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We define an adimensional parameter, S, that is capable of predicting if a glass powder compact can be
fully densified by viscous flow sintering or if concurrent surface crystallization will hinder densification.
The proposed sinterability parameter is SðTÞ ¼ c=b

ffiffiffiffiffiffi
NS
p

� UðTÞ � gðTÞ � rc, where c is the glass–vapor surface
energy, NS the density of nucleation sites on the glass surface, U(T) the crystal growth rate, g(T) the
viscosity, and r the average particle radius. For high temperatures, T P 0:85Tm, where Tm is the
melting point of the crystal phase, an approximate expression can be used:

ShTðTÞ ¼ 2p � c � NA � T2
m �

ffiffiffiffiffiffiffi
V2

m
3
q

=½10
ffiffiffiffiffiffi
NS

p
� r � DHm � DT2�;

where Vm is the molar volume, NA is Avogadro’s number, DHm is the melting enthalpy of the
crystal phase, and DT ¼ Tm � T is the undercooling. This expression avoids the (time consuming)
measurement of U(T) and g(T). Predictions can be made by S or ShT thus avoiding the need of any
sintering experiment. For a given glass-forming composition the physical properties are fixed,
but higher temperatures and smaller particle sizes increase S and privilege sintering over surface
crystallization. We demonstrate that the condition to successfully densify any glass powder at a
given temperature is S > 50. This new parameter is a very useful aid for the development of sin-
tered glasses and glass–ceramics.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Glass sintering is an alternative technique to produce dense or
porous glass articles or, when surface crystallization occurs one
can also develop sintered glass–ceramics. Once a glass powder
compact is heated above the glass transition temperature, Tg, a race
between sintering and crystallization begins. The powder’s surface
area and its associated surface energy tend to decrease through
sintering, but a concurrent process, predominant surface crystalli-
zation in most glasses (or internal crystallization in a few glasses)
also takes place to decrease the overall free energy of the glass
transforming it into a polycrystalline material. Therefore, there
are two simultaneous pathways for the system’s free energy de-
crease, each one with its own kinetics: viscous flow sintering and
crystallization.

Despite the extensive literature on glass sintering only a few pa-
pers analyzed the competition between sintering and surface crys-
ll rights reserved.
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tallization on a quantitative basis (e.g. Ref. [1]), i.e., by evaluating
the influence of the glass surface energy, c, viscosity, g(T), particle
size, r, surface density of nucleation sites, NS, and crystal growth
rate, U(T), on the kinetics of these processes. Among all these prop-
erties only the viscosity and crystal growth rates strongly depend
on temperature. In previous papers [2–6] we developed a model
(the Clusters model) to describe the sintering kinetics of glass pow-
der compacts undergoing or not concurrent surface crystallization.
Besides crystallization, we considered a series of other complicat-
ing factors, such as irregular particle packing, poor surface quality
of the glass grains (crystalline foreign inclusions), several simulta-
neously crystallizing phases, compositional shifts caused by crys-
tallization, degassing, and glasses with embedded ceramic fibers.

As regards to non-isothermal sintering with concurrent crystal-
lization, Müller [7] found, for instance, that to fully densify cordie-
rite glass particles of about 1 lm, heating rates equal to or higher
than 12 K/min were necessary. This means that, at this heating
rate, when 1 lm particles reached the chosen sintering tempera-
ture, their surfaces had not or had only partially crystallized. Sur-
face crystallization hindered sintering for lower heating rates.
Prado et al. [6,8] confirmed Müller’s results on the influence of
the heating rate on the final density of any glass compact.
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mailto:dedz@power.ufscar.br
http://www.lamav.ufscar.br
http://www.sciencedirect.com/science/journal/00223093
http://www.elsevier.com/locate/jnoncrysol


4590 M.O. Prado et al. / Journal of Non-Crystalline Solids 354 (2008) 4589–4597
For isothermal processes, Prado et al. [3,4] performed a detailed
study of the kinetic competition between sintering and surface
crystallization with a soda-lime–silica glass. Such studies demon-
strated that depending on the intrinsic physicochemical parame-
ters of the glass, such as viscosity, surface energy and crystal
growth rate, as well as on experimental conditions (such as particle
size, density of nucleation sites, time and temperature of heat
treatment) some glass compacts may crystallize before full densi-
fication, or may fully sinter before crystallization begins; or yet
some intermediate state between these two extreme behaviors
may occur. In summary, their studies demonstrated that high tem-
peratures, T, and high values of glass–vapor surface energy, c, and
low values of viscosity, g(T), density of surface nucleation sites, NS,
crystal growth rate, U(T), and average particle size, r, favor densifi-
cation over crystallization. These physicochemical properties de-
pend exclusively on the glass composition, while NS, r and T are
process variables that can be controlled to favor densification.

In this paper, we analyze the sinterability of crystallizing glass
powders to establish the ability with which they will sinter when
heated. We propose a parameter that can gauge whether or not a
given glass powder compact can be densified (before any sintering
experiment is carried out). The proposed sinterability parameter
was tested and proved to establish the necessary combination of
physical properties and processing conditions (time and tempera-
ture) for a crystallizing glass powder to achieve a high degree of
densification.

2. Theory

To discuss the sinterability parameter, S, first of all it is neces-
sary to briefly discuss the classical crystal growth mechanisms
controlling surface crystallization kinetics. We then present a brief
explanation about viscous flow sintering with concurrent crystalli-
zation and, finally, define a complete expression and a simplified
form for S.

2.1. Crystal growth mechanisms

Two phenomenological models are frequently used to describe
crystal growth kinetics controlled by atomic or molecular rear-
rangements at the crystal–liquid interface: normal [9,10] or screw
dislocation growth [11]. Growth controlled by 2D surface nucle-
ation is less frequent. According to Jackson’s treatment of the inter-
face, materials with small entropy of fusion, such as silica [9,10]
(DSm ¼ 0:46R) or larger, as diopside [11] (DSm ¼ 10R) – R is the
gas constant, in J/mol K – are expected to exhibit crystal growth
kinetics of the form predicted by the normal and screw dislocation
growth models, respectively.

According to the normal model, the interface is rough on an
atomic or molecular scale. Growth takes place at step sites
intersecting the interface, and the growth rate, U, may be ex-
pressed by

U ¼ f
DU

k
1� exp �DG

RT

� �� �
; ð1Þ

where DU is an effective diffusion coefficient (m2/s) of the (un-
known) species that controls atomic or molecular attachment at
the interface; k is the (unknown) diameter of the diffusing building
molecules (m), which is equivalent to the jump distance, the lattice
parameter or the unit distance advanced by the interface; DG is the
free energy change upon crystallization (J/mol); T is the absolute
temperature (K), and f is the fraction of preferred growth sites on
the interface, that is close to unity.

For the screw dislocation model, f � Tm�T
2pTm

(Tm is the melting tem-
perature), the crystal–liquid interface is smooth, albeit imperfect
on atomic scale, and growth takes place at step sites provided by
screw dislocations. For brevity, the 2D mechanism will not be con-
sidered here, but it could be found elsewhere [11].

To interpret experimental data with respect to the kinetic mod-
els described above, it is necessary to evaluate the diffusivity DU.
This parameter can be estimated with the Eyring equation, assum-
ing that the molecular motions required for interfacial rearrange-
ments controlling crystal growth is similar to those controlling
viscous flow in the bulk liquid, DU ffi Dg. Hence

Dg ¼
kBT
kg

; ð2Þ

where g is the shear viscosity (Pa s) and kB is the Boltzmann con-
stant. In general, the viscosity is expressed by means of the Vo-
gel–Fulcher–Tammann–Hesse expression (VFTH) log10g ¼ Aþ B

T�T0
,

where A, B and T0 are constants.
It has been a matter of strong discussion if the Eyring equation

can be used for calculations of crystal growth kinetics, especially at
deep undercoolings, below 1.2Tg, where it has been suggested that
this equation fails (e.g.: see Refs. [9–11] and references cited there-
in). In this paper, the Eyring equation (Eq. (2)) is supposed to be va-
lid from the melting point to �1.2Tg, covering a wide temperature
range that is of interest for viscous flow sintering. In such interval
the VFTH expression is valid to describe viscous flow.

It is clear from the above discussion that one needs to know the
glass viscosity as a function of temperature and other experimental
parameters, such as the melting enthalpy DHm (or DG) and Tm, to
compute crystal growth rates. At low undercoolings, T P 0.85Tm,
the energy barrier, DG, can be estimated by the Thomson/Turnbull
(Eq. (3)):

DG ¼ HmðTm � TÞ
Tm

: ð3Þ

We will use this theoretical background to define the sinterabil-
ity parameter.

2.2. Viscous flow sintering

In this part we briefly review and discuss two classical glass sin-
tering models: Frenkel’s and Mackenzie–Shuttleworth’s, and then
focus on the problem of viscous flow sintering with concurrent
crystallization using the Clusters model.

2.2.1. The Frenkel model (F)
The Frenkel model [12] offers a description of the onset of iso-

tropic sintering of monodispersed spherical particles. After a sin-
tering time t, the linear shrinkage (DL) relative to the sample
original length, L0, is given by Eq. (4):

DL
L0
¼ 3c

8gðTÞr t; ð4Þ

where g(T) is the temperature-dependent shear viscosity, c is the
glass–vapor surface energy (whose temperature dependence is very
weak), and r is the initial particle radius.

To describe the density change during sintering Eq. (5) is com-
monly used. In that equation, q0 is the initial green density of the
compact and qg is the actual density of the glass:

qðTÞ ¼ q0

qg
1� 3ct

8gðTÞr

� ��3

: ð5Þ

Deviations from Eq. (4) are found when the particles are jagged
(such as crushed particles) [2–5]. To account for the effect of par-
ticle shape on the sintering kinetics, an empirical constant, denom-
inated shape factor, kS, is normally used to fit the data. The kS

values used in the literature vary from 1.8 to 3. Nevertheless, when
one compares the sintering kinetics of spherical particles with that
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of irregular particles having the same size distribution, not only
shape effect is being evaluated, but also the particle packing, that
is different for different shapes. Thus, the real effect of the particles
shape on the sintering kinetics is quite complex and deserves fur-
ther attention.

The Frenkel equation, Eq. (4), was derived for a linear arrange-
ment of particles. In passing to volume shrinkage, one can use
Eq. (5). This passage assumes isotropic sintering in the three spatial
coordinates, which is equivalent to consider a simple cubic array of
particles. Thus, each particle should have six neighbors and, there-
fore, develop six sintering necks in the process. However, experi-
mental data for an array of spherical glass particles having a
narrow size distribution shows that a distribution of necks per par-
ticle (between 3 and 8) arises and that the average is about 5 [5].
This distribution varies for different systems and should, therefore,
be tested case-by-case. An example is shown in Fig. 1(a).

2.2.2. The Mackenzie–Shuttleworth model (MS)
For higher relative densities (q > 0.9), when the pores are spher-

ical and isolated in the glass, the Mackenzie–Shuttleworth model
[13] gives the following densification rate:

dqðTÞ
dt

¼ 3c
2a0gðTÞ

ð1� qÞ; ð6Þ

where a0 is the initial radius of the spherical pores. Eq. (6) is pre-
sented here in a simplified form that allows for a simple mathemat-
ical treatment (for more details see Refs. [2–5]). We approximated
the pore radius, a(t), by the constant a0, while the pore number re-
mains fixed. This approximation slightly underestimates the actual
sintering kinetics in the latest stages. Fig. 1(a) shows an example of
application of this model.

2.2.3. The Clusters model
Giess et al. [14] reported that a pure MS analysis does not accu-

rately describe the final stages of sintering of pressed compacts of
polydispersed, irregular-shaped cordierite glass particles. He sug-
gested that this drawback may be the result of small-size particles
sintering most rapidly at the outset and large particles delaying
sintering towards the end of the process. Such experimental evi-
dence indicates that the F and MS stages may occur simultaneously
in a sample having a particle size distribution.

The Clusters model [2] is based on this fact: small particles
preferentially cluster in the open spaces left by larger particles
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and sinter faster. Thus, for a polydispersed compact of glass
particles with volume fraction vr of particles of radius r, Eq. (7)
holds true for the densification kinetics at a given temperature.

qðtÞ ¼
P

r½qFðr; tÞnrhðt0:8 � tÞ þ qMSðr; tÞhðt � t0:8Þ�mrP
r½nrhðt0:8 � tÞ þ hðt � t0:8Þ�mr

: ð7Þ

Eq. (7) sums up the relative density q(r, t) for each cluster hav-
ing particle size r, as a function of time, t. During the Frenkel stage
of sintering, the condition q(r, t) = qF(r, t) < 0.8 is met and qF(r, t) is
calculated using the Frenkel model, Eq. (5). Later,
q(r, t) = qMS(r, t) > 0.8, qMS(r, t) is calculated by the Mackenzie–
Shuttleworth model, Eq. (6), see Fig. 1(a). For each cluster, the pas-
sage from the F to the MS regime is performed using the step func-
tion h(x), which is unity for positive x and null for negative x, thus
alternating between 1 and 0 at t = t0.8, when qF(r, t0.8) = 0.8 is
reached. nr is the neck-forming ability of each particle having size
r, which can be calculated from the particle size distribution. The
empirical expression nr = 1/rc, where c depends on the particle size
distribution, is proposed in Ref. [2].

The pore radius a0 in Eq. (6) is adjusted for each particle cluster
to ensure a continuous q(r, t) function at t = t0.8. The adjustment is
achieved by first computing t0.8 with Eq. (5), then calculating a0

with the integrated version of Eq. (6) at t = t0.8, as shown in
Fig. 1(a).

Eq. (7) can be explicitly written as below (Eq. (8) (for nr = 1,
which corresponds to narrow particle size distribution:

qðtÞ ¼
X

r

q0

qg 1� 3ct
8gðTÞr

h i3 hðt0:8 � tÞ þ hðt � t0:8Þ 1� 1� q0

qg

 !"8><
>:

� exp � 3ct
2a0gðTÞ

� ��)
mr ð8Þ

and an example is shown in Fig. 1(b).
Other aspects of the typical microstructure that should be con-

sidered in order to describe the sintering of actual glass particle
compacts are:

(i) The number of necks that each particle develops with its
neighbors: we have experimentally found [5] that the actual
number of necks per particle in green compacts of monodi-
spersed spheres varies from 3 to 8 necks/particle, with an
average value of about 5 necks/particle.
0.0 0.2 0.4 0.6 0.8 1.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

t
S

ρ(t)
dρ/dt

Half Maximum

ρ = 0.9

ρ(
t)

,d
ρ/

dt

Time (s)

Eq. (6) is normally adjusted for each cluster size to ensure a continuous q(t) function
q = 0.8 (dotted line), as we did in Ref. [3], but we also forced their derivatives to be

tics at q > 0.8. (b) Predicted (calculated) relative density, q(t) = black squares, and
t 1300 K ignoring crystallization.



4592 M.O. Prado et al. / Journal of Non-Crystalline Solids 354 (2008) 4589–4597
(ii) Particle surfaces with pre-existing solid inclusions: when
the glass particles to be sintered show pre-existing crystals
or dust on their surface, only the glass–glass contacts con-
tribute to sintering. For example, particles having only 90%
of glassy surface have an effective surface fraction
0.9 � 0.9 = 0.81 that is free for making contacts and develop-
ing necks during viscous flow sintering.

(iii) The assumed value qr = 0.8, for which Frenkel’s model
breaks down and the MS equation starts to prevail, is some-
what arbitrary and depends on the initial (green) packing
density, q0, of the powder compact. This value is fine for
q0 > 0.6. But an even better situation is found for q0 > 0.7,
when one can use qr = 0.85. So Eq. (8) is valid for q0 > 0.6.

2.3. The proposed sinterability parameter, S

2.3.1. Times to achieve the maximum sintering (tS) and crystallization
(tC) rates

For simplicity, in the following paragraphs we only analyze iso-
thermal sinter–crystallization processes. Thus we assume that the
heating rate of the glass powder compact is fast enough to avoid
surface crystallization on the heating path and that both sintering
and surface crystallization occurs only during the isothermal treat-
ment. With this condition, at any given sintering temperature, time
is the key variable. Full densification occurs if the time period nec-
essary to fully sinter any given glass powder compact is less than
the time for crystallization to start.

In order to pictorially understand the proposed method to find a
characteristic time for each of these two processes (densification
and crystallization), let us analyze Figs. 1(a), (b) and 2. Fig. 1(b)
shows the sintering kinetics corresponding to 0.5 lm cordierite
glass particles calculated from Müller’s [7] data for g(T), U(T), and
NS using the Clusters model [3]. In Ref. [3], the compact’s sintering
kinetics was calculated by the Frenkel model (F) up to a relative
density qr = 0.8, and afterwards by the Mackenzie–Shuttleworth
(MS) model. At qr = 0.8 the MS pore size was conveniently chosen
to make the compact’s density function continuous. In this article,
we not only forced the F and MS expressions to be continuous at
q = 0.8 (as we did in Ref. [3]), but we also forced their derivatives
to be continuous because later on in this paper we need to calculate
the derivative oq

ot for each time during densification. As shown in
Fig. 1(a), this new approach predicts slightly faster densification
kinetics at q > 0.8 than the approach of Ref. [3]. Nevertheless, in
both cases the time required to achieve the maximum sintering rate
corresponds to the time when the compact’s density is q = 0.8.
0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0

t
C

α(t)

dα/dt

Half Maximum

α
 =

 0
.8

3

α
 =

 0
.0

5

α
(t

),
dα

/d
t

Time (s)

Fig. 2. Crystallized surface fraction, a(t), and surface crystallization rate, da(t)/dt,
for cordierite glass particles at 1300 K.
Fig. 1(a) shows the individual contributions of the F and MS
stages to the sintering curve. The time corresponding to the max-
imum sintering rate, tS, is thus well defined. If crystallization is ta-
ken into account in the sintering calculations (using the Clusters
model), tC

S is typically larger than its value for viscous sintering
without crystallization, tS. However, for relatively large particle
sizes, tS could be shorter than tC

S , since crystallization arrests sinter-
ing in its first stages (i.e., before a relative density of 0.8 is reached).
Fig. 2 shows that also in this case a certain time is necessary for the
maximum crystallization rate, tC, to occur.

For simplicity, we calculate the sintering time without crystal-
lization, tS, and study the sinter–crystallization concurrence by
analyzing how close are tS and tC. This difference will lead to a sin-
terability parameter. We then test the derived parameter against a
rigorous numerical simulation which takes into account densifica-
tion with concurrent crystallization.

2.3.2. The relative positions of tS and tC

To illustrate our ideas, Fig. 3 shows that at 1300 K, 0.5 lm cor-
dierite particles sinter up to full density q = 1.0 (despite some sur-
face crystallization), but the densification of 6 lm particles
saturates at a relative density of 0.91. In the former case only a
few percent of the particle surfaces crystallized when the compact
reached full density, however, almost 70% of the surface of the
6 lm particles were crystallized when a relative density of 0.9
was reached. For this specific case, the inset of Fig. 3 shows that
for the 6 lm particles, the times tS corresponding to the maximum
sintering rates, dq/dt|max, are approximately the same, with or
without considering the effect of crystallization.

Fig. 4 shows that the relative position of the densification max-
imum, tS, significantly changes with particle size, thus the relative
positions of tS and tC can be good indicators of the concurrence be-
tween sintering and crystallization.

2.3.3. Calculation of tC

In the case of isothermal surface crystallization of spherical
crystals (circles on the glass particle surfaces) from a fixed number
of nucleation sites, NS, with constant growth rate U(T) = constant,
the crystallized surface fraction is given by the Johnson–Mehl–
Avrami–Kolmogorov (JMAK) expression:

aðtÞ ¼ 1� expð�pNS½UðTÞt�2Þ: ð9Þ

To find out tC, the time at which the crystallization rate is max-
imum, we take the second derivative of Eq. (9) with time and
equate it to zero to give
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tC ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2pNS
p

UðTÞ
: ð10Þ

But a close look at Fig. 4 suggests that we should also consider
the peak widths. In other words, if both sintering and crystalliza-
tion peaks in Fig. 4 were Dirac-delta functions, it would only be
necessary to determine which one is located at the lowest temper-
ature. Then, while passing that temperature in a heating experi-
ment, the respective process (sintering or crystallization) would
be completed. In practice, however, sintering and crystallization
take place along a time interval, and the more the sintering time
interval overlaps with the crystallization time interval, the fiercer
will be the competition between these phenomena.

Therefore, we numerically determined that at times corre-
sponding to a = 0.05 and a = 0.843 the crystallization rates are half
their maximum rate (see Fig. 2). Using Eq. (9), with a = 0.05 and
a = 0.843, the width of the crystallization peak (DC) can thus be
estimated as

DC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð1� 0:843Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð1� 0:05Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
2pNS
p

UðTÞ
� 2

3
ffiffiffiffiffiffi
NS
p

UðTÞ
: ð11Þ

Although the crystallization rate curve is not symmetric, to a
first approximation we estimate the half-width as

DC

2
¼ 1

3
ffiffiffiffiffiffi
NS
p

UðTÞ
: ð12Þ
2.3.4. Calculation of tS

To obtain a reliable value for tS, first of all we need a good model
for the sintering kinetics. The calculation of the sintering kinetics
will depend on the system under consideration. For example, for
gels and other loose packed systems, Scherer’s model [1,15] should
be used.

For glass particle compacts of micron size or larger particles,
starting with a green density q0 = 0.6 or larger, the sintering kinet-
ics is well described by the Clusters model [2–6]. In this model,
packed monodispersed particles with q0 P 0.6 sinter up to
q = 0.8 with kinetics given by the Frenkel model, and afterwards
by the MS model, as explained above. Within the framework of
the Clusters model, the maximum sintering rate is reached at
q � 0.8, since the MS assumes a lower sintering rate. From the F
model, the tS value at q = 0.8, with q0 = 0.6 is

tS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q0

q
3

r
8gr
3c
� 1:7

gr
c
: ð13Þ
Since the sintering curve is highly asymmetric, it is not trivial to
define a width. However, as viscous sintering proceeds over a cer-
tain period of time, we need to estimate its duration. To simplify
the derivations, we will take the typical case of q0 = 0.6, and con-
sider the width as twice the time required to sinter from a relative
density 0.7 to 0.8:

DS ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q0

0:8
3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q0

0:7
3

r� �
8gr
3c
� 0:6

gr
c
: ð14Þ

Therefore, just to gauge its magnitude, we will use the half-
width of the sintering rate curve as

DS

2
¼ 0:3

gr
c
: ð15Þ
2.3.5. The sinterability parameter, S
Fig. 4 shows that the separation of the sintering and crystalliza-

tion rate peaks, taking into account their respective half-widths,
can be estimated by the difference tC � DC

2

� �
� tS þ DS

2

� �
. The larger

the value of this difference, the smaller is the overlapping between
sintering and crystallization, and thus the larger will be the
sinterability.

We then propose that a necessary condition for sinterability is

tC �
DC

2

� �
� tS þ

DS

2

� �
> 0: ð16Þ

Substituting Eqs. (10), (12), (13), and (15) into Eq. (16) we get an
equivalent condition:

cffiffiffiffiffiffi
NS
p

Ugr
> 10: ð17Þ

We shall thus denominate sinterability, S, the following adi-
mensional parameter:

S ¼ cffiffiffiffiffiffi
NS
p

Ugr
; ð18Þ

and will use it to evaluate the degree of densification of different
glass-forming systems that exhibit predominant surface crystalliza-
tion. Such equation shows that any glass-forming system with high
viscosity, high crystal growth rates or low c is hard to densify. Thus,
according to Eqs. (17) and (18), for S > 10 any crystallizing glass
powder can (theoretically) be densified before crystallization up
to a given, unknown density value. Later in this article we will
empirically demonstrate that a glass-forming system must have
S > 50 to reach a relative density > 0.99. This result does not contra-
dict the prediction of Eqs. (17) and (18).

2.3.6. Derivation of an expression for the product U � g
In this section we will derive an expression to estimate the

product U � g in Eq. (18). The idea is to find a way to avoid the (time
consuming) measurement of crystal growth rates and viscosities.
To accomplish this task we will use available viscosity and crystal
growth rate data in a wide temperature range for several silicate
and borate glass-forming systems (Table 1), see details in Refs.
[16–18].

From Eqs. (1) and (3), for the well-known normal or screw dislo-
cation growth models, considering low undercoolings, one has

U � g � f
NA

DT
Tm

DHmffiffiffiffiffiffiffi
V2

m
3
q ; ð19Þ

where f = 1 for normal or f ðTÞ ¼ DT
2pTm

for screw dislocation growths,
respectively; Vm is the molar volume and DT ¼ T � Tm is the und-
ercooling. A test of Eq. (19) is presented below.



Table 1
Thermodynamic, viscosity and crystal growth rate data for the selected glass-forming systems used here

Glass A B (K) T0 (K) Growth* mechanism DT range (K) DHm (kJ/mol) Tg (K) Tm (K) Vm (cm3/mol) c** (J/m2) Reference

Li2O � 2SiO2 �2.623 3388.8 491.0 SD 0.98Tg–Tm 57.3 727 1306 61.5 0.320 [16–18]
Na2O � 2SiO2 �3.075 4595.8 392.9 SD 1.16Tg–Tm 33.5 728 1146 70.9 0.292 [16–18]
Na2O � 3SiO2 �2.687 4451.4 427.5 SD 1.04Tg–Tm 36.05 743 1084 73.53 0.227 [16–18]
K2O � 2SiO2 �5.00 7460.54 332.67 SD 1.25Tg–Tm 31.8 768 1313 84.7 0.210 [16–18]
CaO �MgO � 2SiO2 �4.27 3961.2 750.9 SD 1.05Tg–Tm 138 995 1664 75.9 0.366 [11]
2MgO � 2Al2O3 � 5SiO2 �3.97 5316 762 SD 0.99Tg–Tm 180 1088 – 112.3 0.360 [6,17]
LAS2 �3.34 5162.0 511.8 *** 1200–Tm 38 – 1653 – 0.421 [21]
NBS �3.33 4302.0 545.0 No cryst. 873–1100 – – – – 0.240 [22]
Li2O � 2B2O3 �4.951 2466.8 617.3 SD 1.04Tg–Tm 120.5 763 1190 69.31 0.182**** [16–18]
Na2O � 2B2O3 �3.8956 1909.5 621.6 SD 1.15Tg–Tm 75.7 748 1015 84.9 0.157 [16–18]

Viscosity can be calculated by the VFTH expression log10gðTÞ ¼ Aþ B=ðT � T0Þ (in Pa s); DT range is the temperature interval of measured crystal growth rates. The melting
point of l-cordierite is uncertain because it is a metastable phase (see Ref. [19] for details). The NBS glass has the composition 16Na2O � 24B2O3 � 60SiO2 [22]. (*) SD = screw
dislocation mechanism. (**) Surface energy data above Tg, from Ref. [24]. (***) Crystallization mechanism not determined. (****) For Li2O � 2B2O3 the c value is approximate
due to lack of experimental data, and refers to 37Li2O � 63B2O3 mol% composition.
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3. Results

Let us first test Eq. (19) against experimental data for the prod-
uct U(T) � g(T) using the glass-forming systems listed in Table 1
(Figs. 5(a)–(h)). For approximate fits with Eq. (19), we considered
f = f(T), dashed line (please check Ref. [16] for details on data min-
ing of U and Refs. [17,18] for g). Fig. 5 shows a fast decrease of U � g
with temperature, starting at about Tg, reaching a near constant re-
gion, which stays up to the temperature of maximum crystal
growth rate, Umax, with further decrease until Tm is reached, as ex-
pected because, by definition, U(Tm) = 0.

Below we describe experimental tests of Eq. (19) performed
with several stoichiometric glass-forming systems:

3.1. Lithium disilicate glass

Lithium disilicate (Li2O � 2SiO2) glass is one of the most studied
stoichiometric glass-forming systems, with a plethora of data for U
and g [16]. The experimental U � g for such system is shown in
Fig. 5(a) to be in good agreement with the calculations by the
approximate screw dislocation model (Eq. (19)) for temperatures
above 0.85Tm.

3.2. Sodium disilicate glass

For the sodium disilicate (Na2O � 2SiO2) glass used here, U(T)
and g(T) were determined for samples of the same batch and this
is the best situation one can think. The experimental product
U � g follows the curve calculated by the approximate screw dislo-
cation model for temperatures above 0.89Tm (Fig. 5(b)).

3.3. Sodium trisilicate glass

For sodium trisilicate (Na2O � 3SiO2) glass, the experimental
U � g shows excellent agreement with the predictions of Eq. (19)
using the approximate screw dislocation model. The limit of valid-
ity is T > 0.80Tm (Fig. 5(c)).

3.4. Potassium disilicate glass

According to Fig. 5(d), for potassium disilicate (K2O � 2SiO2) glass
there is good agreement of experimental and calculated U � g via the
approximate screw dislocation model (Eq. (19)) for T > 0.84Tm.

3.5. Diopside glass

Experimental data of U(T) and g(T) for diopside (CaO �
MgO � 2SiO2) glass in a wide temperature range was recently col-
lected [11]. In this case the approximate screw dislocation growth
expression describes the experimental U � g data above 0.93Tm

(Fig. 5(e)).

3.6. Cordierite glass

Relevant data to calculate the product g � U for cordierite
(2MgO � 2Al2O3 � 5SiO2) glass was taken from Ref. [19]. The approx-
imate screw dislocation model gives good agreement with experi-
ment for temperatures above 0.80Tm (Fig. 5(f)).

3.7. Lithium diborate glass

For Li2O � 2B2O3 Eq. (19) based on the approximate screw dislo-
cation growth model, gives reasonable agreement with the exper-
imental U � g above 0.82Tm (Fig. 5(g)).

3.8. Sodium diborate glass

For Na2O � 2B2O3 glass the agreement between experimental
and calculated U � g using the approximate screw dislocation
expression is reasonable above 0.92Tm (see Fig. 5(h)).

4. Discussion

In the following paragraphs we derive a simpler expression for
prediction of sinterability at high temperatures that avoids the
measurement of U(T) and g(T), then test both the original and
the approximate sinterability parameters for several glass-forming
systems.

Figs. 5(a)–(h) show that for high temperatures, T P 0.85Tm, the
simpler expression, Eq. (19), can be used to predict the product
U � g based on easily determined thermodynamic properties, such
as melting temperature, Tm, enthalpy of fusion, DHm, and molar
volume, Vm. The sinterability parameter S(T) – Eq. (18) – is inver-
sely proportional to the product U(T) � g(T), but such product can
be represented by a simplified form if one considers the normal
or screw dislocation growth mechanism for U(T), according to Eq.
(19). Therefore, by replacing Eq. (19) into Eq. (18) one has

ShTðTÞ ¼
2p � c � NA � T2

m �
ffiffiffiffiffiffiffi
V2

m
3
q

10
ffiffiffiffiffiffi
NS
p

� r � DHm � DT2 : ð20Þ

This approximate expression for the sinterability parameter is
only valid at low undercoolings, but avoids time consuming mea-
surements of U(T) and g(T).

Using available data for cordierite, we calculated S values for
different particle sizes by Eq. (18). Independently, using the Clus-
ters model (which takes the arresting effect of surface crystalliza-
tion into account) we calculated the final (saturation) density,
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Fig. 5. Comparison of U � g calculated by Eq. (19) – dashed lines – and experimental data for the glass-forming systems shown in Table 1.
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qmax, for the same conditions. We also fixed r and varied the tem-
perature, and thus independently calculated qmax and S to check
whether there was any relationship between these two parame-
ters. In this way we generated Table 2 using real physicochemical
data for a cordierite glass.

As a semi-quantitative test for S, we expect that the saturation
densities of a power compact will be larger for systems with a large
S. Indeed, Table 2 shows that the higher the value of the sinterabil-
ity parameter, the higher the saturation density of the glass com-
pact corroborating the validity of S for a simple estimate of
sinterability of glass powders.

We calculated the saturation density of glass powder compacts
sintered at different temperatures with some data of Table 1 and
the Clusters model [3], assuming 1 lm particles, r = 10�6 m, and a
typical number of nucleation sites, NS = 1010 m�2, for all glasses.
For each glass, we determined the temperature interval at which
the saturation density qmax was larger than the arbitrary value of
0.99. These temperature regions were then highlighted with solid
symbols in Fig. 6. When we marked these temperature regions in
Fig. 7, we observed that S > 50 is necessary for any glass power
to reach a relative density larger than 0.99 in isothermal experi-
ments. Therefore, S > 50 is a necessary and sufficient condition
for good sinterability.

In the next section an analysis of the sinterability parameter for
different glasses is made using particle sizes of 1 lm and
NS = 1010 m�2. In this way the only variable quantities were the
intrinsic physical properties of the glasses. The results are shown
in Fig. 7 and discussed below.

(a) SiO2 is an Arrhenian glass. The transport properties of this
specific glass suffer very strong effects from impurities. Sin-
tering data for our calculations were taken from Ref. [20] for
Table 2
Sinterability of cordierite glass as a function of particle size and temperature

T (K) r (lm) qmax S

1250 1 0.995 56.8
1250 3 0.96 18.9
1300 6 0.91 10.7
1250 6 0.89 9.5
1200 6 0.84 6.8
1170 6 0.80 4.9

S was calculated by Eq. (17) and qmax by the Clusters model.
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Fig. 6. Saturation density of glass powder compacts as a function of sintering
temperature. (Saturation density is the maximum relative density reached by a
compact when heated for a sufficiently long time at a temperature T).
a (impure) silica glass powder derived from rice hush ash.
The viscosity of this particular sample was
log10g ¼ �5:88þ 19679=T (T in K, g in Pa s). The S parame-
ter is very low at the analyzed temperatures indicating a
great difficult to sinter such powder, and this is due to the
high crystal growth rates in this particular silica glass. A sim-
ulation with the Clusters model indicates that 1 lm particles
are only sinterable at high temperatures, above 1750 K, but
only if a very low NS, approximately 102 m�2, is used in
the calculations.

(b) Soda-lime silica glass is very complex for sintering studies
because it shows at least three crystal phases (devitrite, cris-
tobalite and wollastonite). For one particular composition
with 72.5 SiO2, 13.7 Na2O, 9.8 CaO, 3.3 MgO, 0.4 Al2O3, 0.2
FeO/Fe2O3, 0.1 K2O (wt%), the VFTH expression used was
log10g ¼ �2:7þ 4358:4=ðT � 533:2Þ, T in K, g in Pa s. A good
temperature range for isothermal sintering is expected to
start at 840 K.

(c) For cordierite, the melting point of the metastable phase is
unknown, but is between 1350 and 1467 �C (see Ref. [19]
for details)). Using the above described conditions for NS

and r and using g and U from Refs. [6,19], the expected opti-
mum temperature range for isothermal sintering starts at
1220 K.

(d) The sinterability parameter for LAS2 glass is below one, even
for 1 lm particles and high temperatures (Fig. 7). This is
because this system has very high crystal growth rates that
impair sintering, as it has been experimentally observed [21].

(e) An optimum temperature range for isothermal sintering of
the sodium borosilicate glass at 928 K is expected (data of
g and U are from Ref. [22]). From Fig. 7 it is possible to note
that 1 lm particles sinter well over all temperature range
studied.

An important assumption in our calculations is that the heating
rate is always fast enough to avoid surface crystallization on the
heating path and that everything occurs in the sintering treatment,
i.e., we considered an isothermal process at each temperature.

The approximations used to calculate Sht without experimental
data on U(T) and g(T) – restrict its applicability to low undercoo-



0.6 0.7 0.8 0.9 1.0
100

102

104

Li
2
O·2SiO

2

Na
2
O·2SiO

2

Na
2
O·3SiO

2

K
2
O·2SiO

2

CaO·MgO·2SiO
2

2MgO·2Al
2
O

3
·5SiO

2

Li
2
O·2B

2
O

3

Na
2
O·2B

2
O

3S,
S hT

T/T
m
 (K/K)

~ 50

Fig. 8. Comparison of the sinterability parameter, S, using experimental U(T) and g(T) (symbols) and the approximate parameter Sht calculated by Eq. (20) (lines) for different
glasses as a function of reduced temperature (T/Tm). Particle radius r = 1 micron and a density of nucleation sites on the glass surfaces NS = 1010 m�2 were used. Please note
that Sht is approximately valid for temperatures higher than 0.85Tm for all glasses.

M.O. Prado et al. / Journal of Non-Crystalline Solids 354 (2008) 4589–4597 4597
lings, i.e., to temperatures above � 0.85Tm, using the screw disloca-
tion [f = f(T)] or normal growth models [f = 1]. But, by considering
experimental crystal growth and viscosity data (i.e., with S instead
of ShT) it is possible to predict the sinterability for much wider
undercoolings, from the melting point down to Tg.

For any given system, the glass/vapor surface energy only
slightly depends on temperature, NS � 1010 m�2 is a reasonable va-
lue for crushed glass particles [23], and the average particle size, r,
can be treated as a variable. Therefore the only remaining variables
to calculate S or Sht are U(T) and g(T) or the parameters of the
approximate expression, Eq. (19). Hence, S will be highest for the
lowest values of the product U(T) � g(T)r.

One word of caution is necessary here: entrapped gases in the
closing pores or crystallization induced degassing, which are not
taken into account in the present analysis, may severely impair
densification in the final stages of sintering. Therefore, a few per-
cent residual (closed) porosity is frequently observed in sintered
glass or glass–ceramic pieces.

5. Conclusions

We propose a parameter SðTÞ ¼ c=b
ffiffiffiffiffiffi
NS
p

� UðTÞ � gðTÞ � rc to gauge
the sinterability of crystallizing glass powders without doing any
sintering experiment. This parameter was tested for cordierite
glass and the results show a strong correlation of S with the max-
imum achievable densification for a series of particle sizes and
temperatures. But a simpler expression:

ShTðTÞ ¼ 2p � c � NA � T2
m �

ffiffiffiffiffiffiffi
V2

m
3
q

=10
ffiffiffiffiffiffi
NS

p
� r � DHm � DT2;

which avoids time consuming measurements of U(T) and g(T), can
be used at T P 0.85Tm to predict the sintering behavior of glass
powders.

The condition to densify any crystallizing glass powder to at
least 0.99 is S > 50. To privilege sintering over surface crystallization
for any given glass, one must increase S by minimizing r, or the
product U(T) � g(T) by increasing the sintering temperature. S
increases with temperature and tends to infinity as the melting
point of the crystal or liquidus is approached. Therefore, as long as
the heating rate is fast enough to avoid crystallization on the heat-
ing path, and in the absence of entrapped gasses or degassing, any
glass powder can be fully densified at a sufficiently high tempera-
ture, especially near and above the liquidus. But too high tempera-
tures lead to excessive flow and deformation of the compact.

The main finding is that one can make predictions with S with-
out performing any sintering experiment. This parameter is thus
quite useful for screening candidate glass compositions for sinter
crystallization studies and for the production of sintered glasses
or glass–ceramics (Fig. 8).
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