Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/15732
Tipo: Artigo de Periódico
Título: Defects in hexagonal-AlN sheets by first-principles calculations
Título(s) alternativo(s): European Physical Journal B: Condensed Matter and Complex Systems
Autor(es): Almeida Junior, Edward Ferraz de
Mota, F. de Brito
Castilho, Caio Mário Castro de
Georgieva, A. Kakanakova
Gueorguiev, G. K.
Autor(es): Almeida Junior, Edward Ferraz de
Mota, F. de Brito
Castilho, Caio Mário Castro de
Georgieva, A. Kakanakova
Gueorguiev, G. K.
Abstract: Theoretical calculations focused on the stability of an infinite hexagonal AlN (h-AlN) sheet and its structural and electronic properties were carried out within the framework of DFT at the GGA-PBE level of theory. For the simulations, an h-AlN sheet model system consisting in 96 atoms per super-cell has been adopted. For h-AlN, we predict an Al-N bond length of 1.82 Å and an indirect gap of 2.81 eV as well as a cohesive energy which is by 6% lower than that of the bulk (wurtzite) AlN which can be seen as a qualitative indication for synthesizability of individual h-AlN sheets. Besides the study of a perfect h-AlN sheet, also the most typical defects, namely, vacancies, anti-site defects and impurities were also explored. The formation energies for these defects were calculated together with the total density of states and the corresponding projected states were also evaluated. The charge density in the region of the defects was also addressed. Energetically, the anti-site defects are the most costly, while the impurity defects are the most favorable, especially so for the defects arising from Si impurities. Defects such as nitrogen vacancies and Si impurities lead to a breaking of the planar shape of the h-AlN sheet and in some cases to the formation of new bonds. The defects significantly change the band structure in the vicinity of the Fermi level in comparison to the band structure of the perfect h-AlN which can be used for deliberately tailoring the electronic properties of individual h-AlN sheets.
Palavras-chave: Solid State and Materials
Tipo de Acesso: Acesso Aberto
URI: http://repositorio.ufba.br/ri/handle/ri/15732
Data do documento: 2012
Aparece nas coleções:Artigo Publicado em Periódico (FIS)

Arquivos associados a este item:
Não existem arquivos associados a este item.
Mostrar registro completo do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.