
Composing Architectural Aspects
Based on Style Semantics

Christina Chavez1

flach@dcc.ufba.br
Alessandro Garcia2

afgarcia@inf.puc-rio.br
Thais Batista3

thais@ufrnet.br

Marcel Oliveira3

marcel@dimap.ufrn.br
Claudio Sant’Anna1

santanna@dcc.ufba.br
Awais Rashid4

marash@lancaster.ac.uk

1Computer Science Department, Federal University of Bahia, Brazil
2Computing Department, Pontifical Catholic University of Rio de Janeiro, Brazil

3Computer Science Department, Federal University of Rio Grande do Norte, Brazil
4Computing Department, Lancaster University, United Kingdom

ABSTRACT
The lack of architecturally-significant mechanisms for aspec-
tual composition might artificially hinder the specification of
stable and reusable design aspects. Current aspect-oriented
approaches at the architecture-level tend to mimic program-
ming language join point models while overlooking main-
stream architectural concepts such as styles and their se-
mantics. Syntax-based pointcuts are typically used to select
join points based on the names of architectural elements,
exposing architecture descriptions to pointcut fragility and
reusability problems. This paper presents style-based com-
position, a new flavor of aspect composition at the architec-
tural level based on architectural styles. We propose style-
based join point models and provide a pointcut language
that supports the selection of join points based on style-
constrained architectural models. Stability and reusability
assessments of the proposed style-based composition model
were carried out through three case studies involving differ-
ent styles. The interplay of style-based pointcuts and some
style composition techniques is also discussed.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Languages (e.g., description, interconnection, definition)

General Terms
Design, Languages, Verification

Keywords
Architectural aspects, architectural styles, pointcut lan-
guages, style-based composition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’09, March 2–6, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-442-3/09/03 ...$5.00.

1. INTRODUCTION
Architectural aspects are components that modularize

widely-scoped properties that naturally cut across one or
more of the elements in a given architectural decomposi-
tion [1, 7, 9]. The importance of taming architectural as-
pects is attested by the recent interest of the software archi-
tecture community on understanding how aspects influence
architectural descriptions (ADs) [11, 9] and by the grow-
ing number of aspect-oriented (AO) architecture descrip-
tion languages (ADLs) [7, 2]. In this context, aspect compo-
sition requires the identification of architecturally-relevant
join points in which aspects and other architectural elements
are naturally combined together.

However, current AO ADLs overlook mainstream archi-
tectural concepts such architectural styles, and aspect com-
position resorts to join point models that mimic low-level
programming language join point models. This may lead
to a conceptual misalignment between the techniques, mod-
els and ADLs used by architects to document architectures
and the expressiveness of AO approaches. For instance, ar-
chitects commonly organize the components of large soft-
ware systems on the basis of one or more architectural
styles. An architectural style encapsulates important de-
cisions about architectural elements and emphasizes impor-
tant constraints on these elements and their relationships.
Architectural styles allow architects to reuse and apply suc-
cessful design knowledge to a particular class of systems,
with the support of style-specific tools, analysis, and im-
plementations [10]. Moreover, syntax-based pointcuts are
typically used by current AO ADLs to select join points
based on the names of architectural elements, exposing AD
to pointcut fragility [21, 19] and reusability problems. The
characteristics and limitations of low-level join point models
and syntax-based pointcuts that affect aspect composition
at the architectural level are also discussed (Section 2).

In this context, we present style-based composition, a new
flavor of aspect composition at the architectural level based
on the semantics of architectural styles. Style-based aspect
composition is defined in terms of style-based join point mod-
els (Section 3), high-level join point models that stand for
abstract models of system behaviour at the architectural
level. Such abstract models entail significantly different sets
of join points from those supported by existing AO ADLs

111

and AspectJ. For each style, a join point model needs to
be defined and documented. The documentation makes the
style semantics explicit so that the style-based joint point
models can be used for architectural composition and anal-
ysis. In style-based aspect composition, pointcut definitions
are inevitably based on querying over multiple style-based
join point models. They also require an open-ended point-
cut language that takes into account these join point models
(Section 4).

Style-based join point models are expected to facilitate
aspect specification and composition in the context of real
large-scale and complex systems which are seldom homoge-
neous. Style-based pointcuts are expected to reduce point-
cut fragility and promote reuse. Stability and reusabil-
ity assessments of the style-based composition model are
presented, based on the outcomes of three case studies
involving different styles and application domains: the
Health Watcher (HW) system [33], the Conference Manage-
ment (CM) system [29], and the MobileMedia (MM) [12]
product line for data manipulation in mobile devices. Our
analysis also discusses the interplay of style-based compo-
sition and some existing techniques for composing architec-
tural styles in the context of the HW system (Section 5).
Finally, our proposal is compared with related work (Sec-
tion 6) before disclosing final remarks and future work di-
rections (Section 7).

2. MOTIVATION
The Health Watcher (HW) design (Section 2.1) is a real-

life case study that involves several architectural styles and
different architectural aspects, including exception handling
(Section 2.2). Architectural descriptions for the HW system
are provided in AspectualACME [14], an AO ADL that ex-
tends ACME [17] for expressing aspectual interactions and
configurations (Section 2.3). The HW design is used to dis-
cuss characteristics and limitations of low-level join point
models and syntax-based pointcuts for composing aspects
at the architectural level (Section 2.4).

2.1 The Health Watcher: a case study
Health Watcher (HW) is a Web-based information system

that supports the registration of complaints to the Brazil-
ian Public Health System [33]. HW is implemented in As-
pectJ [22] and has been used as a benchmark for AO soft-
ware development [33, 13, 25, 14, 18] due to the heterogene-
ity of the crosscutting concerns found in its implementation.
Figure 1 illustrates a primary view of the HW runtime ar-
chitecture. It combines four classical architectural styles:
(i) client-server, (ii) layers, (iii) shared-data, and (iv) pipe-
and-filter. The first layer consists of browsers, located in
client hosts. Browsers communicate with servlets (GUI) in
a Web server, via HTTP connection. The Web server (the
second layer) accepts connections, processes requests, and
returns resulting data to clients. The Web server also works
as a client and accesses the remote interface exposed by the
Application server (the third layer), which consists of busi-
ness logic services.

The Application server is also organized in layers. The
upper layer implements the core business rules and is con-
nected to an external server, the SUS component. SUS is
a centralized system with updated information about the
Brazilian Public Health System. The middle layer, Data-

Management, manages data services and accesses a relational

Figure 1: The topology of the HW system.

database used as the persistence mechanism. The lower
layer, Persistence Mechanism, combines two styles to rep-
resent the inner components: shared-data and pipe-and-
filter. For simplicity, interfaces and connector details are
omitted in Figure 1.

The AO design of Health Watcher has exhibited superior
architectural stability even in the presence of heterogeneous
evolutionary changes when compared with non-AO archi-
tecture alternatives [19]. Aspects were used in the HW sys-
tem to improve the modularization of three widely-scoped
crosscutting concerns: exception handling [13], transaction
management [33], and distribution [33, 25]. The next sub-
section focuses on discussing the crosscutting nature of the
ExceptionHandling component in the HW architecture.

2.2 Architectural exception handling
Error handling (EH) [26] has been extensively referred in

the literature as a classical crosscutting concern in systems
following different kinds of design decompositions, such as
layered architectures, MVC architectures, and data shared
architectures [22, 26, 13, 33]. Error handling is widely recog-
nized as a global design issue [15, 31] and tends to affect al-
most all the system’s core modules and their interfaces [26].
It has also been documented as an anti-modularity factor in
well-known catalogues of architectural patterns [4].

Exceptions are of architectural nature whenever they are
associated with coarse-grained structures, i.e., components
and their interfaces. An exception is architectural if it is
raised within an architectural component but not handled by
the raising component [13]. Such exceptions cut across the
boundaries of architectural components. The architectural
exceptions that flow between two components determine the
“abnormal interaction protocol” to which the involved com-
ponents adhere.

112

Listing 1: HW Architecture Elements for EH

System HW = {
Component ExceptionHandling = {

Port communicationFaultHandler = { . . . }
Port e rrorLogg ingHandler = { . . . }
Port in formationAppendingHandler = { . . . }
Port sta l eConnect ionHand le r = { . . . }

}
Connector Type Termination = {

Role f a u l t y S e r v i c e ;
Role terminationBasedRecovery = {
Invariant returnValue . type !> Exception ; }

Glue terminationBasedRecovery after
f a u l t y S e r v i c e ;

}
Connector Type Ret r i a l = {

Role f a u l t y S e r v i c e = {
Property r e t r i a l s : i n t ;
Invariant r e t r i a l s f a u l t y Se r v i c e <= 3; }

Role l o c a l S t a t eRecovery ;
Glue l o c a l S t a t eRecovery after f a u l t y S e r v i c e ;

}
Connector Type Propagation = { . . . }
Attachments { . . . }

}

In the HW system, a number of exceptions are of archi-
tectural nature and are associated with several components
and their interfaces. EH has been used as an error-recovery
strategy that complements other techniques for improving
system reliability, such as the atomic transaction mechanism
in DataManagement layer. EH promotes the implementation
of specialized forward recovery measures, and it is mostly re-
alized by a ExceptionHandling component in the HW archi-
tectural specification (Figure 1). This component consists
of systemic exception handlers in charge of either putting
the system back in a coherent state or recording some rel-
evant information for later manual recovery [33, 14]. Fig-
ure 1 shows the ExceptionHandling component, and how it
affects multiple layers and components of the HW design.

2.3 Exception handling in AspectualACME
Listing 1 presents a textual description in Aspectu-

alACME for the ExceptionHandling’s key elements used
in the HW system. AspectualACME extends ACME and,
therefore, supports the description of systems, components,
connectors, attachments, ports, roles, and representations.
The HW system is composed of components, connectors
and attachments that describe its topology. Components
such as Exception Handling, Application, SUS and GUI
are the computational units and support multiple interfaces
known as ports. The ports of the ExceptionHandling com-
ponent provide handlers for the exceptions raised by the
other HW components. Examples of handlers are communi-

cationFaultHandler, informationAppendingHandler and
staleConnectionHandler (Listing 1).

Connectors implement the interaction protocols between
components. Connectors have roles, which are associated
to component ports. Attachments define a set of port/role
associations. Three connectors are used to capture the ab-
normal interaction protocols employed in the HW architec-
ture [33, 14]: (i) Termination, (ii) Retrial, and (iii) Prop-
agation (Listing 1). These connectors are special-purpose
units of modularity that specify links through which only ex-
ceptions flow, i.e., they are “ducts” of exceptions. They de-

note different forms of interaction between the point where
the exception is raised (exception throwing port) and the
handler execution at the ExceptionHandling component. In
other words, the exception connectors determine the abnor-
mal interactions that can take place between the Exception-
Handling component and the rest of the architecture. Such
abnormal interaction protocols are directly or indirectly sup-
ported by exception mechanisms in modern programming
languages [15], such as Java and C++. The termination
and propagation policies are directly supported by Java and
AspectJ, the programming languages used to implement the
HW system. Retrial-based recovery is implemented by ex-
plicitly re-invoking the target service within the exception
handlers.

AspectualACME defines a few additional abstractions and
mechanisms to support the description of aspectual composi-
tions. Aspects are represented as conventional components.
Extensions affect only connectors and attachments. The glue
clause describes the details of aspectual interactions. The
aspect composition strategy (after, before or around) is lo-
calized inside connectors [14]. Different composition proto-
cols for EH are captured by distinct specifications in the glue
clause of each connector. For instance, the glue clause from
the Termination connector (Listing 1) determines that, once
the exception (received through the faultyService role) is
processed by the component handler attached to the ter-

minationBasedRecovery role, the faulty service is discontin-
ued and a normal value is returned to the caller of the faulty
service. This normal return is enforced by the invariant as-
sociated with the terminationBasedRecovery role. Similar
reasoning applies to the Retrial and Propagation connec-
tors. However, the faultyService is re-invoked (maximum
of three times) in the first case, and an exception is always
propagated to the caller in the second case.

2.4 Limitations of AO ADLs
In most AO ADLs, aspect compositions rely on low-level

join point models and syntax-based pointcut definitions that
depend on specific naming conventions or resort to enumer-
ation of syntactic ADL elements, such as identifiers for com-
ponents, connectors, ports and roles.

Listing 2 presents an example of AD in AspectualACME.
In this example, the join point model adopted is style-
agnostic and based on require service/provide service seman-
tics. It does not take into account possible points of interest
prescribed by different architectural styles and their seman-
tics. Moreover, each attachment declaration relates one port
to one role, matched by their full signatures. The AD is ver-
bose and difficult to reuse across multiple instantiations of
the ExceptionHandling component.

AspectualACME and other ADLs provide AspectJ-like
wildcards in order to select a set of components and their
ports, promoting the adoption of naming conventions and
possibly better descriptions of intended composition seman-
tics. For instance, servers can be renamed to Application-

Server, GUIServer, and SUSServer, and the lexical-based
pattern *Server can be used to match those elements. Ports
can also be renamed to *Service. Listing 3 presents an AD
in AspectualACME that uses wildcards.

Previous analysis of existing AO ADLs [2, 7, 14] revealed
that their support for pointcut definitions is mostly based on
the syntax of the ADs. Some AO ADLs [2] support the se-
lection of multiple elements based on other structural prop-

113

Listing 2: Conventional aspect composition for EH

System HW = {
Component Appl i cat ion = { . . . }

// Other components (SUS, GUI)

Component ExceptionHandling = { . . . }
Connector T1 ,T2 ,T3 : Termination ;

Attachments {
T1 . terminationBasedRecovery to

ExceptionHandling . communicationFaultHandler ;
T2 . terminationBasedRecovery to

ExceptionHandling . communicationFaultHandler ;
T3 . terminationBasedRecovery to

ExceptionHandling . communicationFaultHandler ;
// Binding the connectors to ports that ra i se
// except ions to be propagated to upper l aye r s

T1 . f a u l t y S e r v i c e to Appl i cat ion . Facade ;
T2 . f a u l t y S e r v i c e to SUS . In f i rmaryL i s t ;
T2 . f a u l t y S e r v i c e to SUS . Hosp i t a lL i s t ;
T3 . f a u l t y S e r v i c e to GUI. Compla intReg i st rat ion ;
. . .

}
}

Listing 3: Using Wildcards in AspectualACME
Pointcuts

System HW = {
. . .
Attachments {

T1 . terminationBasedRecovery to
ExceptionHandling . communicationFaultHandler ;

T1 . f a u l t y S e r v i c e to ∗Server .∗ Se rv i c e ;
}

}

erties, such as all provided interfaces, all required interfaces,
or all ports attached to a particular role. However, pointcuts
are style-agnostic.

The use of syntax-based pointcuts leads to some liabilities.
First, the use of name conventions in pointcut expressions
becomes awkward when somebody is trying to understand
the rationale motivating the composition. Second, the ar-
chitecture configuration specification also becomes brittle in
the presence of changes [19] and often leads to the well-
known pointcut fragility problem [21]. Third, support for
describing architectural connections in ADLs should allow
us to specify recurring cases of architectural compositions
of components and connectors so that they could be reused
in different contexts. This means that the descriptions of
recurring pointcuts in attachments relative to a crosscutting
concern, such as EH, should not be coupled to the actual
names or structural properties of a particular AD: it should
express the composition purpose.

In the next sections, we present our approach to aspect
composition based on style semantics, and style-based join
point models and style-based pointcuts are motivated, de-
fined and evaluated.

3. STYLE-BASED JOIN POINT MODELS
This Section introduces join point types and join point

models for architectural styles (Section 3.1) and documents
a style-based join point model for the client-server style us-
ing two complementary approaches (Section 3.2). The doc-
umentation makes the style semantics explicit so that our
style-based joint point models can be used for architectural
composition and analysis. Informal examples illustrate the
use of style-based join point types (Section 3.3).

3.1 Style-based join point types and models
A style-based join point type categorizes join points of in-

terest under the perspective of some architectural style. For
example, some join points of interest for client-server sys-
tems are “points at which clients request a service”, “points
at which servers execute a service”, “points at which servers
return a result”and“points at which clients receive a result”.
These join points can be categorized by join point types such
as request-service, invoke-service, return-result and receive-
result, respectively. A set of join point types related to some
style characterizes a style-based join point model. Table 1
presents join point models for the client-server [10], the pipe-
and-filter [32] and the layered [4] styles.

Table 1: Style-specific join point types.
Style Join point types Points at which

request-service clients request a service
Client- invoke-service servers execute a service
server return-result servers return a result

receive-result clients receive a result
read-data data is read

Pipe- write-data data is written
filter end-of-data end-of-data is signalled

close input port is closed
receive-task task request is received

Layered delegate-task task is delegated to lower layer
return-result result is returned by lower layer
receive-result result is received by upper layer

Style-based join point models are the basis for the new fla-
vor of architectural composition we have called style-based
composition or“composition based on style semantics”. Such
a composition strategy clearly requires documenting join
point models and their behaviour, that is, the explicit de-
scription of semantics details associated to architectural el-
ements and their style-based interactions.

3.2 Documenting styles and join point models
In this Section we present an extension to a style guide

template used to describe component-and-connector (C&C)
styles [10] that includes the informal description of join point
types (Section 3.2.1), and the textual notation for structural
and behavioural descriptions of architectural styles used in
style-based compositions (Section 3.2.2). The client-server
style is used to illustrate both approaches to documenta-
tion. Style guides and descriptions for the pipe-and-filter
and layered styles can be found at [6].

3.2.1 A Style Guide Template
Table 2 presents an extended style guide for the client-

server style and its join point model (some detailed infor-
mation that is not relevant in the context of this paper has
been omitted). The client-server style is a special kind of
call-return style [10] in which the components interact by

114

Table 2: Extended style guide for client-server style.
Elements Component types: Client (requires services of

some other component); Server (provides services
to other components)
Connector types: request-reply synchronous
invocation of services from client to server

Relations Attachments determine which services can be re-
quested by which clients.

Comput.
model

Clients request a service from a server, and wait
to receive a result for that request. When the
server receives a request from a client, it executes
a service and may return a result to the client.

Join
point
types

request-service (points at which clients request a
service); invoke-service (points at which servers
execute a service); return-result (points at which
servers return a result); receive-result (points at
which clients receive a result).

requesting services of other components. The client-server
joint point model allows architects to express naturally au-
diting requirements on server operations by stating that “af-
ter a server Server “executes a service” S do some audit-
ing on Server”; or to express that some data conversion is
needed in the client side by stating that “before the client
C “receives result” R do some conversion C1 on R”. With the
proposed extension, information about the join point types,
such as the one presented in Table 1, can be added to the
style vocabulary and used in specifications of components,
connectors, ports, roles and style-based composition.

3.2.2 Structural and Behavioural Specifications
In our approach, AspectualACME [14] is used for struc-

tural descriptions and CSP [20] is used for behavioural spec-
ifications associated to C&C styles.

Architectural styles are called families in Aspectu-
alACME. A family is a system type that also defines a design
space [30]. A family specification consists of sets of types of
components, connectors, properties, and sets of rules that
specify how elements of those types may be legally com-
posed. Properties can be attached to architectural elements
as annotations. In our approach, AspectualACME proper-
ties hold formal behavioural descriptions in CSP.

CSP specifications add more semantic details to archi-
tectural elements and reveal ordering of interactions among
them. By using this formal notation, we make the style se-
mantics explicit so that our style-based joint point models
can be communicated and used for composition and analy-
sis. Furthermore, the use of a formal notation allows us not
only to think about the correctness of style-based composi-
tion with respect to the expected behaviour of the system,
but to formally prove such correctness.

Listing 4 presents a specification for the client-server style
in AspectualACME. Join point types are naturally formal-
ized by CSP events: request-service, receive-result, invoke-
service and return-result. Other events such as request-error
and return-error were defined to indicate abnormal situa-
tions. The behaviour of port types (ClientPortT, Server-
PortT) and role types (ClientSideRoleT, ServerSideRoleT)
are specified by means of properties – PortBehaviour and
RoleBehaviour, respectively. The behaviour of component
types and connector types are described by the Computa-
tion property and the Glue property, respectively. Proper-
ties localize CSP specifications where these events are used,
and expose the elements’ semantics. For instance, the prop-

Listing 4: Client-server style in AspectualACME

Family ClientAndServerFam = {
Port Type ClientPortT = {

Property PortBehaviour =
‘ ‘CLIENT(id) = request service.id →

(receive result.id?m → SKIP
� receive error .id → SKIP) ;
CLIENT(id) ’ ’ ;

}
Component Type ClientT = {

Port sendRequest : Cl ientPortT ;
Property Computation =

‘ ‘C COMP(m, id) = CSP expression ’ ’ ;
}
Port Type ServerPortT = {

Property PortBehaviour =
‘ ‘SERVER(id) = invoke service.id →

(return result.id!S COMP(m, id) → SKIP
� return error .id → SKIP) ;
SERVER(id) ’ ’ ;

}
Component Type ServerT = {

Port rece iveRequest : ServerPortT ;
Property Computation =

‘ ‘S COMP(m, id) = CSP expression ’ ’ ;
}
Role Type Cl ientS ideRoleT = {

Property RoleBehavior = ‘ ‘ . . . ’ ’ ;
}
Role Type ServerSideRoleT = {

Property RoleBehavior = ‘ ‘ . . . ’ ’ ;
}
Connector Type CSConnT = {

Role c l i e n t S i d e : Cl i entS ideRoleT ;
Role s e rv e rS id e : ServerSideRoleT ;
Property Glue =

‘ ‘CS GLUE(client, server) = CSP expression ’ ’ ;
}

}

erty PortBehavior of the ClientPortT port type localizes a
CSP specification that states that after the port engages in
a request-service event, it may either wait for a receive-result
event or for an receive-error event (� is external choice). In
both situations, the SKIP process indicates successful ter-
mination (no deadlock).

A process algebra like CSP can be used to describe sys-
tems composed by interacting components, which are in-
dependent self-contained processes with interfaces used to
interact with the environment. The use of such formalisms
provide a way to explicitly specify and reason about interac-
tion between different components. Furthermore, phenom-
ena that are exclusive to the concurrent world, that arise
from the combination of components and not from the com-
ponents alone, like deadlock and livelock, can be more easily
understood and controlled using such formalisms.

Tool support is another reason for the success of CSP in
industrial applications, and consequently, for our choice to
use it as the formal notation. For instance, FDR [27] pro-
vides an automatic analysis of correctness and of properties
like deadlock and divergence. In fact, although out of the
scope of this paper, we have used FDR to formalise the ar-
chitectural styles’ behaviour and to perform an automatic
analysis of correctness and of properties like deadlock and
divergence. We have also checked the valid specification of
the architectural composition based on the style semantics.
The formal specification of the HW case study presented in
this paper using CSP is available at [6].

115

3.3 Using style-based join point types
Style-based join point types are expected to be used by

style-based pointcuts. Tables 3 and 4 present informal ex-
amples of style-based pointcuts for the Distribution and the
Persistence concerns. These pointcuts select join points of
interest based on the semantics of the three styles presented
in Table 1 and illustrate the use of style-based join point
types. In Section 4 we present language constructs that
support the specification of such pointcuts.

Table 3: Style-based pointcuts for Distribution.
Style Pointcuts Join Point Types
Client-server trigger remote

communication
request-service,
return-result

Pipe-and-filter write-data
Layered delegate-task,

return-result

The trigger remote communication pointcut is in
charge of supporting the Distribution concern by selecting
join points where a distributed communication takes place.
It is associated with the semantics of each style. For the
client-server style, this pointcut matches points in which
a client requests a service from a (remote) server and the
server returns the result to the (remote) client. For the
pipe-and-filter style, the remote communication takes place
when the filter writes data in a (remote) pipe. Similarly, in
the layered style, the remote communication occurs when a
layer delegates a task to another (remote) layer or when a
layer returns a result to a (remote) layer.

Table 4: Style-based pointcuts for Persistence.
Style Pointcuts Join Point Types
Client-server store data return-result
Pipe-and-filter write-data
Layered return-result

The store data pointcut represents the Persistence con-
cern by selecting join points where data must be stored. For
the client-server style, the persistence is needed when the
results of a service are returned by the server. For the pipe-
and-filter style, the store data pointcut matches the point
where the data are written in a pipe. In the layered style,
the pointcut matches points where a result is returned by a
layer.

4. STYLE-BASED COMPOSITION
Style-based aspect composition requires pointcuts for se-

lecting style-sensitive join points and mechanisms for com-
posing aspects at the selected join points, according to
some strategy. In this Section, we present a pointcut lan-
guage that quantifies over architectural elements constrained
by style-semantics (Section 4.1), and special language con-
structs to support attachments to the selected elements (Sec-
tion 4.2).

4.1 A style-based pointcut language
A style-based pointcut language supports the formal spec-

ification of style-based pointcuts. An architectural pointcut
designator is a new kind of element that selects join points

that are architecturally relevant for aspect composition, pos-
sibly exposing context data.

Primitive pointcuts that are sensible to style-based joint
point types (Table 1) are provided for architectural compo-
sition. Composite pointcuts can be defined using the opera-
tors (&&, ||, !). The proposed pointcut language is generic
and is able to handle new styles that may appear bringing
their own join point types.

The set of pointcut designators supported by the pointcut
language are:

• performs(elem, eventKind): selects the join points
where some architectural element elem performs event
eventKind .

• inside(elem, elementType) selects the joint points that
execute below the execution of an architectural ele-
ment elem that is an instance of elementType.

• SatisfiesType(elem, elementType) selects the join
points where elem is an instance of elementType.

• Pointcut0 && Pointcut1: captures each join point
that is picked out by both pointcuts (Pointcut0 and
Pointcut1).

• Pointcut0 || Pointcut1: captures each join point
that is picked out by either pointcuts (Pointcut0 or
Pointcut1).

• !Pointcut : captures each join point that is not picked
out by Pointcut .

User-defined pointcuts are declared in the Pointcuts

block, which is defined in architectural configurations. Each
pointcut declaration defines and names architectural point-
cuts that can be used for composition in attachments and
reused in other pointcut declarations.

As an example, consider once again the description given
in Listing 2 and the pattern ∗Server .∗Service used to match
server elements (properly renamed to follow naming conven-
tions) to be attached to the Termination connector. List-
ing 5 provides a new AD in which servers are selected by
means of style-based pointcuts. The pointcut designator
faultyServers captures return − error join points that are
observed in components of type ServerType. In this case,
pointcut and attachment definitions are not dependent on
the names of components or ports but rather on the ex-
pected semantics of architectural elements. These pointcut
and attachment definitions are robust in face of structural
and lexical changes and can be reused in different ADs to-
gether with the EH handler.

The selected style-based join points are related to in-
stances of the types prescribed by the style – e.g., com-
ponents, ports, connectors, roles and systems (or configu-
rations). A pointcut that can be used in the attachments
block (e.g. faultyServers) must comprise (or be filtered to
comprise) a set of component ports since it will be attached
to an aspectual connector role.

4.2 Aspect composition
A conventional attachment in AspectualACME defines a

relationship between a connector and a component by asso-
ciating a port interface on a component with a role interface
on a connector, using the operator TO. AspectualACME also

116

Listing 5: Aspect composition based on style seman-
tics

System HW: ClientServerFam = {
Component Appl i cat ion = { . . . }
. . .
Component ExceptionHandling = { . . . }
Connector T1 : Termination ;

Pointcuts {
f a u l t y Se r v e r s (s) =

Sat i s f i e sType (s , ServerType) &&
performs (s , return−e r r o r) ;

}
Attachments {

T1 . terminationBasedRecovery to
ExceptionHandling . communicationFaultHandler ;

T1 . f a u l t y S e r v i c e to∗ f a u l t yS e r ve r s ;
. . .

}
}

supports *-attachments that associate one aspectual connec-
tor’ role interface with several ports using the new operator
TO*. The Attachments block localizes the definition of con-
ventional attachments as well as *-attachments.

The faultyServers pointcut defined in the Pointcuts

block (Listing 5) is used by an *-attachment, defined
in the Attachments block. The faultyServers point-
cut evaluates to { all sets of ports on components of
type ServerType that perform the join point type (or
event) return-error }. The meaning of an attachment
such as T1.faultyService to* faultyServers; is: “bind
each port in the set faultyServers to the connector role
T1.faultyService”.

5. EVALUATION
This section presents a systematic evaluation on the use-

fulness of style-based join point models and the proposed
pointcut language. Section 5.1 presents assessment proce-
dures used in the evaluation. To facilitate the discussion of
the results, we discuss first one example of EH connector
in the HW system (Section 5.2) and a representative set of
pointcuts (Section 5.3) reused in all the three analyzed archi-
tectures. We present the evaluation outcomes according to
three different perspectives: (i) pointcut expressiveness and
intra-project reuse (Section 5.4), (ii) pointcut stability in
the presence of heterogeneous types of changes (Section 5.5),
and (iii) stability of pointcut definitions in composite archi-
tectures (Section 5.6).

5.1 Assessment procedures
Three case studies have been used: the HW system (Sec-

tion 2), a Conference Management (CM) system [29], and a
product line for data manipulation in mobile devices, called
MobileMedia (MM) [12]. HW and MM are medium-sized
systems (around 10K lines of code each). The complete
architecture is composed of approximately 40 components
each, from which 4 are EH aspects. Whereas these appli-
cations are from different domains and entail significantly
distinct architectures, they all realise the client-server and
layers styles and implement their own EH strategies. These
similarities enabled us to assess the reuse degree of style-
based pointcuts in realistic hybrid architectural designs.

The evaluation was carried out in a stepwise fashion and
focused on the stability and reusability analysis. We have
compared the existing syntax-based pointcuts with their
style-based equivalents defined for all the three target appli-
cations. While translating syntax-based pointcuts to style-
based pointcuts, there were several cases were one-to-one
mapping did not hold. For instance, some syntax-based
pointcuts need not to be defined due to the increased reuse
(superior quantification) obtained with style-based point-
cuts. This will be discussed in Section 5.4.

The first assessment step primarily analyzed the extent to
which the stable description of these two pointcut categories
was sustained through the ten releases of the HW architec-
ture. The investigation included a multitude of pointcuts
for transaction management, EH, persistence and distribu-
tion. Pointcut additions and modifications were quantified
in order to enable us to evaluate the stability and reusabil-
ity of the composition descriptions. Considering all the case
studies, we have analyzed 23 changes to both systems, rang-
ing from localized component refactorings to widely-scoped
architecture increments or modifications.

The second step assessed the inter-project reusability of
style-based EH pointcuts, which were common to all the three
analyzed systems. We have also quantified the stability of
such pointcuts through the releases of the CM and MM sys-
tems.

5.2 Exception connectors
The HW system encompasses a number of connectors to

modularize three architectural crosscutting concerns: ex-
ception handling, transaction management, and distribution
(Section 2.1). In the following, we specifically concentrate
on the discussion of connectors and alternative style-based
pointcuts employed to EH policies in the HW architecture;
some of them were also applied to the CM and MM architec-
tures. Our choice for EH is driven by the fact that its cross-
cutting nature is style-agnostic: global exception handlers
tend to affect several system components independently of
the choice of styles and their compositions [4]. This allows us
to evaluate the applicability of style-based pointcuts based
on different architecture decompositions and hybrid software
architectures. The other reasons are that: (i) EH has been
extensively referred in the literature as a classical crosscut-
ting concern [22, 33], and (ii) the benefits and drawbacks
of aspectizing EH using AO programming techniques have
been well explored nowadays [13, 33].

In Listing 1 we presented the definition of the main ar-
chitectural elements to address concerns specific to EH in
the HW system. Three connectors were used to capture the
crosscutting nature in which the abnormal interaction proto-
cols are employed in the HW architecture decomposition [33,
14]: (i) Termination, (ii) Retrial, and (iii) Propagation.

Listing 6 presents the CSP specification of an aspectual
connector that deals with the Retrial semantics. It specifies
a protocol in which a service is retried after service invoca-
tions. The connector is used to re-invoke the faulty service
after the handler execution and before returning the result
to the caller. Style-based pointcuts are defined in the HW
architecture description to attach architectural elements to
aspectual connectors that modularize the abnormal collab-
oration protocols. The retrial protocol is also used in the
MM architecture, while both termination and propagation
policies are applied to all the three case studies.

117

Listing 6: Retrial connector in CSP.

Connector Type Ret r i a l = {
Role f a u l t y Se r v i c e =

invoke−s e r v i c e →
return−r e s u l t ! x → f a u l t y Se r v i c e

Role l o c a lS ta t eRecovery =
invoke−s e r v i c e →
return−r e s u l t ! x → l o c a lS ta t eRecovery

Glue = fau l t y S e r v i c e . invoke−s e r v i c e →
l o c a l S t a t eRecove ry . invoke−s e r v i c e →
l o c a l S t a t eRecove ry . return−r e s u l t →
f a u l t y S e r v i c e . return−r e s u l t → Glue

}

5.3 Pointcuts for exception handling
Listing 7 provides a list of style-based pointcuts for ex-

ception handling. These pointcuts are used to attach the
affected architectural elements to the aspectual connectors
involved in EH. For example, pointcut faultyServers (List-
ing 5) exploits the join point model defined by the client-
server style in order to select all the exceptional events not
successfully handled by the servers before they are propa-
gated as results to the clients.

Several failures might happen in the execution of the ser-
vices made available by all the system servers. The Re-

trial connector (Listing 6) is the protocol attached to such
a pointcut. The goal is to (i) activate a default handler
in charge of logging relevant information associated with
server faults, and (ii) retry the service execution again be-
fore they are propagated as exceptional results to the clients.
This systemic exception handling strategy crosscuts all the
return-result events from the three server instances de-
fined in the HW architecture. This is also hold the CMS
and MM architectures.

On the other hand, we cannot specify a composition in
HW architecture based on request-service join points (Ta-
ble 1) as the exceptional events need to be handled at the
server side in the HW architecture. We need to capture all
the return-result events immediately before the results are
returned to the clients. The idea is that we have contextual
information for logging details (e.g., time of the request and
faulty service) related to specific service failures. Hence, a
default handler is in charge of logging the relevant informa-
tion associated with server faults before they are propagated
as exceptional results to the clients. Not all the information
details are propagated to the clients. This generic EH strat-
egy crosscuts all the return-result events from the three
server instances defined in the HW and CM architectures.

It is important to highlight that certain EH strategies re-
quired the refinement of style-based pointcuts with some
lexical matchings. The lexical matchings were mostly re-
quired in cases where exception handlers were non-generic
and/or local (i.e. exceptions masked in the specific compo-
nent interfaces without the need of propagating them to the
callers).

5.4 Expressiveness and intra-project reuse
The first style-based pointcut in Listing 7 is an alternative

solution for the syntax-based pointcuts presented in List-
ings 2 and 3. Those original pointcuts respectively used ex-
plicit references to syntactical elements and wildcards with
naming convention in the HW description, rather than the

Listing 7: Exception handling pointcuts

System HW: ClientServerFam = {
Component . . .
Connector Type Termination = { . . . }
Connector Type Ret r i a l = { . . . }
Pointcuts {

f a u l t y Se r v e r s (s) = . . . ;
f au l t yLaye r s (l) =

Sat i s f i e sType (l , LayerType) &&
performs (l , de l egate−task−e r r o r) ;

f au l t y Inne rLaye r s (l) =
f au l tyLaye r s (l) &&
i n s i d e (l , ServerType) ;

f a u l ty S t r i c t I nn e rLay e r s (l) =
fau l t y Inne rLaye r s (l) &&
! Sa t i s f i e sType (l , Cl ientType)

f a u l t yAc e s s o r F i l t e r s (c) =
Sat i s f i e sType (c , AccessorType) &&
Sat i s f i e sType (c , F i l te rType) &&
performs (c , data−acce ss−e r r o r) ;

}
Attachments { . . . }

}

semantics of the affected elements by EH. As a result, they
suffer from a core problem: they do not capture the ratio-
nale behind the composition. As discussed above, the cross-
cutting nature of the attachment is considerably dependent
on the client-server style semantics: we want to attach the
retrial connectors to all the faulty servers before they are
propagated as results to the clients. In order to understand
the wildcard-based pointcut (Listing 3), the architect needs
to examine the name of all the components and ports in the
HW description.

Independently from the specific nature of the involved
components, the client-server style instances in the three
case studies exhibited several points where failures could
recurrently occur. These recurring failure points included
client requests at the client side, client requests at the server
side, server replies at the server side and server replies at
the client side. It was common the case where architects
attached similar EH strategies to those points in a modu-
lar fashion. The style-based pointcuts for client-server EH
(Section 5.3), have been proved to be quite generic and were
reused across the multiple client-server instances in the HW
architecture description. This was one of the main reasons
on why fewer additions and modifications (Figure 2(a)) were
required to style-based EH pointcuts than to their syntax-
based counterparts for the HW architecture releases. An
analysis of the data presented in Figure 2(b) revealed that a
similar phenomenon happened with the pointcuts for other
HW aspects (Figure 2(b)).

We have observed that the higher number of syntax-based
pointcut modifications was directly correlated with the dif-
ficulty of reusing them within the same AD. They have ex-
plicit references and dependencies to component and port
names of the HW design (Listings 2 and 3). When trying
to reuse wildcard-based pointcuts (Listing 3) through HW
releases, we needed to rename components and ports of the
target architecture. Even so, it was not always the case that
we could change the names of existing components and ports
because (i) they could be off-the-shelf components, and (ii)
the renaming would cause ripple effects in ADs since the ex-
isting attachments need to be modified accordingly as well.

118

Figure 2: Pointcut stability in HW architecture.

5.5 Pointcut stability and inter-project reuse
Figures 2(a) and 2(b) show that style-based pointcuts

were consistently more stable through the HW architecture
releases. We have noticed that the stability of style-based
pointcuts was also superior in releases where major architec-
tural changes were implemented, such as versions 5, 9, and
10. For instance, in release 5, the HW system was support-
ing two possible architecture configurations [33]: in one of
them, the HW system is used via an HTML and Javascript
user interface, which interacts with Java servlets running in
the Web server. In the other configuration, a Java user in-
terface interacts directly with an Application server using
Java RMI. In other words, the Web server is optional.

However, the style-based pointcuts for EH discussed be-
fore did not need to be changed to accommodate both HW
configurations. They are still valid and stable even when the
number of servers is a variation point. On the other hand,
some syntax-based pointcuts, such as the one in Listing 2,
were modified according to the (de-)activation of the Web
server. Explicit references to the Web server needed to be re-
moved. A similar problem occurred with the syntax-based
persistence pointcuts when the optional use of an object-
oriented database was introduced in the 6th release (Fig-
ure 2(a)). This variation had an impact on the port names
of the PersistenceMechanism layer.

Thus, the use of syntactical aspect compositions often ex-
acerbated the problem of pointcut fragility in ADs. Because
the compositions were specified with an explicit reference to
the name of components or ports, it created a tight coupling
between aspects and the affected HW, MM, and CM ele-
ments. These strong syntactic dependencies harmed their
architecture maintainability. An analysis of MobileMedia

Figure 3: Reuse effort for style-based EH pointcuts.

and Conference Management architectures shows that the
lexical matchings in EH pointcuts were also fragile and not
resilient to changes. In fact, several observed architectural-
level ripple effects were related to the need of either chang-
ing names of existing architecture elements or including new
components or interfaces realizing the style-specific types.
Mainly in the former case, there was a considerable incidence
of syntax-based pointcut declarations being undesirably bro-
ken. All the poincuts needed to be carefully revisited and
changed also in the MM and CM architecture descriptions.

We have also investigated how easy was to reuse style-
based pointcuts for EH (Section 5.3) across multiple soft-
ware ADs. Some style-based pointcuts naturally did not
make sense to reuse in the target applications. No syntax-
based pointcut could be reused from a project to another due
to their dependence on architecture element names. Fig-
ure 3 presents the number of additions and modifications
that were required to reuse the style-based EH pointcuts in
the MM and CM applications (release 0). From the 10 EH
pointcuts being reused, three modifications were required
for the CM description and four for the MM description.
Certain pointcut modifications needed to be implemented
in order to adapt them to specific style combinations (Sec-
tion 5.6) in the MobileMedia and Conference Management
designs. For instance, the fourth pointcut in Listing 7 is
specialized for layered architectures with shared data, which
was not instantiated in the MM and CM architectures; the
later is a layered architecture centered on the blackboard
style for data management and communication. The next
section discusses other lessons learned in terms of defining
style-sensitive pointcuts in the presence of style composi-
tions.

5.6 Style composition and pointcuts
As discussed before, styles can be composed with each

other in several ways. For instance, the HW architecture
involves the combination of several kinds of styles which di-
rectly determines the set of architectural join points avail-
able. Overall, our three case studies exhibited three types
of style composition: (i) hierarchical composition (Sec-
tion 5.6.1), (ii) overlapping (Section 5.6.2), and (iii) con-
junction (Section 5.6.3). In the following subsections, we
briefly discuss the interplay of such style composition cate-
gories and style-based pointcuts in the context of the HW
case study.

119

5.6.1 Hierarchical composition
In the investigated architectural designs, distinct styles

were used at different levels of the architectural hierarchy,
so that the internal architecture of certain components was
defined in a different style than its surroundings. This
kind of inter-style combination is named hierarchical com-
position. In AspectualACME, it is supported by represen-
tations that elaborate a parent element (component, con-
nector, etc.) and support the description of encapsulation
boundaries, as well as multiple refinement levels. Hierarchi-
cal composition provides a scoping mechanism for defining
architectural pointcuts that applies exclusively to enclosing
and/or enclosed elements. For instance, the Application

server is internally structured as a set of layers. In this case,
the encapsulation boundary provided by the representation
of the Application component insulates the join points of
that particular instance of the Layered style from the rest of
the architecture, which is realizing other architectural styles.
Hence, the set of style-based join points in the internals of
the Application component is determined by the semantics
of the Layered style, in addition to the particular names of
its inner interfaces, connectors, and components.

One of the EH pointcuts in the HW architecture selects all
the exceptions in delegated tasks to layers inside the Appli-

cation server, described by the faultyInnerLayers point-
cut (Listing 7). This architectural pointcut selects only join
points that are exceptional events in components defined as
layers inside the Application component. The purpose is to
associate this pointcut with the handler used to append rel-
evant layer-specific information after the occurrence of such
exceptional events and before they are propagated through
different layers in the internal Application server architec-
ture, so that the topmost handler has enough information to
implement the error recovery behavior. Note that we relied
on a specific operator inside of the pointcut language to
capture specific join points involved in hierarchical architec-
ture composition (Listing 7).

5.6.2 Style overlapping
The most recurring use of multiple styles in HW, MM, and

CM architectures was the creation of architectural elements
that satisfy multiple types, each type taken from a different
style. Such architectural elements form an overlapping zone
of styles, and they embody vocabulary and satisfy the con-
straints of all the styles used. We can say that style-specific
types are superimposed in those components since they are
assuming multiple responsibilities defined by different styles.

The presence of overlapping-based stylistic compositions
in the HW architecture was exploited to express certain use-
ful style-based pointcuts for error-handling configurations.
For example, it was used to quantify over exceptional events
returned as results of task delegations in the internal layers of
the Application server with no external communication to
other servers, described by the faultyStrictInnerLayers

pointcut (Listing 7). In other words, it includes any excep-
tion raised by tasks executed by the PersistenceMechanism
and DataManagement layers, but excludes the Business layer
given the fact that it is a client of the SUS server. The Busi-

ness layer is the overlapping zone here since it plays both the
roles of client and layer. This particular pointcut was used
to determine that all the internal server exceptions should
follow the termination policy (Section 2.2).

5.6.3 Style conjunction
Another style composition category found in HW, CM and

MM architectural descriptions is conjunction, which results
in hybrid styles [28]. A system can declare that it satis-
fies multiples styles, by means of the union of their design
vocabularies, and conjoining their constraints. In Aspectu-
alACME, when more than one style is used, the new system
must be an instance of the conjunction of the parent styles.
In such cases it may be necessary to also define new types
of components or connectors that pertain to more than one
style. Hence, the hybrid join point model is defined by the
resulting types defined by the conjunction.

One example of stylistic conjunction is the symbiosis
involving the pipe-and-filter and repository styles in the
HW design, which encompasses the addition of the com-
ponents defined by the shared data style – i.e., accessors
and databases – to a pipe-filter system. Some internal com-
ponents of the persistence mechanism had filter-like behav-
iors, while also accessing the system database, that is, those
components are subtypes of filter and accessor types. The
faultyAcessorFilters pointcut (Listing 7) captures excep-
tions returned as result to data accesses to components in
which their types are hybrid, i.e., conjunctions of accessors
and filters. In addition, pointcuts were defined in the HW
architecture to capture database connection exceptions asso-
ciated with data writing that were raised through interfaces
that are subtypes of streams. The overall employed strategy
was the retrial of the target database services by using the
staleConnectionHandler service (Section 2.2).

6. RELATED WORK
In previous work [29], we presented an exploratory study

of the influence exerted by style-based composition on the
stability of architectural modules addressing error handling
and security, in the context of alternative designs for the CM
system. Each design adopted a different style (blackboard,
reflective blackboard, reactive coordination and stigmergic
coordination). In this work, stability and reusability assess-
ments of the style-based composition model were carried out
by means of three case studies involving different architec-
tural styles and different application domains.

Style-based join points and existing ADLs. Existing AO
approaches at the architecture level do not support style-
based pointcut specifications. The exploitation of style-
based join point models seems to address at the architectural
level the recurring problem of pointcut fragility, a common
concern in conventional programming-level join point mod-
els. As discussed in Section 5, in previous empirical studies
on architecture stability [25, 19] using the HW system, we
observed that style-based pointcuts tended to be more stable
in the presence of widely-scoped design changes because the
syntactical changes in ADs occur more often than modifi-
cations on the stylistic architectural choices [25]. Certainly,
AO ADLs may resort to conventional pointcut designators
in conjunction with style-based designators.

Semantics-based composition in requirements and design.
The drawbacks of syntax-based AO compositions have al-
ready been discussed [8] from the perspective of AO require-
ments engineering. The similarities with our work are the
discussions about the disadvantages of syntax-based com-
positions in contrast with the expressiveness of semantics-
based composition in early aspects. However, the main dif-

120

ferences are that of focus (ours is on ADLs) and the use of
a formal language (CSP) versus natural language to express
join point models and compositions.

Klein et al. [23] argue in favor of a semantics-based ap-
proach for pointcut languages at a more abstract level. They
propose a semantics-based weaving algorithm for hierarchi-
cal message sequence charts, a scenario formalism, and as-
sess its benefits and limitations. In our work, we propose a
semantics-based approach for pointcut languages at the ar-
chitectural level. We resort to style-based join point models
and a pointcut language to support style-based composition
in ADs and provide initial experimental assessment on the
stability and reuse of such ADs.

Stein et al. [34] point out that most pointcut languages at
the modeling level are based on existing AOP languages and
that there are no means to express join point selection crite-
ria with respect to the behavior of a system. They provide
graphical visualization of join point selections via Join Point
Designation Diagrams (JPDDs), where each visualization
can be examined with respect to the selection’s underlying
conceptual model (control flow-oriented, data flow-oriented,
or state-oriented conceptual model). In our work, we have
also defined an early aspects approach that is independent
of existing AOP languages. However, instead of focusing on
visualization diagrams and conventional join point models,
we propose style-based join point models and provide a tex-
tual pointcut language to express the selection of join points
based on the semantics of architectural styles.

Application-specific models and pointcuts. Kellens et
al. [21] propose model-based pointcuts, defined in terms of a
conceptual model of the base program, and show how such
pointcuts can be less fragile with respect to changes in the
base program. Brichau et al. [3] extend the model-based
pointcuts technique and use a logic-based pointcut language
to express application-defined pointcut predicates. In this
point their work is similar to ours as it exploits the expres-
sive power of a logic language to declare pointcuts and to
address the pointcut fragility problem. However, instead of
addressing application-specific join point models, our pro-
posal focuses on and argues in favor of more high-level, style-
specific join point models and enforces style semantics on
every application that adheres to those architectural styles.

7. CONCLUSIONS
The definition of pointcut languages plays a central role

in aspect-oriented approaches [23, 21]. Although it has
been known that the abstraction level of pointcuts must
be lifted [21, 34], syntax-based pointcuts are typically used
to select join points based on the names of architectural
elements, exposing architectural description to pointcut
fragility [21, 19] and reusability problems.

We propose style-based join point models and provide a
pointcut language that supports the selection of join points
based on the semantics of architectural styles. Style-based
join point models and the composition approach proposed
here are meant to be language-independent and adaptable to
different ADLs and formalisms to define style-specific behav-
iors. In this paper, architectural descriptions are expressed
in AspectualACME and formal behavioural descriptions in
CSP. We plan to exploit the proposed approach with other
languages and formalisms in future work.

The definition and the rationale behind style-based join
point models emerged from our analysis of existing AO

ADLs [2, 14] and our experience on designing and assessing
AO architectures for a number of distinct application do-
mains. AO applications include a reflective middleware sys-
tem [5], multi-agent systems [16], a CVS system [13], prod-
uct lines for quality control measurements [24] and J2ME
games [24].

In this paper, our main claim is that style-sensitive com-
position promotes the development of architectural aspects
that are more reusable and stable in face of syntactic
changes to the architecture. Our systematic comparison of
style-based composition against syntax-based composition
in three case studies has provided initial evidences that sup-
port our claim. We also discussed briefly the interplay of
some techniques for style composition and style-based point-
cuts in the context of our exploratory studies; we certainly
need to gather more empirical evidence that may allow us
to characterize other benefits and liabilities related to these
issues. Future experimental work is also needed to assess
the adequacy of style-based pointcuts to express architect’s
design intent and composition rationale, and the challenges
of their adoption by the Software Architecture community.

8. ACKNOWLEDGMENTS
This work is partially supported by grant 486125/2007-6:

Brazilian Council for Scientific and Technological Develop-
ment(CNPq), and grant 219/2008: Fundação de Amparo
à Pesquisa do Estado da Bahia (Fapesb). Thais Batista
thanks the Brazilian Petroleum Agency (ANP)/PRH22 for
the partial financial support for her research.

9. REFERENCES

[1] E. Baniassad et al. Discovering early aspects. IEEE
Software, 23(1):61–70, 2006.

[2] T. Batista et al. Reflections on Architectural
Connection: Seven Issues on Aspects and ADLs. In
Early Aspects’06 at ICSE, pages 3–9, Shangai, China,
May 2006.

[3] J. Brichau, A. Kellens, K. Gybels, K. Mens,
R. Hirschfeld, and T. D’Hondt. Application-specific
models and pointcuts using a logic metalanguage.
Comput. Lang. Syst. Struct., 34(2-3):66–82, 2008.

[4] F. Buschmann et al. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley &
Sons, 1996.

[5] N. Cacho et al. Composing design patterns: a
scalability study of aspect-oriented programming. In
AOSD ’06: Proc. 5th Intl Conf. on Aspect-oriented
software development, pages 109–121, New York, NY,
USA, 2006. ACM Press.

[6] C. Chavez et al. Composing architectural aspects
based on style semantics.
http://www.dcc.ufba.br/∼flach/JPM/, 2008.

[7] R. Chitchyan et al. Survey of aspect-oriented analysis
and design approaches. Technical Report
AOSD-Europe-ULANC-9, AOSD-Europe, May 2005.

[8] R. Chitchyan et al. Semantics-based composition for
aspect-oriented requirements engineering. In
AOSD’07: Proc. 6th Intl Conf. on Aspect-oriented
software development, pages 36–48, New York, NY,
USA, 2007. ACM Press.

121

[9] P. Clements et al. Aspects in architectural description:
Report on a first workshop at aosd 2007. SIGSOFT
Softw. Eng. Notes, 32(4):33–35, 2007.

[10] P. Clements et al. Documenting Software Architectures
- Views and Beyond. Addison-Wesley, 2007.

[11] C. Cuesta et al. Architectural aspects of architectural
aspects. In Proc. of European Workshop on Software
Architecture (EWSA 2005), pages 247–262, 2005.

[12] E. Figueiredo et al. Evolving software product lines
with aspects: An empirical study on design stability.
In 30th Intl Conf. on Software Engineering (ICSE
2008), pages 261–270, Leipzig, Germany, 2008.

[13] F. Filho et al. Exceptions and Aspects: The Devil is in
the Details. In Proc. of FSE-14, 14th Intl Conf. on
Foundations on Software Engineering, pages 152–162,
2006.

[14] A. Garcia, C. Chavez, T. Batista, C. Sant’Anna,
U. Kulesza, A. Rashid, and C. Lucena.
AspectualACME: An Architecture Description
Language for Aspect-Oriented Software Architectures.
In Proc. of European Workshop on Software
Architecture (EWSA 2006), Nantes, France, Sept 2006.

[15] A. Garcia et al. A comparative study of exception
handling mechanisms for building dependable
object-oriented software. Journal of Systems and
Software, 59(2):197–222, 2001.

[16] A. Garcia et al. Separation of Concerns in Multi-agent
Systems: An Empirical Study. In Software
Engineering for Multi-Agent Systems II, Research
Issues and Practical Applications (SELMAS 2003),
pages 49–72, 2003.

[17] D. Garlan, R. T. Monroe, and D. Wile. ACME: An
Architecture Description Interchange Language. In
Proc. of CASCON’97, pages 169–183, Toronto,
Ontario, Nov 1997.

[18] P. Greenwood et al. On the contributions of an
end-to-end aosd testbed. In Early Aspects’07 at ICSE,
Washington, DC, USA, 2007. IEEE Computer Society.

[19] P. Greenwood et al. On the impact of aspectual
decompositions on design stability: An empirical
study. In LNCS 4609, Proc. 21st European Conf. on
Object-Oriented Programming (ECOOP), pages
176–200. Springer, 2007.

[20] C. A. R. Hoare. Communicating Sequential Processes.
Prentice–Hall, 1985.

[21] A. Kellens et al. Managing the evolution of
aspect-oriented software with model-based pointcuts.
In LNCS 4067, Proc. 20th European Conf. on
Object-Oriented Programming (ECOOP), pages
501–525. Springer, 2006.

[22] G. Kiczales et al. An Overview of AspectJ. In Proc.
15th European Conf. on Object-Oriented Programming
(ECOOP), pages 327–355. Springer, 2001.

[23] J. Klein et al. Semantic-based weaving of scenarios. In
AOSD’06: Proc. 5th Intl Conf. on Aspect-oriented
software development, pages 27–38, New York, NY,
USA, 2006.

[24] U. Kulesza et al. Improving Extensibility of
Object-Oriented Frameworks with Aspect-Oriented
Programming. In Proc. 9th Intl Conf. on Software
Reuse (ICSR’06), Turin, Italy, June 2006.

[25] U. Kulesza et al. Quantifying the Effects of
Aspect-Oriented Programming: A Maintenance Study.
In Proc. of 9th Intl Conf. on Software Maintenance -
ICSM’06, 2006.

[26] M. Lippert and C. V. Lopes. A study on exception
detection and handling using aspect-oriented
programming. In Proc. 22nd Intl Conf. on Software
Engineering (ICSE 2000), pages 418–427, New York,
NY, USA, 2000. ACM Press.

[27] F. S. Ltd. Fdr: User manual and tutorials, version
2.82, 2005.

[28] N. R. Mehta and N. Medvidovic. Composing
architectural styles from architectural primitives. In
Proc. 9th ESEC / 11th ACM SIGSOFT FSE
(ESEC/FSE-11), pages 347–350, New York, NY,
USA, 2003. ACM Press.

[29] A. Molesini, A. Garcia, C. Chavez and T. Batista. On
the quantitative analysis of architecture stability in
aspectual decompositions. In Proc. 7th Working
IEEE/IFIP Conf. on Software Architecture (WICSA
2008), pages 29–38, Vancouver, BC, Canada, 2008.

[30] R. Monroe. Capturing software architecture design
expertise with armani. Technical Report
CMU-CS-98-163, Carnegie Mellon Univ. School of
Computer Science, January 2001. Version 2.3.

[31] M. P. Robillard and G. C. Murphy. Static analysis to
support the evolution of exception structure in
object-oriented systems. ACM Trans. Softw. Eng.
Methodol., 12(2):191–221, 2003.

[32] M. Shaw. Beyond objects: a software design paradigm
based on process control. SIGSOFT Softw. Eng.
Notes, 20(1):27–38, 1995.

[33] S. Soares et al. Implementing distribution and
persistence aspects with aspectj. In Proc. of OOPSLA
2002, pages 174–190, 2002.

[34] D. Stein et al. Expressing different conceptual models
of join point selections in aspect-oriented design. In
AOSD’06: Proc. 5th Intl Conf. on Aspect-oriented
software development, pages 15–26, New York, NY,
USA, 2006. ACM.

122

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

