https://repositorio.ufba.br/handle/ri/13268
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Andrade, Roberto Fernandes Silva | - |
dc.contributor.author | Andrade Júnior, José Soares de | - |
dc.contributor.author | Herrmann, H. J. | - |
dc.creator | Andrade, Roberto Fernandes Silva | - |
dc.creator | Andrade Júnior, José Soares de | - |
dc.creator | Herrmann, H. J. | - |
dc.date.accessioned | 2013-10-15T18:25:14Z | - |
dc.date.available | 2013-10-15T18:25:14Z | - |
dc.date.issued | 2009 | - |
dc.identifier.issn | 1539-3755 | - |
dc.identifier.uri | http://www.repositorio.ufba.br/ri/handle/ri/13268 | - |
dc.description | p. 1-7 | pt_BR |
dc.description.abstract | This work considers an Ising model on the Apollonian network, where the exchange constant Ji,j∼1/(kikj)μ between two neighboring spins (i,j) is a function of the degree k of both spins. Using the exact geometrical construction rule for the network, the thermodynamical and magnetic properties are evaluated by iterating a system of discrete maps that allows for very precise results in the thermodynamic limit. The results can be compared to the predictions of a general framework for spin models on scale-free networks, where the node distribution P(k)∼k−γ, with node-dependent interacting constants. We observe that, by increasing μ, the critical behavior of the model changes from a phase transition at T=∞ for a uniform system (μ=0) to a T=0 phase transition when μ=1: in the thermodynamic limit, the system shows no true critical behavior at a finite temperature for the whole μ≥0 interval. The magnetization and magnetic susceptibility are found to present noncritical scaling properties. | pt_BR |
dc.language.iso | en | pt_BR |
dc.source | http://dx.doi.org/10.1103/PhysRevE.79.036105 | pt_BR |
dc.title | Ising model on the Apollonian network with node-dependent interactions | pt_BR |
dc.title.alternative | Physical Review E | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
dc.identifier.number | v. 79, n. 3 | pt_BR |
Aparece nas coleções: | Artigo Publicado em Periódico (FIS) |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.