Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/15001
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorGomes, Gecynalda S. da S.-
dc.contributor.authorLudermir, Teresa B.-
dc.creatorGomes, Gecynalda S. da S.-
dc.creatorLudermir, Teresa B.-
dc.date.accessioned2014-05-20T13:06:42Z-
dc.date.issued2013-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://repositorio.ufba.br/ri/handle/ri/15001-
dc.descriptionTexto completo: acesso restrito. p. 6438–6446pt_BR
dc.description.abstractThe use of neural network models for time series forecasting has been motivated by experimental results that indicate high capacity for function approximation with good accuracy. Generally, these models use activation functions with fixed parameters. However, it is known that the choice of activation function strongly influences the complexity and neural network performance and that a limited number of activation functions has been used in general. We describe the use of an asymmetric activation functions family with free parameter for neural networks. We prove that the activation functions family defined, satisfies the requirements of the universal approximation theorem We present a methodology for global optimization of the activation functions family with free parameter and the connections between the processing units of the neural network. The main idea is to optimize, simultaneously, the weights and activation function used in a Multilayer Perceptron (MLP), through an approach that combines the advantages of simulated annealing, tabu search and a local learning algorithm. We have chosen two local learning algorithms: the backpropagation with momentum (BPM) and Levenberg–Marquardt (LM). The overall purpose is to improve performance in time series forecasting.pt_BR
dc.language.isoenpt_BR
dc.rightsAcesso Abertopt_BR
dc.sourcehttp://dx.doi.org/10.1016/j.eswa.2013.05.053pt_BR
dc.subjectNeural networkspt_BR
dc.subjectAsymmetric activation functionpt_BR
dc.subjectFree parameterpt_BR
dc.subjectSimulated annealingpt_BR
dc.subjectTabu searchpt_BR
dc.subjectBPM algorithmpt_BR
dc.subjectLM algorithmpt_BR
dc.subjectTime seriespt_BR
dc.titleOptimization of the weights and asymmetric activation function family of neural network for time series forecastingpt_BR
dc.title.alternativeExpert Systems with Applicationspt_BR
dc.typeArtigo de Periódicopt_BR
dc.identifier.numberv. 40, n. 16pt_BR
dc.embargo.liftdate10000-01-01-
Aparece nas coleções:Artigo Publicado em Periódico (IME)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
1-s2.0-S0957417413003515-main.pdf457,52 kBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.