Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/18081
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorKrug, Lilian Anne-
dc.contributor.authorGherardi, Douglas Francisco Marcolino-
dc.contributor.authorStech, José Luís-
dc.contributor.authorLeão, Zelinda Margarida de Andrade Nery-
dc.contributor.authorKikuchi, Ruy Kenji Papa de-
dc.contributor.authorHruschka Junior, Estevam Rafael-
dc.contributor.authorSuggett, David John-
dc.creatorKrug, Lilian Anne-
dc.creatorGherardi, Douglas Francisco Marcolino-
dc.creatorStech, José Luís-
dc.creatorLeão, Zelinda Margarida de Andrade Nery-
dc.creatorKikuchi, Ruy Kenji Papa de-
dc.creatorHruschka Junior, Estevam Rafael-
dc.creatorSuggett, David John-
dc.date.accessioned2015-10-09T18:43:17Z-
dc.date.issued2013-
dc.identifier.issn1364-8152-
dc.identifier.urihttp://repositorio.ufba.br/ri/handle/ri/18081-
dc.descriptionTexto completo: acesso restrito. p. 157-167pt_BR
dc.description.abstractCurrent metrics for predicting bleaching episodes, e.g. NOAA's Coral Reef Watch Program, do not seem to apply well to Brazil's marginal reefs located in Bahia state and alternative predictive approaches must be sought for effective long term management. Bleaching occurrences at Abrolhos have been observed since the 1990s but with a much lower frequency/extent than for other reef systems worldwide. We constructed a Bayesian Belief Network (BN) to back-predict the intensity of bleaching events and learn how local and regional scale forcing factors interact to enhance or alleviate coral bleaching specific to Abrolhos. Bleaching intensity data were collected for several reef sites across Bahia state coast (∼12°–20°S; 37°–40°W) during the austral summer 1994–2005 and compared to environmental data: sea surface temperature (SST), diffuse light attenuation coefficient at 490 nm (K490), rain precipitation, wind velocities, and El Niño Southern Oscillation (ENSO) proxies. Conditional independence tests were calculated to produce four specialized BNs, each with specific factors that likely regulate bleaching intensity. All specialized BNs identified that a five-day accumulated SST proxy (SSTAc5d) was the exclusive parent node for coral bleaching producing a total predictive rate of 88% based on SSTAc5d state. When SSTAc5d was simulated as unknown, the Thermal-Eolic Resultant BN kept the total predictive rate of 88%. Our approach has produced initial means to predict beaching intensity at Abrolhos. However, the robustness of the model required for management purposes must be further (and regularly) operationally tested with new in situ and remote sensing data.pt_BR
dc.language.isoenpt_BR
dc.rightsAcesso Abertopt_BR
dc.sourcehttp://dx.doi.org/10.1016/j.envsoft.2013.01.003pt_BR
dc.subjectBayesian networkpt_BR
dc.subjectCoral reefpt_BR
dc.subjectCoral bleachingpt_BR
dc.subjectRemote sensingpt_BR
dc.subjectEnvironmental variabilitypt_BR
dc.subjectSouth Atlantic coral reefspt_BR
dc.titleThe construction of causal networks to estimate coral bleaching intensitypt_BR
dc.title.alternativeEnvironmental Modelling & Softwarept_BR
dc.typeArtigo de Periódicopt_BR
dc.identifier.numberv. 42pt_BR
dc.embargo.liftdate10000-01-01-
dc.publisher.countryBrasilpt_BR
Aparece nas coleções:Artigo Publicado em Periódico (IGEO)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Lilian Anne Krug.pdf1,22 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.