On the Processor Utilisation Bound of the
C=D Scheduling Algorithm

J. Augusto Santos=JrGeorge Lima, and Konstantinos Bletsas

*Federal University of Bahia, Salvador, Brazil
TCISTER/INESC-TEC Research Centre, ISEP, Porto, Portugal

Abstract. Under semi-partitioned multiprocessor scheduling some (or most) tasks
are partitioned to the available processors while the rest may migrate Inedifiee
ferent processors, under a carefully managed scheme. Onelmghperforming

and practical to implement EDF-based semi-partitioned algorithms is CED sp
ting. Under this algorithm, each migrating task always executes at thedtighe
priority on all but one of the processors that it uses. This arrangeatiews for
efficient processor utilisation in general, however no utilisation boundoead
published so far for this algorithm. We address this situation by derivingtthe
isation bound of%—g for a variant of C=D with the following constraint: at most
one migrating task may utilise each processor. We also draw additionelueon
sions for the utilisation bound attainable under a C=D task splitting scheme in the
general case.

1 Introduction

Consider the problem of schedulingporadic tasks ovenidentical processors to meet
deadlines. Traditionally, scheduling algorithms for thisblem were classified gr-
titioned or global. Partitioning divides the task set into disjoint subsethea which is
assigned to a respective processor and scheduled theresamde uniprocessor algo-
rithm such as Earliest-Deadline-First (EDF) or Fixed Rtyoscheduling (FPS). Global
scheduling on the other hand, maintains a single run quewad tasks and, at any given
instant, them highest priority tasks execute, each on one ofrthgrocessors. Hence,
under global scheduling, tasks may migrate, even halfwegutih the execution. Par-
titioning offers simplicity and re-use of techniques fromprocessor scheduling. The
family of global scheduling algorithms dominates partititg in terms of achievable
system utilisation but at the cost of higher scheduling logads and scalability issues.

The novelsemi-partitioned scheduling paradigm aims to combine the best aspects
of partitioning (efficient implementation and low dispaitalp overheads) with those of
global scheduling (efficient utilisation of available pessing capacity). Various semi-
partitioned scheduling schemes have been devised. Sontmsee on fixed-priority
scheduling [18] [17] [13] [19] but most are based on EDF [27][[1] [11] [12] [3] [2]
[6] [16] [7][8]. The work on semi-partitioning has also inflaced the design of novel,
unconventional global scheduling schemes [24] [20] [2&] [2specially with regard
to the degree of sophistication in the management of taskatibgs.

The C=D algorithm is an EDF-based semi-partitioned apgraslsich has been
shown to have high average-case performance. Migratitkg ta® split into pieces; all



but one piece execute as a zero-laxity subtask. Both migratid non-migrating tasks
are scheduled by local EDF, which means that no special immgaiéation requirement
is enforced. These characteristics make C=D a very gooditdgofrom a practical
perspective. From a theoretical point of view, though, et utilisation bound that
can be ensured by C=D is not known up to now. In this paper wiysathis problem
and provide useful insights into the theoretical aspecS=iD by looking into a new
and more restrictive variant of C=D, named Clustered C=D pv@eide then a general
characterization of the C=D approach in terms of utilizatmound; highlight some
aspects regarding the task splitting scheme to be usedssatalish, as our main result,
the fact that the least upper bound on processor utiliséttiancan be guaranteed by the
C=D approach is higher thaé% = 72.2% but cannot exceed 75%.

2 About the C=D scheduling algorithm

Notation We denote by~ the entire se{1y,..., T} to be scheduled and by, the set
of non-migrating tasks assigned to proced3piThe termU (I'p) denotes the utilisation
of the task subsdi, whereas the utilisation of an individual tagkis denoted by;.

2.1 Outline of the C=D approach

C=D splitting [9] is a well-performing EDF-based semi-fidohed scheduling approach.
Its main characteristic is that each migrating task alwagsetes at the highest-priority
on all but one of the processors that it utilises; by comparisther tasks are scheduled
as background workload under EDF on their respective psacssThis characteristic
also accounts for the name of the approach, since one waysafiag that a task exe-
cutes at the highest priority without straying from the setita of a pure EDF policy is
to set its deadlinell) equal to its execution requireme)( Therefore, each migrating
task is modelled as such a zero-laxi@/€ D) task on the firsk — 1 of thek processors
that it is assigned to. The fact that the two scheduling gearents (assigning to a task
the highest priority vs modelling the same task as zerdytaare equivalent is formally
proven by the following lemma:

Lemma 1. Let a system Sconsist of a task 7o scheduled at the highest priority on some
processor P, together with a set I, of implicit-deadline background tasks, which are
scheduled under EDF. Let another system S’ consist of the same set of tasks 1o U,
scheduled under pure EDF, wherein 1 is assigned a relative deadline Dg = Cp. Then
Sis schedulable under its respective scheduling policy if and only if S is schedulable
under EDF.

Proof. Consider the two systen®andS and the set of all possible legal task arrival
patterns. For each such arrival pattern there exist two temmgntary cases:

— Case 1.The respective schedules produced are identical. In tBis, ether botls
andS meet their deadlines or both miss deadlines.



— Case 2:The respective schedules differ. Then, consider the fins¢ finstant in
[0, ©) where the two schedules diverge. This can only occur wiiésm executing
ajob by a taskj € I, whose absolute deadline is earlier that that of an active jo
by 1o; in comparisonSwould be executingg on the same instant. It then follows
thatSwill miss a deadline (by;) andS will also miss a deadline (by).

Hence, we have shown th&iandS miss deadlines for the same subset of legal arrival
patterns (which may be null). Henc®is schedulable if and only 8 is schedulable.

With uniprocessor EDF, which is what the dispatcher on eaobgssor uses, it is
possible to have up to one zero-laxity task and still meetllifeas, provided that the
execution requiremen@ of that task is sufficiently small. In practice though [9][4]
has been observed that, almost always, the execution eaagiit of the zero-laxity task
can be made such that the processor is utilised above 90%arsgdtem still remains
schedulable. According to the authors of C=D, it was thiseoleion that guided its
design.

In terms of implementation, a migratory task is scheduled asro-laxity task (or,
equivalently, at the highest priority) on each processarittutilises, except for the last
one, whereupon it is scheduled as a regular (non zero-JafF task. Since the task
cannot be preempted when executing at zero laxity, no baglkg is needed for track-
ing its accumulated execution time and averting overruntherrespective processor.
Rather, the task migrates to its next processor at the erebgddeudo-deadline associ-
ated with each piece. This migration can be set up by a timeit€Qast processor, the
migrating task is not modelled as zero-laxity; rather, sts¢heduled under EDF with
an associated relative pseudo-deadline sBt fihe true deadline of the task) minus the
sum of the respective relative pseudo-deadlines on thequeprocessors.

2.2 Existing variants

C=D was introduced not as arigid algorithm but rather as aggapproach, which can
accommodate different strategies for task assignmentlittingy. Therefore, it is not

inherently tied to any particular bin-packing scheme —egithirst-Fit or Best-Fit can

be, used for example. However, according to one classificatiterion, we distinguish
between the following two approaches to task splittinginfi@rleaved bin-packing and
splitting or (i) all bin-packing strictly preceding all$& splitting.

The first approach attempts to assign as many tasks as possible on the current
processor (starting from the first one) until there is no takkch could be assigned
there integrally with schedulability preserved, subjecexisting assignments. At this
stage, some unassigned tasls selected for splitting between the current proceBgor
and the next on@,1. The first “piece” (or subtask) afi is modelled as a zero-laxity
task onP, whose execution requirement is set (according to exacitsgéiysanalysis) to
the maximum value (sa/) that preserves the schedulability. The remaining exenuti
requirement of; is modelled as another subtask, with execution require@en€/ and
relative deadlin®; — Dj, which is added to the pool of unassigned tasks. Subseguentl
the bin-packing continues d#1 until there is need to split again in the same manner.
The algorithm succeeds if all tasks are assigned; it faitsuins out of processors. Note



that it is possible to ensure that the remaining “stub” ssiotaf 7; will not have to be
split again by assigning it directly 18, 1, prior to any other task, rather than adding to
the pool of unassigned tasks.

The second approachon the other hand, only switches to task splitting once ro ad
ditional task can be integrally assigned to any processthr sahedulability preserved,
subject to existing assignments. Remaining unassignéd gas then split in the man-
ner earlier described, over as many processors as necessary

These two general approaches can be used with differergdziking schemes as
well as different orderings for the selection of which taslpack or split next. In sim-
ulations, these choices are shown to have some effect oage«ease performance,
depending also on the way that the task parameters are ¢gshddmwever, in the con-
text of hard-real time scheduling priori guarantees for the scheduling performance of
an algorithm are desirable. Yet, so far, there exists nogirautilisation bound for any
variant of C=D, despite empirical evidence of its good pemfance. This situation mo-
tivated this work. In the next section, we will formulate asneariant of C=D, designed
so as to facilitate the derivation of its utilisation boudibsequently, in Section 4 we
are going to prove the respective utilisation bound.

3 The clustered variant of C=D under consideration

In order to find out what utilisation bounds are possible forigyorithm design using
a C=D approach with respect to task splitting, we took a stegklfrom the variants
already outlined in [9]. Rather, we opted for a simplificatmf those existing variants,
which would make the respective utilisation bound easidetive — even at the expense
of average-case performance.

This simplification consists in allowing at most one migrgttask to utilise each
processor. In other words, there is at most one piece, bypactge migratory task, on
each processor. This piece (subtask) may or may not be agitg-IThis arrangement
divides the processors into disjoint clusters, which simar¢asks. Hence we term the
approactClustered C=D. One of the motivations for our approach is that, in the cante
of prior work [15], we already have some results on the scladility of implicit-
deadline tasks scheduled under EDF on one processor uneldeigance from a single
higher-priority task, which we can apply.

Outline The high-level pseudocode in Figure 1 defines the clustguptbach. Tasks
are first ordered by non-increasiiig This particular ordering is important, as we will
later show, because our derivation of the algorithm’ssadtiion bound relies on it. Tasks
are then assigned one by one, integrally (using First-Ridaicking) or, if that fails, by
splitting (according to a C=D approach). Each time that & issplit it forms a clus-
ter, consisting of consecutively indexed processors. Aabée (initialised to 1) tracks
the index of the processor from which the next cluster (ifessary to create) should
start. The algorithm can only fail if some task (which prexsty could not be assigned
integrally) cannot be split over the remaining processiamns 8).

Figure 2 depicts an example of a 16-task set assigned ontacégsors using Clus-
tered C=D. In this example, tasks to 113 were successfully assigned integrally. This



1.//tasks are indexed by non-increasing T;

2.int g=1; //stores index of processor to split onwards from

3.for (each task Tj)

4. {try assigning T; integrally to some processor using
First-Fit bin-packing and an exact schedulability test;

5. if (Tj could not be assigned to any processor with
schedulability preserved, subject to existing assignments)
6. {re-index processors Py to Py by non-decreasing utilisation;

7. split 7 in k (as few as possible) pieces using a C=D approach,
over processors Py to Pyik_1, using exact schedulability test
to maximize each zero-laxity piece;

8. if (we ran out of processors)
9. return(FAILURE) ;
10 else

11. g=q+k;
12, }
13.}

//this line is reached only if all tasks were
//assigned (integrally or by splitting)
14. return (SUCCESS) ;

Fig. 1. Pseudocode for Clustered C=D splitting.

was not the case farng4, which had to be split. Hence the first clustéh, P, Ps} is
formed. It happens that the next task can be assigned integrally on some proces-
sor. However, the last taskjg) has to be split (this time, from procesd@ronwards)
and another clusteifs, B} is formed. Processors with no migrating tasks can also be
thought of as clusters of a single processor. In this exarigteis the case ofPs}.

Motivation for clustering As hinted earlier, enforcing this clustered arrangement en
tails a potential performance penalty due to fragmentatiamely, unlike processors
with zero-laxity subtasks, the last processor in each etustly be underutilised. This
is because, although that processor may still have spacegsimg capacity, by design,
this capacity cannot be used for accommodating an additgptid task piece. Never-
theless, the clustering approach formulated above candmtasan intermediate step
in the derivation of a non-clustered solution which would swaffer from the fragmen-
tation effects described. Not only that, but the derivatiee-clustered variant of C=D
(which we will next outline) would dominate Clustered C=[nice also “inheriting”
its least schedulable utilisation bound. This is importsetause, so far, no utilisation
bound for the original non-clustered variants of C=D haslq@even.

A dominant non-clustered variant of C=D can be obtained f@@ostered C=D as
a special case, by preventing the algorithm from declariilgre at line 8. Instead, at



©©
0w

G G
G G

Py P, Ps P4 Ps Ps

Fig. 2. An example of task assignments under Clustered C=D splitting.

that point the algorithm could allow all processors withrepeapacity (i.e. including
the last processor of each cluster) to be used, in an attenggcommodate remaining
unassigned tasks. This would undo the clustering — but dréypsolutely necessary.
Therefore, we can draw the following conclusions:

Lemma 2. For the non-clustered variant of C=D outlined above it holds that:

1. It dominates Clustered C=D.
2. Its least upper bound on schedulable utilisation is no less than that of Clustered
C=D.

Proof. By design, given the comments above.

Some interesting observations regarding the pseudocode Gfustered C=D Before
proceeding with the derivation of the utilisation bound; fbe algorithm described
above, it is worth providing some insight into certain aspef its design. We will
do this by studying the behaviour of C=D in different exanspl@ithout some of our
explicit provisions.

First, it is worth stressing the importance of assigniniigtepg tasks in order of
non-increasing inter-arrival time.

Lemma 3. If tasks are not allocated to processors in order of non-increasing inter-
arrival time, the least upper bound on processor utilization achieved by the C=D algo-
rithmis not greater than 50%.

Proof. Consider the implicit-deadline task set= {11, ..., Tm+1}, with each task,
D, T) having the following attributes:

1<i<m:— (o.5+s, 1,1)

Tyl = ((0.5— e)m+¢g, m, m)



wheremis the number of processors ang» 0. In this caseTm, 1 will be the only mi-
grating task, and will be broken up intozero-laxity subtasks witG =D = 0.5— € and
T =mon processorB; to Py. However, this would still leave it with an outstanding ex-
ecution requirement of time units, which cannot be accommodated by any processor.
Therefore,
Uy 1
lim —= ==
m—e M 2
Observe that both Clustered C=D and the non-clusteredntattaninating it would
fail, for the above example. This observation led us to e@&de task ordering by non-
increasing inter-arrival time, as an integral aspect os@red C=D.
Even under this ordering, though, we can see that the lepst lypund on processor
utilization for C=D is not higher than 75%.

Theorem 1. The least upper bound on processor utilisation for the C=D algorithm is
not higher than %m for large values of m.

Proof. Without loss of generality, assume thmts divisible by 4. We will construct a
task set” with n= 37"‘ + 1 tasks that could not be dealt with by the C=D scheme. Let
I" be composed of three types of tasks: there are

— mtype-1 tasks in the form(3 + ¢, 1,1);

— M type-2 tasks in the fornf3 — £, 2. 2);
— and one type-3 task in the for(g, 3, 3);

wheree is a small positive constant. From Lemma 3 we know that uritessasks are

allocated in non-increasing order of their periods, thatlegper bound on processor

utilization cannot be greater than 50%rofin the general case. Hence, assume a non-

increasing order. This means that all type-1 tasks areathdcas non-migrating and the

other tasks should be defined as migrating, those of typer@)ladiocated first.

When defining the subtasks of the type-2 tasks, one will see3tltd them should

be allocated as having their relative deadlines equal tio &xecution costs. That is,

these three subtasks of each type-2 task always executéheittighest priority (recall

Lemma 1). As there are up to two instances (jobs) of these2yqébtasks interfering in

the execution of the non-migrating tasks, their maximuntaien costc must satisfy

the following:
—2¢

1 1
2c+§+£:1:>c:

Now the type-3 task must be allocated. We note that aftecatilog type-2 tasks, there
are%m processors where no other task can be allocatedzawith utilization % + 2¢,
corresponding to the utilization of the type-1 task and thfathe fourth subtask of
a type-2 task. We also note that the maximum interferencee-2ytask can suffer
during its execution cannot excegdwhich is its slack. This means that there &fe
of unallocated processor utilization that can be used lautyihe-3 task requires 50% of
a processor. Computing (),

m /1 232\ 1 3m 2me 1




Assuminge ~ 0, we have that

lim w: lim §+i=§
m—oe M m=eod  2m 4

The above theorem indicates that if we would be able to proleast utilisation
bound for Clustered C=D which would be close to 75%, then #mopmance of this
algorithm (and its non-clustered dominant variant) wouib de close to the theoret-
ical limits inherent to the C=D approach — in other words, ¢kact utilisation bound,
whatever that is.

Another aspect of the pseudocode for Clustered C=D thatsmigcussion is the
re-indexing of processors (performed at line 6). This oseunenever some task needs
to be split and involves all the candidate processors toranwadate it &, to Pn). These
processors are rearranged then by order of non-decreatlisgtion, before the algo-
rithm proceeds with splitting the task in consideratiomirBy (as derived by the re-
indexing) onwards, over as many processors as needed. frfaigyament, as will be
seen later, is relied upon for the derivation of the utilsabound.

Hence, after having highlighted the motivation behind theigh aspects of Clus-
tered C=D, we can now turn to identifying its utilisation Inali

4 Derivation of the utilisation bound of Clustered C=D

In this section, we will prove the utilisation bound%for the clustered variant of C=D
above introduced. Given that utilisation bounds are a nmegni performance metric
only when the task set to be scheduled is implicit-deadline, we henceforth assume
that for each task;, it holds thaiC; < D; = T,.

4.1 Useful results from the domain of uniprocessor scheduig

The following few results address the schedulability ofwacessor systems. However,
they form the foundations for later proving the utilisatioound of the multiprocessor
scheduling scheme in consideration.

Theorem 2. Let 1o be a task scheduled at the highest priority on some processor P,
together with a set I', of implicit-deadline background tasks, which are scheduled under
EDF. Additionally, assume that To < Tj, V1 € I'p. Then, if

1-U(lp)

Uo = m 1)

no deadlines can be missed.

Proof. Itis known from Theorem 3 in [15] that, for the case describbdve, no dead-
lines can be missed if
- 1-U(lp)

to = 1 U(I—p)

+ \‘mlnrjel—ijJ

To

Since, from the assumption, it holds tAgt< minrjerp T;, the above sufficient condition
for schedulability can be relaxed to Inequality (1)



Corollary 1. The utilisation of each zero-laxity subtask assigned to a processor P, by
the clustered C=D algorithm during task splitting is |ower-bounded by %
Proof. Follows from Theorem 2 and Lemma 1 and the fact that the dlgaruses
an exact schedulability test to determine the maximum di@tuequirement by the
subtask that preserves the schedulability gf Therefore, the right-hand side of In-
equality (1) is a lower bound for that utilisation.

4.2 Proof of utilisation bound

At this stage, we can tackle the derivation of the least saladde utilisation bound for

Clustered C=D. For that derivation, we will rely on the abossults for uniprocessors,
with each zero-laxity subtask of a migrating task corresiiag to 7 on its respective

processor.

Theorem 3. Thetotal task utilisation U, accommodated by each cluster formed by the
Clustered C=D algorithmislower-bounded by i—gk, wherek isthe number of processors
in that cluster.

Proof. Let us assume that the cluster in consideration spans [g@s# to Py k1.
From Corollary 1 and the fact that the split task “exhaust& available scheduling
capacity on the firdt — 1 processors of the clustefy(to Py ko) (but still needs a final
piece on thé&!" processor to be schedulable), it follows that:

u > Z m (2)

From the fact thatd (3%) <0 andg—i (£%) > 0 over [0,1], via application of

Jensen’s inequality [14] to the right-hand side of InedydR), we obtain

HE29 U 1-U
p
P (k—1) ©)
&, 1oy YT
where
_ 1 g+k—-2
U=1—3 qu U(Fp) (4)

Combining this with Inequality (2), we obtain

u> k-1 15 ©

Now, let us consider two cases:



— Case1lk=2
Then the cluster consists of two procesg@yandPy, 1, over which tasks is split.
From the bin-packing scheme used, it follows that:

U(I_q)+U(I_q+1) > 1
u+U(g) >1
U+U(lge1) > 1

Adding these inequalities together and dividing by 2 yields

3 13 13
— Case 2k> 3
Then, for the total utilisatiokls, of the cluster it holds that

g+k—1 g+k—2 ©)
U =ti+ 5 U(Mp)=ui+ 5 U(Rp)+U(lqk1) =
p=q pP=q

- 1-U
Mgk k—1 k—1) ——
Ucr. > U (Fgyk-1) +( )U_+( ) 1+U:>
u2+1
1+U

Uy >U (I—q+k—1) + (k— 1) (7)
From the fact that processoPs to Py are reindexed in order of non-decreasing
utilisation, each time that a task is split (line 6 of the mmode) it follows that,
at the time that; is split,U (Iq,x—1) > U. Taking advantage of this, in conjunction
with (7), we obtain:

U2+1
1+U
Uy, 1 U2+1>

Tk (U +(k—1)TJrU

Uer, > U+ (k—1)

(8)
With some algebraic rewriting, this can be equivalentlyresped as

Uos ~ (k=1\/1-U

k>U+< k )(1+u) ®)

The quantity% is positive. The quantityﬁ—1 is also positive and an increasing
function of k. Hence the right-hand side of the above inequality is mis@difor
the smallest value d€, which isk = 3 according to the assumption of the case. Via
substitution of this value we obtain

U“'>J+§(ﬂ) (10)



From the properties of the bin-packing scheme used, itddlthatU > %.l\/lore-
over, the right-hand side of Inequality (10) is an incregsinnction of U over
[%, 1]. From these two observations we obtain that a lower boundhiright-
hand side of Inequality 10 can be obtained by substituting % Then, we obtain

— > — =Uy > —k (12)
Hence in either case the claim holds.

Note that the utilisation of a cluster may still increaseemits formation, via the
potential integral assignment of additional tasks to itsponent processors.

Definition 1. In the case that Clustered C=D declares failure, the term last candidate
cluster denotes the set of processors {PFy. .. Pn} upon which the algorithm attempted to
split a task immediately prior to declaring failure.

Intuitively, the algorithm attempted to split the task imsaeration over candidate
clusters{Py, Py11}, {Py, Py+1, Pg2} and so on untifPy, ..., Py} but failed in all cases.
Note that, in a trivial case, the last candidate clustercbak Py} .

Lemma 4. Assume that Clustered C=D declares failure upon attempting to split a task
7. Let Uyag denotethe utilisation of the last candidate cluster before the attempt to split
7; and let k be the number of processorsin the last candidate cluster. Then, it holds that
Upag + Ui > %k.

Proof. Fork =1 the claim trivially holds. Fok > 2:

From the fact that the algorithm declares failure, we knoat kh— 1 zero-laxity
subtasks ofr; were assigned on the— 1 first processors in the last candidate cluster.
On the final processor, the algorithm tested the scheditjabila final k" subtask, with
the remaining execution requirementmfand failed.

From the fact that EDF is a sustainable scheduling algor[inreducing the ex-
ecution requirement of that last subtask on the last processinot negatively impact
on its schedulability. Let us therefore reduce its executaguirement (without chang-
ing its deadline or interarrival time) to a value that rersdigrschedulable on the last
processor, together will all other tasks assigned themmHArheorem 3, this means that
the cluster would then be utilized abo%%— even if the utilisation of; was discounted.

In turn, this means thajag + Ui > k.
Theorem 4. The utilisation bound of Clustered C=D isat least 13.

Proof. We will prove this by showing that if the algorithm fails totemdule a task set
I, this means that (r) > I3m.

Assume that the algorithm declares failure to split a taskrom Theorem 3 we
know that all clusters successfully formed by the algoritlyrto that point are utilised
above%—g. From Lemma 4 we also know that, werdo be assigned to the last candidate
cluster (shedulability considerations aside), its résglutilisation would exceec%—g.
This means thalt) ({11,...,T}) > 33m. In turn, since{ty,... 5} C I, this implies that
u(r)>zm



4.3 Observations regarding the bin-packing scheme

The algorithm in Figure 1 uses First-fit bin-packing but etreasonable bin-packing
heuristics can be used instead [10]. For example, Besihltide used instead and all
of the reasoning that leads to the derivation of the utitisalbound (and thus the bound
itself) would still hold.

In order to characterise what properties a candidate hikipg scheme should pos-
sess in order to be used in the Clustered C=D algorithm,adsté First-Fit, without
compromising the proven utilisation bound, let us inspéet proof of Theorem 3.
Therein, the only properties resulting from the assignnoénton-split tasks that are
relied upon are the following:

Property 1: % < Jc’:efzgﬂa‘zu (lp), for the firstk — 1 processors in a cluster

{PCIv'”an-‘rk—l}- _
Property 2: U (lq1k-1) > U, for the last processor in the cluster.

Upon closer inspection, if Property 1 holds, then Propeityehsured by the proces-
sor re-indexing (line 6 of the pseudocode), prior to eackgpétting. Hence, only Prop-
erty 1 needs to be safeguarded, when switching to an aliegran-packing scheme.

One simple way of ensuring that this property holds is by @néing by design a
task to be assigned to a processor with no other tasks yghasksio itunless this task
could not fit on any of the processors with tasks already assi¢o them. Note that the
order in which processors with tasks already assigned to tire tried is not relevant
for ensuring Property 1; it could even vary for each task ooitld even be random.

Preventing a task from being assigned to a processor witthao tasks yet assigned
to it unless it could not be assigned to any other processith ¢asks) means that,
whenever the need to split a task arises, it holds that

U(M)+U () >1

whereP, andPR; are the two least utilised from among the fikst 1 processors of the
cluster in consideration. In turn, this means that Propktiplds.

5 Conclusions

Providing high utilisation guarantees without imposing toany restrictions on im-
plementation has been a challenge for the real-time rdsearamunity regarding the
multiprocessor scheduling problem. In this context, thddGagorithm is noticeable
by its implementation simplicity and good average perfaroga However, no theoret-
ical bound on system utilisation had been derived so fahiggaper we have looked
into this open problem and have discussed some importaractesistics of C=D. We
have shown that if one does not consider assigning task®tegsors in order of non-
increasing task periods, the utilisation bound for the Cigb@thm can be as low as
50%. Furthermore, we have established an interv@d.g22, 0.75) within which such
a bound lies. These results bring about important theadetispects for a scheduling
algorithm known to perform well from a practical perspeetiv



Acknowledgements
Jog Augusto Santos-Jr has received financial support by CAPES work is part of
a research project jointly funded by CNPq and Federal Usityeof Bahia.

This work was partially supported by National Funds thro&@T (Portuguese Foun-
dation for Science and Technology) and by ERDF (EuropearnoRagDevelopment
Fund) through COMPETE (Operational Programme 'Thematictdfa of Competi-

tiveness’), within SMARTS project, ref. FCOMP-01-0124PHER-020536.

References

1.

10.

11.

12.

13.

14.

James H. Anderson, Vasile Bud, and UmaMaheswari C. Devi. AR-E&sed Scheduling
Algorithm for Multiprocessor Soft Real-Time Systems.Rroceedings of the 17th Euromi-
cro Conference on Real-Time Systems, pages 199-208, 2005.

. B. Andersson and K. Bletsas. Sporadic Multiprocessor ScheduithgRsw Preemptions.

In Proceedings of the 20th Euromicro Conference on Real-Time Systems (ECRTS), pages
243-252, 2008.

. B. Andersson and E. Tovar. Multiprocessor scheduling with fewmpmions. InProc. 12th

IEEE Int. Conference on Embedded and Real-Time Computing Systems and Applications,
pages 322-334, 2006.

. Patricia Balbastre, Ismael Ripoll, and Alfons Crespo. Optimal deadbsgnment for pe-

riodic real-time tasks in dynamic priority systems. Proceedings of the 18th Euromicro
Conference on Real-Time Systems, pages 65—74, 2006.

. Sanjoy K. Baruah and Alan Burns. Sustainable scheduling analysRroteedigns of the

27th |EEE International Real-Time Systems Symposium (RTSS), pages 159-168, 2006.

. Konstantinos Bletsas and@p Andersson. Notional processors: an approach for multipro-

cessor scheduling. IRroceedings of the 15th |EEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 3—12, 2009.

. Konstantinos Bletsas and@p Andersson. Preemption-light multiprocessor scheduling of

sporadic tasks with high utilisation bound. PRnoc. of 30th Real-Time Systems Symposium
(RTSS), pages 447—456, 2009.

. Konstantinos Bletsas and@p Andersson. Preemption-light multiprocessor scheduling of

sporadic tasks with high utilisation bounBeal-Time Systems, 47(4):319-355, 2011.

. A. Burns, R.I. Davis, P. Wang, and F. Zhang. Partitioned EDF @&dhey for Multiproces-

sors using a C=D SchemReal-Time Systems (published online), 48(1):3-33, 2011.

E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Appration algorithms for bin
packing: a survey. In Dorit S. Hochbaum, editépproximation algorithms for NP-hard
problems, pages 46—-93. PWS Publishing Co., Boston, MA, USA, 1997.

Frangois Dorin, Patrick Meumeu Yomsi,eloGoossens, and Pascal Richard. Semi-
partitioned hard real-time scheduling with restricted migrations upon idemtickiproces-
sor platforms. CoRR abs/1006.2637, 2010.

Fieceric Fauberteau, Serge Midonnet, and Laurent George. Impratashechedulability
bound by task splitting in partitioning scheduling. Pnoceedings of the 1st International
Real-Time Scheduling Open Problems Seminar (RTSOPS 2010), pages 20-21, 2010.

Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. Fixed-priority multipssoe scheduling
with liu and layland’s utilization bound. Ifroceedings of the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 165-174, 2010.

J. Jensen. Sur les Fonctions Convexes et kegaliges entre les Valeurs Moyenneécta
Mathematica, 30:175-193, 1906.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Jo& Augusto Santos Jr. and George Lima. Sufficient schedulability tesésifescheduled
real-time systems under interference of a high priority taskPrizt. of the 2nd Brazlian
Symposium on Computer Systems Engineering (SBESC), pages 1-6, 2012.

S. Kato, N. Yamasaki, and Y. Ishikawa. Semi-partitioned schedafisgoradic task systems
on multiprocessors. IRroceedings of the 21st Euromicro Conference on Real-Time Systems
(ECRTYS), pages 249-258, 2009.

Shinpei Kato and Nobuki Yamasaki. Portioned EDF-based stihgdin multiprocessors.
In Proceedings of the 8th ACM/IEEE International Conference on Embedded Software (EM-
SOFT), pages 139-148, 2008.

Shinpei Kato and Nobuki Yamasaki. Portioned static-priority sdireglan multiprocessors.
In Proceedings of the |IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1-12, 2008.

Karthik Lakshmanan, Ragunathan Rajkumar, and John P. LghocRartitioned fixed-
priority preemptive scheduling for multi-core processors.Ptoc. of the 21st Euromicro
Conf. on Real-Time Systems, pages 239-248, 2009.

Greg Levin, Shelby Funk, Caitlin Sadowski, lan Pye, and Scott@®r&P-FAIR: A Simple
Model for Understanding Optimal Multiprocessor Scheduling Ptoceedings of the 22nd
Euromicro Conference on Real-Time Systems (ECRTS 2010), pages 3—-13, 2010.

Ernesto Massa and George Lima. A bandwidth reservation strategyftiprocessor real-
time scheduling. IfProceedings of the 16th | EEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 175-183, 2010.

G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Reducemnmptions and migrations
in real-time multiprocessor scheduling algorithms by releasing the fairhe&soceedings
of the 17th |EEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pages 15-24, 2011.

G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic. DFEAN unfair but
optimal multiprocessor scheduling algorithm for sporadic task$rdeeedings of the 24th
Euromicro Conference on Real-Time Systems (ECRTS), pages 13-23, 2012.

Paul Regnier, George Lima, Ernesto Massa, Greg Levin, antl Bemdt. RUN: optimal
multiprocessor real-time scheduling via reduction to uniprocessoiPrdoeedings of the
32nd Real-Time Systems Symposium, pages 104-115, 2011.



