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Abstract. Under semi-partitioned multiprocessor scheduling some (or most) tasks
are partitioned to the available processors while the rest may migrate between dif-
ferent processors, under a carefully managed scheme. One of thebest performing
and practical to implement EDF-based semi-partitioned algorithms is C=D split-
ting. Under this algorithm, each migrating task always executes at the highest-
priority on all but one of the processors that it uses. This arrangement allows for
efficient processor utilisation in general, however no utilisation bound hadbeen
published so far for this algorithm. We address this situation by deriving theutil-
isation bound of13

18 for a variant of C=D with the following constraint: at most
one migrating task may utilise each processor. We also draw additional conclu-
sions for the utilisation bound attainable under a C=D task splitting scheme in the
general case.

1 Introduction

Consider the problem of schedulingn sporadic tasks overm identical processors to meet
deadlines. Traditionally, scheduling algorithms for thisproblem were classified aspar-
titioned or global. Partitioning divides the task set into disjoint subsets each of which is
assigned to a respective processor and scheduled there under some uniprocessor algo-
rithm such as Earliest-Deadline-First (EDF) or Fixed Priority Scheduling (FPS). Global
scheduling on the other hand, maintains a single run queue for all tasks and, at any given
instant, them highest priority tasks execute, each on one of them processors. Hence,
under global scheduling, tasks may migrate, even halfway through the execution. Par-
titioning offers simplicity and re-use of techniques from uniprocessor scheduling. The
family of global scheduling algorithms dominates partitioning in terms of achievable
system utilisation but at the cost of higher scheduling overheads and scalability issues.

The novelsemi-partitioned scheduling paradigm aims to combine the best aspects
of partitioning (efficient implementation and low dispatching overheads) with those of
global scheduling (efficient utilisation of available processing capacity). Various semi-
partitioned scheduling schemes have been devised. Some arebased on fixed-priority
scheduling [18] [17] [13] [19] but most are based on EDF [17] [21] [1] [11] [12] [3] [2]
[6] [16] [7][8]. The work on semi-partitioning has also influenced the design of novel,
unconventional global scheduling schemes [24] [20] [22] [23], especially with regard
to the degree of sophistication in the management of task migrations.

The C=D algorithm is an EDF-based semi-partitioned approach which has been
shown to have high average-case performance. Migrating tasks are split into pieces; all



but one piece execute as a zero-laxity subtask. Both migrating and non-migrating tasks
are scheduled by local EDF, which means that no special implementation requirement
is enforced. These characteristics make C=D a very good algorithm from a practical
perspective. From a theoretical point of view, though, the least utilisation bound that
can be ensured by C=D is not known up to now. In this paper we analyse this problem
and provide useful insights into the theoretical aspects ofC=D by looking into a new
and more restrictive variant of C=D, named Clustered C=D. Weprovide then a general
characterization of the C=D approach in terms of utilization bound; highlight some
aspects regarding the task splitting scheme to be used; and establish, as our main result,
the fact that the least upper bound on processor utilisationthat can be guaranteed by the
C=D approach is higher than13

18 = 72.2̄% but cannot exceed 75%.

2 About the C=D scheduling algorithm

Notation We denote byΓ the entire set{τ1, . . . ,τn} to be scheduled and byΓp the set
of non-migrating tasks assigned to processorPp. The termU(Γp) denotes the utilisation
of the task subsetΓp whereas the utilisation of an individual taskτi is denoted byui.

2.1 Outline of the C=D approach

C=D splitting [9] is a well-performing EDF-based semi-partitioned scheduling approach.
Its main characteristic is that each migrating task always executes at the highest-priority
on all but one of the processors that it utilises; by comparison, other tasks are scheduled
as background workload under EDF on their respective processors. This characteristic
also accounts for the name of the approach, since one way of ensuring that a task exe-
cutes at the highest priority without straying from the semantics of a pure EDF policy is
to set its deadline (D) equal to its execution requirement (C). Therefore, each migrating
task is modelled as such a zero-laxity (C = D) task on the firstk−1 of thek processors
that it is assigned to. The fact that the two scheduling arrangements (assigning to a task
the highest priority vs modelling the same task as zero-laxity) are equivalent is formally
proven by the following lemma:

Lemma 1. Let a system S consist of a task τ0 scheduled at the highest priority on some
processor Pp, together with a set Γp of implicit-deadline background tasks, which are
scheduled under EDF. Let another system S′ consist of the same set of tasks τ0 ∪Γp

scheduled under pure EDF, wherein τ0 is assigned a relative deadline D0 = C0. Then
S is schedulable under its respective scheduling policy if and only if S′ is schedulable
under EDF.

Proof. Consider the two systemsS andS′ and the set of all possible legal task arrival
patterns. For each such arrival pattern there exist two complementary cases:

– Case 1:The respective schedules produced are identical. In this case, either bothS
andS′ meet their deadlines or both miss deadlines.



– Case 2:The respective schedules differ. Then, consider the first time instant in
[0, ∞) where the two schedules diverge. This can only occur whenS′ is executing
a job by a taskτ j ∈ Γp, whose absolute deadline is earlier that that of an active job
by τ0; in comparison,S would be executingτ0 on the same instant. It then follows
thatS will miss a deadline (byτ j) andS′ will also miss a deadline (byτ0).

Hence, we have shown thatS andS′ miss deadlines for the same subset of legal arrival
patterns (which may be null). Hence,S is schedulable if and only ifS′ is schedulable.

With uniprocessor EDF, which is what the dispatcher on each processor uses, it is
possible to have up to one zero-laxity task and still meet deadlines, provided that the
execution requirementC of that task is sufficiently small. In practice though [9][4], it
has been observed that, almost always, the execution requirement of the zero-laxity task
can be made such that the processor is utilised above 90% and the system still remains
schedulable. According to the authors of C=D, it was this observation that guided its
design.

In terms of implementation, a migratory task is scheduled asa zero-laxity task (or,
equivalently, at the highest priority) on each processor that it utilises, except for the last
one, whereupon it is scheduled as a regular (non zero-laxity) EDF task. Since the task
cannot be preempted when executing at zero laxity, no bookkeeping is needed for track-
ing its accumulated execution time and averting overruns onthe respective processor.
Rather, the task migrates to its next processor at the end of the pseudo-deadline associ-
ated with each piece. This migration can be set up by a timer. On its last processor, the
migrating task is not modelled as zero-laxity; rather, its is scheduled under EDF with
an associated relative pseudo-deadline set toD (the true deadline of the task) minus the
sum of the respective relative pseudo-deadlines on the previous processors.

2.2 Existing variants

C=D was introduced not as a rigid algorithm but rather as a general approach, which can
accommodate different strategies for task assignment and splitting. Therefore, it is not
inherently tied to any particular bin-packing scheme – either First-Fit or Best-Fit can
be, used for example. However, according to one classification criterion, we distinguish
between the following two approaches to task splitting: (i)interleaved bin-packing and
splitting or (ii) all bin-packing strictly preceding all task splitting.

The first approach attempts to assign as many tasks as possible on the current
processor (starting from the first one) until there is no taskwhich could be assigned
there integrally with schedulability preserved, subject to existing assignments. At this
stage, some unassigned taskτi is selected for splitting between the current processorPp

and the next onePp+1. The first “piece” (or subtask) ofτi is modelled as a zero-laxity
task onPp whose execution requirement is set (according to exact sensitivity analysis) to
the maximum value (sayC′

i) that preserves the schedulability. The remaining execution
requirement ofτi is modelled as another subtask, with execution requirementCi−C′

i and
relative deadlineDi−D′

i, which is added to the pool of unassigned tasks. Subsequently,
the bin-packing continues onPp+1 until there is need to split again in the same manner.
The algorithm succeeds if all tasks are assigned; it fails ifit runs out of processors. Note



that it is possible to ensure that the remaining “stub” subtask of τi will not have to be
split again by assigning it directly toPp+1, prior to any other task, rather than adding to
the pool of unassigned tasks.

The second approach, on the other hand, only switches to task splitting once no ad-
ditional task can be integrally assigned to any processor with schedulability preserved,
subject to existing assignments. Remaining unassigned tasks are then split in the man-
ner earlier described, over as many processors as necessary.

These two general approaches can be used with different bin-packing schemes as
well as different orderings for the selection of which task to pack or split next. In sim-
ulations, these choices are shown to have some effect on average-case performance,
depending also on the way that the task parameters are generated. However, in the con-
text of hard-real time scheduling,a priori guarantees for the scheduling performance of
an algorithm are desirable. Yet, so far, there exists no proven utilisation bound for any
variant of C=D, despite empirical evidence of its good performance. This situation mo-
tivated this work. In the next section, we will formulate a new variant of C=D, designed
so as to facilitate the derivation of its utilisation bound.Subsequently, in Section 4 we
are going to prove the respective utilisation bound.

3 The clustered variant of C=D under consideration

In order to find out what utilisation bounds are possible for an algorithm design using
a C=D approach with respect to task splitting, we took a step back from the variants
already outlined in [9]. Rather, we opted for a simplification of those existing variants,
which would make the respective utilisation bound easier toderive – even at the expense
of average-case performance.

This simplification consists in allowing at most one migratory task to utilise each
processor. In other words, there is at most one piece, by a respective migratory task, on
each processor. This piece (subtask) may or may not be zero-laxity. This arrangement
divides the processors into disjoint clusters, which shareno tasks. Hence we term the
approachClustered C=D. One of the motivations for our approach is that, in the context
of prior work [15], we already have some results on the schedulability of implicit-
deadline tasks scheduled under EDF on one processor under interference from a single
higher-priority task, which we can apply.

Outline The high-level pseudocode in Figure 1 defines the clustered approach. Tasks
are first ordered by non-increasingTi. This particular ordering is important, as we will
later show, because our derivation of the algorithm’s utilisation bound relies on it. Tasks
are then assigned one by one, integrally (using First-Fit bin-packing) or, if that fails, by
splitting (according to a C=D approach). Each time that a task is split it forms a clus-
ter, consisting of consecutively indexed processors. A variable (initialised to 1) tracks
the index of the processor from which the next cluster (if necessary to create) should
start. The algorithm can only fail if some task (which previously could not be assigned
integrally) cannot be split over the remaining processors (line 8).

Figure 2 depicts an example of a 16-task set assigned onto 6 processors using Clus-
tered C=D. In this example, tasksτ1 to τ13 were successfully assigned integrally. This



1. //tasks are indexed by non-increasing Ti
2. int q=1; //stores index of processor to split onwards from

3. for (each task τi)

4. {try assigning τi integrally to some processor using

First-Fit bin-packing and an exact schedulability test;

5. if (τi could not be assigned to any processor with

schedulability preserved, subject to existing assignments)

6. {re-index processors Pq to Pm by non-decreasing utilisation;

7. split τi in k (as few as possible) pieces using a C=D approach,

over processors Pq to Pq+k−1, using exact schedulability test

to maximize each zero-laxity piece;

8. if (we ran out of processors)

9. return(FAILURE);

10 else

11. q=q+k;

12. }
13. }

//this line is reached only if all tasks were

//assigned (integrally or by splitting)

14. return(SUCCESS);

Fig. 1.Pseudocode for Clustered C=D splitting.

was not the case forτ14, which had to be split. Hence the first cluster{P1, P2, P3} is
formed. It happens that the next taskτ15 can be assigned integrally on some proces-
sor. However, the last task (τ16) has to be split (this time, from processorP4 onwards)
and another cluster{P4, P5} is formed. Processors with no migrating tasks can also be
thought of as clusters of a single processor. In this example, this is the case of{P6}.

Motivation for clustering As hinted earlier, enforcing this clustered arrangement en-
tails a potential performance penalty due to fragmentation. Namely, unlike processors
with zero-laxity subtasks, the last processor in each cluster may be underutilised. This
is because, although that processor may still have spare processing capacity, by design,
this capacity cannot be used for accommodating an additional split task piece. Never-
theless, the clustering approach formulated above can be used as an intermediate step
in the derivation of a non-clustered solution which would not suffer from the fragmen-
tation effects described. Not only that, but the derivativenon-clustered variant of C=D
(which we will next outline) would dominate Clustered C=D, hence also “inheriting”
its least schedulable utilisation bound. This is importantbecause, so far, no utilisation
bound for the original non-clustered variants of C=D has been proven.

A dominant non-clustered variant of C=D can be obtained fromClustered C=D as
a special case, by preventing the algorithm from declaring failure at line 8. Instead, at



Fig. 2.An example of task assignments under Clustered C=D splitting.

that point the algorithm could allow all processors with spare capacity (i.e. including
the last processor of each cluster) to be used, in an attempt to accommodate remaining
unassigned tasks. This would undo the clustering – but only if absolutely necessary.
Therefore, we can draw the following conclusions:

Lemma 2. For the non-clustered variant of C=D outlined above it holds that:

1. It dominates Clustered C=D.
2. Its least upper bound on schedulable utilisation is no less than that of Clustered

C=D.

Proof. By design, given the comments above.

Some interesting observations regarding the pseudocode ofClustered C=D Before
proceeding with the derivation of the utilisation bound, for the algorithm described
above, it is worth providing some insight into certain aspects of its design. We will
do this by studying the behaviour of C=D in different examples, without some of our
explicit provisions.

First, it is worth stressing the importance of assigning/splitting tasks in order of
non-increasing inter-arrival time.

Lemma 3. If tasks are not allocated to processors in order of non-increasing inter-
arrival time, the least upper bound on processor utilization achieved by the C=D algo-
rithm is not greater than 50%.

Proof. Consider the implicit-deadline task setΓ = {τ1, . . . ,τm+1}, with each task (C,
D, T ) having the following attributes:

1≤ i ≤ m : τi =
(

0.5+ ε , 1,1
)

τm+1 =
(

(0.5− ε)m+ ε , m,m
)



wherem is the number of processors andε → 0+. In this case,τm+1 will be the only mi-
grating task, and will be broken up intom zero-laxity subtasks withC =D= 0.5−ε and
T = m on processorsP1 to Pm. However, this would still leave it with an outstanding ex-
ecution requirement ofε time units, which cannot be accommodated by any processor.
Therefore,

lim
m→∞

U(Γ )

m
=

1
2

Observe that both Clustered C=D and the non-clustered variant dominating it would
fail, for the above example. This observation led us to enforce the task ordering by non-
increasing inter-arrival time, as an integral aspect of Clustered C=D.

Even under this ordering, though, we can see that the least upper bound on processor
utilization for C=D is not higher than 75%.

Theorem 1. The least upper bound on processor utilisation for the C=D algorithm is
not higher than 3

4m for large values of m.

Proof. Without loss of generality, assume thatm is divisible by 4. We will construct a
task setΓ with n = 3m

4 +1 tasks that could not be dealt with by the C=D scheme. Let
Γ be composed of three types of tasks: there are

– m type-1 tasks in the form(1
2 + ε , 1,1);

– m
4 type-2 tasks in the form(3

4 −
ε
2 ,

3
4,

3
4);

– and one type-3 task in the form(1
4,

1
2,

1
2);

whereε is a small positive constant. From Lemma 3 we know that unlessthe tasks are
allocated in non-increasing order of their periods, the least upper bound on processor
utilization cannot be greater than 50% ofm in the general case. Hence, assume a non-
increasing order. This means that all type-1 tasks are allocated as non-migrating and the
other tasks should be defined as migrating, those of type 2 being allocated first.
When defining the subtasks of the type-2 tasks, one will see that 3 of them should
be allocated as having their relative deadlines equal to their execution costs. That is,
these three subtasks of each type-2 task always execute withthe highest priority (recall
Lemma 1). As there are up to two instances (jobs) of these type-2 subtasks interfering in
the execution of the non-migrating tasks, their maximum execution costc must satisfy
the following:

2c+
1
2
+ ε = 1⇒ c =

1−2ε
4

Now the type-3 task must be allocated. We note that after allocating type-2 tasks, there
are 3m

4 processors where no other task can be allocated andm
4 with utilization 1

2 +2ε,
corresponding to the utilization of the type-1 task and thatof the fourth subtask of
a type-2 task. We also note that the maximum interference a type-2 task can suffer
during its execution cannot exceedε

2 , which is its slack. This means that there aremε
8

of unallocated processor utilization that can be used but the type-3 task requires 50% of
a processor. ComputingU(Γ ),

U(Γ ) =
m

∑
1

(

1
2
+ ε

)

+

m
4

∑
1

(

3−2ε
3

)

+
1
2
=

3m
4

+
2mε

3
+

1
2



Assumingε ≈ 0, we have that

lim
m→∞

U(Γ )

m
= lim

m→∞

3
4
+

1
2m

=
3
4

The above theorem indicates that if we would be able to prove aleast utilisation
bound for Clustered C=D which would be close to 75%, then the performance of this
algorithm (and its non-clustered dominant variant) would also be close to the theoret-
ical limits inherent to the C=D approach – in other words, theexact utilisation bound,
whatever that is.

Another aspect of the pseudocode for Clustered C=D that merits discussion is the
re-indexing of processors (performed at line 6). This occurs whenever some task needs
to be split and involves all the candidate processors to accommodate it (Pq to Pm). These
processors are rearranged then by order of non-decreasing utilisation, before the algo-
rithm proceeds with splitting the task in consideration from Pq (as derived by the re-
indexing) onwards, over as many processors as needed. This arrangement, as will be
seen later, is relied upon for the derivation of the utilisation bound.

Hence, after having highlighted the motivation behind the design aspects of Clus-
tered C=D, we can now turn to identifying its utilisation bound.

4 Derivation of the utilisation bound of Clustered C=D

In this section, we will prove the utilisation bound of13
18 for the clustered variant of C=D

above introduced. Given that utilisation bounds are a meaningful performance metric
only when the task setτ to be scheduled is implicit-deadline, we henceforth assume
that for each taskτi, it holds thatCi ≤ Di = Ti.

4.1 Useful results from the domain of uniprocessor scheduling

The following few results address the schedulability of uniprocessor systems. However,
they form the foundations for later proving the utilisationbound of the multiprocessor
scheduling scheme in consideration.

Theorem 2. Let τ0 be a task scheduled at the highest priority on some processor Pp,
together with a set Γp of implicit-deadline background tasks, which are scheduled under
EDF. Additionally, assume that T0 ≤ Tj, ∀τ j ∈ Γp. Then, if

u0 ≤
1−U(Γp)

1+U(Γp)
(1)

no deadlines can be missed.

Proof. It is known from Theorem 3 in [15] that, for the case describedabove, no dead-
lines can be missed if

u0 ≤
1−U(Γp)

1+ U(Γp)
⌊minτ j∈Γp Tj

T0

⌋

Since, from the assumption, it holds thatT0 ≤minτ j∈Γp Tj, the above sufficient condition
for schedulability can be relaxed to Inequality (1)



Corollary 1. The utilisation of each zero-laxity subtask assigned to a processor Pp by

the clustered C=D algorithm during task splitting is lower-bounded by 1−U(Γp)
1+U(Γp)

.

Proof. Follows from Theorem 2 and Lemma 1 and the fact that the algorithm uses
an exact schedulability test to determine the maximum execution requirement by the
subtask that preserves the schedulability ofΓp. Therefore, the right-hand side of In-
equality (1) is a lower bound for that utilisation.

4.2 Proof of utilisation bound

At this stage, we can tackle the derivation of the least schedulable utilisation bound for
Clustered C=D. For that derivation, we will rely on the aboveresults for uniprocessors,
with each zero-laxity subtask of a migrating task corresponding toτ0 on its respective
processor.

Theorem 3. The total task utilisation Ucℓ. accommodated by each cluster formed by the
Clustered C=D algorithm is lower-bounded by 13

18k, where k is the number of processors
in that cluster.

Proof. Let us assume that the cluster in consideration spans processorsPq to Pq+k−1.
From Corollary 1 and the fact that the split task “exhausts” the available scheduling
capacity on the firstk−1 processors of the cluster (Pq to Pq+k−2) (but still needs a final
piece on thekth processor to be schedulable), it follows that:

ui >

q+k−2

∑
p=q

1−U(Γp)

1+U(Γp)
(2)

From the fact thatd
dx

(

1−x
1+x

)

< 0 and d2

dx

(

1−x
1+x

)

> 0 over [0,1], via application of
Jensen’s inequality [14] to the right-hand side of Inequality (2), we obtain

q+k−2

∑
p=q

1−U(Γp)

1+U(Γp)
> (k−1) ·

1−Ū
1+Ū

(3)

where

Ū =
1

k−1

q+k−2

∑
p=q

U(Γp) (4)

Combining this with Inequality (2), we obtain

ui > (k−1) ·
1−Ū
1+Ū

(5)

Now, let us consider two cases:



– Case 1:k = 2
Then the cluster consists of two processorsPq andPq+1, over which taskτi is split.
From the bin-packing scheme used, it follows that:

U(Γq)+U(Γq+1) > 1

ui +U(Γq) > 1

ui +U(Γq+1) > 1

Adding these inequalities together and dividing by 2 yields

ui +U(Γq)+U(Γq+1)≥
3
2
> 2·

13
18

⇒ Ucℓ. >
13
18

k (6)

– Case 2:k ≥ 3
Then, for the total utilisationUcℓ. of the cluster it holds that

Ucℓ. = ui +
q+k−1

∑
p=q

U(Γp) = ui +
q+k−2

∑
p=q

U(Γp)+U(Γq+k−1)
(5)
=⇒

Ucℓ. > U(Γq+k−1)+(k−1)Ū +(k−1) ·
1−Ū
1+Ū

⇒

Ucℓ. > U(Γq+k−1)+(k−1)
Ū2+1
1+Ū

(7)

From the fact that processorsPq to Pm are reindexed in order of non-decreasing
utilisation, each time that a task is split (line 6 of the pseudocode) it follows that,
at the time thatτi is split,U(Γq+k−1)≥ Ū . Taking advantage of this, in conjunction
with (7), we obtain:

Ucℓ. > Ū +(k−1)
Ū2+1
1+Ū

⇒

Ucℓ.

k
>

1
k

(

Ū +(k−1)
Ū2+1
1+Ū

)

(8)

With some algebraic rewriting, this can be equivalently expressed as

Ucℓ.

k
> Ū +

(

k−1
k

)(

1−Ū
1+Ū

)

(9)

The quantity1−Ū
1+Ū is positive. The quantityk−1

k is also positive and an increasing
function of k. Hence the right-hand side of the above inequality is minimised for
the smallest value ofk, which isk = 3 according to the assumption of the case. Via
substitution of this value we obtain

Ucℓ.

k
> Ū +

2
3

(

1−Ū
1+Ū

)

(10)



From the properties of the bin-packing scheme used, it follows thatŪ > 1
2. More-

over, the right-hand side of Inequality (10) is an increasing function of Ū over
[1
2, 1]. From these two observations we obtain that a lower bound forthe right-

hand side of Inequality 10 can be obtained by substitutingŪ = 1
2. Then, we obtain

Ucℓ.

k
>

13
18

⇒Ucℓ. >
13
18

k. (11)

Hence in either case the claim holds.

Note that the utilisation of a cluster may still increase, after its formation, via the
potential integral assignment of additional tasks to its component processors.

Definition 1. In the case that Clustered C=D declares failure, the term last candidate
cluster denotes the set of processors {Pq . . .Pm} upon which the algorithm attempted to
split a task immediately prior to declaring failure.

Intuitively, the algorithm attempted to split the task in consideration over candidate
clusters{Pq,Pq+1}, {Pq,Pq+1,Pq+2} and so on until{Pq, . . . ,Pm} but failed in all cases.
Note that, in a trivial case, the last candidate cluster could be{Pm}.

Lemma 4. Assume that Clustered C=D declares failure upon attempting to split a task
τi. Let Uℓast denote the utilisation of the last candidate cluster before the attempt to split
τi and let k be the number of processors in the last candidate cluster. Then, it holds that
Uℓast +ui >

13
18k.

Proof. For k = 1 the claim trivially holds. Fork ≥ 2:
From the fact that the algorithm declares failure, we know that k − 1 zero-laxity

subtasks ofτi were assigned on thek−1 first processors in the last candidate cluster.
On the final processor, the algorithm tested the schedulability of a finalkth subtask, with
the remaining execution requirement ofτi, and failed.

From the fact that EDF is a sustainable scheduling algorithm[5], reducing the ex-
ecution requirement of that last subtask on the last processor cannot negatively impact
on its schedulability. Let us therefore reduce its execution requirement (without chang-
ing its deadline or interarrival time) to a value that renders it schedulable on the last
processor, together will all other tasks assigned there. From Theorem 3, this means that
the cluster would then be utilized above13

18 – even if the utilisation ofτi was discounted.
In turn, this means thatUℓast +ui >

13
18k.

Theorem 4. The utilisation bound of Clustered C=D is at least 13
18.

Proof. We will prove this by showing that if the algorithm fails to schedule a task set
Γ , this means thatU(Γ )> 13

18m.
Assume that the algorithm declares failure to split a taskτi. From Theorem 3 we

know that all clusters successfully formed by the algorithmup to that point are utilised
above13

18. From Lemma 4 we also know that, wereτi to be assigned to the last candidate
cluster (shedulability considerations aside), its resulting utilisation would exceed13

18.
This means thatU({τ1, . . . ,τi})>

13
18m. In turn, since{τ1, . . .τi} ⊆ Γ , this implies that

U(Γ )> 13
18m.



4.3 Observations regarding the bin-packing scheme

The algorithm in Figure 1 uses First-fit bin-packing but other reasonable bin-packing
heuristics can be used instead [10]. For example, Best-Fit could be used instead and all
of the reasoning that leads to the derivation of the utilisation bound (and thus the bound
itself) would still hold.

In order to characterise what properties a candidate bin-packing scheme should pos-
sess in order to be used in the Clustered C=D algorithm, instead of First-Fit, without
compromising the proven utilisation bound, let us inspect the proof of Theorem 3.
Therein, the only properties resulting from the assignmentof non-split tasks that are
relied upon are the following:

Property 1: 1
2 < Ū

def
= ∑q+k−2

p=q U(Γp), for the firstk−1 processors in a cluster
{Pq, . . . ,Pq+k−1}.

Property 2: U(Γq+k−1)≥ Ū , for the last processor in the cluster.

Upon closer inspection, if Property 1 holds, then Property 2is ensured by the proces-
sor re-indexing (line 6 of the pseudocode), prior to each task splitting. Hence, only Prop-
erty 1 needs to be safeguarded, when switching to an alternative bin-packing scheme.

One simple way of ensuring that this property holds is by preventing by design a
task to be assigned to a processor with no other tasks yet assigned to itunless this task
could not fit on any of the processors with tasks already assigned to them. Note that the
order in which processors with tasks already assigned to them are tried is not relevant
for ensuring Property 1; it could even vary for each task or itcould even be random.

Preventing a task from being assigned to a processor with no other tasks yet assigned
to it unless it could not be assigned to any other processor (with tasks) means that,
whenever the need to split a task arises, it holds that

U(Γp)+U(Γr)> 1

wherePp andPr are the two least utilised from among the firstk−1 processors of the
cluster in consideration. In turn, this means that Property1 holds.

5 Conclusions

Providing high utilisation guarantees without imposing too many restrictions on im-
plementation has been a challenge for the real-time research community regarding the
multiprocessor scheduling problem. In this context, the C=D algorithm is noticeable
by its implementation simplicity and good average performance. However, no theoret-
ical bound on system utilisation had been derived so far. In this paper we have looked
into this open problem and have discussed some important characteristics of C=D. We
have shown that if one does not consider assigning tasks to processors in order of non-
increasing task periods, the utilisation bound for the C=D algorithm can be as low as
50%. Furthermore, we have established an interval of[0.722̄,0.75] within which such
a bound lies. These results bring about important theoretical aspects for a scheduling
algorithm known to perform well from a practical perspective.
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