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It is shown that the definition of a stable point in Landau theory is different from that used in mechanics. The impli-
cations for numerical work on phase transitions for systems that have a Lifshitz invariant are discussed.

Our intention in this note is to give a geometric
view of the theory of phase transitions with inclusion
of a Lifshitz invariant. We consider a system with a
two-component order parameter (£, £,) in which
the free energy density has the form

F=K+W+L, (¢))]
where

K =3k [(d/d2)? + (d,/d2)7] @)
and L is a Lifshitz invariant

L= A dg,/dz — £y dEq/dz) . 3)

The form of W depends on the system under discus-
sion. We use two specific examples for illustration.
For an incommensurate—commensurate transition

in a crystal W may take the form [1]

W=ta(e] + £3) + 48T + £3) + ElEs - 4)
It is assumed as usual that @ = ao(T — T) while the
other parameters are independent of temperature. In
the high temperature (prototype) phase &; = £, = 0.
At temperature T, = Ty + A“/agk there is a transition
to the incommensurate phase in which both &, and

&, are non-zero and z dependent. At a lower tem-
perature 77 there is a “lock-in” transition to the
commensurate phase in which £, and £, are indepen-
dent of z. In the minimization of F, L favours the
precession of the incommensurate phase, while W
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favours the uniformity of the commensurate phase.
Writing £, = |£| cos ¢, &5 = || sin ¢ one sees easily
from the fourth order terms of W that for y > the
commensurate phase has ¢ =0 or n/2, while for y
<Bo=zxm/4.

Eq. (1) also applies to the “unwinding” of the
smectic C* phase of liquid crystals in an external
magnetic field H [2]. In this case (£, £,) is the molec-
ular director n, and

W=13(— xH2)E? + 3at3 + b2 +£2)2 . (5)

The prototyne phase £; = £, = 0 is now smectic
A, and the analogue of the incommensurate phase is
smectic C* in which n(z) precesses round the £ direc-
tion as z varies. As H is increased at constant tem-
perature, the C* helix elongates until eventually there
is a transition to the C phase. Here £5 =0, and &§; #0
is independent of z. Thus the C phase is the analogue
of the commensurate phase of the crystal. Again, the
presence of L favours the C* phase, while minimiza-
tion of W alone gives the C phase.

To begin with, we consider the simpler free energy
density Fy = K + W. The Euler—Lagrange equations
for a minimum value of fFdz are

k d%%,/dz2 — aW/ag, =0, (6)
K d%g,/dz? — aW/ag, = 0. %)

The minimum obviously corresponds to a uniform
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Fig. 1. Contour lines of potential function W of (5) fora = —1.5, xH?2 =1.0, 5 = 1.0. The contour lines are drawn at intervals of

0.478, line 1 corresponding to the value —1.323.

solution, d¢;/dz = d§,/dz = 0 and minimum W.
Typical contour lines of W as given in (5) are shown
in fig. 1; minimum W is at the points M on the x axis.
If (51, E&) departs at some point from its equilibrium
value (El > 2(2))’ say (El 5 52) = (E? + 551 > 5(2) + 822),
then it is seen from (6) and (7) that the z dependence
of the fluctuations is

88, ~exp(—oy lz]), 8&;~ exp(~ay z]), (8)

where o, and a, are real because (2(1), 2(2)) is a min-
imum of W. Positive signs of a,., &, are taken to ensure
boundedness of (6¢;, 6,). Specilelcally, for (5)

—2a — xHY)/k ,

€
(10)

2
Oy
2 - 2
o =xH /K .
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We now define an analogy with the mechanics of a
particle moving in two dimensions by putting z = ¢,
the time, and (&1, £5) =(x, »), the particle position.
Clearly K becomes the kinetic energy. However, in
order to write Fy as a langrangian Ly =K — V, we
must put W= —V. Now in mechanics the stable equi-
libria are points of minimum ¥, and if the system is
perturbed from equilibrium the ensuing motion is an
oscillation:

bx ~ exp(—iw,?), by ~exp(—iw,?)- 11)

Thus the analogy is not straightforward. Points that
are “‘Landau-stable”, minima of W, are maxima of V,
and therefore “mechanically unstable”. The different
definitions of stability are reflected in the different
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ways in which fluctuations behave, (8) and (11).

We now return to the full free energy density F
including the Lifshitz invariant. The Euler—Lagrange
equations are

k(d28/dz? + 20X dE/dz) — grad W=0, (12)
where
Q=(0,0, A/k), (13)

The term in £ has the form of a Coriolis force,
although it will be noticed that there is no centrifugal
term. This is simply included by rewriting (12):

k[d%E/dz? +2QX dE/dz + R X (R X E)] (19
~grad W, =0,

where

Wy =w+30%¢2 . (15)

The energy integral derived from (11) is
k(g /dz)? + (dE,/d2)?] — W=E . (16)

It is seen from (14) that the mechanical analogy is the
motion of a particle in the x—y plane in which the
potential ¥y = —W), is rotated with angular velocity
€2 about the z axis. However, the particle trajectory
must be such as to minimise F rather than a mechan-
ical lagrangian. We conjecture that a “Landau-stable”
trajectory is one in which perturbations relax as in
(8), whereas a “mechanically-stable” trajectory is one
in which perturbations oscillate as in (11). This has
important implications for attempts at numerical in-
tegration of the Euler—Lagrange equations. A mech-
anically stable trajectory is also numerically stable,
since a small error in an integration step leads to
small oscillations about the true solution. However, a
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Landau-stable trajectory is not numerically stable. A
small error may result in pick up of a diverging solu-
tion, exp(+ a, |z |) rather than the exp(—a,|z[) of (8),
with the result that the trajectory veers right away
from the required solution. In other words, the Euler—
Lagrange equations are very stiff along a Landau
trajectory. This has been found to be the case in prac-
tice [3], and our point in that the stiffness is intrinsic
to the problem.

It is helpful to consider the commensurate—in-
commensurate or the C—C* transition as induced by
an increase in §2. For § = 0§ is at one of the points
M of fig. 1, which as we pointed out is a minimum of
W but a maximum of the mechanical potential V. For
non-zero {the potential is rotating about the z axis.
For sufficiently small 2 the point representing the
system travels round at M with the potential: the C
phase persists. For larger §2 the system point moves
round the potential surface, this being the C* phase.
Since M is a maximum of V, the mechanical and there-
fore numerical instability of the trajectory is evident
from this description.
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