz, ϕ_x , ϕ_y e ϕ_z que podem ser estudados em maiores detalhes no volume III dos manuais do ANSYS (1995).

Dentro da análise modal, existem os seguintes métodos que podem fazer a extração das frequências:

 \Rightarrow REDUC (Househoulder)

Para extração completa das matrizes reduzidas, sendo recomendado para qualquer caso a não ser casos que envolvem instabilidade. É um método relativamente mais rápido que o sub-espaço, pois emprega um pequeno grupo de graus de liberdade (graus de liberdade mestres) com uma matriz **M** condensada. A precisão da solução depende do grau de modelagem da matriz de massa condensada, ou seja, depende da discretização e

localização dos graus de liberdade mestres adotados. Uma característica do método é a necessidade do conhecimento prévio do comportamento da estrutura, para não haver uma escolha inadequada dos graus de liberdade mestres.

⇒ SUBSP (Iteração sub-espaço)

Para extração parcial ou completa das matrizes, sendo usado para qualquer caso.

⇒ UNSYM (Matriz assimétrica)

Para extração parcial ou completa das matrizes, sendo usado para matrizes não simétricas. Não serve para ser empregado nesta pesquisa.

 \Rightarrow DAMP (Sistema amortecido)

Para extração parcial ou completa das matrizes, sendo usado para sistemas amortecidos simétricos ou não simétricos. Não serve para ser empregado nesta pesquisa.

Os problemas de autovalor e autovetor são resolvidos para modo e frequência, apresentando a seguinte forma.

$$\mathbf{K} \cdot \mathbf{\phi}_{i} = \mathbf{\Lambda}_{i} \cdot \mathbf{M} \cdot \mathbf{\phi}_{i}$$
(2.50)

onde:

K = matriz de rigidez da estrutura;

 $\boldsymbol{\Phi}_{i}$ = autovetor;

 Λ_i = autovalor;

M = matriz de massa da estrutura.

Dentre os métodos comentados anteriormente, o de iteração sub-espaço foi o empregado neste presente trabalho devido a dar soluções para qualquer situação, sendo também ideal para situações onde requeiram altas precisões nos resultados ou quando a seleção de graus de liberdade mestres for inviável. A seguir é mostrado um resumo do funcionamento do método empregado.

2.6.1 - Iteração sub-espaço

O método desenvolvido por Bathe (1982), consiste em:

- Estabelecer um vetor de iteração inicial q , com q > p , onde p é o número de autovalores e vetores que serão calculados e q a dimensão do vetor q;
- Fazer a iteração inversa simultânea no vetor q e análise de Ritz para extrair a melhor aproximação para os autovetores e valores do vetor iteração q;
- Depois da convergência da iteração, usa-se a *sequência de Sturm* para verificar que autovalores requeridos e autovetores correspondentes foram calculados.

O objetivo básico na iteração sub-espaço é resolver para os menores autovalores p e correspondentes autovetores, satisfazendo a condição dada em (2.51).

$$\mathbf{K} \cdot \mathbf{\Phi} = \mathbf{M} \cdot \mathbf{\Phi} \cdot \mathbf{\Lambda} \tag{2.51}$$

Os autovetores também satisfazem as condições de ortogonalidade, que seguem:

$$\boldsymbol{\Phi}^{\mathrm{T}} \cdot \mathbf{K} \cdot \boldsymbol{\Phi} = \boldsymbol{\Lambda}$$

$$(2.52a,b)$$

$$\boldsymbol{\Phi}^{\mathrm{T}} \cdot \mathbf{M} \cdot \boldsymbol{\Phi} = \mathbf{I}$$

onde:

$$\boldsymbol{\Lambda} = \operatorname{diag}(\boldsymbol{\gamma}_i) e \boldsymbol{\Phi} = \left[\boldsymbol{\Phi}_i, \dots, \boldsymbol{\Phi}_p\right];$$
$$\boldsymbol{\Phi} = \text{autovetores.}$$

A iteração inversa simultânea num vetor **p** pode ser escrita da forma a seguir:

$$\mathbf{K} \cdot \mathbf{X}_{k+1} = \mathbf{M} \cdot \mathbf{X}_{k}; \ k = 1, 2, \dots$$
(2.53)

Necessita-se de um caminho para preservar a estabilidade numérica, isto é feito gerando uma base ortogonal dentro do sub-espaço E_{k+1} usando o processo de Gram-Schmidt, mostrado na equação (2.54) e (2.55):

$$\mathbf{K} \cdot \overline{\mathbf{X}}_{k+1} = \mathbf{M} \cdot \mathbf{X}_{k} \tag{2.54}$$

$$\mathbf{X}_{k+1} = \overline{\mathbf{X}}_{k+1} \cdot \mathbf{R}_{k+1}$$
(2.55)

onde:

 \mathbf{R}_{k+1} = matriz triangular superior

A matriz \mathbf{R}_{k+1} é escolhida de modo semelhante a:

$$\mathbf{X}_{k+1}^{\mathrm{T}} \cdot \mathbf{M} \cdot \mathbf{X}_{k+1} = \mathbf{I}$$
(2.56)

Assegurando-se que os vetores iniciais em \mathbf{X}_1 não são deficientes nos autovetores $\phi_1, \phi_2, \phi_3, ..., \phi_p$, obtém-se (2.57a,b):

$$\mathbf{X}_{k+1} \to \mathbf{\Phi}; \, \mathbf{R}_{k+1} \to \mathbf{\Lambda}$$
(2.57a,b)

O seguinte algoritmo, que chama-se *iteração sub-espaço*, encontra um vetor básico ortogonal em E_{k+1} convergindo para E_{∞} . Para uma solução completa tem-se:

• Para $k = 1, 2, \dots$, iterações de E_k para E_{k+1} , seguem as seguintes sequências de passos:

Da equação (2.54) segue-se encontrando projeções para K e M dentro de E_{k+1} .

$$\mathbf{K}_{k+1} = \overline{\mathbf{X}}_{k+1}^{\mathrm{T}} \cdot \mathbf{K} \cdot \overline{\mathbf{X}}_{k+1}$$
(2.58)

$$\mathbf{M}_{k+1} = \overline{\mathbf{X}}_{k+1}^{\mathrm{T}} \cdot \mathbf{M} \cdot \overline{\mathbf{X}}_{k+1}$$
(2.59)

Resolvendo para o sistema dos operadores projetados, chega-se a (2.60):

$$\mathbf{K}_{k+1} \cdot \mathbf{Q}_{k+1} = \mathbf{M}_{k+1}^{\mathrm{T}} \cdot \mathbf{Q}_{k+1} \cdot \mathbf{A}_{k+1}$$
(2.60)

Para obter uma melhor aproximação, tem-se em (2.61):

$$\mathbf{X}_{k+1} = \overline{\mathbf{X}}_{k+1} \cdot \mathbf{Q}_{k+1}$$
(2.61)

Fornecendo vetores em X_1 , de modo que não seja ortogonal para um dos autovetores requeridos, fica-se com:

• $\mathbf{\Lambda}_{k+1} \rightarrow \mathbf{\Lambda} \in \mathbf{X}_{k+1} \rightarrow \mathbf{\Phi} \quad \operatorname{com} k \rightarrow \infty$

A obtenção dos autovalores, ou seja, frequências naturais e autovalores, modos de vibração, é importante para evitar projetos de estruturas com frequências naturais próximas das frequências de excitação. A ressonância é um dos fenômenos que podem ocorrer devido a aproximação das frequências de excitação e natural, sendo que a estrutura apresentará desconforto até mesmo o colapso.

Com a formação das rótulas plásticas há mudanças nas frequências naturais da estrutura. Para se ter uma idéia da aproximação destas frequências às frequências típicas de estruturas comuns na engenharia, as tabelas B.1 e B.2, em anexo, apresentam um resumo de algumas frequências.

2.7 - FUNÇÃO CONVEXA DE REDISTRIBUIÇÃO DE ESFORÇOS SOLICITANTES

A função é uma combinação linear de duas soluções de esforços solicitantes em equilíbrio com as ações nodais, onde uma contempla o comportamento da estrutura em regime elástico e a outra no plástico. O método trabalha com parâmetros que permitem especificar qual o grau de redistribuição em relação à solução elástica, e as proporções das ações de cálculo que deverão ser resistidas em regime elástico e plástico (Mello, 1997).

Através da função convexa pode-se combinar as soluções elásticas e plásticas de modo a satisfazer aos dois estados limites de utilização e último.

O método discretiza o contínuo em elementos finitos de modo a se definir n seções críticas para o dimensionamento da estrutura, com isso obtém-se dois vetores: \mathbf{m}_1 esforços solicitantes em regime elástico e \mathbf{m}_2 em regime plástico. Baseado nos conceitos anteriormente citados nos itens 2.3, 2.4 e 2.5 que trata do regime elástico e plástico respectivamente, adota-se que a matriz de equilíbrio \mathbf{L} seja submetida a ações nodais características \mathbf{f} com as equações elástica (2.62a) e plástica (2.62b).

$$\mathbf{L} \cdot \mathbf{m}_1 = \mathbf{f}$$

$$\mathbf{L} \cdot \mathbf{m}_2 = \mathbf{f}$$
(2.62a,b)

Aplicando fatores de majoração nas equações (2.62a) e (2.62b), obtêm-se os vetores de esforços de cálculo \mathbf{m}_{d1} e \mathbf{m}_{d2} , vistos em (2.63a,b).

$$\mathbf{m}_{d1} = \gamma_1 \cdot \mathbf{m}_1$$

$$\mathbf{m}_{d2} = \gamma_2 \cdot \mathbf{m}_2$$
(2.63a,b)

Adota-se um vetor \mathbf{m}_d , como vetor de esforços resistentes para o dimensionamento das seções críticas, definido por uma função convexa em função de \mathbf{m}_{d1} e \mathbf{m}_{d2} .

$$\mathbf{m}_{d} = \mathbf{p} \cdot \mathbf{m}_{d1} + (1 - \mathbf{p}) \cdot \mathbf{m}_{d2}$$
(2.64)

onde: p = parâmetro que especifica a taxa de resistida no regime elástico e plástico.

1

Segue na figura 2.7, as funções convexas adotadas:

Fig. 2.7- Funções convexas

Tomando-se (2.63a,b) e substituindo-se em (2.64), obtêm-se:

$$\mathbf{m}_{d} = \mathbf{p} \cdot \boldsymbol{\gamma}_{1} \cdot \mathbf{m}_{1} + (1 - \mathbf{p}) \cdot \boldsymbol{\gamma}_{2} \cdot \mathbf{m}_{2}$$
(2.65)

Multiplicando-se a equação (2.65) pela matriz de equilíbrio L, chega-se a :

$$\mathbf{L} \cdot \mathbf{m}_{d} = \mathbf{p} \cdot \boldsymbol{\gamma}_{1} \cdot \mathbf{L} \cdot \mathbf{m}_{1} + (1 - \mathbf{p}) \cdot \boldsymbol{\gamma}_{2} \cdot \mathbf{L} \cdot \mathbf{m}_{2}$$
(2.66)

Baseando-se nas equações: (2.62a,b) e (2.66), observa-se que:

$$\mathbf{L} \cdot \mathbf{m}_{d} = (\mathbf{p} \cdot \boldsymbol{\gamma}_{1} + (\mathbf{l} - \mathbf{p}) \cdot \boldsymbol{\gamma}_{2}) \cdot \mathbf{f}$$
(2.67)

onde γ em (2.68) é o fator de majoração das ações características **f**, cujo valor é especificado por normas segundo a natureza e tipo de ações.

$$\gamma = \mathbf{p} \cdot \boldsymbol{\gamma}_1 + (1 - \mathbf{p}) \cdot \boldsymbol{\gamma}_2 \tag{2.68}$$

Com estas relações Mello (1997) aplica a redistribuição relativa à solução elástica em pórticos planos, sendo descrita a seguir.

Cria-se um vetor de diferenças entre a solução elástica e a solução de esforços resistentes para o dimensionamento das seções críticas, apresentado em (2.69):

$$\delta \mathbf{m}_{\mathrm{d}} = \boldsymbol{\gamma} \cdot \mathbf{m}_{\mathrm{1}} - \mathbf{m}_{\mathrm{d}} \tag{2.69}$$

Baseando-se em (2.65) e (2.68), a equação (2.69) ficará com a seguinte forma:

$$\boldsymbol{\delta m}_{d} = (\boldsymbol{\gamma} - \mathbf{p} \cdot \boldsymbol{\gamma}_{1}) \cdot (\mathbf{m}_{1} - \mathbf{m}_{2})$$
(2.70)

Adotando-se um vetor diferença entre a solução elástica \mathbf{m}_1 e a plástica \mathbf{m}_2 , obtêm-se a equação (2.71).

$$\delta \mathbf{m} = \mathbf{m}_1 - \mathbf{m}_2 \tag{2.71}$$

Adotando o índice k da componente de maior amplitude em (2.71) e tomando as equações (2.69), (2.70) e (2.71) são obtidas as seguintes equações vistas em (2.72a) e (272b).

$$\boldsymbol{\delta m} k = \boldsymbol{m}_1 k - \boldsymbol{m}_2 k$$

$$\boldsymbol{\gamma} \cdot \boldsymbol{m}_1 k - \boldsymbol{m}_d k = (\boldsymbol{\gamma} - \boldsymbol{p} \cdot \boldsymbol{\gamma}_1) \cdot \boldsymbol{\delta m} k = \boldsymbol{\delta m}_d$$
(2.72a,b)

onde:

k = índice da componente de maior amplitude do vetor δm .

Com o desenvolvimento do método são obtidas as expressões usadas para redistribuição:

$$i_{k} = (\gamma \cdot \mathbf{m}_{1}k - \mathbf{m}_{d}k)/(\gamma \cdot \mathbf{m}_{1}k)$$

$$q_{k} = (\mathbf{m}_{1}k / \delta \mathbf{m}k) \cdot i_{k}$$
(2.73a,b)

sendo:

 i_k = taxa correspondente a maior amplitude em relação a solução elástica.

Tomando-se as equações (2.72b) e (2.73a) chega-se a:

$$p \cdot \gamma_{1} = (1 - q_{k}) \cdot \gamma$$

$$(1 - p) \cdot \gamma_{2} = q_{k} \cdot \gamma$$

$$(2.74a,b)$$

Substituindo-se (2.74a) e (2.74b) em (2.65) é obtida a equação (2.75):

$$\mathbf{m}_{d} = \left(\left(1 - q_{k} \right) \cdot \mathbf{m}_{1} + q_{k} \cdot \mathbf{m}_{2} \right) \cdot \gamma$$
(2.75)

que deve atender as seguintes restrições em (2.76a,b):

$$0 \le \mathbf{q}_k \le 1, \ 0 \le \mathbf{i}_k \le \mathbf{\delta m} k / \mathbf{m}_1 k \tag{2.76a,b}$$

A equação (2.75) foi aplicada neste presente trabalho, não considerando fatores de majoração das cargas diferentes para a solução elástica e plástica, mostrados na equação (2.68).

2.8 - ANÁLISE ELASTO-PLÁSTICA - MÉTODO INCREMENTAL

O método de análise elasto-plástica incremental determina o fator de carga de colapso plástico por sucessivas análises elásticas, onde para cada incremento verifica-se a ordem de formação das rótulas e suas respectivas seções. O aparecimento de cada rótula, modifica a rigidez do membro, ou seja, a matriz **K** que terá o mesmo tamanho, mas com alguns elementos alterados; porém as matrizes de equilíbrio **L** e rotação **R** não são alteradas. Desta maneira é utilizado o modelo de análise elástica analítico mostrado no item 2.3, que pode facilmente fazer as modificações na matriz de rigidez do elemento.

No modelo elasto-plástico, despreza-se o trecho curvo, sendo elástico até o momento plástico (Mp) e perfeitamente plástico para incrementos de curvatura (k), visto na figura 2.8.

Fig. 2.8 - Diagrama do momento-curvatura no modelo elasto-plástico

Wang (por exemplo, Harrison, 1973) descreveu um modelo de análise para pórticos planos demonstrando a aplicação do método. A descrição deste segue:

Fig. 2.9 - Modelo de análise elasto-plástica incremental

Descrição dos passos mostrados na figura 2.9:

- Ao aplicar-se uma carga P (passo a), faz-se a 1^a análise elástica da estrutura, determinando-se os esforços. Nos locais onde ocorrerem os momentos máximos formarse-ão as rótulas, visto no passo b;
- Nesta fase, fazem-se as mudanças das rigidezes nos elementos onde se formaram as rótulas e depois aplica-se a 2ª análise elástica na estrutura modificada (passo b), então formam-se novos diagramas de esforços;
- Detectam-se os novos esforços máximos, as novas rótulas e fazem-se as novas alterações na matriz de rigidez **K**, nos elementos onde se formaram as rótulas (passo c);
- O processo segue com novas análises elásticas para determinação dos esforços, rótulas e mudanças na matriz de rigidez do elementos até que a estrutura fique hipostática.

Os processos que podem ser empregados para controlar a quantidade de análises desenvolvidas são:

- Atingir grandes deformações;
- Matriz de rigidez torna-se singular;
- Fator de carga muito pequeno, sendo que este envolve um fator de carga mínimo.

Como o presente trabalho envolve estruturas de pórticos espaciais com seis esforços agindo na seção do elemento visto na figura 2.1, ou seja, 2 momentos fletores, 1 momento torçor, 2 esforços cortantes e 1 esforço axial; ocorrem interações entre os esforços, porém devido ao não conhecimento das curvas de interações para todos os esforços, será adotado o modelo de flexão obliqua composta para pilares que é transformado em flexão normal composta segundo o item 4.1.1.3-A da norma NB1/78, sendo mostrado na figura 2.10.

Fig. 2.10 - Transformação da flexão obliqua composta em normal composta

No modelo adotado na figura 2.10, as armaduras terão que ser iguais nas 4 faces, sendo testado em cada passo da análise elasto-plástica incremental, o estado de flexão normal composta equivalente. Para as vigas adota-se a flexão simples ou normal composta.

Vemos a sequência dos passos em (2.77a,b) necessários para análise, sendo que o coeficiente β está tabelado na figura 10 da NB1 (1978).

$e_{h,eq} = e_{h} + \beta \frac{h}{b} e_{b}$	
$\omega \ \rightarrow \ \beta \ \rightarrow \ e_{h,eq} \ \rightarrow \ M_d \ = \ N_d \ \cdot \ e_{h,eq} \ \rightarrow \ A_s \ \rightarrow \ \rho \ \rightarrow \ \omega$	(2.7/a,b)
$\uparrow____________________________________$	

A implementação computacional da análise como flexão normal composta será feita segundo o modelo que trabalha com equações das curvas de resistência do concreto aos esforços $v - \mu$, região estaticamente admissível para a seção retangular não-armada e as equações das curvas de resistência equivalentes para a seção armada que foi apresentado por Mello (1992). Posteriormente, verifica-se a capacidade de rotação plástica da estrutura segundo os critérios de norma como por exemplo: NB1 e CEB, sendo empregado o modelo, desenvolvido por Mello (1995), que aborda o assunto do ponto de vista cinemático, em conformidade com os encurtamentos do concreto e alongamento da armadura previstos nos domínios de dimensionamento do CEB e NB1.

CAPÍTULO 3

REDISTRIBUIÇÃO DE ESFORÇOS SOLICITANTES EM PÓRTICOS ESPACIAIS

3.1 - INTRODUÇÃO

Como descrito, anteriormente, o critério de redistribuição adotado neste presente trabalho necessita de duas soluções, uma elástica e outra plástica. Sendo assim, foram desenvolvidos programas (ver figura 3.2) de análise linear elástica, via mínima norma euclidiana e criado um gerador de PL automático para o critério de mínimo peso, identificando a 1ª fase (*fase de projeto*). Nesta fase é feita a análise elástica para obtenção dos esforços e verificação do estado limite de utilização e a 2ª fase (*fase de redistribuição*) determina uma solução de esforços redistribuídos baseados na função convexa de redistribuição condicionada a solução elástica (Mello, 1997). O dimensionamento (estado limite último) é baseado numa das soluções redistribuídas obtidas por mínimo peso ou mínima norma euclidiana.

Na 3^ª fase, faz-se a análise incremental da estrutura e a verificação da capacidade de rotação plástica da solução redistribuída. Depois disto passa-se para o processo de análise modal da estrutura redistribuída, para a obtenção das frequências naturais e modos de vibração.

Para o entendimento dos fluxogramas, seguem as instruções usadas nestes:

- Início e fim de programa ou subrotina
- Entrada de dados
- Instrução
- Subrotina

- Controle condicional
- Controle iterativo

 \bigcirc

Fig. 3.1- Instruções usadas em programas de cálculo automático

Segue o fluxograma das fases comentadas:

Fig. 3.2 Fluxograma da redistribuição de esforços solicitantes

3.2 - IMPLEMENTAÇÃO COMPUTACIONAL

No desenvolvimento dos programas do presente trabalho, utilizou-se a linguagem FORTRAN, com o compilador PowerStation Fortran 4.0 da Microsoft, sendo que para a

solução via projeto de mínimo peso, empregou-se o programa comercial LINDO (otimizador discreto, linear e interativo) da LINDO Systems.

Foram desenvolvidos os seguintes programas:

- Programa de análise elástica 3D e mínima norma euclidiana;
- Programa para geração automática do modelo de programação linear para o mínimo peso ser executado no LINDO;
- Programa para geração automática da saída do LINDO, como uma entrada para o programa de redistribuição;
- Programa de redistribuição de esforços solicitantes;
- Programa de análise incremental e capacidade de rotula plástica da estrutura.

Baseado no fluxograma da figura 3.2 descreveremos a seguir os programas desenvolvidos:

3.2.1 - Programa para análise elástica 3D e mínima norma euclidiana

Dentro do programa foram empregadas matrizes de rigidez \mathbf{K} do elemento desconexo para a incorporação de rótulas antes e durante a fase de plastificação da estrutura. Seguem os casos possíveis (por exemplo, Harrison, 1973):

• elemento desconexo com as duas extremidades engastadas

Fig. 3.3 - Elemento desconexo biengastado

Segue a matriz de rigidez :

$$\begin{bmatrix} T_{m} \\ MAB_{2m} \\ MBA_{2m} \\ MBA_{2m} \\ MBA_{ym} \\ Q_{m} \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{4EI_{z}}{L} & \frac{2EI_{z}}{L} & 0 & 0 & 0 \\ 0 & \frac{2EI_{z}}{L} & \frac{4EI_{z}}{L} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{4EI_{y}}{L} & \frac{2EI_{y}}{L} & 0 \\ 0 & 0 & 0 & \frac{4EI_{y}}{L} & \frac{2EI_{y}}{L} & 0 \\ 0 & 0 & 0 & \frac{2EI_{y}}{L} & \frac{4EI_{y}}{L} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{GI_{x}}{L} \end{bmatrix}$$
(3.1)

• elemento desconexo com a extremidade esquerda rotulada e a direita engastada

Fig. 3.4 - Elemento desconexo rotulado e engastado

Segue a matriz de rigidez modificada :

• elemento desconexo com a extremidade direita rotulada e a esquerda engastada

Fig. 3.5 - Elemento desconexo engastado e rotulado

Segue a matriz de rigidez modificada :

• elemento desconexo com a extremidade direita rotulada e a esquerda rotulada

Fig. 3.6 - Elemento desconexo rotulado e rotulado

Segue a matriz de rigidez modificada:

Segue a descrição das subrotinas do programa de análise elástica 3D e mínima norma euclidiana.

As subrotinas são apresentadas na figura 3.7 e têm as seguintes funções:

<u>ENTRA</u>: esta subrotina tem a função de ler do arquivo de entrada de dados (ARQ. ENTRADA), em formato ASCII, os dados relativos à estrutura, como por exemplo: geometria, condições de contorno, cargas aplicadas nos membros e (ou) nodais, propriedades físicas, tipos elementos, análise empregada: elástica ou plástica etc.

<u>SBAND</u> : subrotina que calcula a semi-largura de banda da matriz de rigidez global **S**.

<u>**RIGID</u></u> : subrotina que calcula a matriz de rigidez K**, equilíbrio **L** e rotação **R** dos elementos desconexos e monta a matriz de rigidez global da estrutura **S**.</u>

 \underline{AEXT} : subrotina que incorpora cargas atuantes no(s) membro(s), transformado-as em cargas nodais equivalentes da estrutura.

<u>CARGAS</u> : subrotina que monta o vetor de cargas aplicadas nos nós da estrutura.

<u>CONTOR</u> : subrotina que aplica as condições de contorno da estrutura analisada.

Fig. 3.7- Fluxograma do programa para análise elástica 3D

SISTEMA : subrotina que resolve o sistema de equações da estrutura.

<u>RESUL</u> :subrotina que calcula os esforços seccionais e reações nodais da estrutura.

SAIDA : subrotina que gera a saída de resultados elásticos ou plásticos da estrutura.

<u>SAEL</u> : subrotina que gera uma saída de resultados elásticos para o programa de redistribuição.

<u>SAPL</u> : subrotina que gera uma saída de resultados plásticos para o programa de redistribuição.

<u>FLEMAX</u> :subrotina que compara os deslocamentos calculados com os permitidos pelas normas.

3.2.2 - Programa para geração automática do modelo de PL do mínimo peso

O modelo de PL é feito para pórticos planos e pórticos espaciais separadamente, sendo que as variáveis de projeto para cada elemento são:

- Pórticos planos: T_m, MAB_{zm}, MBA_{zm} (ver figura 2.3);
- Pórticos espaciais: T_m, MAB_{zm}, MBA_{zm}, MAB_{ym}, MBA_{ym}, Q_m (ver figura 2.3).

Segue o fluxograma do programa desenvolvido:

Fig. 3.8- Fluxograma do programa para geração automática do modelo de PL

Segue-se a descrição das funções das subrotinas do programa de geração automática do modelo de PL para o mínimo peso.

<u>ENTRA</u>: esta subrotina têm a função de ler do arquivo de entrada de dados (ARQ. ENTRADA), em formato ASCII, os dados relativos à estrutura, como por exemplo: geometria, condições de contorno, número de esforços seccionais independentes, cargas nodais, propriedades físicas, tipos elementos, variáveis de projeto aplicadas, fator de cargas etc.

<u>LGLOB</u> : subrotina que monta a matriz de equilíbrio **R** x **L** global da estrutura.

<u>CARGAS</u> : subrotina que monta o vetor de cargas aplicadas nos nós da estrutura.

<u>CONTOR</u> : subrotina que aplica as condições de contorno para a retirada das linhas da matriz L global da estrutura relacionadas com os vínculos da estrutura.

<u>MATRIZ_C</u> : subrotina que monta a matriz de comprimentos.

<u>MATRIZ_CT</u> : subrotina que monta a matriz transposta de comprimentos.

MATRIZ_IDNU : subrotina que monta a matriz identidade da estrutura.

<u>MATRIZ ZJS</u> : subrotina que monta a matriz das incidências das variáveis de projeto da estrutura.

<u>MONPL</u> : subrotina que monta o modelo de PL do teorema estático com descrição nodal (Mello, 1983).

<u>SAIDA</u> : subrotina que gera a saída do modelo de PL, segundo a entrada do LINDO.

3.2.3 - Programa para geração automática da saída do LINDO, como uma entrada para o programa de redistribuição

Fig. 3.9- Fluxograma do programa para geração automática de entrada para redistribuição vinda da solução do mínimo peso

Segue a descrição das funções da subrotinas desenvolvidas no programa.

<u>ENTRADA</u>: esta subrotina têm a função de ler do arquivo de entrada de dados (ARQ. ENTRADA), em formato ASCII, os resultados vindos software LINDO para a solução do mínimo peso.

<u>SAIDA</u> : subrotina que gera a saída da solução de mínimo peso que torna-se entrada para o programa de redistribuição.

3.2.4 - Programa de redistribuição de esforços solicitantes

A redistribuição é feita nos esforços seccionais independentes : T_m , MAB_{zm} , MBA_{zm} , MAB_{ym} , MBA_{ym} , Q_m (ver figura 2.3). A descrição das subrotinas é baseada no fluxograma da figura 3.10, a seguir:

Fig. 3.10- Fluxograma do programa de redistribuição

<u>ND</u> : dimensão da estrutura: (1) plano e (2) espaço.

<u>NC</u> : quantidade de combinações para força axial e momentos.

COMB(I,1) : número da combinação.

ENTEL : subrotina que recebe a solução elástica da estrutura.

ENTPL : subrotina que recebe a solução plástica da estrutura.

<u>REDIST</u> : subrotina que faz a redistribuição de esforços solicitantes da estrutura.

<u>SAIDA</u> : subrotina que gera a saída de resultados da solução redistribuída.

3.2.5 - Programa de análise incremental e capacidade de rotação plástica da estrutura

Na análise incremental adotaram-se os seguintes critérios básicos:

- Quando ocorre a formação da rótula plástica devido a um dos momentos solicitantes na seção, adota-se que esta se formou em todas as direções da seção;
- Na formação da rótula plástica, existem duas situações de interação entre o esforço normal e os momentos: 1) levar em conta o esforço normal, testando a variação do seu valor numérico em cada fase da formação das rótulas plásticas ou 2) não levar em conta o seu valor numérico, retirando-o da matriz de rigidez do elemento juntamente com os momentos;

Na verificação da capacidade de rotação plástica, baseada no método desenvolvido por Mello (1995), adotou-se para valor limite a rotação plástica total da seção, sem deduzir a rotação elástica.

Para o cálculo do fator de carga de colapso plástico da estrutura foram empregados duas abordagens tratadas, ou seja, flexão simples (item A.2) e flexão normal composta (item A.3). Seguem as equações para determinação do fator de carga.

Tomando as equações (A.22), (A.23), (A.27a,b), (A.24a,b) e (A.25a,b):

$$R_n = \frac{1}{2} \cdot q \cdot h \left[v_d - f v(\alpha) \right]$$
 (A.22)

$$R_m = \frac{1}{2} \cdot q \cdot h \left[\mu_d - f\mu(\alpha)/4k_z \right]$$
 (A.23)

$$A_{s1} \ge \frac{R_1}{\sigma_{s1}}, A_{s2} \ge \frac{R_2}{\sigma_{s2}}$$
(A.27a,b)

$$e_{1d} = v_d + \mu_d/4k_z$$
, $e_{2d} = v_d - \mu_d/4k_z$ (A.24a,b)

$$f_{e1}(\alpha) = f_{\nu}(\alpha) + f_{\mu}(\alpha)/4k_z , f_{e2}(\alpha) = f_{\nu}(\alpha) - f_{\mu}(\alpha)/4k_z$$
(A.25a,b)

Empregando as equações (A.22), (A.23) e (A.27a,b), obtém-se:

$$R_{1} = \frac{q \cdot h}{2} \cdot [e_{1d} - f_{e1}(\alpha)], R_{2} = \frac{q \cdot h}{2} \cdot [e_{2d} - f_{e2}(\alpha)]$$
(3.5a,b)

$$As_1 \cdot \sigma s_1 \ge R_1, \ As_2 \cdot \sigma s_2 \ge R_2 \tag{3.6a,b}$$

Desenvolvendo-se as equações (3.5a,b) e (3.6a,b), chega-se a:

$$\omega_{1} \cdot kys_{1} \geq \frac{0.85}{2} \cdot [e_{1d} - f_{e1}(\alpha)], \ \omega_{2} \cdot kys_{2} \geq \frac{0.85}{2} \cdot [e_{2d} - f_{e2}(\alpha)]$$
(3.7a,b)

Onde:

$$\sigma s_1 = ky s_1 \cdot fyd, \ \sigma s_2 = ky s_2 \cdot fyd, \ \omega_1 = \frac{As_1 \cdot fyd}{b \cdot h \cdot fcd} \ e \ \omega_2 = \frac{As_2 \cdot fyd}{b \cdot h \cdot fcd}$$
(3.8a,b,c,d)

Empregando-se as equações (A.24a) e (A.24b) e desenvolvendo-as, obtém-se:

$$e_{1d} = \gamma_1 . [\nu_k + \mu_k/4k_z], e_{2d} = \gamma_2 . [\nu_k - \mu_k/4k_z]$$
(3.9a,b)

Relacionando as equações (3.7a,b) e (3.9a,b), chegam-se aos fatores de carga para seção:

$$\gamma_{1} \leq \frac{\frac{0.85}{2} \cdot \omega_{1} \cdot kys_{1} + f_{e1}(\alpha)}{e_{1k}}$$
(3.10)

$$\gamma_2 \leq \frac{\frac{0.85}{2} \cdot \omega_2 \cdot \text{kys}_2 + f_{e2}(\alpha)}{e_{2k}}$$
(3.11)

Para a obtenção do fator de carga da seção toma-se o menor dos dois fatores obtidos.

$$\gamma^{\text{seção}} = \min(\gamma_1, \gamma_2) \tag{3.12}$$

O fator de carga em cada incremento é obtido como o menor fator para todas as seções analisadas.

$$\gamma = \min\left(\gamma^{\text{seccal}}, \gamma^{\text{seccal}}, \dots, \gamma^{\text{seccal}}\right)$$
(3.13)

Existe no caso da flexão simples uma simplificação que ocorre devido a não ocorrência de armadura secundária obrigatória (As₁), com isso tem-se a taxa mecânica ($\omega_1 = 0$). Baseando-se na equação (3.7a), obtém-se que:

$$\gamma \cdot \mathbf{e}_{1k} = \mathbf{f}_{e1} \tag{3.14}$$

Para flexão simples não existe força axial (N_d), portanto:

$$v_{d} = \frac{N_{d}}{q \cdot h} = 0 \tag{3.15}$$

Desenvolvendo-se as equações (A.24a) e (A.24b), chega-se a:

$$e_{1d} = -e_{2d}$$
 (3.16)

Substituindo-se a equação (3.15) em (3.7b), obtém-se :

$$\omega_2 \cdot kys_2 \ge \frac{0.85}{2} \cdot \left[-\gamma \cdot e_{1k} - f_{e2}(\alpha) \right]$$
(3.17)

Desenvolvendo-se a equação (3.17), determina-se:

$$-\frac{\omega_2 \cdot kys_2}{\frac{0.85}{2}} = \cdot [\gamma \cdot e_{1k} + f_{e2}(\alpha)]$$
(3.18)

Empregando-se a equação (3.14) em (3.18), obtém-se:
$$-\frac{\omega_2 \cdot \mathbf{kys}_2}{\frac{0.85}{2}} = \cdot [\mathbf{f}_{e_1}(\alpha) + \mathbf{f}_{e_2}(\alpha)]$$
(3.19)

Desenvolvendo-se a equação (3.19) e baseando-se nas equações (A.25a,b), fica-se com:

$$-\frac{\omega_2 \cdot \mathbf{kys}_2}{\frac{0.85}{2}} = 2 \cdot \alpha \tag{3.20}$$

Para flexão simples a linha neutra adotada (α_x) é menor que a linha neutra entre os domínios 3 e 4 (α_x lim), ou seja, $\alpha_x \le \alpha_x$ lim, com isso, tem-se kys₂=-1,0.

Aplicando-se os valores arbitrados, obtém-se da equação (3.20):

$$\alpha = \frac{\omega_2}{0.85} \tag{3.21}$$

Se as condições arbitradas forem atendidas o fator de carga da seção será:

$$\gamma^{\text{seção}} = \frac{f_{e1}(\alpha)}{e_{1k}}$$
(3.22)

Segue a descrição do programa que foi desenvolvido da seguinte maneira: no fluxograma da figura 3.11 a descrição da fase inicial do programa em que é feita a análise elástica, no fluxograma 3.12 descreve-se a fase da formação das rotulas plásticas na estrutura, seguindo a figura 3.13 que descreve as subrotinas existentes dentro da subrotina RIGID.

Fig. 3.11- Fluxograma do programa de análise incremental e da capacidade de rotação plástica - fase elástica

Fig. 3.12- Fluxograma da obtenção do fator de carga da fase analisada

Fig. 3.13- Fluxograma das subrotinas existentes dentro da subrotina RIGID

Segue a descrição das funções e comandos existentes nos fluxogramas, nas figuras 3.11, 3.12 e 3.13:

• para o fluxograma da figura 3.11:

Tem as mesmas funções existentes no programa de análise elástica, descritas anteriormente no item 3.2.1

• para o fluxograma da figura 3.12:

<u>FTY</u> : fator de carga (flexão composta e simples) calculado com o momento na direção Y do sistema de eixos local do elemento.

 \underline{FTZ} : fator de carga (flexão composta e simples) calculado com o momento na direção Z do sistema de eixos local do elemento.

<u>G0Z, G0Y</u> : fator de carga calculado para a seção secundária da estrutura nas direções Y e Z do sistema local.

<u>G1Z, G1Y</u> : fator de carga calculado para a seção principal da estrutura nas direções Y e Z do sistema local.

FAT : fator de carga final da seção do elemento.

<u>ACT</u> : menor fator de carga entre todas as seções dos elementos analisadas.

<u>PM</u>: momento plástico fictício para encontrar a seção onde formou a rótula plástica.

<u>AMD</u> : momento característico da seção analisada.

PHIC: rotação plástica da seção analisada.

<u>PHIL</u>: rotação plástica limite da seção analisada.

<u>FNC</u> : esta subrotina faz o cálculo do fator de carga da estrutura considerando a flexão normal composta ou simples usando a formulação de cálculo proposta por Mello (1992).

<u>FNO</u> : esta subrotina transforma o caso de flexão oblíqua em flexão normal composta adotando o critério da norma NB1/78.

• para o fluxograma da figura 3.13:

(): transferência de valores para a subrotina.

<u>NDF</u> : numero de graus de liberdade por nó. <u>NN</u> : numero de nós da estrutura. <u>NE, NEL</u> : numero de elementos da estrutura.

 \underline{N} : numero de graus de liberdade total da estrutura.

<u>MS</u> : semi-largura de banda da matriz de rigidez da estrutura.

 \underline{P} : vetor de armazenamento das cargas nodais.

<u>TK</u> : matriz de rigidez global da estrutura.

MATRIZ_K(NEL) : subrotina que monta a matriz de rigidez do elemento desconexo.

MATRIZ_L(NEL) : subrotina que monta a matriz de equilíbrio do elemento desconexo.

<u>MATRIZ_LT(NEL)</u> : subrotina que monta a matriz transposta de equilíbrio do elemento desconexo.

MATRIZ_K(NEL) : subrotina que monta a matriz de rigidez do elemento desconexo.

<u>MATRIZ_LKLT(NEL)</u> : subrotina que monta a matriz produto $\mathbf{L} \times \mathbf{K} \times \mathbf{L}^{\mathrm{T}}$ do elemento desconexo.

<u>MATRIZ S(NEL)</u> : subrotina que monta a matriz produto $\mathbf{R} \times \mathbf{L} \times \mathbf{K} \times \mathbf{L}^{T} \times \mathbf{R}^{T}$ do elemento desconexo.

MONTAGEM(NEL) : subrotina que monta a matriz TK de rigidez global da estrutura

CAPITULO 4

EXEMPLOS NUMÉRICOS

4.1 - INTRODUÇÃO

Os exemplos numéricos foram retirados da literatura e foram feitas alterações e inclusões em algumas propriedades como seções, carregamentos, resistências características, módulo de elasticidade do aço, módulo de elasticidade do concreto para padronizar os valores das estruturas projetadas. A hipótese básica, adotada, é de projetar estruturas baseadas na solução redistribuída para desenvolvimento de projetos mais econômicos determinando o fator de carga de colapso plástico desta estrutura, limitado pela capacidade de rotação plástica; e as frequências naturais e modos de vibração ao longo do processo de formação das rótulas.

Foram aplicados os critérios da norma NB1, item 4.2.3.1, alínea c e sub-item a para deslocamentos máximos vertical, onde a flecha máxima, medida a partir do plano que contém os apoios, para vãos sem balanços é L/300 e com balanços é L/150, sendo L o comprimento do vão; para o deslocamento horizontal adotou-se H/400, usado normalmente para estruturas de aço, sendo aplicado neste trabalho para estruturas de concreto devido não existir um critério segundo a NB1.

Para a obtenção do fator de carga de estruturas de concreto depende-se das armaduras das seções que são dimensionadas pelo esforços de cálculo, com k variando de 1 a n (número total de esforços), onde γ é fator de majoração da ações, cujo valor é 1,4, não levando diferentes fatores para as soluções plástica e elástica (ver equação (2.68)).

$$Md_k = \gamma \cdot M_k \tag{9.1}$$

Foram calculadas as armaduras para as seções do elemento em função dos esforços de cálculo e arbitrada a de maior valor para todo o elemento.

4.2- EXEMPLOS

4.2.1 - Exemplo 4.1

Considere a viga engastada mostrada na figura 4.1. Para a verificação da possibilidade ou não de redistribuição dos esforços solicitantes para cada estrutura analisada em função das soluções plásticas adotadas, neste exemplo mostra-se que a solução elástica é igual as soluções plásticas por mínimo peso e mínima norma euclidiana adotadas. O modelo adotado tem 2 elementos e 3 nós e na tabela 4.1, são apresentadas as propriedades da estrutura.

Fig. 4.1 - Viga engastada

Discretização dos elementos					
ELEMENTO NÓ INICIAL (A)			NÓ FINAI	L (B)	
(1)	1	2			
(2)	2				
Características da estrutura					
Descrição			Valor adotado	Unidade	
E _s (Módulo de Elasticidade do aço)- CA50A			201,037 x 10 ⁶	kN/m ²	
E _c (Módulo de deformação longitudinal do concreto)			31,57 x 10 ⁶	kN/m ²	
G _c (Módulo de Elasticidade tra		12,628 x 10 ⁶	kN/m ²		
Fyk (Resistência característica	4	490,335 x 10 ³	kN/m ²		
b (Largura da seção)		0,15	m		
h (Altura total da seção)			0,30	m	

 Tabela 4.1 - Propriedades da estrutura (exemplo 4.1)

d (Altura útil da seção)	0,28	m
Iy (Inércia em torno do eixo Ym local)	84,375 x 10 ⁻⁶	m^4
Iz (Inércia em torno do eixo Zm local)	337,5 x 10 ⁻⁶	m^4
A (área da seção)	0,045	m^2
P (Carga concentrada)	29,42	kN
L (Comprimento total do vão)	6,00	m

Mostra-se, na tabela 4.2, os resultados elásticos, do software ANSYS e do programa desenvolvido, dos deslocamentos nodais.

		Deslo	ocamentos nodais elá	sticos
Nós	Tipo	Ux	Uy	Uz
		Rx	Ry	Rz
	ANGVG	0,0000	0,0000	0,0000
1	ANSIS	0,0000	0,0000	0,0000
1	Drograma	0,0000	0,0000	0,0000
	Flograma	0,0000	0,0000	0,0000
	ANSVS	0,0000	-,003106	0,0000
2	ANSIS	0,0000	0,000	0,0000
2	Drograma	0,0000	-,003106	0,0000
	Tiograma	0,0000	0,0000	0,0000
	ANSVS	0,0000	0,0000	0,0000
3	ANSIS	0,0000	0,0000	0,0000
	Programa	0,0000	0,0000	0,0000
	Programa	0,0000	0,0000	0,0000

 Tabela 4.2 - Deslocamentos nodais (exemplo 4.1)

Na tabela 4.3, tem-se a comparação dos deslocamentos máximos obtidos com os deslocamentos permitidos pela norma NB1, atendendo assim, ao estado limite de utilização.

Nó	Deslocamento vertical			
2	máximo	0,003106	norma	0,020000

Tem-se, na tabela 4.4, a comparação dos resultados obtidos para a solução elástica, redistribuída e plástica, respectivamente.

Flemento	Nó	Solução		E	Esforços s	olicitante	S	
Liemento	110	Solução	Tm	Vym	Vzm	Qm	Mym	Mzm
		Elástica	0,000	14,710	0,000	0,000	0,000	22,065
	1	Redistribuição	0,000	14,710	0,000	0,000	0,000	22,065
1		Plástica	0,000	14,710	0,000	0,000	0,000	22,065
1	2	Elástica	0,000	-14,710	0,000	0,000	0,000	22,065
		Redistribuição	0,000	-14,710	0,000	0,000	0,000	22,065
		Plástica	0,000	-14,710	0,000	0,000	0,000	22,065
		Elástica	0,000	-14,710	0,000	0,000	0,000	-22,065
2	2	Redistribuição	0,000	-14,710	0,000	0,000	0,000	-22,065
		Plástica	0,000	-14,710	0,000	0,000	0,000	-22,065
		Elástica	0,000	14,710	0,000	0,000	0,000	22,065
	3	Redistribuição	0,000	14,710	0,000	0,000	0,000	22,065
		Plástica	0,000	14,710	0,000	0,000	0,000	22,065

Tabela 4.4 - Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.1)

Neste caso a solução plástica, tanto para mínima norma euclidiana (MN) e mínimo peso (MP) adotadas, são iguais à solução elástica da estrutura, não ocorrendo a redistribuição dos esforços, porém ocorrerá a redistribuição adotando-se uma solução de mínimo peso não linear ou uma solução via critério de mínima norma euclidiana, modificando os valores dos esforços, de modo que obtenha-se uma nova configuração de equilíbrio com os carregamentos.

4.2.2 - Exemplo 4.2

Considere a viga continua apresentada por Sussekind (1991), com 5 elementos e 6 nós discretizados na figura 4.2, com carregamentos concentrados e momentos, apresentando seção retangular com largura b e altura h. As propriedades da estrutura são mostradas na tabela 4.5.

Fig. 4.2 - Viga continua

	Discretização dos elementos					
ELEMENTO	NÓ INICIAL (A)		NÓ FINAL (B)			
(1)	1		2			
(2)	2		3			
(3)	3		4			
(4)	4		5			
(5)	5		6			
Características da estrutura						
Descrição			Valor adotado Unida			
E _s (Módulo de Elasticidade do aço)- CA50A			201,037 x 10 ⁶			
E _c (Módulo de deformação lor	gitudinal do concreto)	31,57 x 10 ⁶ kN		kN/m ²		
G _c (Módulo de Elasticidade tra	ansversal do concreto)		12,628 x 10 ⁶	kN/m ²		
Fck (Resistência característica	do concreto)	19613,40 kl		kN/m ²		
Fy _k (Resistência característica do aço)			490,335 x 10 ³	kN/m ²		
b (Largura da seção)			0,20	m		
h (Altura total da seção)			0,60	m		
d (Altura útil da seção)			0,585	m		

 Tabela 4.5 - Propriedades da estrutura (exemplo 4.2)

Iy (Inércia em torno do eixo Ym local)	400,00 x 10 ⁻⁶	m^4
Iz (Inércia em torno do eixo Zm local)	3600,00 x 10 ⁻⁶	m^4
A (área da seção)	0,12	m^2
M (Carga momento)	29,45	kN.m
P (Carga concentrada)	39,226	kN
L (Comprimento total do vão)	6,00	m

Mostra-se, na tabela 4.6, os resultados elásticos dos deslocamentos nodais.

NÓ	UX	UY	UZ
NO	RX	RY	RZ
1	0,00000	0,00000	0,00000
1	0,00000	0,00000	0,00000
n	0,00000	-0,00061	0,00000
2	0,00000	0,0000	-0,00007
2	0,00000	0,00000	0,00000
5	0,00000	0,00000	0,00030
Λ	0,00000	0,00072	0,00000
4	0,00000	0,00000	0,00022
5	0,00000	0,00000	0,00000
5	0,00000	0,00000	-0,00118
6	0,00000	-0,00329	0,00000
0	0,00000	0,00000	-0,00187

 Tabela 4.6 - Deslocamentos nodais (exemplo 4.2)

Na tabela 4.7, tem-se a comparação dos deslocamentos nodais da estrutura com os critérios estabelecidos pela norma NB1, sendo assim, atendido o estado limite de utilização.

Nó	Deslocamento vertical				
6	máximo	0,00329	norma	0,01333	

 Tabela 4.7 - Deslocamentos máximos (exemplo 4.2)

Para a solução plástica via mínimo peso testaram-se 3 tipos de casos, adotando-se as variáveis de projeto, na tabela 4.8, segundo o modelo para pórtico plano (item 3.2.2).

Elemento	Caso	Variáveis de projeto					
		Tm	MA _{zm}	MB _{zm}	MA _{ym}	MB _{ym}	Qm
	1	6	1	1			
1	2	5	1	1	-	-	-
	3	3	1	1			
	1	6	2	2			
2	2	5	1	1	-	-	-
	3	3	1	1			
	1	6	3	3			
3	2	5	2	2	-	-	-
	3	3	1	1			
	1	6	4	4			
4	2	5	2	2	-	-	-
	3	3	1	1			
	1	6	5	5			
5	2	5	3	4	-	-	-
	3	3	1	2			

Tabela 4.8 - Variáveis de projeto da estrutura (exemplo 4.2)

A tabela 4.9, mostra o peso total da estrutura e as características da redistribuição.

 Tabela 4.9 - Peso total e características de redistribuição (exemplo 4.2)

Tipo	Peso total	Região de redistribuição	Taxa de redistribuição (i _k)
Caso 1	748,7021	0,00%	0,00
Caso 2	1083,926	[0,00%; 7862,53%*]	20,00%
Caso 3	1510,628	[0,00%; 365,56%]	20,00%

(*) A relação i_k apresentou um valor pequeno no divisor em relação ao dividendo (ver equação 2.73a)

O critério para a escolha do caso via mínimo peso é que tenha o menor peso e possa ser feita a redistribuição, assim, o caso que atende ao critério é o caso 2, visto na tabela 4.9 . É mostrado, na tabela 4.10, a comparação dos resultados obtidos para a solução elástica (E), redistribuída (RMP) e plástica via mínima peso (PMP) do caso 2, respectivamente.

ELEMENTO	NÓ	TIPO	Tm	Mym	Mzm
		E	0,0000	0,0000	40,6313
	1	RMP	0,0000	0,0000	40,6215
1		PMP	0,0000	0,0000	36,7800
1		Е	0,0000	0,0000	35,0254
	2	RMP	0,0000	0,0000	35,0299
		PMP	0,0000	0,0000	36,7800
		Е	0,0000	0,0000	-35,0254
	2	RMP	0,0000	0,0000	-35,0299
2		PMP	0,0000	0,0000	-36,7800
2		Е	0,0000	0,0000	-6,9959
	3	RMP	0,0000	0,0000	-7,0717
		PMP	0,0000	0,0000	-36,7800
		Е	0,0000	0,0000	6,9959
	3	RMP	0,0000	0,0000	7,2526
3		PMP	0,0000	0,0000	107,9020
5		Е	0,0000	0,0000	1,3900
	4*	RMP	0,0000	0,0000	1,1120
		PMP	0,0000	0,0000	-107,9020
		E	0,0000	0,0000	-1,3900
Δ	4	RMP	0,0000	0,0000	-1,1120
		PMP	0,0000	0,0000	107,9020
T		E	0,0000	0,0000	-107,9020
	5	RMP	0,0000	0,0000	-107,9020
		PMP	0,0000	0,0000	-107,9020

Tabela 4.10-Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.2) - RMP

		Е	0,0000	0,0000	78,4520
	5	RMP	0,0000	0,0000	78,4520
5		PMP	0,0000	0,0000	107,9020
5		Е	0,0000	0,0000	0,0000
	6	RMP	0,0000	0,0000	0,0000
		PMP	0,0000	0,0000	0,0000

(*) Seção de controle do valor máximo da redistribuição

Pode-se observar que na solução redistribuída, baseada na solução plástica via mínimo peso, não ocorreu a inversão do sinal dos esforços solicitantes, sendo que os nós 5 e 6 do elemento 5, como representam um balanço, não ocorre a redistribuição dos esforços solicitantes.

Na tabela 4.11, tem-se a comparação dos resultados obtidos para a solução elástica (E), redistribuída (RMN) e plástica via mínima norma euclidiana (PMN), respectivamente. A região permissível de redistribuição obtida foi de 0,00% a 16,23%, e a taxa de redistribuição (i_k) adotada de 8,00%.

ELEMENTO	NÓ	TIPO	Tm	Mym	Mzm
		Е	0,0000	0,0000	40,6313
	1*	RMN	0,0000	0,0000	37,3808
1		PMN	0,0000	0,0000	34,0361
1		Е	0,0000	0,0000	35,0254
	2	RMN	0,0000	0,0000	34,5378
		PMN	0,0000	0,0000	34,0361
	2	E	0,0000	0,0000	-35,0254
2	2	RMN	0,0000	0,0000	-34,5378
	2	PMN	0,0000	0,0000	-34,0361
	3	E	0,0000	0,0000	-6,9959
	3	RMN	0,0000	0,0000	-11,2216
	3	PMN	0,0000	0,0000	-15,5696

Tabela 4.11-Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.2) - RMN

		E	0,0000	0,0000	6,9959
	3	RMN	0,0000	0,0000	11,2216
3		PMN	0,0000	0,0000	15,5696
5		E	0,0000	0,0000	1,3900
	4	RMN	0,0000	0,0000	-0,7228
		PMN	0,0000	0,0000	-2,8968
		E	0,0000	0,0000	-1,3900
	4	RMN	0,0000	0,0000	0,7228
4		PMN	0,0000	0,0000	2,8968
·	5	Е	0,0000	0,0000	-107,9020
		RMN	0,0000	0,0000	-107,9020
		PMN	0,0000	0,0000	-107,9020
		Е	0,0000	0,0000	78,4520
	5	RMN	0,0000	0,0000	78,4520
5		PMN	0,0000	0,0000	78,4520
		E	0,0000	0,0000	0,0000
	6	RMN	0,0000	0,0000	0,0000
		PMN	0,0000	0,0000	0,0000

(*) Seção de controle do valor máximo da redistribuição

A redistribuição via mínima norma euclidiana (RMN), mostrada na tabela 4.11, com a taxa de 8%, mostra a possibilidade da inversão dos sinais dos esforços solicitantes, ocorrendo isto para o elemento 3 com nó 4, e o elemento 4 com nó 4. Portanto, na ocorrência da redistribuição dos esforços solicitantes poderá haver problemas na estrutura se não tiver sido dimensionada prevendo a inversão do sinal dos esforços.

As análises incrementais da estrutura redistribuída, ora por solução plástica via mínima norma euclidiana ora por mínimo peso, junto com o teste da capacidade de rotação plástica da seção, são vistos na tabela 4.12. Os deslocamentos são mostrados para o nó de maior deslocamento na solução elástica em relação a norma, acompanhando a formação das rótulas plásticas.

Rótula	Tipo	Fator de	Nó	Uy (m)	Capacidade de rotação plástica			olástica
Plástica		carga			Elemento	Nó	Cálculo	Norma
1	RMN	1,624	6	0,00534	4	5	0,00192	0,0147
1	RMP	1,624	6	0,00534	4	5	0,00192	0,0147

 Tabela 4.12 - Resultados da análise incremental (exemplo 4.2)

O gráfico da figura 4.3, representa o fator de carga x deslocamentos verticais para o nó 6

Fig. 4.3- Gráfico carga x deslocamentos verticais (Uy) do nó 6 (exemplo 4.2)

O fator de carga λ_c é maior que o fator de majoração γ , assim a estrutura fica dentro dos limites estabelecidos para o projeto. Os fatores de carga da estrutura redistribuída via mínima norma euclidiana e mínimo peso foram iguais devido a necessidade da adequação das armaduras de acordo com os critérios da norma NB1.

A análise das frequências naturais foram feitas acompanhando o processo de formação das rótulas plásticas e são vistas na tabela 4.13. O 1° modo de vibração é representado na figura 4.4. Tal modo prevalece até antes do colapso plástico.

Número de	Tipo	Elemento	Nó	Frequência
Rótulas plásticas				(Hz)
0	RMN	-	-	27,078
0	RMP	-	-	27,078
1	RMN	4	5	0,000
1	RMP	4	5	0,000

Tabela 4.13-Resultados da análise de frequências naturais (exemplo 4.2)

Fig. 4.4- Gráfico do 1º modo de vibração da estrutura - Geometria inicial (exemplo 4.2) -(RMN e RMP)

A plastificação da estrutura ocorreu na mesma seção para as duas soluções redistribuídas. As dimensões das seções dos elementos foram as mesmas para as soluções via mínimo peso e via mínima norma euclidiana, com isso as frequências naturais também foram as mesmas para os dois casos, devido a não haver alteração das propriedades da matriz de massa. O colapso plástico da estrutura ocorreu ao formar-se a 1^a (primeira) rótula devido ao nó 5 fazer parte do balanço.

Neste exemplo, conclui-se que a redistribuição em relação aos dois critérios apresentou diferenças quanto ao valor limite de redistribuição e inversão dos sinais dos esforços solicitantes, porém quanto ao fator de carga de colapso plástico e frequências naturais foram os mesmos valores, sendo que as frequências naturais obtidas podem ser comparadas com às frequências de excitação mostradas no anexo B, com as tabelas B.1 e B.2. Pode-se observar que a frequência natural não se aproxima dos valores das frequências de excitação para as estruturas usuais.

4.2.3 - Exemplo 4.3

Considere o pórtico espacial apresentado por Gere & Wever (1987), com 5 elementos e 6 nós discretizados na figura 4.5, com carregamentos concentrados e momentos, apresentando seção retangular representados por largura b e altura h. As propriedades da estrutura são motradas na tabela 4.14.

Fig. 4.5- Pórtico espacial Gere & Wever

Discretização dos elementos					
ELEMENTO	NÓ INICIAL (A)		NÓ FINAL (B)		
(1)	1		5		
(2)	5		2		
(3)	3		1		
(4)	1		6		
(5)	6		4		
Características da estrutura					
Descrição			Valor adotado	Unidade	
E _s (Módulo de Elasticidade do aço)- CA50A			201,037 x 10 ⁶	kN/m ²	

 Tabela 4.14 - Propriedades da estrutura (exemplo 4.3)

E _c (Módulo de Elasticidade longitudinal do concreto)	31,57 x 10 ⁶	kN/m ²
G _c (Módulo de Elasticidade transversal do concreto)	12,628 x 10 ⁶	kN/m ²
Fc _k (Resistência característica do concreto)	19613,40	kN/m ²
Fy _k (Resistência característica do aço)	490,335 x 10 ³	kN/m ²
b (Largura da seção)	0,20	m
h (Altura total da seção)	0,40	m
d (Altura útil da seção)	0,385	m
Iy (Inércia em torno do eixo Ym local)	266,667 x 10 ⁻⁶	m^4
Iz (Inércia em torno do eixo Zm local)	1066,667 x 10 ⁻⁶	m^4
Ix (Inércia em torno do eixo Xm local)	732,80 x 10 ⁻⁶	m^4
A (área da seção)	0,08	m^2
P (Carga concentrada)	22,2411	kN
L (Comprimento total do vão)	3,00	m

Mostra-se, na tabela 4.15, os resultados elásticos dos deslocamentos nodais.

NÓ	UX	UY	UZ
	RX	RY	RZ
1	-0,000001	-0,000020	-0,000082
	-0,000541	0,000019	-0,000640
2	0,000000	0,000000	0,000000
	0,000000	0,000000	0,000000
3	0,000000	0,000000	0,000000
	0,000000	0,000000	0,000000
4	0,000000	0,000000	0,000000
	0,000000	0,000000	0,000000
5	0,000234	-0,000245	-0,000363
	0,000166	0,000234	-0,000020
6	-0,001284	-0,001972	0,000277
	0,000047	0,000037	0,000208

 Tabela 4.15 - Deslocamentos nodais (exemplo 4.3)

Na tabela 4.16, tem-se a comparação dos deslocamentos nodais da estrutura com as especificações da norma NB1, sendo assim, atendido o estado limite de utilização.

Nó	Deslocamento horizontal - Uz							
5	máximo	0,000363	norma	0,009000				
Nó		Deslocamento horizontal - Ux						
6	máximo	0,001284	norma	0,003000				
Nó	Deslocamento vertical - Uy							
6	máximo	0,001972	norma	0,026667				

 Tabela 4.16 - Deslocamentos máximos (exemplo 4.3)

Para a solução plástica via mínimo peso, testou-se 3 tipos de casos adotando-se as variáveis de projeto, na tabela 4.17, tipo pórtico espacial (item 3.2.2), segundo o modelo mostrado na equação (2.37).

Elemento	Caso	Variáveis de projeto					
		Tm	MA _{zm}	MB _{zm}	MAym	$\mathrm{MB}_{\mathrm{ym}}$	Qm
	1	11	1	1	2	2	12
1	2	9	1	1	2	2	10
	3	3	1	1	2	2	4
	1	11	3	3	4	4	12
2	2	9	1	1	2	2	10
	3	3	1	1	2	2	4
	1	11	5	5	6	6	12
3	2	9	3	3	4	4	10
	3	3	1	1	2	2	4
	1	11	7	7	8	8	12
4	2	9	5	5	6	6	10
	3	3	1	1	2	2	4
	1	11	9	9	10	10	12
5	2	9	7	7	8	8	10
	3	3	1	1	2	2	4

 Tabela 4.17 - Variáveis de projeto da estrutura (exemplo 4.3)

A tabela 4.18, mostra o peso total da estrutura e a as características da redistribuição.

Tipo	Peso total	Região de redistribuição*	Taxa de redistribuição (i _k)
Caso 1	118,7196	[0,00%; 208,34%]	20,00%
Caso 2	118,7196	[0,00%; 208,34%]	20,00%
Caso 3	302,1773	[0,00%; 206,70%]	20,00%

 Tabela 4.18 - Peso total e características de redistribuição (exemplo 4.3)

(*) ver equação (2.73a)

O critério para a escolha do caso via mínimo peso é o que tenha o menor peso. Como, neste caso, existem duas soluções com pesos iguais, definiu-se por aquela que tenha o maior número de variáveis de projeto, ou seja, caso 1, visto na tabela 4.17. É mostrado, na tabela 4.19, os valores da variáveis de projeto e na tabela 4.20, a comparação dos resultados obtidos para a solução elástica (E), redistribuída (RMP) e plástica via mínima peso (PMP), respectivamente.

Elemento	Variáveis de projeto							
	Tm	MA _{zm}	MA _{ym}	Qm				
		MB _{zm}	\mathbf{MB}_{ym}					
1	31,1790	8,3400	0,0000	0,0000				
1		8,3400	0,0000					
2	31,4883	8,3400	0,0000	0,0000				
2		8,3400	0,0000					
2	31,4883	0,0000	0,0000	0,0000				
5		0,0000	0,0000					
4	31,4883	3,7542	12,1941	0,0000				
4		3,7542	12,1941					
5	31,4883	3,7542	12,1941	0,0000				
		3,7542	12,1941					

Tabela 4.19 - Valores das variáveis de projeto da estrutura (exemplo 4.3) - RMP

Neste exemplo, o processo de redistribuição é mostrado na tabela 4.22. Os esforços axiais das barras não foram levados em conta no dimensionamento das armaduras.

ELEMENTO	NÓ	TIPO	T _m	M_{ym}	M _{zm}
		Е	15,72066	-4,49045	-12,2197
	1	RMP	11,21840	-4,05940	-10,2460
1		PMP	-31,17900	0,00000	8,34000
1		E	-15,72066	1,123606	13,20106
	5	RMP	-17,20460	1,01570	12,73440
		PMP	-31,17900	0,00000	8,34000
		E	29,06526	-1,12361	-13,20110
	5*	RMP	23,25220	-1,01570	-12,73440
2		PMP	-31,48830	0,00000	-8,34000
		E	-29,06526	-2,24324	-19,1790
	2	RMP	-29,29790	-2,0279	-18,1385
		PMP	-31,48830	0,0000	-8,34000
		Е	20,95790	1,234045	3,705783
	3	RMP	15,92310	1,1156	3,35000
3		PMP	-31,48830	0,0000	0,00000
5		E	-20,95790	2,493937	7,879484
	1	RMP	-21,96880	2,2545	7,12310
		PMP	-31,48830	0,0000	0,00000
		Е	14,12923	-7,46395	-3,38386
	1	RMP	9,75001	-7,9180	-2,69860
1		PMP	-31,48830	-12,1941	3,75420
+		Е	-14,12923	-13,3702	5,655626
	6	RMP	-15,79570	-13,2573	5,47310
		PMP	-31,48830	-12,1941	3,75420
		Е	26,29845	13,37022	-5,65563
	6	RMP	20,75100	13,2573	-5,47310
5		PMP	-31,48830	12,1941	-3,75420
5		E	-26,29845	14,57393	-7,08530
	4	RMP	-26,79670	14,3455	-6,76550
		PMP	-31,48830	12,1941	-3,75420

 Tabela 4.20-Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.3) - RMP

(*) Seção de controle do valor máximo da redistribuição

Na solução redistribuída, baseada na solução plástica via mínimo peso, não ocorreu a inversão dos sinais dos esforços. Como a região de redistribuição é grande (ver tabela 4.18) comparada com a taxa de redistribuição de 20%, os valores redistribuídos são próximos da solução elástica (ver tabela 4.20).

Na tabela 4.21, tem-se a comparação dos resultados obtidos para a solução elástica (E), redistribuída (RMN) e plástica via mínima norma euclidiana (PMN), respectivamente. A região permissível de redistribuição obtida foi de 0,00% a 354,79%, e a taxa de redistribuição (i_k) adotada de 20,00%.

ELEMENTO	NÓ	TIPO	Tm	M_{ym}	M _{zm}
		E	15,72066	-4,490447	-12,219661
	1	RMN	15,33030	-4,4692	-12,2601
1		PMN	8,79584	-4,113467	-12,937529
1		E	-15,72066	1,123606	13,201061
	5	RMN	-15,33030	1,09263	13,1046
		PMN	-8,79584	0,57414	11,490525
		E	29,06526	-1,123606	-13,201061
	5	RMN	28,67490	-1,09263	-13,1046
2		PMN	22,14044	-0,57414	-11,490525
2		Е	-29,06526	-2,243235	-19,179038
	2	RMN	-28,67490	-2,28393	-19,4124
		PMN	-22,14044	-2,965188	-23,317978
		E	20,95790	1,234045	3,705783
	3*	RMN	20,71540	1,09385	2,96463
3		PMN	16,65566	-1,252991	-9,441846
5		E	-20,95790	2,493937	7,879484
	1	RMN	-20,71540	2,29684	7,41502
		PMN	-16,65566	-1,002498	-0,359755

Tabela 4.21-Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.3) - RMN

		Е	14,12923	-7,463954	-3,383856
	1	RMN	13,82790	-7,41024	-2,76511
4		PMN	8,78456	-6,511113	7,592306
•		E	-14,12923	-13,370217	5,655626
	6	RMN	-13,82790	-13,4241	5,63348
		PMN	-8,78456	-14,32554	5,262826
		Е	26,29845	13,370217	-5,655626
	6	RMN	25,99720	13,4241	-5,63348
5		PMN	20,95379	14,32554	-5,262826
C C		E	-26,29845	14,573933	-7,085279
	4	RMN	-25,99720	14,5199	-6,51082
		PMN	-20,95379	13,616127	3,105284

(*) Seção de controle do valor máximo da redistribuição

Na redistribuição via mínima norma euclidiana (RMN), vista na tabela 4.21, com a taxa de 20%, não acontece a inversão dos sinais dos esforços solicitantes, porém isto pode ocorrer ao aproximar-se a solução redistribuída da solução plástica. Neste exemplo, o valor máximo de redistribuição para a solução via mínima norma euclidiana é maior que o de mínimo peso.

As análises incrementais da estrutura redistribuída, ora por solução plástica via mínima norma euclidiana ora por mínimo peso, com o teste da capacidade de rotação plástica da seção, são vistos na tabela 4.22.

Rotula	Tipo	Fator de	Nó	Desl.	Capacidade de rotação plástica			
Plástica		carga		(m)	Elemento	Nó	Cálculo	Norma
1	RMN	1,598	6	-0,00315	5	4	0,00000	0,01540
1	RMP	1,598	6	-0,00315	5	4	0,00000	0,01540
2	RMN	2,100	6	-0,00602	2	2	0,00000	0,01420
	RMP	2,100	6	-0,00602	2	2	0,00000	0,01420

 Tabela 4.22 - Resultados da análise incremental (exemplo 4.3)

3	RMN	2,557	6	-0,01033	1	1	0,00260	0,01420
5	RMP	2,557	6	-0,01033	1	1	0,00260	0,01420

O gráfico da figura 4.6 representa o fator de carga x deslocamentos verticais para o nó 6

Fig. 4.6 - Gráfico carga x deslocamentos verticais (Uy) do nó 6 (exemplo 4.3)

O fator de carga λ_c é maior que o fator de majoração γ , ficando a estrutura esta dentro dos limites estabelecidos para o projeto. Os fatores de carga da estrutura redistribuída via mínima norma euclidiana e mínimo peso foram iguais devido a necessidade da adequação das armaduras de acordo com os critérios da norma NB1/78.

A análise das frequências naturais foi feitas para acompanhar o processo de formação das rótulas plásticas e os resultados são vistos na tabela 4.23. Os 1° modos de vibração (figura 4.7) são representados até antes do colapso plástico.

Número de	Tipo	Elemento	Nó	Frequência
Rótulas plásticas				(Hz)
0	RMN	-	-	20,113
	RMP	-	-	20,113
1	RMN	5	4	14,039
1	RMP	5	4	14,039
2	RMN	2	2	13,531
2	RMP	2	2	13,531
3	RMN	1	1	12,297
	RMP	1	1	12,297

 Tabela 4.23-Resultados da análise de frequências naturais (exemplo 4.3)

Fig. 4.7- Gráfico do 1º modo de vibração da estrutura (exemplo 4.3) - (RMN e RMP)

As plastificações da estrutura ocorreram nas mesmas seções para as duas soluções redistribuídas e não houve alteração da massa da estrutura em relação à solução via mínimo peso e via mínima norma euclidiana, portanto as frequências naturais foram as mesmas para os dois tipos. Conclui-se, para este exemplo que a estrutura atendeu aos dois estados limites, de utilização e último. As frequências naturais obtidas, foram satisfatórias em relação às frequências de excitação dos movimentos humanos, porém, observa-se que as frequências naturais em relação às de excitação promovidas por máquinas ficaram dentro da faixa estipulada (ver tabelas B.1 e B.2).

4.2.4 - Exemplo 4.4

Considera-se um pórtico espacial apresentado por Harrison (1973), com 3 elementos e 4 nós discretizados na figura 4.8, com carregamento concentrado, apresentando seção retangular representados por largura b e altura h. As propriedades da estrutura são mostradas na tabela 4.25.

Fig. 4.8 - Pórtico espacial Harrison

Discretização dos elementos								
ELEMENTO NÓ INICIAL (A)			NÓ FINAL (B)					
(1)	1		2					
(2)	2	2 3						
(3)	3	4						
	Características da estrut	ura						
Descriç	ão	,	Valor adotado	Unidade				
E _s (Módulo de Elasticidade do	aço) - CA50A		201,037 x 10 ⁶	kN/m ²				
E _c (Módulo de deformação los	ngitudinal do concreto)		31,57 x 10 ⁶	kN/m ²				
G _c (Módulo de Elasticidade tra	ansversal do concreto)		12,628 x 10 ⁶	kN/m ²				
Fck (Resistência característica	do concreto)		19613,40	kN/m ²				

Tabela 4.24- Propriedades da estrutura (exemplo 4.4)

Fy _k (Resistência característica do aço)	490,335 x 10 ³	kN/m ²
b (Largura da seção)	0,30	m
h (Altura total da seção)	0,60	m
d (Altura útil da seção)	0,585	m
Iy (Inércia em torno do eixo Ym local)	1350,00 x 10 ⁻⁶	m^4
Iz (Inércia em torno do eixo Zm local)	5400,00 x 10 ⁻⁶	m^4
Ix (Inércia em torno do eixo Xm local)	3710,00 x 10 ⁻⁶	m^4
A (área da seção)	0,18	m^2
P (Carga concentrada)	9,807	kN
L (Comprimento total do vão)	12,00	m

Mostra-se, na tabela 4.25, os resultados elásticos dos deslocamentos nodais.

NÓ	UX	UY	UZ
	RX	RY	RZ
1	0,000000	0,000000	0,000000
1	0,000000	0,000000	0,000000
2	0,000000	-0,022129	-0,007634
Z	-0,001945	0,000868	-0,002676
2	0,008048	-0,000006	-0,007636
3	-0,001374	0,000449	-0,001366
4	0,000000	0,000000	0,000000
4	0,000000	0,000000	0,000000

Tabela 4.25 - Deslocamentos nodais (exemplo 4.4)

Na tabela 4.26, tem-se a comparação dos deslocamentos nodais da estrutura com as especificações de norma.

Nó	Deslocamento horizontal - Uz							
3	máximo	norma	0,024000					
Nó		Deslocamento horizontal - Ux						
3	máximo	0,008048	norma	0,024000				
Nó	Deslocamento vertical - Uy							
2	máximo	0,022129	norma	0,040000				

Tabela 4.26 - Deslocamentos máximos (exemplo 4.4)

Para a solução plástica via mínimo peso, testou-se 2 tipos de casos adotando-se as variáveis de projeto na tabela 4.27, para pórtico espacial (item 3.2.2), segundo o modelo mostrado na equação (2.37).

Elemento	Caso	Variáveis de projeto					
Liemento	Caso	Tm	MA _{zm}	MB _{zm}	MA _{ym}	MB _{ym}	Qm
1	1	7	1	1	2	2	8
1	2	3	1	1	2	2	4
2	1	7	3	3	4	4	8
2	2	3	1	1	2	2	4
3	1	7	5	5	6	6	8
5	2	3	1	1	2	2	4

 Tabela 4.27 - Variáveis de projeto da estrutura (exemplo 4.4)

A tabela 4.28, mostra o peso total da estrutura e a as características da redistribuição.

Tipo	Peso total	Região de redistribuição*	Taxa de redistribuição (i_k)
Caso 1	1412,773	[0,00%; 100,00%]	20,00%
Caso 2	1412,773	[0,00%; 51,64%]	20,00%

 Tabela 4.28 - Peso total e características de redistribuição (exemplo 4.4)

(*) ver equação (2.73a)

Neste caso, existem duas soluções com pesos iguais e definiu-se por analisar as duas devido a peculiaridade do exemplo. As variáveis de projeto do caso 1 são vistas na tabela 4.27. É mostrado, na tabela 4.29, os valores das variáveis de projeto e na tabela 4.30, a comparação dos resultados obtidos para a solução elástica (E), redistribuída (RMP1) e plástica via mínima peso (PMP1) para o caso 1, respectivamente.

Tabela 4.29 - Valores das variáveis de projeto da estrutura (exemplo 4.4) - RMP1

	Variáveis de projeto							
Elemento	Tm	MA _{zm}	MA _{ym}	Qm				
		MB _{zm}	\mathbf{MB}_{ym}					
1	0,000	117,731	0,000	0,000				
1	0,000	117,731	0,000	0,000				

2	0,000	0,000	0,000	0,000
2	0,000	0,000	0,000	0,000
2	0,000	0,000	0,000	0,000
5	0,000	0,000	0,000	0,000

Tabela 4.30-Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.4)-RMP1

ELEMENTO	NÓ	TIPO	T _m	M _{ym}	M _{zm}
		Е	-0,04382	-7,39145	81,15151
	1	RMP1	-0,03506	-5,91316	88,46740
1		PMP1	0,00000	0,00000	117,73100
1		Е	0,04382	-1,22605	5,11469
	2	RMP1	0,03506	-0,98084	27,63790
		PMP1	0,00000	0,00000	117,73100
2		Е	0,71813	1,22605	-7,59343
	2	RMP1	0,57450	0,98084	-6,07475
		PMP1	0,00000	0,00000	0,00000
	3	Е	-0,71813	-1,751909	-23,82437
		RMP1	-0,57450	-1,40153	-19,05950
		PMP1	0,00000	0,00000	0,00000
		Е	2,61815	-5,11469	23,82437
3	3*	RMP1	2,09452	-4,09175	19,05950
		PMP1	0,00000	0,00000	0,00000
		Е	-2,61815	4,58883	-15,20689
	4	RMP1	-2,09452	3,67106	-12,16550
		PMP1	0,00000	0,00000	0,00000

(*) Seção de controle do valor máximo da redistribuição

A solução plástica obtida, para o caso 1, apresentou esforços solicitantes não nulos, somente para o elemento 1, portanto, maximizou a solução como se existisse somente este elemento. Para a solução redistribuída não ocorreu a inversão do sinal dos esforços, apresentando os valores redistribuídos próximos da solução elástica (ver tabela 4.30), devido a taxa de redistribuição ser pequena comparada com o seu valor máximo permitido.

As variáveis de projeto do caso 2 são apresentadas na tabela 4.27. É mostrado, na tabela 4.31, os valores das variáveis de projeto para o caso 2 e na tabela 4.32, a comparação dos resultados obtidos para a solução elástica (E), redistribuída (RMP2) e plástica via mínima peso (PMP2) para o caso 2, respectivamente.

	Variáveis de projeto							
Elemento	Tm	MA _{zm}	MA _{ym}	Qm				
		$\mathrm{MB}_{\mathrm{zm}}$	$\mathrm{MB}_{\mathrm{ym}}$					
1	6,5380	39,2437	0,0000	0,0000				
1	6,5380	39,2437	0,0000	0,0000				
2	6,5380	39,2437	0,0000	0,0000				
2	6,5380	39,2437	0,0000	0,0000				
3	6,5380	39,2437	0,0000	0,0000				
5	6,5380	39,2437	0,0000	0,0000				

Tabela 4.31 – Valores das variáveis de projeto da estrutura (exemplo 4.4) – RMP2

Tabela 4.32-Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.4)-RMP2

ELEMENTO	NÓ	TIPO	T _m	M_{ym}	M_{zm}
		Е	-0,04382	-7,39145	81,15151
	1*	RMP2	2,50522	-4,52884	64,92120
1		PMP2	6,53800	0,0000	39,24370
-		Ε	0,04382	-1,22605	5,11469
	2	RMP2	2,53020	-0,75122	18,33240
		PMP2	6,53800	0,00000	39,24370
2	2	Е	0,71813	1,22605	-7,59343
		RMP2	2,97208	0,75122	-19,85110
		PMP2	6,53800	0,00000	-39,24370
		Ε	-0,71813	-1,75191	-23,82437
	3	RMP2	2,08999	-1,07342	-29,79610
		PMP2	6,53800	0,00000	-39,24370

		Е	2,61815	-5,11469	23,82437
	3	RMP2	-0,92790	-3,13384	29,79610
3		PMP2	-6,53800	0,00000	39,24370
5		Е	-2,61815	4,58883	-15,20688
	4	RMP2	-4,13513	2,81164	-24,51600
		PMP2	-6,53800	0,00000	-39,24370

(*) Seção de controle do valor máximo da redistribuição

Para a solução redistribuída não ocorreu a inversão do sinal dos esforços em relação aos momentos, apresentando os valores redistribuídos intermediários entre a solução elástica e plástica (ver tabela 4.32), devido a taxa de redistribuição ser próxima do valor médio da região de redistribuição.

Na tabela 4.33, tem-se a comparação dos resultados obtidos para a solução elástica (E), redistribuída (RMN) e plástica via mínima norma euclidiana (PMN), respectivamente. A região permissível de redistribuição obtida foi de 0,00% a 33,08%, e a taxa de redistribuição (i_k) adotada de 20,00%.

ELEMENTO	NÓ	TIPO	Tm	M _{ym}	M _{zm}
		Е	-0,04382	-7,39145	81,15151
	1*	RMN	-0,25434	-9,34784	64,92120
1		PMN	-0,39197	-10,62692	54,30985
1		Е	0,04382	-1,22605	5,11469
	2	RMN	0,25434	-0,66907	10,94290
		PMN	0,39197	-0,30492	14,75337
2	2	Е	0,71813	1,22605	-7,59343
		RMN	0,83474	0,66907	-19,31960
		PMN	0,91099	0,30492	-26,98610
		Е	-0,71813	-1,75191	-23,82437
	3	RMN	-0,83474	-3,72109	-22,50030
		PMN	-0,91099	-5,00854	-21,63468

Tabela 4.33- Esforços solicitantes elásticos, redistribuídos e plásticos (exemplo 4.4)-RMN

		Е	2,61815	-5,11469	23,82437
	3	RMN	3,48499	-10,94290	22,50030
3		PMN	4,05173	-14,75337	21,63468
5		Е	-2,61815	4,58883	-15,20688
	4	RMN	-3,48499	7,89087	-12,48340
		PMN	-4,05173	10,04975	-10,70284

(*) Seção de controle do valor máximo da redistribuição

Na redistribuição, via mínima norma euclidiana (RMN), vista na tabela 4.33, com a taxa de 20%, não acontece a inversão dos sinais dos esforços solicitantes, sendo que neste caso em nenhuma situação ocorrerá a inversão do sinal dos esforços, devido as soluções, elástica e plástica terem os mesmos sinais.

As análises incrementais da estrutura redistribuída, ora por solução plástica via mínima norma euclidiana ora por mínimo peso, com o teste da capacidade de rotação plástica da seção, são vistos na tabela 4.34.

Rotula	Tipo	λ	Nó Uy (m)		Capacidade de rotação plástica			
Plástica	npo	N° _c	110	Uy (III)	Elemento	Nó	Cálculo	Norma
	RMN	1.000	3	-0,00001	3	3	0.00137	0.01300
		1,000	4	0,00000	J		0,00137	0,01000
1	RMP1 1 000	1.000	3	-0,00001	3	3	0.00137	0.01300
	,	4	0,00000				.,	
	RMP2	2 1.000	3	-0,00001	3	3	0.00137	0.01300
	1,000	4	0,00000	5	5	0,00157	.,	
	RMN	1,812	1	0,00000	1	1	0,00000	0,01400
2	RMP1	2,239	1	0,00000	1	1	0,00000	0,01400
	RMP2	1,812	1	0,00000	1	1	0,00000	0,01400

 Tabela 4.34 - Resultados da análise incremental (exemplo 4.4)

O gráfico da figura 4.9 representa o fator de carga x deslocamentos verticais para o nó 2

Fig. 4.9 - Gráfico carga x deslocamentos verticais (Uy) do nó 2 (exemplo 4.4)

O fator de carga λ_c é maior que o fator de majoração γ , com a estrutura dentro dos limites estabelecidos para o projeto. Os fatores de carga da estrutura redistribuída via mínima norma euclidiana e mínimo peso (caso 2) foram iguais devido a necessidade da adequação das armaduras de acordo com os critérios da norma, já para o caso 1 a diferença foi devido o dimensionamento das armaduras, onde o elemento 1 tem a armação principal e os outros armaduras mínimas estabelecidas por norma (NB1/78).

A análise das frequências naturais foi feita para acompanhar o processo de formação das rótulas plásticas e é vista na tabela 4.35. Os 1° modos de vibração (figura 4.10) são representados até antes do colapso plástico.

Número de	Tino	Flomonto		Frequência
Rótulas plásticas	Tipo Elemento		110(8)	(Hz)
	RMN	-	-	1,0938
0	RMP1	-	-	1,0938
	RMP2	-	-	1,0938
1	RMN	3	3 e 4	0,0000
	RMP1	3	3 e 4	0,0000
	RMP2	3	3 e 4	0,0000
2	RMN	1	1	0,0000
	RMP1	1	1	0,0000
	RMP2	1	1	0,0000

 Tabela 4.35 - Resultados da análise de frequências naturais (exemplo 4.4)

Fig. 4.10 - Gráfico do 1º modo de vibração da estrutura (exemplo 4.4) - (RMN, RMP1 e RMP2)

As plastificações da estrutura ocorreram nas mesmas seções para as três soluções redistribuídas e como não houve alteração das dimensões das seções para cada solução redistribuída; as propriedades da matriz de massa da estrutura foram as mesmas, portanto as frequências naturais foram as mesmas para os dois tipos. Pode-se concluir que a estrutura atendeu aos estados limite, de utilização e último, e observa-se que o valor da frequência natural é próximo das frequências de excitação por movimentos humanos (ver tabela B.1 e B.2).

4.2.5 - Exemplo 4.5

Considere um pórtico espacial apresentado por Wilson (1988), com 42 elementos e 27 nós discretizados na figura 4.11, com carregamentos concentrados e momentos, apresentando seção retangular representados por largura b e altura h. A discretização e as propriedades da estrutura são vistas nas tabelas 4.36 e 4.37, respectivamente. A convenção para leitura da tabela 4.36 é a seguinte:

- O número do elemento é representado por linha (i) e coluna (j), respectivamente, por exemplo: elemento 10 tem linha (i =1) e coluna (j=0);
- A sequência dos nós dentro da tabela é: inicial final, por exemplo elemento 10 tem nó inicial = 10 e final = 19.

Fig. 4.11 - Pórtico espacial Wilson

	j=0	j=1	j=2	j=3	j=4	j=5	j=6	j=7	j=8	j=9
i=0	Х	1-10	2-11	3-12	4-13	5-14	6-15	7-16	8-17	9-18
i=1	10-19	11-20	12-21	13-22	14-23	15-24	16-25	17-26	18-27	10-11
i=2	11-12	13-14	14-15	16-17	17-18	19-20	20-21	22-23	23-24	25-26
i=3	26-27	10-13	13-16	11-14	14-17	12-15	15-18	19-22	22-25	20-23
i=4	23-26	21-24	24-27	Х	Х	X	Х	Х	Х	Х

 Tabela 4.36 - Discretização dos nós dos elementos (exemplo 4.5)

Descrição	Valor adotado	Unidade
E _s (Módulo de Elasticidade do aço)- CA50A	201,037 x 10 ⁶	kN/m ²
Fy _k (Resistência característica do aço)	$490,335 \ge 10^3$	kN/m ²
P (Carga concentrada)	58,84	kN
M (Carga momento)	117,68	KN.m
H (Altura)	3,9624	m
L1 (Comprimento total do vão)	10,668	m
L2 (Comprimento total do vão)	7,620	m
Pilares		
E _c (Módulo de deformação longitudinal do concreto)	31,57 x 10 ⁶	kN/m ²
G _c (Módulo de Elasticidade transversal do concreto)	12,628 x 10 ⁶	kN/m ²
Fck (Resistência característica do concreto)	19613,40	kN/m ²
b (Largura da seção)	0,30	m
h (Altura total da seção)	0,50	m
d (Altura útil da seção)	0,485	m
Iy (Inércia em torno do eixo Ym local)	1125,00 x 10 ⁻⁶	m ⁴
Iz (Inércia em torno do eixo Zm local)	3125,00 x 10 ⁻⁶	m^4
Ix (Inércia em torno do eixo Xm local)	2821,50 x 10 ⁻⁶	m^4
A (área da seção)	0,15	m^2
Vigas	I	
E _c (Módulo de deformação longitudinal do concreto)	34,77 x 10 ⁶	kN/m ²
G _c (Módulo de Elasticidade transversal do concreto)	13,908 x 10 ⁶	kN/m ²
Fc _k (Resistência característica do concreto)	24516,75	kN/m ²
b (Largura da seção)	0,20	m
h (Altura total da seção)	0,40	m
d (Altura útil da seção)	0,385	m
Iy (Inércia em torno do eixo Ym local)	266,667 x 10 ⁻⁶	m ⁴
Iz (Inércia em torno do eixo Zm local)	1066,667 x 10 ⁻⁶	m^4
Ix (Inércia em torno do eixo Xm local)	732,80 x 10 ⁻⁶	m^4
A (área da seção)	0,08	m ²

 Tabela 4.37- Propriedades da estrutura (exemplo 4.5)

Mostra-se, na tabela 4.38, os resultados elásticos dos deslocamentos nodais.

NÓ	UX	UY	UZ
NO	RX	RY	RZ
1	0,000000	0,000000	0,000000
1	0,000000	0,000000	0,000000
2	0,000000	0,000000	0,000000
2	0,000000	0,000000	0,000000
2	0,000000	0,000000	0,000000
3	0,000000	0,000000	0,000000
4	0,000000	0,000000	0,000000
4	0,000000	UY RY 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000141 -0,003391 0,000141 -0,003381 0,000149 -0,003395 -0,003372 0,000341 -0,003372 0,000341 -0,003372 0,000341 -0,0033746 -0,0039746 -0,003903 0,000144	0,000000
F	0,000000	0,000000	0,000000
3	0,000000	0,000000	0,000000
6	0,000000	0,000000	0,000000
6	0,000000	0,000000	0,000000
7	0,000000	0,000000	0,000000
/	0,000000	0,000000	0,000000
0	0,000000	0,000000	0,000000
8	0,000000	0,000000	0,000000
0	0,000000	0,000000	0,000000
9	0,000000	0,000000	0,000000
10	0,000575	-0,003414	-0,000007
10	0,001246	0,000141	0,000095
11	0,000636	-0,003391	-0,000014
11	0,001222	0,000790	0,000049
10	0,000575	-0,003375	-0,000022
12	0,001233	0,000141	0,000091
12	0,000444	-0,003419	0,000001
15	0,001125	0,000149	0,000048
14	0,000446	-0,003400	0,000000
14	0,001119	0,000141	0,000035
15	0,000444	-0,003381	-0,000001
15	0,001113	0,000149	0,000048
16	0,000326	-0,003410	0,000018
10	0,001228	0,000341	-0,000028
17	0,000289	-0,003395	0,000014
1/	0,001240	-0,000143	-0,000007
18	0,000326	-0,003372	0,000010
10	0,001215	0,000341	-0,000024
10	0,006239	-0,009110	-0,000007
19	0,001205	0,003746	0,000285
20	0,006189	-0,008903	-0,000021
20	0,001159	0,000144	0,000186

Tabela 4.38 - Deslocamentos nodais (exemplo 4.5)

01	0,006239	-0,009014	-0,000035
21	0,001194	0,003746	0,000274
22	0,001337	-0,008992	0,000002
22	0,000947	0,000260	0,000163
22	0,001335	-0,008944	0,000000
25	0,000942	0,000137	0,000126
24	0,001337	-0,008896	-0,000001
24	0,000938	0,000260	0,000163
25	0,002204	-0,008950	0,000029
23	0,001164	0,000081	-0,000084
26	0,002233	-0,009062	0,000021
20	0,001199	0,002241	-0,000044
27	0,002204	-0,008855	0,000013
21	0,001152	0,000081	-0,000073

Na tabela 4.39, tem-se a comparação dos deslocamentos nodais da estrutura com as especificações da norma NB1 (1978), atendendo assim, o estado limite de utilização.

Nó		Deslocamento horizontal - Ux					
19	máximo	0,006239	norma	0,019812			
Nó		Deslocamento horizontal - Uy					
19	máximo	0,00911	norma	0,019812			
Nó	Deslocamento vertical - Uz						
21	máximo	0,000035	norma	0,035560			

Tabela 4.39 - Deslocamentos máximos (exemplo 4.5)

Para a solução plástica via mínimo peso, testou-se 3 tipos de casos adotando-se as variáveis de projeto na tabela 4.40, para pórtico espacial (item 3.2.2), segundo o modelo mostrado na equação (2.37).

Flemento(s)	Caso	Variáveis de projeto					
Liemento(3)	Cuso	Tm	MA _{zm}	MB _{zm}	MA _{ym}	$\mathrm{MB}_{\mathrm{ym}}$	Qm
	1	29	1	1	2	2	30
1 a 9	2	27	1	1	2	2	28
	3	13	1	1	2	2	14

Tabela 4.40 - Variáveis de projeto da estrutura (exemplo 4.5)

	1	29	3	3	4	4	30
10 a 18	2	27	1	1	2	2	28
	3	13	3	3	4	4	14
	1	29	5	5	6	6	30
19 a 20	2	27	3	3	4	4	28
	3	13	5	5	6	6	14
	1	29	7	7	8	8	30
21 a 22	2	27	5	5	6	6	28
	3	13	5	5	6	6	14
	1	29	9	9	10	10	30
23 a 24	2	27	7	7	8	8	28
	3	13	5	5	6	6	14
	1	29	11	11	12	12	30
25 a 26	2	27	9	9	10	10	28
	3	13	7	7	8	8	14
	1	29	13	13	14	14	30
27 a 28	2	27	11	11	12	12	28
	3	13	7	7	8	8	14
	1	29	15	15	16	16	30
29 a 30	2	27	13	13	14	14	28
	3	13	7	7	8	8	14
	1	29	17	17	18	18	30
31 a 32	2	27	15	15	16	16	28
	3	13	9	9	10	10	14
	1	29	19	19	20	20	30
33 a 34	2	27	17	17	18	18	28
	3	13	9	9	10	10	14
	1	29	21	21	22	22	30
35 a 36	2	27	19	19	20	20	28
	3	13	9	9	10	10	14
	1	29	23	23	24	24	30
37 a 38	2	27	21	21	22	22	28
	3	13	11	11	12	12	14

	1	29	25	25	26	26	30
39 a 40	2	27	23	23	24	24	28
	3	13	11	11	12	12	14
	1	29	27	27	28	28	30
41 a 42	2	27	25	25	26	26	28
	3	13	11	11	12	12	14

A tabela 4.41, mostra o peso total da estrutura e a as características da redistribuição.

 Tabela 4.41 - Peso total e características de redistribuição (exemplo 4.5)

Tipo	Peso total	Região de redistribuição	Taxa de redistribuição (i _k)
Caso 1	9364,218	[0,00%; 195,97%]	20,00%
Caso 2	9758,490	[0,00%; 214,47%]	20,00%
Caso 3	9364,218	[0,00%; 209,68%]	20,00%

Neste caso, as duas soluções que atendem o critério de mínimo peso tem pesos iguais, sendo assim, definiu-se analisar as duas. As variáveis de projeto do caso 1 são vistas na tabela 4.40. É mostrado, na tabela 4.42, os valores da variáveis de projeto para o caso 1 e na tabela 4.43, 4.44 e 4.45, as comparações dos resultados obtidos para a solução elástica (E), redistribuída (RMP1) e plástica via mínima peso (PMP1), respectivamente.

Elemento(s)	Tm	Elemento(s)	MA_{zm}	Elemento(s)	$\mathrm{MA}_{\mathrm{ym}}$
(2)		(2)	MB_{zm}	(*)	$\mathrm{MB}_{\mathrm{ym}}$
1 a 42	41 188	1 a 9	55,9493	1 a 9	4,3585
1 a 72	41,100	1 u)	55,9493	1 a 7	4,3585
_	_	10 a 18	46,6244	10 a 18	13,0756
		10 a 10	46,6244	10 a 10	13,0756
_	_	19 a 24	0,0000	19 a 42	0,000
		17 a 24	0,0000	17 a 4 2	0,000
_	_	25 a 26	-78,4533	_	_
		25 a 20	-78,4533		
_	_	27 a 30, 35 a	0,0000	_	_
		40	0,0000		
_	_	31 a 32	123,202	_	_
		51 4 52	123,202		
_	_	33 a 34	30,6581	_	_
			30,6581		
	_	/1 a /2	69,9366	_	_
_	-	+1 a +2	69,9366	_	-

Tabela 4.42 – Valores das variáveis de projeto da estrutura (exemplo 4.5) – RMP1

A sequência para a leitura das tabelas 4.43, 4.44 e 4.45 são:

- O número do elemento é representado por coluna (i) e linha (j), respectivamente, por exemplo: elemento 10 tem coluna (i =1) e linha (j=0);
- A sequência dos nós dentro da tabela é: inicial em cima e final em baixo (ver tabela 4.36).

	i- 0	i- 1	i- 2	i- 3	i – 4	1
Е	X	0.63642	1 = 2 1 5 8 8 2 1 4	7 4 3 7 3 6	4291716	
R	X	4 7 7 4 9 5	10,05780	10 88180	3 4 3 3 3 7 0	
P	X	41 18800	-41 18800	41 18800	-41 18800	
E	X	-0.63642	-15 88214	-7 4 3 7 3 6	-4291716	j = 0
R	X	3,632,01	-1846480	-2 47485	-42,74070	
P	X	41 18800	-41 18800	41 18800	-41 18800	
E	7.89890	8.03078	-0.56433	1,93678	-42.80658	
R	2.88929	11.41470	3.69674	-2,46436	-34.23440	
Р	-41,18800	41,18800	41,18800	-41,18800	41,18800	
Е	-7,89890	-8,03078	0,56433	-1,93678	42,80658	j = 1
R	-11,29620	-3,00771	4,71022	-5,94260	42,64140	č
Р	-41,18800	41,18800	41,18800	-41,18800	41,18800	
Е	16,98750	15,73495	0,55631	-3,38314	-15,01412	
R	11,05030	9,92563	4,70301	-7,24135	-9,27836	
Р	-41,18800	-41,18800	41,18800	-41,18800	41,18800	i _ 2
E	-16,98750	-15,73495	-0,55631	3,38314	15,01412	J – 2
R	-19,45730	-18,33260	3,70395	-1,16561	17,68530	
Р	-41,18800	-41,18800	41,18800	-41,18800	41,18800	
Е	26,52173	-0,94863	9,54146	3,32286	Х	
R	19,61150	3,35166	12,77120	7,18722	X	
P	-41,18800	41,18800	41,18800	41,18800	X	j = 3
E	- 2 6 ,5 2 1 7 3	0,94863	-9,54146	-3,32286	X	-
K D	-28,01850	5,05550	-4,30422	1,21974		
r E	-41,10000	41,10000	41,10000	41,10000		
E P	-1,39390	0, 13340 434128	-9,33743	-1,95995		
P	4 1 1 8 8 0 0	41 18800	4 1 1 8 8 0 0	41 18800	X	
E	1,59396	-0.15346	9.53745	1,95995	X	j = 4
R	5,63477	4,06568	12,76760	5,96340	Х	
Р	41,18800	41,18800	41,18800	41,18800	Х	
Е	0,22127	0,63592	13,14784	2,00616	Х	
R	4,40217	4,77450	16,00950	6,00490	Х	
Р	41,18800	41,18800	41,18800	41,18800	Х	i – 5
Е	-0,22127	-0,63592	-13,14784	-2,00616	Х	J – J
R	4,00479	3,63246	-7,60254	2,40206	X	
P	41,18800	41,18800	41,18800	41,18800	X	
E	1,14523	-12,60240	-13,13//1	-3,23954	X	
K D	5,23184	-/,112//	-7,59345	1,29456		
F	41,18800 114523	41,18800 12,60240	41,18800 13,13771	41,18800 323054	X X	j = 6
R	-1, 1+525 3 17512	12,00240 15,51970	15,15771 16,00040	3, 23734 7 1 1 2 4 0	X	
P	41,18800	41,18800	41,18800	41,18800	X	
E	-21,99023	-8,18424	0,52828	-43,07521	X	
R	-15,54250	-3,14551	-3,72911	-34,47560	Х	
Р	41,18800	41,18800	-41,18800	41,18800	Х	; _ 7
Е	21,99023	8,18424	-0,52828	43,07521	Х	J – 7
R	23,94950	1 1 , 5 5 2 5 0	-4,67785	42,88260	Х	
Р	41,18800	41,18800	-41,18800	41,18800	X	
E	-17,20876	-3,45625	-0,54854	-15,27142	X	
R D	-11,24900	1,09996	3,71093	-9,50940	X	
F	41,18800	3 4 5 6 2 5	41,18800 0 54854	41,18800 1527142	X	j = 8
R	19,65600	7,30700	4,69603	17,91640	X	
Р	41,18800	41,18800	41,18800	41,18800	Х	
Е	-11,98167	-15,87813	-7,42724	15,11903	X	
R	-6,55539	-10,05420	-2,46576	9,37257	Х	
P	41,18800	41,18800	41,18800	-41,18800	X	j = 9
E	11,98167	15,87813	7,42724	-15,11903	X	
R	14,96240	18,46110	10,87270	-17,77950	X	
Р	41,18800	41,18800	41,18800	-41,18800	Х	

Tabela 4.43 - Esforços solicitantes elásticos, redistribuídos e plásticos para Tm - RMP1

	i= 0	i= 1	i= 2	i= 3	i= 4	
Е	Х	-4,66965	0,32063	-0,38084	1,36825	
R	Х	-5,52752	0,28791	-0,34198	1,22861	
Р	Х	-13,07560	0,00000	0,00000	0,00000	i = 0
Е	Х	59,95416	0,39331	-0,43142	0,95386	J _ 0
R	Х	55,16990	0,35317	-0,38740	0,85652	
Р	X	13,07560	0,00000	0,00000	0,00000	
E	-5,28335	-44,45808	0, 21741	0,45124	-2,97004	
R	-5,18897	-41,25530	0,19523	0,40519	-2,66693	
F	-4,35850	-13,07360	0,00000	0,00000	0,00000	i – 1
P	-2,75755	-50,04291	0, 1, 2, 5, 7, 1 0, 1, 7, 5, 7, 4	0,33071	-3,23989	J – 1
P	4 3 5 8 5 0	-31,03780 -13,07560	0, 1, 7, 5, 7, 4 0, 0, 0, 0, 0, 0	0, 30233		
E	5,52657	-4.66906	0,19571	0, 05074	1,44480	
R	4,51774	-2,85811	0,17574	0,04556	1,29735	
Р	-4,35850	13,07560	0,00000	0,00000	0,00000	
Е	19,68901	59,95508	0,21741	-0,13353	0,87124	j = 2
R	18,12440	55,17080	0,19523	-0,11990	0,78233	
Р	4,35850	13,07560	0,00000	0,00000	0,00000	
Е	-5,28317	-2,12051	-0,11800	0,14213	Х	
R	-5,18880	-0,56965	-0,10596	0,12762	Х	
P	-4,35850	13,07560	0,00000	0,00000	X	j = 3
E	-2,75718	-0, 13646	-0,08216	0,10845	X	0
K D	-2,03098	1,21191	-0,07377	0,09738		
F	-3 3 5 5 3 4	-452713	-0.07901	0,00000	X	
R	-3.45771	-5.39955	-0.07094	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	X	
Р	-4,35850	-13,07560	0,00000	0,00000	X	. ,
Е	-0,68497	-4,60001	-0,10808	-0,10068	Х	j = 4
R	-0,17025	-5,46499	-0,09705	-0,09040	Х	
Р	4,35850	-13,07560	0,00000	0,00000	Х	
E	-3,52024	-2,12168	1,21026	0,43233	X	
R	-3,60579	-3,23959	1,08674	0,38820	X	
Р	-4,35850	-13,07560	0,00000	0,00000	X	j = 5
R	-0,98340	-0,13851 1 2 1 0 2 5	1,03823 0.93227	0,32727 0 2 9 3 8 7	X	
P	4.35850	1,21025 13.07560	0, 9, 9, 2, 2, 7 0, 0, 0, 0, 0, 0	0,29907 0,00000	X	
E	-3,35571	-11,80476	1,17461	0,06018	X	
R	-3,45805	-11,93450	1,05473	0,05403	Х	
Р	-4,35850	-13,07560	0,00000	0, 00000	Х	i - 6
Е	-0,68530	-16,46220	1,32753	-0,11462	Х	J – 0
R	-0,17055	-13,44770	1,19204	-0,10292	X	
Р	4,35850	13,07560	0,00000	0,00000	X	
E	1,69108	8,68128	0, 76151	-2,91663	X	
P	-4 35850	7,127/3 1307560	0,000/9	-2,01097		
E	7.80600	51,42569	0,69840	-3,21324	X	j = 7
R	7,45416	44,84290	0,62712	-2,88531	X	
Р	4,35850	-13,07560	0,00000	0,00000	Х	
Е	-6,48975	-11,80418	0,69840	1,41815	Х	
R	-6,27225	-11,93390	0,62712	1,27342	Х	
Р	-4,35850	-13,07560	0,00000	0,00000	Х	i = 8
E	-9,05235	-16,46128	0,76151	0,81783	X	5
R	- / ,6 8 3 6 9	-13,44690	0,08379	0,/3437	X	
F	4,55850	13,07300 0 4 0 3 2 3		-3 44030		
R	1.07385	0.36208	-0.28210	-3.08919	X	
P	-4,35850	0,00000	0,00000	0,00000	X	
Е	7,80616	0,32378	-0,24446	-3,58442	X	j = 9
R	7,45431	0,29074	-0,21951	-3,21861	Х	
Р	4,35850	0,00000	0, 0 0 0 0 0	0, 0 0 0 0 0	Х	

Tabela 4.44 - Esforços solicitantes elásticos, redistribuídos e plásticos para Mym - RMP1

	i- 0	i = 1	i - 2	i - 3	i – 1	
F	1= 0 Y	$\frac{1-1}{30.61860}$	1 = 2	$\frac{1-5}{3171946}$	1 - 4	
D		30,01800	-11, 3040	-31,71940	29,95251	
K D		52,25210	-10,75080	-28,48250	20,87730	
P F	A V	40,02440	0,00000		0,00000	j = 0
E	X	32,68295	- 7,43702	-16,699/3	32,43310	
R	X	34,10580	-6,6/803	-14,99540	29,12310	
P	X	46,62440	0,00000	0,00000	0,00000	
E	66,65533	28,42943	-3,05170	35,18565	32,24115	
R	65,56270	30,28630	-2,74025	44,16820	36,08820	
Р	55,94930	46,62440	0,00000	1 2 3 , 2 0 2 0 0	69,93660	
Е	4,59054	3 1 , 5 7 2 4 4	-2,99913	34,00363	29,74586	j = 1
R	9,83208	33,10860	-2,69305	43,10660	33,84790	
Р	55,95000	46,62440	0,00000	123,20000	69,94000	
Е	67,00202	30,32662	-3,00061	33,79352	29,41564	
R	65, 87400	31,98990	-2,69438	4 2 , 9 1 8 2 0	33,55100	
Р	55,94930	46,62440	0,00000	1 2 3 , 2 0 2 0 0	69,93660	i – 2
Е	6,16150	3 2 , 2 7 4 8 3	-3,05319	34,80039	31,50614	J – 2
R	-0,17735	33,73880	-2,74160	4 3 , 8 2 2 1 0	35,42850	
Р	-55,95000	46,62000	0,00000	$1\ 2\ 3\ , 2\ 0\ 0\ 0\ 0$	69,94000	
Е	65,84320	50,91908	-3,74177	34,62517	Х	
R	64,83350	50,48080	-3,35990	34,22030	Х	
Р	55,94930	46,62440	0,00000	30,65810	Х	: 2
Е	4,44229	59,79292	-0,37606	33,62398	Х	J – S
R	9,69895	58,44850	-0,33768	33,32130	Х	
Р	55,95000	46,62000	0,00000	30,65810	Х	
Е	72,90198	50,67228	-0,37532	33,79620	Х	
R	71,17190	50,25920	-0,33702	33,47590	Х	
Р	55,94930	46,62440	0,00000	30,65810	Х	. ,
Е	16,88381	59,47502	-3,74102	34,97174	Х	j = 4
R	20,87070	58,16310	-3,35923	34,53170	Х	
Р	55,95000	46,62000	0,00000	30,66000	Х	
Е	72,46681	50,42549	-53,06306	34,75816	Х	
R	70,78110	50,03760	-55,65430	31,21090	Х	
Р	55,94930	46,62440	-78,45330	0,00000	Х	
Е	16,74789	59,15712	-28,01770	33,58892	Х	j = 5
R	20.74870	57.87760	-33.16460	30.16100	Х	
Р	55,95000	46,62000	-78,45000	0.00000	Х	
Е	72,03164	28,55648	-28,01658	33,45430	X	
R	70.39030	30.40040	-33.16400	30.04010	Х	
Р	55.94930	46.62440	-78.45330	0.00000	Х	
Е	16.61198	31.74751	-53.06207	34,44964	X	j = 6
R	20.62670	33.26530	-55.65310	30,93380	X	
Р	55,95000	46.62000	-78,45000	0.00000	X	
E	67.40192	30,48749	-4.56072	32.63877	X	
R	66.23310	32.13440	-4.09527	29.30780	X	
P	55,94930	46.62440	0.00000	0.00000	X	
E	6,23310	32,51095	-3,71034	30,12560	X	j = 7
R	-0.11306	33,95090	-3,33168	27.05110	X	
Р	- 5 5 9 5 0 0 0	4662000	0 0 0 0 0 0	0 0 0 0 0 0	X	
E	66,25090	28,33214	-3,71257	29.66295	X	
R	65,19960	30,19900	-3 33368	26,63570	X	
P	5 5 9 4 9 3 0	4662440	0 0 0 0 0 0		X	
E	4.51849	31,46150	-4,56270	31,78072	X	j = 8
R	9,76738	33,00850	-4,09705	28,53730	X	
P	5 5 9 5 0 0 0	46 62000	0 0 0 0 0 0	0 0 0 0 0 0	X	
F	66 60 5 4 0	-7 43776	-1670072	31 65030	X	
R	65 51700	-6 67870	-14 99630	28 4 2 0 2 0	X	
P	55 94930	0 0 0 0 0 0	$\begin{array}{c} 1 \\ - \end{array}, \begin{array}{c} 5 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	20, 42020	X X	
F	6 0 9 1 0 7	-11 95114	-31 72058	2951271	X	j = 9
P	111920	10 7 2 1 5 0	- 5 1 , 1 2 0 5 8	29,34211 2652770	A V	
D	55 05000	- 10,73130	-20, +0330	20,32770		
г	55,75000	0,00000	0,00000	0,00000	Λ	

 Tabela 4.45
 - Esforços solicitantes elásticos, redistribuídos e plásticos para Mzm - RMP1

A seção de controle, do valor máximo da redistribuição, para o caso 1, foi o elemento 40, nó 23. Para a solução redistribuída ocorreu a inversão do sinal dos esforços, na direção de Mzm, para os elementos 2 e 7 que são pilares; possuindo armadura simétrica, de modo que para a estrutura projetada em função desta solução não ocorre interferência na segurança estrutural e em casos onde a estrutura tenha sido dimensionada baseada na solução elástica. Deverá ser feita a análise da necessidade ou não de reforço estrutural.

As variáveis de projeto do caso 3 são vistas na tabela 4.40. É mostrado, na tabela 4.46, os valores da variáveis de projeto e na tabela 4.47, 4.48 e 4.49, as comparações dos resultados obtidos para a solução elástica (E), redistribuída (RMP3) e plástica via mínima peso (PMP3), respectivamente.

Elemento(s)	Tm	Elemento(s)	MA _{zm} MB _{zm}	Elemento(s)	MA _{ym} MB _{ym}
1 a 42	47,0720	1 a 9	55,9493 55,9493	1 a 9	4,3585 4,3585
-	-	10 a 18	46,6244 46,6244	10 a 18	13,0756 13,0756
-	-	19 a 24	0,0000 0,0000	19 a 42	0,000 0,000
-	-	25 a 30	-26,1511 -26,1511	-	-
-	-	31 a 36	51,2868 51,2868	-	-
-	-	37 a 42	23,3122 23,3122	-	-

Tabela 4.46 – Valores das variáveis de projeto da estrutura (exemplo 4.5) – RMP3

	i = 0	i= 1	i= 2	i= 3	i = 4	1	
Е	X	0,63642	15,88214	7,43736	42,91716		
R	Х	-3,91415	18,85710	11,21780	34,33370		
Р	Х	-47,07200	47,07200	47,07200	-47,07200	i –	0
Е	Х	-0,63642	-15,88214	-7,43736	-42,91716	J –	0
R	X	-5,06558	-9,87739	-2,23810	-43,31350		
P	X	-47,07200	47,07200	47,07200	-47,07200		
E D	7,89890	8,03078	-0,56433	1,936/8	-42,80658		
P	-4707200	-4707200	4707200	4707200	4707200		
Ē	-7,89890	-8,03078	0,56433	-1,93678	4 2 , 8 0 6 5 8	i =	1
R	-11,63530	-11,75460	5,00037	2,73782	43,21340	5	
Р	-47,07200	-47,07200	47,07200	47,07200	47,07200		
Е	16,98750	15,73495	0,55631	-3,38314	-15,01412		
R	10,87730	9,74424	-3,98662	1,42942	-9,09216		
P	-47,07200	-47,07200	-47,07200	47,07200	47,07200	j =	2
E D	-10,98750 1085700	-13,73495 1872400	-0,55651	3,38314	15,01412 18,07100		
P	-47.07200	-47.07200	-4,99311 -47.07200	47.072.00	47.07200		
E	26,52173	-0,94863	9,54146	3,32286	X		
R	19,50210	3,63172	13,12120	-1,48395	Х		
Р	-47,07200	47,07200	47,07200	-47,07200	Х	i _	3
Е	-26,52173	0,94863	-9,54146	-3,32286	Х	J –	5
R	-28,48190	5,34802	-4,14150	-7,49578	X		
Р	-47,07200	47,07200	47,07200	-47,07200	X		
E P	-1,59396	0,15346	-9,53/45	-1,95995	X		
P	4707200	4707200	47 07200	-4707207	X		
Ē	1,59396	-0,15346	9,53745	1,95995	X	j =	4
R	5,93179	4,35104	13,11760	-2,71687	Х		
Р	47,07200	47,07200	47,07200	-47,07200	Х		
Е	0,22127	0,63592	13,14784	2,00616	Х		
R	4,69003	-3,91461	16, 38360	-2,67506	X		
P E	4 / ,0 / 2 0 0	-4/,0/200	4 / , 0 / 2 0 0	-4/,0/200	X	j =	5
R	-0, 22127 4 28970	-0,05592	-7 40389	-2,00010 -6,30467	X		
P	47.07200	-47.07200	47.07200	-47.07200	X		
Е	1,14523	-12,60240	-13,13771	-3,23954	Х		
R	-3,45387	-6,91048	-7,39473	-7,42041	Х		
Р	-47,07200	47,07200	47,07200	-47,07200	Х	i =	6
E	-1,14523	1 2 ,6 0 2 4 0	13,13771	3,23954	X	J	Ū
R	-5,52586	15,89020	16,37450	-1,55933	X		
P F	-47,07200	-8, 1, 8, 4, 2, 4	47,07200	-47,07200			
R	-21, 99029 -15,40290	-2.91374	4.96776	-34.47670	X		
P	47,07200	47,07200	47,07200	47,07200	X		7
Е	21,99023	8,18424	-0,52828	4 3 ,0 7 5 2 1	Х	J =	/
R	24,38260	1 1 , 8 9 3 5 0	4,01197	43,45640	Х		
Р	47,07200	47,07200	47,07200	47,07200	X		
E	-17,20876	-3,45625	-0,54854	-15,27142	X		
K D	-11,07750	1,36328	3,99365	-9,32492	X		
F	47,07200	47,07200	47,07200 054854	47,07200 1527142		j =	8
R	20,05720	7,61645	4,98608	18,30470	X		
Р	47,07200	47,07200	47,07200	47,07200	Х		
Е	-11,98167	-15,87813	-7,42724	15,11903	Х	I	
R	-6,34896	-9,87376	-11,20870	9,18707	X		
P	47,07200	47,07200	-47,07200	-47,07200	X	j =	9
E D	11,98167	15,87813	7,42724	-15, 11903 1816690		ľ	
P	47 07200	47 07200	-4707200	-10,10080 -4707200			
L.	,	,	,	.,,,,200		1	

Tabela 4.47- Esforços solicitantes elásticos, redistribuídos e plásticos para Tm-RMP3

	i- 0	i – 1	i- 2	i- 3	i – <i>A</i>	Ī
F	1- 0 Y	1 6 6 9 6 5	1-2	1-3	1 = 4	
		-4,00903	0,32003	-0, 38084	1,30823 1,23774	
K D		-3,47143	0, 29003	-0, 34432	1,23774	
P T	A V	-13,07300	0,00000	0,00000	0,00000	j = 0
E	X	59,95416	0,39331	-0,43142	0,95386	
R	X	55,48270	0,35579	-0,39027	0,86288	
P	X	13,07560	0,00000	0,00000	0,00000	
E	-5,28335	-44,45808	0,21741	0,45124	-2,97004	
R	- 5, 1 9 5 1 4	-38,97070	0,19668	0,40820	-2,68675	
P	-4,35850	13,07200	0,00000	0,00000	0,00000	
E	-2,75735	-56,04291	0,19571	0,33671	-3,23989	j = 1
R	-2,07862	-51,94420	0,17705	0,30459	-2,93086	
P	4,35850	-13,07200	0,00000	0,00000	0,00000	
E	5,52657	-4,66906	0,19571	0,05074	1,44480	
R	4,58370	-5,47090	0,17705	0,04590	1,30699	
P	-4,35850	-13,07560	0,00000	0,00000	0,00000	i = 2
Е	19,68901	59,95508	0,21741	-0,13353	0,87124	5
R	18,22670	55,48360	0,19668	-0,12079	0,78814	
Р	4,35850	13,07560	0,00000	0,00000	0,00000	
E	-5,28317	-2,12051	-0,11800	0,14213	Х	
R	-5,19497	-3,16544	-0,10675	0,12857	X	
P	-4,35850	-13,07560	0,00000	0,00000	X	i = 3
E	-2,75718	-0,13646	-0,08216	0,10845	Х	J -
R	-2,07847	1,12374	-0,07432	0,09810	Х	
Р	4,35850	13,07560	0,00000	0,00000	X	
Е	-3,35534	-4,52713	-0,07901	0,00303	Х	
R	-3,45102	-5,34251	-0,07147	0,00274	Х	
Р	-4,35850	-13,07560	0,00000	0,00000	Х	i = 4
Е	-0,68497	-4,60001	-0,10808	-0,10068	Х	J .
R	-0,20391	-5,40844	-0,09777	-0,09108	Х	
P	4,35850	-13,07560	0,00000	0,00000	X	
E	-3,52024	-2,12168	1,21026	0,43233	Х	
R	-3,60019	-0,67212	1,09482	0,39109	Х	
Р	-4,35850	13,07560	0,00000	0,00000	X	i = 5
Е	-0,98540	-0,13831	1,03823	0,32727	Х	j
R	-0,47568	1,12207	0,93920	0,29606	Х	
Р	4,35850	13,07560	0,00000	0,00000	Х	
Е	-3,35571	-11,80476	1,17461	0,06018	Х	
R	-3,45136	-9,43160	1,06257	0,05444	Х	
Р	-4,35850	13,07560	0,00000	0,00000	X	i = 6
Е	-0,68530	-16,46220	1,32753	-0,11462	Х	J _
R	-0,20420	-13,64480	1,20090	-0,10368	Х	
Р	4,35850	13,07560	0,00000	0,00000	X	
Е	1,69108	8,68128	0,76151	-2,91663	Х	
R	1,11406	6,60605	0,68887	-2,63843	X	
P	-4,35850	-13,07560	0,00000	0,00000	X	j = 7
E	7,80600	51,42569	0,69840	- 3, 21324	X	
R	7,47716	45,27340	0,63178	-2,90675	X	
Р	4,35850	-13,07560	0,00000	0,00000	X	
Е	-6,48975	-11,80418	0,69840	1,41815	X	
R	-6,28647	-11,92540	0,63178	1,28288	X	
	-4,35850	-13,07560	0,00000	0,00000	X	j = 8
E	-9,05235	-16,46128	0,76151	0,81783	X	-
R	- / , / / 3 1 8	-13,64400	0,68887	0,/3983	X	
	4,35850	13,07560	0,00000	0,00000	X	
E	1,69127	0,40323	-0,31416	- 5,44030	X	
R	1,11423	0,36477	-0,28419	-3,11215	X	
	-4,35850	0,00000	0,00000	0,00000	X	j = 9
E	/,80616	0,32378	-0,24446	-3,58442	X	-
R	7,47731	0,29290	-0,22114	-3,24253	X	
Р	4,35850	0,00000	0,00000	0,00000	Х	

Tabela 4.48 - Esforços solicitantes elásticos, redistribuídos e plásticos para Mym - RMP3

	i- 0	i- 1	i- 2	i- 3	i – 4	
F	1- 0 X	30.61860	-1195040	-3171946	2993231	
P	X	30,01000 3214530	1081050	-31,71940 3118830	29,75251 29,30090	
		32,14330	-10,81030	-51, 18850	29,30090 23,31220	
F F		40,02440	0,00000	-20,1010	23, 31220	j = 0
E	A V	32,08295	- 7,43702	-10,09973	32,43310	
R	X	34,012/0	-6,/2/65	-1/,60120	31,56310	
<u>Р</u>	X	46,62440	0,00000	-26,15110	23,31220	
E	66,65533	28,42943	-3,05170	35,18565	32,24115	
R	65,63420	30,16490	-2,76062	36,72140	31,38950	
Р	55,94930	46,62440	0,00000	51,28680	23,31220	
Е	4,59054	3 1 , 5 7 2 4 4	-2,99913	3 4 , 0 0 3 6 3	29,74586	j = 1
R	-1,18393	33,00810	-2,71307	35,65210	29,13220	
Р	-55,94930	46,62440	0,00000	51,28680	23,31220	
E	67,00202	30,32662	-3,00061	33,79352	29,41564	
R	65,94780	31,88120	-2,71440	35,46210	28,83350	
Р	55,94930	46,62440	0,00000	51,28680	23,31220	: 2
Е	6,16150	32,27483	-3,05319	34,80039	31,50614	J = 2
R	10,91040	33,64350	-2,76197	36,37290	30,72460	
Р	55,94930	46,62440	0,00000	51,28680	23,31220	
Е	65.84320	50.91908	-3.74177	34.62517	X	
R	64.89950	50.50940	-3.38487	36.21440	Х	
Р	5 5 9 4 9 3 0	46 62440	0 0 0 0 0 0	51 28680	X	
E	4,44229	59.79292	-0.37606	33,62398	X	j = 3
R	9 3 5 5 1 8	58 53690	-0.34019	35,30870	x	
P	5 5 9 4 9 3 0	46 62440		5128680	X	
F	7 2 9 0 1 9 8	50,67228	-0,37532	3379620	X	
P	72,70170 71,28500	50,07220	-0,37952 033952	35,19020	X	
D	5 5 0 4 0 3 0	30,20020		51 28680	X V	
F	1688381	40,02440 50,47502	374102	31,28080 3407174		j = 4
	10,00501	59,47502	-3,74102	34,97174		
K D	20,01000	38,24930	-3, 38419	50,52790		
P E	33,94930	40,02440	0,00000	31,28080 24,75816		
	72,40081	50,42549	-33,00300	34,73810		
R	70,89130	50,06290	-50,49610	36,334/0	X	
	55,94930	46,62440	-26,15110	51,28680	X	j = 5
E	16,/4/89	59,15712	-28,01770	33,58892	X	Ū.
R	20,48700	57,96170	-27,83970	35,27700	X	
P	55,94930	46,62440	-26,15110	51,28680	X	
Е	72,03164	28,55648	-28,01658	33,45430	X	
R	70,49770	30,27990	-27,83860	3 5 , 1 5 5 2 0	Х	
Р	55,94930	46,62440	-26,15110	51,28680	X	i = 6
Е	16,61198	3 1 , 7 4 7 5 1	-53,06207	34,44964	Х	j ÷
R	20,36410	33,16650	-50,49520	36,05560	Х	
Р	55,94930	46,62440	-26,15110	51,28680	Х	
Е	67,40192	30,48749	-4,56072	32,63877	Х	
R	66,30950	3 2 ,0 2 6 7 0	-6,62007	3 1 , 7 4 9 2 0	Х	
Р	55,94930	46,62440	-26,15110	23,31220	Х	i – 7
Е	6,23310	32,51095	-3,71034	30,12560	Х	j — ,
R	10,97520	33,85710	-5,85081	29,47570	Х	
Р	55,94930	46,62440	-26,15110	23,31220	Х	
Е	66,25090	28,33214	-3,71257	29,66295	X	
R	65,26830	30,07690	-5,85282	29,05720	Х	
Р	55,94930	4 6 , 6 2 4 4 0	-26,15110	23,31220	Х	i _ 9
Е	4,51849	31,46150	-4,56270	3 1 , 7 8 0 7 2	Х	J – O
R	-1,24910	32,90780	-6,62187	30,97300	Х	
Р	-55,94930	46,62440	-26,15110	23,31220	Х	
Е	66,60540	-7,43776	-16,70072	31,65030	Х	
R	65,58900	-6,72833	-17,60210	30,85500	Х	
Р	55,94930	0,00000	-26,15110	23,31220	Х	
Е	6,09407	-11,95114	-31,72058	29,54271	Х	j = 9
R	10,84940	-10,81120	-31,18930	28,94840	Х	
Р	55,94930	0,00000	-26,15110	23,31220	Х	
_						

Tabela 4.49 - Esforços solicitantes elásticos, redistribuídos e plásticos para Mzm - RMP3

A seção de controle, do valor máximo da redistribuição, para o caso 3, foi o elemento 40, nó 23. Para a solução redistribuída ocorreu a inversão do sinal dos esforços nos elementos 13 e 15 para a direção Mym e 1 e 8 para a direção Mzm. Considerando que os elementos, onde surgiram as inversões, são pilares, cujas armaduras são simétricas. Deverá ser testada a necessidade de reforço ou não na estrutura dimensionada em função da solução elástica.

Nas tabelas 4.50, 4.51 e 4.52, têm-se as comparações dos resultados obtidos para a solução elástica (E), redistribuída (RMN) e plástica via mínima norma euclidiana (PMN), respectivamente. A região permissível de redistribuição obtida foi de 0,00% a 47,63%, e a taxa de redistribuição (i_k) adotada de 20,00%.

	i= 0	i= 1	i= 2	i= 3	i = 4	1
Е		0 6 3 6 4 2	1588214	7 4 3 7 3 6	4291716	
P	X X	1,64940	10, 63230	5 1 8 3 9 3	4034580	
D	X V	1,04940	10,05250 338047	3,10393	40,34380 36,70302	
	X V	0,63642	3,30047	7 4 2 7 2 6	$\frac{30,79392}{42,01716}$	j = 0
		-0,03042	-13,88214	- 7,4 3 7 3 0	-42,91710	
K D		-1,64940	-10,05250	-3,18393	-40,34380	
Р	X 7 0 0 0 0 0	-3,04803	-3,38047	-2,07121	- 3 6 , 7 9 3 9 2	
E	7,89890	8,030/8	-0,56433	1,936/8	-42,80658	
R	9,840/6	8,12551	-0,63210	0,42007	-40,75880	
P	12,52309	8,25636	-0,72571	-1,67499	-37,93017	
E	-7,89890	-8,03078	0,56433	-1,93678	42,80658	j = 1
R	-9,84076	-8,12551	0,63210	-0,42007	40,75880	
P	-12,52309	-8,25636	0,72571	1,67499	37,93017	
E	16,98750	15,73495	0,55631	-3,38314	-15,01412	
R	17,63850	14,96440	0,49998	-3,19598	-14,99030	
Р	18,53783	13,89994	0,42217	-2,93744	-14,95737	i = 2
Е	-16,98750	-15,73495	-0,55631	3,38314	15,01412	J _
R	-17,63850	-14,96440	-0,49998	3,19598	14,99030	
Р	-18,53783	-13,89994	-0,42217	2,93744	14,95737	
Е	26,52173	-0,94863	9,54146	3,32286	Х	
R	26,06330	-1,95702	6,34973	3,20926	Х	
Р	25,42995	-3,34993	1,94093	3,05234	Х	i – 3
Е	-26,52173	0,94863	-9,54146	-3,32286	Х	J – J
R	-26,06330	1,95702	-6,34973	-3,20926	Х	
Р	-25,42995	3,34993	-1,94093	-3,05234	Х	
Е	-1,59396	0,15346	-9,53745	-1,95995	Х	
R	-2,88134	0,11338	-6,28367	-0,37978	Х	
Р	-4,65963	0,05801	-1,78916	1,80295	Х	: 4
Е	1,59396	-0,15346	9,53745	1,95995	Х	j = 4
R	2,88134	-0,11338	6,28367	0,37978	Х	
Р	4,65963	-0,05801	1,78916	-1,80295	Х	
Е	0,22127	0,63592	13,14784	2,00616	Х	
R	0,20542	1,45828	9,23866	0,48188	Х	
Р	0,18353	2,59423	3,83884	-1,62364	Х	
Е	-0,22127	-0,63592	-13,14784	-2,00616	Х	j = 5
R	-0,20542	-1,45828	-9,23866	-0,48188	Х	
Р	-0,18353	-2,59423	-3,83884	1,62364	Х	
Е	1,14523	-12,60240	-13,13771	-3,23954	Х	
R	2.03830	-12.45110	-9.06237	-3.08014	Х	
Р	3.27191	-12.24216	-3,43300	-2.85997	Х	
Е	-1.14523	12,60240	13.13771	3,23954	Х	j = 6
R	-2.03830	12.45110	9.06237	3.08014	Х	
Р	-3.27191	12.24216	3,43300	2.85997	Х	
Ē	-21.99023	-8.18424	0.52828	-43.07521	X	
R	-22.50120	-8.23889	0, 43221	-40.93330	X	
P	-23,20693	-8,31438	0, 29951	-37,97472	X	
E	21,99023	8,18424	-0.52828	43.07521	X	j = 7
R	22.50120	8,23889	-0.43221	40,93330	X	
P	23,20693	8 3 1 4 3 8	-0, 29951	37 97472	X	
F	-1720876	-3, 45625	-0.54854	-15 27142	X	
R	-17,20070 -17,84400	-3, +5029	-0, 78481	-15,27142	X	
P	-1872136	-3,00370	-0,70401 -111117	-15,17700	X	
F	1720876	3 4 5 6 2 5	0 5 4 8 5 4	15,04045	X	j = 8
R	17 84400	3 66300	0, 3 + 0, 3 + 0, 3 + 0, 7 + 0, 3 + 0, 1 +	15,27142		
D	18 7 2 1 2 6	3 0 5 0 7 2	1 1 1 1 1 7	15 0 1 8 1 5		
F	10, 72130 1108167	15 87812	7 1 2 7 2 1	15,04043 15 1 1 0 0 2		
	-11,7010/	-13,07013	-1, 42124	1 1 5 9 2 9 0		
	-12,33980	-10,30020	-3,00/03	14,30300		
	-13,33840	-3, 220/0	-1,00338	15,04439		j = 9
	11,9816/	13,8/813	1,42/24	-13,11903		
	12,55980	10,56620	5,00/63	-14,58380		
Р	15,55840	5,22870	1,00538	-13,84439	Х	

Tabela 4.50 - Esforços solicitantes elásticos, redistribuídos e plásticos para Tm-RMN

	i= 0	i= 1	i= 2	i= 3	i= 4	
Е	X	-4,66965	0,32063	-0,38084	1,36825	
R	Х	-8,69865	0,40599	-2,22286	0,97597	
Р	Х	-14,26401	0,52390	-4,76728	0,43411	
Е	X	59.95416	0.39331	-0.43142	0.95386	j = 0
R	Х	47,96330	0,22217	-1,42249	0,44370	
Р	Х	31.40013	-0.01423	-2.79148	-0.26100	
Е	- 5, 28335	-44,45808	0,21741	0,45124	-2,97004	
R	-4,01484	-31,81910	0,17912	0.87799	-3,55795	
Р	- 2, 26262	-14,36063	0,12623	1,46747	-4,37004	
Е	- 2,7 5735	-56,04291	0,19571	0,33671	-3,23989	i = 1
R	0.65909	-37,39690	0,17945	0.56999	-3,00788	5
Р	5,37828	-11,64068	0,15699	0,89224	-2,68739	
Е	5,52657	-4,66906	0,19571	0,05074	1,44480	
R	1,91344	-8,67280	0,17945	-0,02700	0,99937	
Р	-3,07746	-14,20325	0,15699	-0,13438	0,38409	·
Е	19,68901	59,95508	0,21741	-0,13353	0,87124	j = 2
R	12,54770	47,99570	0,17912	-0,37681	1,05010	
Р	2,68317	3 1 , 4 7 6 0 4	0,12623	-0,71285	1,29717	
Е	-5,28317	-2,12051	-0,11800	0,14213	Х	
R	-3,99865	-4,02550	-0,07176	0,30212	Х	
Р	-2,22432	-6,65692	-0,00788	0,52312	Х	; _ 2
Е	-2,75718	-0,13646	-0,08216	0,10845	Х	J – S
R	0,67386	2,77180	0,19581	0,31257	Х	
Р	5,41322	6,78905	0,57978	0,59452	Х	
Е	-3,35534	-4,52713	-0,07901	0,00303	Х	
R	-3,39679	-5,91659	-0,17251	-0,18871	Х	
Р	- 3, 4 5 4 0 5	-7,83588	-0,30167	-0,45357	X	i = 4
Е	-0,68497	-4,60001	-0,10808	-0,10068	X	5
R	0,60137	-2,94396	0,04845	-0,25793	X	
P E	2,3/822	-0,65643	0, 26467	-0, 4/514	X	
	-3, 32024	-2, 12108	1,21020	0, 45255 0, 40750		
к D	- 3, 5 0 9 5 5	-4,07721	-0,01973	0,40730 0,37321		
r F	-3,03720	-0,77843	-1, / 10 / 3	0,37321 0,32727		j = 5
R	-0, 25355	270697	-1,07196	0,52727	X	
P	0,75737	6,63722	-3,98681	0,95199	X	
E	-3.35571	-11.80476	1.17461	0.06018	X	
R	-3,42917	-9,55431	3,08501	-0,04662	Х	
Р	-3,53065	-6,44572	5,72388	-0,19413	Х	
Е	-0,68530	-16,46220	1,32753	-0,11462	Х	J = 6
R	0,57184	-9,97902	2,58297	0,09368	Х	
Р	2,30834	-1,02366	4,31713	0,38141	Х	
Е	1,69108	8,68128	0,76151	-2,91663	Х	
R	-0,14080	1,47322	0,92319	-2,05087	Х	
Р	-2,67122	-8,48343	1,14652	-0,85499	Х	i = 7
E	7,80600	51,42569	0,69840	-3,21324	X	J
R	5,55767	39,64800	0, 73220	-3,05951	X	
Р	2,45201	23,37930	0,77890	-2,84717	X	
E	-6,48975	-11,80418	0,69840	1,41815	X	
K D	-4,08052	-9,52846	0, 73220 0, 77800	1,05101 0,54387		
F	9 0 5 2 3 5	-0,38490	0,77890	0,34387		j = 8
R	-4 4 8 9 0 8	-9 9 4 6 6 1	0 9 2 3 1 9	-0 4 5 6 9 7	X	
P	1.81426	-0.94775	1,14652	-2.21788	X	
Ē	1,69127	0,40323	-0,31416	-3,44030	X	
R	-0,12461	0,34238	1,18020	-3,11203	X	
Р	-2,63292	0,25833	3,24439	-2,65859	Х	: 0
Е	7,80616	0,32378	-0,24446	-3,58442	Х	j = 9
R	5,57244	0,03767	1,93411	-3,23415	Х	
Р	2,48695	-0,35755	4,94342	-2,75031	Х	

Tabela 4.51 - Esforços solicitantes elásticos, redistribuídos e plásticos para Mym – RMN

	i- 0	i – 1	i - 2	i - 3	i – 4	
F	X	30 61860	-1195040	-3171946	2993231	
	X V	30,01800		-31,71940	29,95251 27,60120	
R	X V	3 3 , 4 8 4 1 0	-9,07980	- 3 3 ,0 / 4 / 0	27,69120	
P	X	37,44234	-5,11458	-34,94662	24,59555	i = 0
E	X	32,68295	-7,43702	-16,69973	32,43310	5
R	Х	37,06380	-7,24992	-13,73730	35,16030	
Р	Х	43,11506	-6,99149	-9,64532	38,92744	
Е	66,65533	28,42943	-3,05170	35,18565	32,24115	
R	64,58090	28,04250	-4,02871	40,26980	35,36130	
Р	61,71557	27,50794	-5,37828	47,29263	39,67121	
Е	4,59054	31,57244	-2,99913	34,00363	29,74586	j = 1
R	7,77257	32,25500	-3,39448	33,86340	27,24230	-
Р	12.16799	33,19780	-3,94058	33.66967	23.78397	
E	67.00202	30,32662	-3,00061	33,79352	2941564	
R	64 11550	3309950	-3 46441	33 66630	27,61770	
D	60, 12810	36 9 2 9 6 3	4 1 0 5 0 7	33,00050	27,01770 25,13417	
Г Б	6 1 6 1 5 0	30, 92903	-4,10307	24 80020	23,13417	j = 2
	0,10150	32,27483	- 3,0 3 3 1 9	34,80039	51,50014	
R	8,99052	36,44020	-4,10148	38,72580	3 3 , 7 3 8 4 0	
P	12,89831	42,19397	-5,54950	44,14810	36,821//	
Е	65,84320	50,91908	-3,74177	34,62517	X	
R	63,77320	47,13340	-4,14532	38,90680	Х	
Р	60,91395	41,90426	-4,70276	44,82118	X	i – 3
Е	4,44229	59,79292	-0,37606	33,62398	Х	J = 5
R	7,44253	55,53520	-1,71948	33,53150	Х	
Р	11,58684	49,65394	-3,57517	33,40370	Х	
Е	72,90198	50,67228	-0,37532	33,79620	Х	
R	68,02690	46,88310	-1,68451	33,60100	Х	
Р	61.29284	41.64903	-3.49293	33.33145	Х	
Е	16.88381	59.47502	-3.74102	34.97174	Х	j = 4
R	2044670	55 19640	-4 10894	3964050	X	
P	25 36822	49 28619	-4 61715	46 08962	X	
F	72 46681	50 42549	5306306	$\frac{40,00902}{34,75816}$	X	
	67 60800	16 6 2 2 8 0	-53,00500	20 65 500	v	
	07,00890	40,03280	-52,72290	39,03300		
Р	60,89852	41,39380	-52,25307	46,41924	X	j = 5
E	16,74789	59,15712	- 2 8 ,0 1 / 7 0	33,58892	X	-
R	20,24940	54,85750	-19,3/160	33,25440	X	
P	25,08612	48,91844	-7,42861	32,79230	X	
Е	72,03164	28,55648	-28,01658	33,45430	Х	
R	67,19090	28,40270	-19,31930	33,48090	Х	
Р	60,50419	28,19027	-7,30551	33,51773	Х	i = 6
Е	16,61198	3 1 , 7 4 7 5 1	-53,06207	34,44964	Х	J = 0
R	20,05210	32,89450	-52,67560	38,44410	Х	
Р	24,80401	34,47889	-52,14176	43,96164	Х	
Е	67,40192	30,48749	-4,56072	32,63877	Х	
R	64,52520	33,52530	-10,41630	36,05760	Х	
Р	60,55151	37,72161	-18,50479	40,78021	Х	· –
Е	6,23310	32,51095	-3,71034	30,12560	Х	j = /
R	9,48183	37,24530	-6,68778	28,00690	Х	
Р	13,96938	43.78505	-10.80058	25.08028	Х	
E	66.25090	28.33214	-3.71257	29.66295	X	
R	64 19430	2814930	-679246	27 52590	X	
P	61.35353	27,89684	-11 04678	24.57395	x	
F	4 5 1 8 / 9	31 46150	-4 56270	31 78072	X	j = 8
R	7 9 8 9 0 3	32, 60220	-1051100	33 8/3/0	X	
D	1 2 2 2 2 0 5	34 17770	1872740	36 60 7 5 7	A V	
	12,10293	7 1 2 7 7 6	-10, 12/40	31 650 20		
	60,00340	- / , 4 3 / / 0	-10,70072	24 24000		
ĸ	03,14020	- / , 2 8 6 3 1	-13,/84/0	54,54000		
	39,18241	-/,0//09	-9,/5062	38,05542	Δ X	j = 9
E	6,09407	-11,95114	- 3 1 ,7 2 0 5 8	29,54271	X	ĺ.
R	9,26216	-9,11477	-33,12700	27,50520	X	
Р	13,63832	-5,19682	-35,06972	24,69064	Х	

Tabela 4.52 - Esforços solicitantes elásticos, redistribuídos e plásticos para Mzm – RMN

Na redistribuição, via mínima norma euclidiana (RMN), a seção de controle do valor máximo da redistribuição, foi o elemento 10, nó 19. A inversão do sinal dos esforços solicitantes ocorrem para os pilares 3, 4, 6, 9 13 e 15; e vigas 23, 24, 25, 29, 32, 34, 36 e 38, sendo que para a situação onde fez-se o dimensionamento da estrutura baseada na solução elástica, tem que ser analisadas as armaduras, principalmente para as vigas, devido a serem armadas geralmente com armaduras mínimas na face comprimida que podem não ser suficientes para suportar a inversão do esforço.

As análises incrementais da estrutura redistribuída ora por solução plástica via mínima norma euclidiana, ora por mínimo peso, com o teste da capacidade de rotação plástica da seção, são vistos na tabela 4.53. Os deslocamentos são mostrados para o nó de maior deslocamento na solução elástica em relação a norma e estes são acompanhados ao longo da formação das rótulas plásticas e a capacidade de rotação plástica foi testada na seção onde ocorreu a formação da rótula plástica.

Rotula	Tino	2	Ná	Uy (m)	Capacidade de rotação plástica			
Plástica	тро	κ_{c}	INO		Elemento	Nó	Cálculo	Norma
	RMN	0,905	19	0,00824	4	13	0,00102	0,01300
1	RMP1	0,964	19	0,00878	6	15	0,00107	0,01300
	RMP3	0,964	19	0,00878	6	15	0,00107	0,01300
	RMN	1,868	19	0,01710	6	15	0,00208	0,01300
2	RMP1	1,923	19	0,01750	5	14	0,00215	0,01300
	RMP3	1,923	19	0,01750	5	14	0,00215	0,01300
	RMN	2,824	19	0,02600	5	14	0,00316	0,01300
3	RMP1	2,902	19	0,02640	4	13	0,00326	0,01300
	RMP3	2,902	19	0,02640	4	13	0,00326	0,01300

Tabela 4.53 - Resultados da análise incremental (exemplo 4.5)

					10	10	0,00490	0,01320
					11	11	0,00471	0,01320
	RMN	3,824	19	0,03520	16	16	0,00478	0,00131
					17	17	0,00478	0,00131
					18	18	0,00473	0,00131
					10	10	0,00491	0,01320
					11	11	0,00484	0,01320
4	RMP1	3,902	19	0,00357	16	16	0,00483	0,01310
					17	17	0,00492	0,01320
					18	18	0,00487	0,01310
					10	10	0,00491	0,01320
	RMP3	3,902	19	0,00357	11	11	0,00484	0,01320
					16	16	0,00483	0,01310
					17	17	0,00492	0,01320
					18	18	0,00487	0,01310
	RMN	4,274	19	0,00496	32	13	0,00612	0,01600
5	RMP1	4,461	19	0,00536	32	13	0,00710	0,01630
	RMP3	4,351	19	0,00501	32	13	0,00653	0,01600
	RMN	4,796	19	0,00875	14	14	0,00898	0,01440
6	RMP1	4,983	19	0,00915	14	14	0,00934	0,01440
	RMP3	4,874	19	0,00880	14	14	0,00890	0,01440
	RMN	5,15	19	0,12738	28	24	0,00792	0,01380
7	RMP1	5,337	19	0,13136	28	24	0,00826	0,01380
	RMP3	5,228	19	0,12785	28	24	0,00803	0,01380
	RMN	5,515	19	0,17145	21	14	0,01170	0,01380
8	RMP1	5,701	19	0,17543	21	14	0,01210	0,01380
	RMP3	5,592	19	0,17193	21	14	0,01170	0,01380
	RMN	5,876	19	0,22117	32	16	0,01160	0,01600
9	RMP1	6,151	19	0,23722	32	16	0,01220	0,01630
	RMP3	5,954	19	0,22165	32	16	0,01160	0,01600

	RMN	6,155	19	0,26950	31	10	0,01220	0,01600
10	RMP1	6,481	19	0,29434	27*	23	0,04699	0,01380
	RMP3	6,233	19	0,26997	31	10	0,01220	0,01600
	RMN	6,325	19	0,31772	27*	23	0,05004	0,01380
11	RMP1	-	-	-	-	-	-	-
	RMP3	6,402	19	0,31820	27*	23	0,05014	0,01380

(*) Elemento onde a rotação plástica ultrapassou o limite da norma

O gráfico da figura 4.12 representa o fator de carga x deslocamentos verticais para o nó 19

Fig. 4.12 - Gráfico carga x deslocamentos Uy do nó 19 (exemplo 4.5)

O fator de carga λ_c é maior que o fator de majoração γ , com a estrutura dentro dos limites estabelecidos para o projeto. Os fatores de carga da estrutura redistribuída via mínima norma euclidiana e mínimo peso, para o caso 1 e 3, foram próximos. Para atender as especificações de norma as armaduras foram iguais para várias seções fazendo com que o fator de carga tenha se tornado um pouco elevado em relação ao fator de majoração adotado.

A análise das frequências naturais foi feita acompanhando o processo de formação das rótulas plásticas e é vista na tabela 4.54 e os modos de vibração da figura 4.13 para RMN, figura 4.14 para RMP1 e figura 4.15 para RMP3, são representados até antes do colapso plástico.

Número de Rótulas plásticas	Tipo	Elemento	Nó	Frequência (Hz)
	RMN	-	-	2,72010
0	RMP1	-	-	2,72010
	RMP3	-	-	2,72010
	RMN	4	13	2,69360
1	RMP1	6	15	2,69120
	RMP3	6	15	2,69120
	RMN	6	15	2,63790
2	RMP1	5	14	2,59690
	RMP3	5	14	2,59690
	RMN	5	14	2,48170
3	RMP1	4	13	2,48170
	RMP3	4	13	2,48170
		10	10	
		11	11	
	RMN	16	16	2,35820
		17	17	
		18	18	
		10	10	
		11	11	
4	RMP1	16	16	2,35820
		17	17	
		18	18	
		10	10	
		11	11	
	RMP3	16	16	2,35820
		17	17	
		18	18	
	RMN	32	13	2,35380
5	RMP1	32	13	2,35380
	RMP3	32	13	2,35380

Tabela 4.54 - Resultados da análise de frequências naturais (exemplo 4.5).

6	RMN	14	14	2,25500
	RMP1	14	14	2,25500
	RMP3	14	14	2,25500
7	RMN	28	24	2,19170
	RMP1	28	24	2,19170
	RMP3	28	24	2,19170
8	RMN	21	14	2,19040
	RMP1	21	14	2,19040
	RMP3	21	14	2,19040
9	RMN	32*	16	0,000004
	RMP1	32*	16	0,000004
	RMP3	32*	16	0,000004
10	RMN	31	10	-
	RMP1	27	23	-
	RMP3	31	10	-
11	RMN	27	23	-
	RMP1	-	-	-
	RMP3	27	23	-

(*) Elemento onde a estrutura formou a última rótula

a) Geometria inicial

b) 1^a rótula

Fig. 4.13 - Gráfico do 1º modo de vibração da estrutura (exemplo 4.5) - (RMN)

i) 8^a rótula

Fig. 4.14 - Gráfico do 1º modo de vibração da estrutura (exemplo 4.5) - (RMP1)

Fig. 4.15 - Gráfico do 1º modo de vibração da estrutura (exemplo 4.5) - (RMP3)

As plastificações da estrutura ocorreram em seções diferentes para algumas rótulas, mas as configurações dos 1º modos de vibração foram semelhantes para as soluções redistribuídas e a variação da frequência de acordo com a formação das rótulas foi de forma lenta e gradual. As frequências naturais, ao longo da formação das rótulas plásticas, foram próximas das frequências de excitação por movimentos humanos (ver tabela B.1 e B.2). Neste exemplo, conclui-se que foi atendido o estado limite de utilização em relação aos deslocamentos, podendo haver restrições em relação à frequência natural. Para o estado limite último, o fator de carga atendeu as especificações de projeto, sendo que os valores para as duas soluções foram próximos.

CAPITULO 5

CONCLUSÕES E SUGESTÕES

5.1 - CONCLUSÕES

As conclusões e alguns comentários da pesquisa realizada e dos seus resultados obtidos para o presente trabalho são apresentados em seguida.

- Como os modelos de redistribuição geralmente são aplicados para vigas e pórticos planos, seguindo critérios de norma, o critério adotado na pesquisa foi bastante satisfatório porque permite várias taxas de redistribuição independentes da existência de vários ou poucos carregamentos atuantes, podendo ser empregado também em pórticos espaciais.
- O método empregado não é iterativo. Apresenta novas configurações de equilíbrio com as ações solicitantes e atende os dois estados limites, ou seja, de utilização e último.
- Os exemplos apresentados no capitulo 4 do presente trabalho, solucionados para o critério de mínimo peso, apresentaram maiores dificuldades do que a solução via mínima norma euclidiana que tem a sua obtenção direta em função de não necessidade de testar várias situações de variáveis de projeto para obter uma solução satisfatória que torna o trabalho bastante demorado.
- Para atender os dois estados limites de utilização e último, as soluções redistribuídas tanto para mínima norma euclidiana como mínimo peso, apresentaram armaduras iguais ou próximas para as mesmas seções, fazendo com que a sequência de formação de rótulas plásticas se alterasse muito pouco em relação aos dois tipos de soluções.
- Os fatores de carga de colapso plástico foram, para todos os exemplos, acima dos limites estabelecidos para os projetos, sendo que no exemplo 4.5 a estrutura apresentou o fator de carga bastante elevado em relação ao fator de majoração das cargas, devido as taxas de armadura terem que atender as especificações de norma, dando assim, reservas de resistência satisfatórias.

- A capacidade de rotação plástica, com exceção do exemplo 4.5, não impediu a formação de novas rótulas até atingir o colapso plástico da estrutura, sendo que nos exemplos 4.4 e 4.5, as frequências naturais, antes de se atingir o colapso plástico, já estiveram dentro da faixa das frequências de excitação por movimentos humanos (ver tabela B.1 e B.2).
- De modo geral, para os exemplos apresentados, observou-se, em algumas seções, a inversão do sinal dos esforços solicitantes, podendo causar falhas estruturais se as armaduras principal e secundária existentes para a seção não forem projetadas levando em conta a possibilidade da redistribuição de esforços, principalmente para o caso de vigas.

5.2 – SUGESTÕES PARA PESQUISAS FUTURAS

Partindo dos programas desenvolvidos nesta pesquisa, muitos exemplos numéricos envolvendo vários tipos de estrutura poderão ser analisados quanto ao critério de redistribuição apresentado, podendo-se chegar a conclusões mais seguras sobre o método. Em função de existirem aspectos que não foram abordados na pesquisa e com intuito de melhorar as formulações apresentadas, faz-se algumas sugestões e considerações para trabalhos futuros.

- Considerar na análise incremental o efeito de descarga plástica e levar em conta a nãolinearidade geométrica;
- Testar outras soluções plásticas como por exemplo: critério de mínimo peso não linear, mínima norma euclidiana modificada para analisar situações que não atendam ao método proposto;
- Estender os estudos da análise dinâmica, como por exemplo, abordar aspectos da análise transiente;
- Considerar o efeito de carregamentos cíclicos, efeitos de ventos, cargas de impulso etc.;
- Aplicar outros critérios em relação à interação dos esforços solicitantes para empregálos na análise incremental;
- Utilizar a combinação convexa da equação (2.68) dos fatores de majoração, que não feito neste trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

ANSYS Revision 5.2, User's Manual, Vol IV (Theory), Vol III (Elements), 1995.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS NB1, Projeto e Execução de Obras de Concreto Armado, Rio de Janeiro (NBR-6118), 1978.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Cargas para o Cálculo de Estruturas de Edificações, NB5, Rio de Janeiro, 1978.

BATHE, K. J., *Finite Element Procedures in Enginnering Analysis*, Prentice-Hall, New Jersey, 1982.

BREBBIA, C. A.; FERRANTE, A. J., Computational Methods for the Solution of Engineering Problems, Pentech Press, London, 1986.

COMITE EURO-INTERNATIONAL DU BETON, CEB-FIP MODEL CODE 1990, Bulletin D'information N° 203, Lausanne, Switzerland, 1991.

COMITE EURO-INTERNATIONAL DU BETON, VIBRATION PROBLEMS IN STRUCTURES, *Bulletin D'information N° 209*, Lausanne, Switzerland, 1991.

FREITAS, S. D. M., *Estudo Teórico-experimental da Capacidade de Rotação Plástica em Vigas de Concreto Armado*, Dissertação de Mestrado, Departamento de Engenharia Civil, Faculdade de Tecnologia, Universidade de Brasília, 1997.

FUSCO, B. P., *Estruturas de Concreto Armado, Solicitações Normais, Estados limites últimos, Teoria e Aplicações*, Editora Guanabara Dois S.A., Rio de Janeiro, 1981.

GALAMBOS, T. V., Structural Members and Frames, Prentice Hall, Inc., Toronto, 1968.

GERE, J. M.; WEAVER, W. JR., Análise de Estruturas reticulares, Guanabara S.A., 1987.

GHALI; NEVILLE, A.M., *Structural Analysis: A Unified Classical and Matrix Aproach*, 3ed, Chapman & Hall Ltd., London, 1989.

HARRISON, H. B., Computer Methods in Structural Analysis, Pretince-Hall, 1973.

HORNE, M. R.; MERCHANT, W., *The Stability of Frames*, 1ed., Pergamon Press Ltd., Oxford, 1965.

HORNE, M. R., Plastic Theory of Structures, 2ed., Pergamon international library, 1979.

LEONHARDT, F.; MÖNNIG., E., *Construções de Concreto*, 2 ed., Springer, Berlim, v. 4., 1978.

MELLO, E. L., Some Applications of Generalised Inverse Theory to Structural Problems, Phd Thesis, Imperial College, London, 1980.

MELLO, E. L.; SAHLIT, C. L., *Análise Elástica e Elasto-Plástica de Estruturas*, Apostilas do Curso em Extensão em Engenharia Civil, Universidade de Brasília, 1983.

MELLO, E. L., *Flexão Normal Composta em Concreto Armado - Curvas Analíticas de Interação* μ - ν , Revista IBRACON, ano II, N^o 4, p. 63-68, 1992.

MELLO, E. L., Sobre a Capacidade de Rotação das Seções de Concreto Armado, XXVII Jornadas Sudamericanas de Ingeniería Estructural, Tucumán-Argentina, v. 2, p. 141-148, 1995.

MELLO, E. L., Função Convexa de Redistribuição de Esforços Solicitantes para Dimensionamento de Estruturas, XVIII Congresso Ibero Latino-Americano de Métodos Computacionais para Engenharia, Brasília, Brasil, Vol. 1, pp. 185-191, 1997.

MORAES, M. C., Concreto Armado, editora MacGraw-Hill do Brasil, São Paulo, 1982.

NEAL, B. G., *PlasticMethods of Structural Analysis*, 1ed., Chapman & Hall Ltd and Science Paperbacks, 1970.

OLIVEIRA, A. C. J., *Estimativa do Índice Global de Esbeltez de Edifícios Altos de Concreto Armado*, Dissertação de Mestrado, Departamento de Engenharia Civil, Faculdade de Tecnologia, Universidade de Brasília, 1998.

PRADO, J. F. M. A.; GIONGO, J. S., Redistribuição de Momentos Fletores em Vigas de Edifícios, XXVIII Jornadas Sul-Americanas de Engenharia Estrutural, São Carlos, São Paulo, Brasil, Vol. 14 pp. 1555-563, 1997.

PRESS, W. H., *Numerical Recipes in C: The Art of Scientific Computing*, 2ed, Library of Congress, 1992.

RAO, C. R.; MITRA, S. K., *Generalized Inverse of Matrices and its Aplications*, Wiley, 1971.

SHAMES, I. H., Mechanics of Deformable Solids, Pretince-Hall, 1964.

SÜSSEKIND, J. C., Curso de Análise Estrutural, vol. III, Editora Globo, São Paulo, 1991

WILSON, E. L.; HABIBULLAH A., SAP90 – A Series of Computer Programs for the Static and Dynamic Finite Element Analisys of Structures, User's Manual, Computers & Structures, Inc, Berkeley, California, 1988.

APÊNDICE A

A.1 - INTRODUÇÃO

Este anexo apresenta os fundamentos teóricos sobre flexão simples e normal composta, utilizados na análise incremental para determinação dos fatores de carga que dependem das armaduras utilizadas nas seções.

A.2 - FLEXÃO SIMPLES

As vigas foram verificadas à flexão simples, no estado limite último, e as hipóteses básicas foram admitidas anteriormente no item 1.4.

Baseando-se nas soluções redistribuídas obtidas da análise elástica, o cálculo da armadura segue o modelo apresentado a seguir:

$$A_{s} = \frac{M_{d}}{Z \cdot \sigma_{sd}}$$
(A.1)

onde:

 $\begin{array}{ll} A_s & = \mbox{armadura de tração;} \\ M_d & = \mbox{momento fletor de cálculo;} \\ Z & = \mbox{braço de alavanca;} \end{array}$

 σ_{sd} = tensão na armadura de tração em função da posição da linha neutra.

Quando ocorre a necessidade de armadura dupla, permite-se a entrada das taxas entre o momento fletor para o cálculo no limite dos domínios 3-4 e o total, sendo que Moraes (1982) descreve os limites em (A.2a,b):

$$M_{1d} \ge 0.75 . M_d , M_{2d} < 0.25 . M_d$$
 (A.2a,b)

onde:

 M_{1d} = momento fletor adotado para o cálculo no limite dos domínios 3-4;

 M_{2d} = momento restante a ser resistido por uma seção de cálculo equivalente.

A.3 - FLEXÃO NORMAL COMPOSTA

A.3.1 - Estática da seção não-armada

Observando a figura A.1, podem ser estabelecidas as relações de equilíbrio para uma seção retangular não-armada.

Fig. A.1 - Estática da seção não-armada (Mello, 1992)

São dadas em (A.3a,b) as condições de equilíbrio:

$$N_{d} - R_{c} = 0$$
(A.3a,b)
$$M_{d} - R_{c} (h/2 - u/2) = 0$$

sendo que:

$$A_{cc} = b \cdot u$$

$$R_{c} = A_{cc} \cdot \sigma_{cd}$$

$$R_{c} = A_{cc} \cdot \sigma_{cd}$$

$$R_{c} = (b \cdot u) \cdot \sigma_{cd}$$

$$R_{c} = (b \cdot \sigma_{cd}) \cdot u$$
(A.4a-e)

Fazendo-se:

$$q = b \cdot \sigma_{cd} \tag{A.5}$$

Teremos a equação A.6 que é válida para $0 \le u \le h$:

$$\mathbf{R}_{c} = \mathbf{A}_{cc} \cdot \boldsymbol{\sigma}_{cd} \tag{A.6}$$

O par de esforços solicitantes (N_d , M_d) será:

$$\Sigma F_V = 0 , N_d = q . u \tag{A.7a,b}$$

$$\Sigma M = 0, M_d = \frac{1}{2}.q.$$
 (h-u).u (A.8a,b)

Através das relações dadas em (A.7a,b) e (A.8a,b) definem-se as funções de resistência f(v) e $f(\mu)$ dadas em (A.9) e (A.11), respectivamente, onde os valores máximos ocorrem em (A.10a,b) para f(v) e (A.12a,b) para $f(\mu)$.

$$\mathbf{f}(\mathbf{v}) = \mathbf{q} \cdot \mathbf{u} \tag{A.9}$$

$$u = h, f(v) = q \cdot h$$
 (A.10a,b)

$$f(\mu) = \frac{1}{2} \cdot q \cdot (h-u) \cdot u$$
 (A.11)

$$u = h/2, f(\mu) = q \cdot h^2/8$$
 (A.12a,b)

Dividindo-se a equação em (A.7b) pelo valor máximo de f(v) (A.10b) encontra-se:
$$\frac{N_d}{q \cdot h} = \frac{u}{h} \tag{A.13}$$

Adotando-se as equações A.14a e A.14b, obtêm-se a equação (A.15).

$$N_d / q.h = v_d$$
, $u / h = \alpha$, (A.14a,b)

$$v_{d=}\alpha$$
 (A.15)

Dividindo-se a equação (A.8b) pelo valor máximo de $f(\mu)$ (A.12b) encontra-se:

$$\frac{M_{d}}{qh^{2}/8} = \frac{1/2 \cdot (h-u) \cdot u}{qh^{2}/8}$$
(A.16)

Adotando μ_d em (A.17) e (A.18) teremos:

$$M_d / q.h^2 / 8 = \mu_d$$
 (A.17)

$$\mu_d = 4.(1-\alpha) \cdot \alpha \tag{A.18}$$

As equações (A.15) e (A.18) representam as equações de equilíbrio na forma adimensional. Na figura A.2 são apresentados gráficos representando as curvas de resistência e interação baseadas nas equações a seguir:

$$fv(\alpha) = \alpha$$

$$f\mu(\alpha) = 4 . (1 - \alpha) . \alpha \qquad (A.19a-c)$$

$$0 \le \alpha \le 1$$

Fig. A.2 - Curvas de Resistência e Interação (Mello, 1992)

Para qualquer solicitação de esforços ($v_d \in \mu_d$) situado no contorno ou dentro da região admissível, a seção será armada com armadura mínima estabelecida pela NBR 6118 (1978).

A.3.2 - Estática da seção armada

Quando ocorrem solicitações ($v_d \ e \ \mu_d$) fora da região estaticamente admissível haverá a necessidade do emprego de armaduras. No arranjo de armaduras mostrado na figura A.3, as forças R_n atuam para o equilíbrio de N_d e o binário z . R_m , para o equilíbrio M_d .

Fig. A.3 - Estática da seção armada (Mello, 1992)

As condições de equilíbrio serão:

$$\Sigma F_{\rm V} = 0 , 2R_{\rm n} = N_{\rm d} - q . u \qquad (A.20a,b)$$

$$\Sigma M = 0, z \cdot R_m = M_d - q \cdot (h-u) \cdot u/2$$
 (A.21a,b)

Apresentando-se na forma adimensional:

$$R_n = \frac{1}{2} \cdot q \cdot h \left[v_d - f v(\alpha) \right]$$
(A.22)

$$R_m = \frac{1}{2} \cdot q \cdot h \left[\mu_d - f\mu(\alpha)/4k_z \right]$$
 (A.23)

onde:

 $k_z \qquad = z/h$

Seguem as equações (A.24a,b) e (A.25a,b) das ações equivalentes e as curvas de resistência equivalentes que são vistas na figura A.4.

$$e_{1d} = v_d + \mu_d/4k_z$$
, $e_{2d} = v_d - \mu_d/4k_z$ (A.24a,b)

$$f_{e1}(\alpha) = f\nu(\alpha) + f\mu(\alpha)/4k_z , f_{e2}(\alpha) = f\nu(\alpha) - f\mu(\alpha)/4k_z$$
(A.25a,b)

Fig. A.4 - Curvas de resistências equivalentes (Mello, 1992)

A.3.3 - Ligação estática-cinemática

Adotou-se o diagrama retangular de compressão segundo a NBR 6118 (1978) com o modelo aplicado, visto a seguir.

$$\mathbf{u} = 0.8\mathbf{x} \ , \ \mathbf{\alpha} = 0.8\mathbf{\alpha}_{\mathbf{x}} \tag{A.26}$$

sendo:

- x = a posição da linha neutra;
- $\alpha_{x,}$ = posição relativa da linha neutra ($\alpha_x = x/h$).

Com a variação da linha neutra determina-se as ações e resistências equivalentes em R_1 e R_2 , assim como as tensões equivalentes σ_{s1} e σ_{s2} para o cálculo das armaduras (A.27a,b).

$$A_{s1} \ge \frac{R_1}{\sigma_{s1}}, A_{s2} \ge \frac{R_2}{\sigma_{s2}}$$
(A.27a,b)

As condições impostas são:

$$\sigma_{s1} \cdot R_1 > 0 \tag{A.28}$$

$$\sigma_{s2} \cdot R_2 > 0 \tag{A.29}$$

A.4 - VERIFICAÇÃO DA CAPACIDADE DE ROTAÇÃO PLÁSTICA

Quando é permitido o cálculo em regime elasto-plástico poder-se-á considerar cada rótula plástica limitada a uma seção. Dever-se-á sempre verificar se não é ultrapassada a capacidade de deformação angular do concreto armado no trecho plastificado. (NB1/78).

Neste trabalho, a capacidade de rotação das seções foi avaliada segundo o método desenvolvido por Mello (1995), que aborda o problema do ponto de vista cinemático, em

conformidade com os encurtamentos do concreto e alongamento da armadura previstos nos domínios de dimensionamento do CEB/90 e NB1/78. Convém comentar que o CEB/90 contempla apenas os domínios 2 e 3, e o critério apresentado varre todos os domínios, isto é, com linha neutra variando de (-) infinito a (+) infinito (Mello, 1995).

Baseando-se na figura A.5, define-se a expressão para o cálculo da curvatura (1/r) dada na equação A.30.

Fig. A.5 - Peça indeformada e arcos de circulo (Mello, 1995)

onde:

 $d\theta$ = ângulo entre as duas seções;

ds = distância original entre as faces paralelas da figura A.5;

R = Raio que vai do ponto de encontro entre os dois eixos das seções até a face mais comprimida;

x = posição da linha neutra em relação a face mais comprimida;

 $\epsilon_{c1}, \epsilon_{c2}$ = deformações seccionais do concreto na posição T e C, respectivamente;

 ϵ_{s1} , ϵ_{s2} = deformações seccionais das armaduras na posição T e C, respectivamente;

h = altura da seção;

z = braço da alavanca entre as armaduras.

Baseado no modelo de rotação das seções da figura A.6, que obedece os critérios da Hipótese de Bernoulli-Euler, pequenas deformações etc. A compatibilidade das deformações, relaciona o ângulo de rotação ϕ com as deformações, da seguinte forma:

$$(h \tan \phi)/lo = (\varepsilon_{c1} + \varepsilon_{c2}) = (\varepsilon_{s1} + \varepsilon_{s2})/k_z = h.d\theta/ds = h/r$$

$$k_z = z/h$$
(A.31a,b)

Fig. A.6 - Modelo da rotação das seções (Mello, 1995)

onde :

 $l_o =$ comprimento inicial da peça;

Baseado no critério das pequenas deformações com tan $\phi \cong \phi$, descreve-se a equação (A.31a) da seguinte forma:

$$\tan \phi = (\varepsilon_{c1} + \varepsilon_{c2}) \ln h \le \phi$$

$$\log \le h \phi / (\varepsilon_{c1} + \varepsilon_{c2})$$
(A.32a,b)

Segundo as recomendações do CEB/90 (1991), a soma $\varepsilon_{c1} + \varepsilon_{c2}$ atinge seu máximo no limite dos domínios 2 e 3, onde $\varepsilon_{c2} = 3,5\%_o$ e $\varepsilon_{S1} = 10\%_o$. Dependendo do layout da

armação, ε_{c1} , gira em torno de 12%_o, o que dá $\varepsilon_{c1} + \varepsilon_{c2} = 15,5\%_o$. Se pusermos $\phi = 0,0155$ radianos, o que é pequeno uma vez que tan (0,0155) $\cong 0,0155$, resulta de (A.32b):

$$lo \le h$$
 (A.33)

Conclui-se que podemos tomar lo como sendo o comprimento de plastificação de cada lado da seção (Mello, 1995).

Tomando-se lo = lp = h para cada lado da seção e empregando na equação (A.31a) teremos:

$$\tan \phi \cong \phi = (\varepsilon_{s1} + \varepsilon_{s2})/k_z \tag{A.34}$$

que estabelece a equação da rotação total da seção.

As regiões definidas em função dos mecanismos de colapso são vistas a seguir:

• região I

Definida para $\alpha_x \ge 1$ com pólo situado a 3/7 da altura da seção, onde o encurtamento é mantido constante e igual a 2%_o.

$$\phi = (14 / (7\alpha_x - 3)).10^{-3} \text{ radianos} \quad \text{para } \alpha_x \ge 1 \tag{A.35}$$

Para $\alpha_x = 1$, resulta $\phi = 3.5 \times 10^{-3}$ rad e para $\alpha_x \to \infty$, resulta $\phi = 0$, o correspondente a uma coluna com carga concentrada

• região II

O limite inferior da linha neutra é obtido com $\varepsilon_{c2} = 3,5\%_0$ e $\varepsilon_{c1} = 10\%_0$, com isso chegamos a: $\alpha_x = 7 \cdot \alpha_1/27$. Para evitar que esse limite dependa de α_1 , basta impor a condição de que a linha neutra passe pelo centro de gravidade da armadura próxima da face 2 (Mello, 1995), resultando:

$$7/34 \le \alpha_x \le 1$$

$$\phi = (3, 5/\alpha_x) \cdot 10^{-3} \text{ radianos}$$
(A.36a,b)

• região III

É definida para $\alpha_{\!x}\,{\leq}\,7/{34}$ com o pólo em $\epsilon_{_{S1}}{=}10\%_{\rm o}$, sendo obtida a seguinte equação:

$$\phi = (340 / (27 - 34\alpha_x)) \cdot 10^{-3} \text{ radianos para } \alpha_x \le 7/34$$
 (A.37)

Esta formulação numérica foi avaliada num programa experimental desenvolvido por Freitas (1997) na Universidade de Brasília e os resultados obtidos foram a favor da segurança estrutural.

APÊNDICE B

B.1 - INTRODUÇÃO

Este anexo apresenta as características dinâmicas de algumas estruturas, envolvendo as frequências típicas de excitação.

B.2 – CARACTERÍSTICAS DINÂMICAS DE ESTRUTURAS

B.2.1 – Vibrações induzidas por máquinas

Os efeitos dinâmicos diretos ocasionados por máquinas vibratórias afetam de forma mais intensiva os elementos estruturais, sobre os quais o maquinário está fixado (por exemplo, *Bulletin D'information Nº 209*, CEB, 1991). A Tabela B.1 nos mostra as frequências de vibração de algumas máquinas.

Tipo de Máquina	Faixa de Frequência de Excitação (Hz)	
Pistões, Compressores	Até 10 Hz	
Máquinas de Tecelagem	Até 5 Hz	
Motores a Díesel Grandes	De 5 a 15 Hz	
Motores Díesel Pequenos	De 15 a 20 Hz	
Furadeiras, Brocas	De 3 a 8 Hz	
Ventiladores	De 13 a 18 Hz	
Motores Elétricos	De 8 a 18 Hz	

Tabela B.1 – Tipos de máquinas e frequências

B.2.2 – Vibrações induzidas pelo homem

As atividades do corpo humano são cargas de excitação sobre as estruturas. A tabela a seguir traz um resumo das frequências de excitação devido ao movimento do corpo humano (por exemplo, *Bulletin D'information Nº 209*, CEB, 1991).

Atividade	Categoria	Frequências	Tipo de Estrutura
Caminhada	Lenta	1.7 Hz	Passarelas de pedestres,
	Normal	2.0 Hz	prédios de escritórios, escadas,
	Rápida	2.3 Hz	etc.
Corrida	Lenta	2.1 Hz	Passarelas para pedestres,
	Normal	2.5 Hz	passagens para corredores em
	Rápida	> 3.0 Hz	eventos esportivos, etc.
Pulo	Associado a Treinos	1.5 – 3.4 Hz	Ginásios, Estádios esportivos,
	Associado a jazz	1.8 – 3.5 Hz	etc.
Dança	Ritmos modernos	1.5 – 3.0 Hz	Salões de dança, salas de
			espetáculos, etc.
Aplauso	Aplauso de auditório	1.5 – 3.0 Hz	Auditórios, salas de
			espetáculos, etc.
Balanço Lateral	Concertos, eventos	1.5 – 3.0 Hz	Estádios esportivos, salas de
			espetáculos, etc.

Tabela B.2 - Tipos de movimentos humanos e frequências