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The partition function and specific heat of the ising chain are evaluated in a generali~tion 
of the Boltzmann-Gibbs statistics. The extensivity and the influence of the ground state 
energy in the thermodynamical properties are discussed. 

A possible generalization of the Boltzmann-Gibbs statistics (BGS) has been 
discussed recently by Tsallis [1], who proposed a generalization of the defini- 
tion of the entropy as 

1-Zp, 
Sq = k i=t (1) 

q - 1 ' 

where i = 1 , . . . ,  w counts the different microstates (configurations). This rela- 
tion stems from the study of multifractals and is related to other entropy 
definitions of information theory: it is very close to the definition introduced by 
Dar6czy [2], and it is also related with the R6nyi entropy of information theory 
[3] by 

w 

log ~ pq log[1 + (1 - q)Sq/k] 
i=1 - k (2) 

Sq=k  1 - q  1 - q  

In the quoted expressions q is the defining parameter of the statistics, which 
recovers the usual BG5 in the limit q ~ 1. 

In this note wt, discuss the behaviour of an Ising chain for a family of 
statistics from the quoted set. The model is a natural many particle extension 
of the two-level model presented in ref. [1]. We aim to enlighten some points 
concerning the influence of the ground state on the results. The results we 
obtained also allow for a discussion on the extensivity of the quantities 
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evaluated within these statistics. The choice of the values of q allows for exact 
results and for a connection to the BGS. 

The entropy definition (1) leads to a canonical distribution for a system in 
thermal bath as 

r ~ t l  - ~ ( q  1)el] ' ' (q - ' )  

Zq ~ i= 1 
Zq = ~ [ 1 - / 3 ( q -  1)e,l (3) 

We realize that the family 

r + l  
qr = ~  , r = l , 2 , . . . ,  (4) 

r 

reduces (3) to a polynomial expression as 

(5) 

With such p ,  the sums over configurations can be carried out without difficulty 
for the Ising model. Moreover we note that, for any finite r, (5) constitutes a 
truncation of the exponential function of - / 3E .  Therefore it is natural to 
expect that the results given by the finite-r statistics shou!d converge to those of 
BGS in the high temperature regime. 

We will define the Ising Hamiltonian as 

N 

H :  E -  J E oriori+ 1 , Orgy- -1 ,  (6)  
i=l 

where we explicitly introduced the constant parameter /~. It allows for a 
calibration of the ground state energy, which strongly influences the behaviour 
of the system. This becomes clear by the results that we get by choosing two 
values /~  = - N J  and/~2 = NJ .  In the first case the energy levels are nonposi- 
tive, the values going from - 2 N J  to 0. In the second case the levels have 
nonnegative values, from 0 to 2NJ .  These levels are the same as, for instance, 
the ones of a lattice gas (with site variables 0 or 1) with negative (positive) 
coupling. 

Let us analyse the first case. After a trr transformation the Hamiltonian (6) 
is reduced to 

N 

H =  - N J -  J E r i ,  ~'i = -+1. (7) 
/=1 

The partition function Z ,  for any value of r can be obtained after a little effort. 
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I n d e e d  we have 

c o n f  F F i = l  

r ( 
= Z C,(m) 1 +  N ~ J ) ' - "  ~mjm 

,.~o r / -~  F(m, N) , (8) 

where  C~(m) = r[/m[(r - m)! and F(m, N) = Ecoaf (~'i 7i) m can be eva lua ted  by 
count ing  the n u m b e r  of  contr ibut ions  for all possible configurat ions of  posit ive 
and  negative bonds  r~. We arrive at 

F(m, N )  = 2 P  Op - N (p + q ) N l . _ q =  , . (9) 

Af t e r  (9) the defini te  evaluat ion of  F(m, N) for successive values of  m is 
s t ra ightforward,  bu t  it becomes  increasingly lengthy for  large values of  rn. 
Since the final expressions are power  series of  N, it is convenient  to derive a 
recurs ion re la t ion for  the coefficients,  which can be easily implemented  in a 
numer ica l  p rogram.  So we first write 

,, ..... P'q" - ' . (9,.,_r a..O-- N ( p + q ) S = ( p + q ) N - , , ,  ~" N" Z Tl,,~ (10) 
" "p  , = o ~ = o 

where  rl.ms (m,  n, s >1 0) are recursively given by 

7/, s = r/,_1.~_ l + (s - m - l)r/..~_ I (ll) 

with initial condi t ions  rl°s = 8~.oSs. o. F rom these ~7"s we define 

m [i 

Vmn = Z '7, m , Cm,, = Z Cm('0 V~-,,., ,-A--1)" (12) 
s = O  n = O  

to  finally write F(m, N) as 

rt! 

F(m, N) = oN S ' r ~I" (13) 
u = O  

T h e  evaluat ion of  the  ~r's according to the above prescr ipt ion leads to ~,,, = 0 
for  m odd,  Vu, as could be ant ic ipated.  We also find ~',,,, = 0  for m even,  

u > ½m. Just to i l lustrate we quo te  some values of  ~m,: ~'2.1 = 1; ~'4.1 = - - 2 ;  

~'4,2 = 3; ~6.~ = 16; ~'6,2 = --30; ~6,3 = 15 and so on.  
Finally insert ing (13) into (8) leads to 
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~o~m(~_~Jr ) ~-s r[ Z , =  2 N [ Nr+u-m-s 
s=0 s ! m ! ( r -  m - s) w ~mu-" " (14) 

The connection between the generalized partition function (14) and thermo- 
dynamics is still an open question. Therefore the way to analyse the properties 
of the model follows the evaluation of its mean energy U,, defined as 

1 ( - N J -  J ~] Tj) (1+ NflJ ..... + [3 /~ . r~ )  " 
j=l r i--l 

(15) 

The evaluation of (15) follows the same steps as for Z r, and we finally get 

r--m(~)r--sE 

U r = - N J - J  m=O~=O 

r! m+l 
r N r+' - ' ' - s  

s !m!(r  - m - s)! ~=0 ~m+l,, 

E [ Nr+u-m-s 
m=0 s=0 s !m!(r  - m - s)[ u=0 vmu-" 

(16) 

The positive analysis of the second case (/~ = N J)  is more difficult, due to 
the fact that the polynomial expression (5) may cause some positive levels to 
have a negative probability when r is odd. Such levels ought to be cut off in 
order that the expression (5) have some meaning. We will multiply the 
expression (6) by the Heaviside function 0(1 - f i E )  to be sure that only those 
levels with energy E ~< E '  = r/fl make contributions to Z r. When r is even the 
probabilities will also be positive when E > E'.  Nevertheless we will keep the 
factor 0(1 - / 3 E )  in order to have similar results for any value of r, and the 
partition function will have the following fcrm: 

Zr E ( 1 N[~J ..~ ~J ~ )r ( N[~J [~J ~ ) . . . .  zi 0 1 + r~ . (17) 
conf r r i =  I r r i =  1 

The presence of the Heaviside function complicates the derivation of an 
analytic expression for Z r, since it takes off several terms of the sum over 
configurations. Moreover the number  of terms left out is a function of the 
temperature,  so that possible analytical expressions would be restricted to 
certain temperature  ranges. 

Since we may identify 

N 

E ~'~Ti--~ Z C N ( M ) ( N - 2 M ) ,  (18) 
conf  i M=O  
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the most convenient way to write Z, of the positive energy levels is to introduce 
N, (T)  = rkaT/2J to obtain 

/•r 
Zr'~ E CN(M)(1  21~/~-13J~ r (19) 

M=O r / ' 

which as function of T can be obtained by numerically summing o v e r  t h e  

allowed energy levels. The internal energy U, will also be obtained numerically 
from the expressions 

1 ~ CN(M)(  1 2M13J) '2 j  M u , =  ° (2o) 

From the expressions (16) and (20) we may also obtain the specific heat of 
the model with two ground state energies in this family of statistics as 

1 01.1, 
c,= NknT 2 013 " (21) 

Let us begin with the negative energy levels (16). Since the general expression 
is very cumbersome we write down only the expressions for the first two values 
of r: 

¢1 j2 
-k = (kT + NJ) 2 ' (22a) 

C 2 4 k 2 T  2 + 4kTNJ + j 2 N ( N  - 1) (22b) 
--k = 4 j 2  [4kZT 2 +4kTNJ + J2N(N + 1)] 2 " 

These expressions deviate from the expected behaviour for intensive quantities 
in the BGS: both are proportional to l / N  2 in the limit of large number of 
spins. This is illustrated in figs. la  and ib ,  where we draw c t and c 2 as functions 
of the reduced temperature kBT/J for several numbers of spins. The curves 
also show clearly that c r ~ 0 as T---~ oo for any number of spins. The unexpected 
vanishing of G (r = 1, 2) in the thermodynamic limit may be discussed along 
two iJ.~es: The first one concerns the expression of the energy, ""~-:~" " : _ a ~ a  W i l i ~ g . l i  I S  l i l g l ~ b - ~ . U  

an extensive quantity. However, in the limit N---, o~ U, approaches a constant 
value, which causes the specific heat to vanish. The second way to look at this 
result is to recall that the finite-r statistics is to a polynomial truncation of the 
exponential function, so that the results should approach those of BGS when 
13E is small. When N increases, so do the values of the energy levels which 
make contributions to physical properties. Therefore 13E will be small for 
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Fig. 1, Specific hea t  of  the Ising chain with negative energy levels when r = 1 (a) and r = 2 (b), for  
different numbers  of  spins in the chain, it converges uniformly to zero as n grows. 

larger values of the temperature.  Thus when we are not close to the region 
w h e r e / 3 E  is small (N---> ~ or T---> 0) the results will deviate from those of the 
BGS. 

Analytical expressions for the specific heat in the case where the levels are 
positive cannot be obtained. Therefore we are forced to derive (20) and 
evaluate numerically the sums appearing in the expressions. The results so 
obtained are plotted in figs. 2a (r  = i)  and 2b ( r =  2). We observe an entirely 
different picture with respect to the former results. 7"he specific heat now 
presents oscillations with respect to the temperature ,  which are sharp for r = 1 
and somewhat  smoother for r = 2. Such behaviour is not common to known 
systems, but is like the oscillations observed for the specific heat  of one 
harmonic oscillator within the same statistics [4]. Their origin is related to the 
sudden occupation of some energy levels when a small variation of the 
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Fig .  2. Specific heat of the Ising chain with positive energy levels when r = 1 (a) and r = 2 ( b ) .  for 
different numbers of spins in the chain. Note the presence of oscillations due to the population of 
new levels as the temperature is increzsed. The interval between the peaks is k T / J  = 1/r. The 
number of peaks increases with N, since there exists a larger number of levels which will only be 
populated at higher temperatures. 

temperature allows for an increased value of  Nr- One  interesting feature 
displayed by fig. 2b refers to the behaviour  of  c~ when  N increases. We note  
that when N = 20 the value of  c 2 is larger than the ones  for N = 1, 2 and 5 as T 
increases.  Such increase of  the high temperature c 2 with N stays in contrast 
with the monotonic  decrease of  c r with N when the levels  are negative.  The 
same  situation is shown in fig. 2a, though not so clear as in fig. 2b. We may 
observe,  for instance,  that the N = 2 curve lies below the N = 1 until kT/J = 2, 
w h e n  the N = 2 curve (but not the N = 1) has a peak making  its value higher 
than the N = 1 curve. For values kT/J > 2 the N = 2 curve will be higher than 
that of  N = 1. The  same situation is observed with the other values of  N. 
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Due to the complex oscillatory behaviour just discussed and to the lack of 
analytical expressions it is rather difficult to make a definite discussion on the 
behaviour of the specfic heat in the limit N---> 0% when the energy levels are 
positive. Nevertheless, the results obtained for N as high as 100 suggest that it 
will converge to zero for any value of T, though the convergence seems to be 
nonuniform. 

The results just discussed illustrate the very interesting behaviour of the 
simple Ising chain in the generalized statistics. The series of statistics we chose 
converges to the usual GBS in the limit r---> ~, and the results obtained for 
finite r are equivalent to those of BGS in the high temperature limit. A natural 
conjecture refers to a connection between the high temperature expansions and 
the finite-r statistics. The other important feature is the influence of the ground 
state energy. Our results point out that if all levels are aUowed for any value of 
the temperature, the link with the usual GBS is more natural. On the other 
hand, if new levels are allowed when the temperature is changed, some 
unusual behaviour such as the oscillation in the specific heat will be present. 

We finally point out that the procedure followed in this letter may be 
extended to higher dimensions and other known models of statistical mech- 
anics. We may quote, for instance, that the Ising model on the two-dimensional 
square lattice may be easily evaluated for small values of r. However, it has not 
been possible to derive a general expression such as the one presented in (9). 
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