Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/39039
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSouza, Emmanuelle Melo Sarraf-
dc.date.accessioned2024-02-19T16:22:19Z-
dc.date.available2024-02-19T16:22:19Z-
dc.date.issued2023-12-11-
dc.identifier.citationSOUZA, Emmanuelle Mello Sarraf de. Fatores associados à marcha de pacientes adultos hospitalizados com insuficiência cardíaca. 2023. 80 f. Tese (Doutorado) - Universidade Federal da Bahia, Instituto de Ciências da Saúde, Programa de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas, Salvador, 2023pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/39039-
dc.description.abstractIntroduction–Monitoring walking performance has been considered useful for clinically estimating the functional capacity of patients with heart failure. The evaluation of kinematic gait parameters can help to stratify different levels of functional impairment. Objective –To analyze factors associated with gait in adult patients hospitalized with heart failure. Methods –This is a cross-sectional observational study. Participants diagnosed with HF, between 18 and 60 years old, of both sexes, with functional classification II and III and who were authorized to walk as prescribed in the medical records were included. Demographic and clinical data were collected from the electronic medical record. The 10-meter gait speed test extracted the spatiotemporal parameters of gait. The BTS G-Walk device (BTS Bioengineering – Free4act – ACC0774N, Italy) was used to analyze gait. The T-Student test was applied to compare the significant differences between gait speed and its determinants with the independent variables. Pearson and Spearman correlation were performed between the studied data. Crude (univariate) and adjusted (multivariate) binary logistic regression analyzes were used. Gait speed ≤0.8m/s was the dependent variable. Epidemiological, clinical and spatio-temporal variables of walking were the independent variables. Results –Thirty (30) participants were included in the study. Women walked significantly slower than men, as did those with functional class III. Participants who used beta-blockers had significantly longer stride length compared to those who did not use them. Gait speed ≤0.8 m/s was associated with stride length ≤ 1.14 meters and cadence ≤ 45.8 steps/minute. Conclusion –Female participants, functional class III, without the use of beta-blockers and with preserved LVEF had worse gait performance. The main factors associated with walking speed were shorter stride length and shorter cadence.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsCC0 1.0 Universal*
dc.subjectAnálise espaço-temporalpt_BR
dc.subjectTeste de caminhadapt_BR
dc.subjectCardiopatiaspt_BR
dc.subjectBiomecânicapt_BR
dc.subjectFenômenos biomecânicospt_BR
dc.subject.otherSpatio-temporal analysispt_BR
dc.subject.otherWalking testept_BR
dc.subject.otherHeart Diseasespt_BR
dc.subject.otherBiomechanicalpt_BR
dc.subject.otherBiomechanical Phenomenapt_BR
dc.titleFatores associados à marcha de pacientes adultos hospitalizados com insuficiência cardíacapt_BR
dc.title.alternativeFactors associated with gait in adult patients hospitalized with heart failurept_BR
dc.typeTesept_BR
dc.contributor.refereesRibeiro, Nildo Manoel da Silva-
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDE::FISIOTERAPIA E TERAPIA OCUPACIONALpt_BR
dc.contributor.advisor1Ribeiro, Nildo Manoel da Silva-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-1879-0405pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9314966879265748pt_BR
dc.contributor.referee1Assis, Silvana Maria Blascovi de-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-5437-891Xpt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6553900966729412pt_BR
dc.contributor.referee2Trippo, Karen Valadares-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-0182-0129pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7077622397421377pt_BR
dc.contributor.referee3Fonseca, Marcus de Lemos-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5836274666580158pt_BR
dc.contributor.referee4Ferraz, Daniel Dominguez-
dc.contributor.referee4IDhttps://orcid.org/0000-0003-3049-0058pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/9848780981638380pt_BR
dc.contributor.referee5Santos, Cleber Luz-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/1351352771153286pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8787488785995434pt_BR
dc.description.resumoIntrodução – O monitoramento do desempenho da caminhada tem sido considerado útil para estimar clinicamente a capacidade funcional de pacientes com insuficiência cardíaca. A avaliação dos parâmetros cinemáticos da marcha pode auxiliar a estratificar os diferentes níveis de comprometimento funcional. Objetivo – Analisar os fatores associados à marcha de pacientes adultos hospitalizados com insuficiência cardíaca. Métodos – Trata-se de um estudo observacional de corte transversal. Foram incluídos participantes com diagnóstico de IC, entre 18 e 60 anos, de ambos os sexos, com classificação funcional II e III e que possuíam liberação para deambulação prescrita no prontuário. Os dados demográficos e clínicos foram coletados no prontuário eletrônico. O teste de velocidade de marcha de 10 metros extraiu os parâmetros espaço-temporais da marcha. Foi utilizado o aparelho BTS G-Walk (BTS Bioengineering – Free4act – ACC0774N, Itália) para analisar a marcha. Foi aplicado o teste de T-Student para comparar as diferenças significativas entre velocidade de marcha e seus determinantes com as variáveis independentes. Foi feita a correlação de Pearson e de Spearman entre os dados estudados. Análises de regressão logística binária bruta (univariada) e ajustada (multivariada) foram utilizadas. Velocidade de marcha ≤0,8m/s foi a variável dependente. Variáveis epidemiológicas, clínicas e espaço-temporais da caminhada foram as variáveis independentes. Resultados – 30 participantes foram incluídos no estudo. As mulheres caminharam de forma significativamente mais lenta do que os homens, assim como aqueles com classe funcional III. Os participantes que utilizaram betabloqueadores tiveram comprimento de passada significativamente maior em relação àqueles que não utilizaram. A velocidade de marcha ≤0,8m/s foi associada ao comprimento da passada ≤ 1,14metros e a cadência ≤ 45,8 passos/minuto. Conclusão – Participantes do sexo feminino, classe funcional III, sem uso de betabloqueadores e com FEVE preservada tiveram pior desempenho da marcha. Os principais fatores associados à velocidade de marcha foram menor comprimento da passada e cadência mais curta.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.referencesBozkurt B, Coats AJ, Tsutsui H, Abdelhamid M, Adamopoulos S, Albert N, et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021;27(4):387–413. 2. McDonagh TA, Metra M, Adamo M, Baumbach A, Böhm M, Burri H, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726. doi: 10.1093/eurheartj/ehab368 3. Fuentes-Abolafio IJ, Stubbs B, Pérez-Belmonte LM, Bernal-López MR, GómezHuelgas R, Cuesta-Vargas AI. Physical functional performance and prognosis in patients with heart failure: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2020;12(1):1-23. 4. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020; 22(8):1342–56. doi: 10.1002/ejhf.1858 5. Chan DZL, Kerr AJ, Doughty RN. Temporal trends in the burden of heart failure. Intl Med J. 2021;51(8):1212–8. doi: 10.1111/imj.15253 6. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics’2017 Update: A Report from the American Heart Association. Circulation. 2017;135(1):146–603. doi: 10.1161/CIR. 0000000000000485 7. Steinbeck L, Ebner N, Valentova M, Bekfani T, Elsner S, Dahinden P, et al. Detection of muscle wasting in patients with chronic heart failure using C -terminal agrin fragment: Results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur J Heart Fail. 2015;17(12):1283–93. 8. Gasser B, Wagner J, Schoch R, Schmidt-Trucksäss A. Skeletal muscle and heart failure – What is the relationship between central versus peripheral affections? Nutrition, Metab Cardiovascular Dis. 2023;33(10):1907–13. doi: https://doi.org/10.1016/j.numecd.2023.05.029 9. Jehn M, Schmidt-Trucksäss A, Schuster T, Weis M, Hanssen H, Halle M, et al. Daily walking performance as an independent predictor of advanced heart failure. Prediction of exercise capacity in chronic heart failure. Am Heart J. 2009;157(2):292–8. 10. Fuentes-Abolafio IJ, Trinidad-Fernández M, Escriche-Escuder A, Roldán-Jiménez C, Arjona-Caballero JM, Bernal-López MR, et al. Kinematic Parameters That Can Discriminate in Levels of Functionality in the Six-Minute Walk Test in Patients with Heart Failure with a Preserved Ejection Fraction. J Clin Med. 2022;12(1):1-18. doi: 10.3390/jcm12010241 11. Hollman JH, McDade EM, Petersen RC. Normative spatiotemporal gait parameters in older adults. Gait Posture. 2011;34(1):111–8. doi: 10.1016/j.gaitpost.2011.03.024 60 12. Pulignano G, Sindaco D Del, Lenarda A Di, Alunni G, Senni M, Tarantini L, et al. Incremental Value of Gait Speed in Predicting Prognosis of Older Adults With Heart Failure Insights From the IMAGE-HF Study. 2016;4(4):1-10. JACC Heart Fail. doi: 10.1016/j.jchf.2015.12.017 13. Afilalo J, Eisenberg MJ, Morin JF, Bergman H, Monette J, Noiseux N, et al. Gait speed as an incremental predictor of mortality and major morbidity in elderly patients undergoing cardiac surgery. J Am Coll Cardiol. 2010;56(20):1688-76. doi: 10.1016/j.jacc.2010.06.039 14. Ozcan EB, Saglam M, Vardar-Yagli N, Calik-Kutukcu E, Inal-Ince D, Altinsoy M, et al. Impaired Balance and Gait Characteristics in Patients With Chronic Heart Failure. Heart Lung Circ. 2022;31(6):832–40. doi: 10.1016/j.hlc.2021.10.015 15. Pepera GK, Sandercock GR, Sloan R, Cleland JJF, Ingle L, Clark AL. Influence of step length on 6-minute walk test performance in patients with chronic heart failure. Physiotherapy. 2012;98(4):325–9. doi: https://doi.org/10.1016/j.physio.2011.08.005 16. Fukuchi CA, Fukuchi RK, Duarte M. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis. Syst Rev. 2019;8(1):1-11. doi: 10.1186/s13643-019-1063-z 17. Ozawa T, Yamashita M, Seino S, Kamiya K, Kagiyama N, Konishi M, et al. Standardized gait speed ratio in elderly patients with heart failure. ESC Heart Fail. 2021;8(5):3557–65. doi: 10.1002/ehf2.13392 18. Cestari VRF, Garces TS, Sousa GJB, Maranhão TA, Neto JDS, Pereira MLD, et al. Spatial Distribution of Mortality for Heart Failure in Brazil, 1996 – 2017. Arq Bras Cardiol. 2022;118(1):41–51. 19. Del Buono MG, Arena R, Borlaug BA, Carbone S, Canada JM, Kirkman DL, et al. Exercise Intolerance in Patients With Heart Failure: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(17): 2209–25. doi: 10.1016/j.jacc.2019.01.072 20. Petersen LC, Danzmann LC, Bartholomay E, Bodanese LC, Donay BG, Magedanz EH, et al. Survival of patients with acute heart failure and mid-range ejection fraction in a developing country – A cohort study in South Brazil. Arq Bras Cardiol. 2021;116(1):14–23. doi: 10.36660/abc.20190427 21. Phillips SA, Vuckovic K, Cahalin LP, Baynard T. Defining the System: Contributors to Exercise Limitations in Heart Failure. Heart Failure Clin. 2015;11:1–16. doi: 10.1016/j.hfc.2014.08.009 22. Levinger I, Bronks R, Cody DV, Linton I, Davie A. Resistance training for chronic heart failure patients on beta blocker medications. Int J Cardiol. 2005;102(3):493–9. 23. Okita K, Kinugawa S, Tsutsui H. Exercise intolerance in chronic heart failure - Skeletal muscle dysfunction and potential therapies. Circul J. 2013;77(2):293–300. doi: 10.1253/circj.cj-12-1235 24. Fulster S, Tacke M, Sandek A, Ebner N, Tscho¨pe C, Doehner W, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating 61 comorbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34(7):486–8. doi: 10.1093/eurheartj/ehs381 25. von Haehling S, Garfias Macedo T, Valentova M, Anker MS, Ebner N, Bekfani T, et al. Muscle wasting as an independent predictor of survival in patients with chronic heart failure. J Cachexia Sarcopenia Muscle. 2020;11(5):1242–9. doi: 10.1002/jcsm.12603 26. Rodríguez-Pascual C, Paredes-Galán E, Ferrero-Martínez AI, Gonzalez-Guerrero JL, Hornillos-Calvo M, Menendez-Colino R, et al. The frailty syndrome is associated with adverse health outcomes in very old patients with stable heart failure: A prospective study in six Spanish hospitals. Int J Cardiol. 2017;236:296–303. doi: https://doi.org/10.1016/j.ijcard.2017.02.016 27. Panizzolo R. Is the Soleus a Sentinel Muscle for Impaired Aerobic Capacity in Heart Failure? Med Sci Sports Exerc. 2015;47(3):1-31. doi: 10.1249/MSS. 0000000000000431 28. Onoue Y, Izumiya Y, Hanatani S, Tanaka T, Yamamura S, Kimura Y, et al. A simple sarcopenia screening test predicts future adverse events in patients with heart failure. Int J Cardiol. 2016;215:301–6. doi: 10.1016/j.ijcard.2016.04.128 29. Kaminsky LA, Tuttle MS. Functional assessment of heart failure patients. Heart Failure Clinics. 2015;11:29–36. doi: 10.1016/j.hfc.2014.08.002 30. Nascimento DMdo, Machado KC, Bock PM, Saffi MAL, Goldraich LA, Silveira AD, et al. Functional training improves peak oxygen consumption and quality of life of individuals with heart failure: a randomized clinical trial. BMC Cardiovasc Disord. 2023;23(1):1-10. doi: 10.1186/s12872-023-03404-7 31. Perry J. Análise de marcha. São Paulo: Editora Manole: 2005. 32. Qin S, Chen X, Li P, Sun H. Estimation of Gait Subphase Time Parameters Based on a Human Electrostatic Field Detection System. IEEE Sens J. 2023;23(9):9716–26. 33. de Campos DdaSF, Shokur S, de Lima-Pardini AC, Runfeng M, Bouri M, Coelho DB. Kinematics predictors of spatiotemporal parameters during gait differ by age in healthy individuals. Gait Posture. 2022; 96:216–20. doi: 10.1016/j.gaitpost. 2022.05.034 34. Rodrigues VS, Agostini CM, Guimarães AC, Damázio LCM. Eficácia de um aplicativo digital na avaliação da marcha dos indivíduos com diabetes e hipertensão. Educación Física y Deportes. 2019; 23(250):1-10. 35. Afilalo J, Kim S, O’Brien S, Brennan JM, Edwards FH, Mack MJ, et al. Gait speed and operative mortality in older adults following cardiac surgery. JAMA Cardiol. 2016;1(3):314–21. doi:10.1001/jamacardio.2016.0316 62 36. Ueno K, Kaneko H, Kamiya K, Okada A, Suzuki Y, Fujiu K, et al. Gait Speed and Cardiovascular Disease by Glycemic Status. Am J Prev Med. 2023;65(1):45–51. 37. Tanaka S, Kamiya K, Hamazaki N, Matsuzawa R, Nozaki K, Nakamura T, et al. Shortterm change in gait speed and clinical outcomes in older patients with acute heart failure. Circul J. 2019;83(9):1860–7. doi: 10.1253/circj.CJ-19-0136 38. Kamiya K, Hamazaki N, Matsue Y, Mezzani A, Corrà U, Matsuzawa R, et al. Gait speed has comparable prognostic capability to six-minute walk distance in older patients with cardiovascular disease. Eur J Prev Cardiol. 2018;25(2):212–9. 39. Guedes RdeC, Dias RC, Neri AL, Ferriolli E, Lourenço RA, Lustosa LP. Declínio da velocidade da marcha e desfechos de saúde em idosos: dados da Rede Fibra. Fisioter Pesqui. 2019;26(3):304–10. doi: https://doi.org/10.1590/1809-2950/18036026032019 40. Nakamura T, Kamiya K, Matsunaga A, Hamazaki N, Matsuzawa R, Nozaki K, et al. Impact of Gait Speed on the Obesity Paradox in Older Patients With Cardiovascular Disease. Am J Med. 2019;132(12):1458-65. doi: 10.1016/j.amjmed.2019.06.047 41. Figueiredo P, Ribeiro PAB, Bona RL, Peyré-Tartaruga LA, Ribeiro JP. Ventilatory determinants of self-selected walking speed in chronic heart failure. Med Sci Sports Exerc. 2013;45(3):415–9. doi: 10.1249/MSS.0b013e318277968f 42. Panizzolo FA, Maiorana AJ, Naylor LH, Dembo L, Lloyd DG, Green DJ, et al. Gait analysis in chronic heart failure: The calf as a locus of impaired walking capacity. J Biomech. 2014;47(15):3719–25. doi: 10.1016/j.jbiomech.2014.09.015 43. Ardestani MM, Ferrigno C, Moazen M, Wimmer MA. From normal to fast walking: Impact of cadence and stride length on lower extremity joint moments. Gait Posture. 2016;46:118–25. doi: https://doi.org/10.1016/j.gaitpost.2016.02.005 44. Lim YP, Lin YC, Pandy MG. Effects of step length and step frequency on lower-limb muscle function in human gait. J Biomech. 2017;57:1–7. doi: https://doi.org/10.1016/j.jbiomech.2017.03.004 45. Dewolf AH, Meurisse GM, Schepens B, Willems PA. Effect of walking speed on the intersegmental coordination of lower-limb segments in elderly adults. Gait Posture. 2019;70:156–61. doi: https://doi.org/10.1016/j.gaitpost.2019.03.001 46. Keklicek H, Kirdi E, Yalcin A, Topuz S, Ulger O, Erbahceci F, et al. Comparison of gait variability and symmetry in trained individuals with transtibial and transfemoral limb loss. J Orthop Surg. 2019;27(1):1-6. doi: 10.1177/2309499019832665 47. Almarwani M, VanSwearingen JM, Perera S, Sparto PJ, Brach JS. Challenging the motor control of walking: Gait variability during slower and faster pace walking conditions in younger and older adults. Arch Gerontol Geriatr. 2016; 66:54–61. 48. Bollens B, Crevecoeur F, Detrembleur C, Guillery E, Lejeune T. Effects of age and walking speed on long-range autocorrelations and fluctuation magnitude of stride duration. Neuroscience. 2012;210:234–42. doi: 10.1016/j.neuroscience.2012.02.039 49. Dibben GO, Hannay JR, Taylor RS. Exercise training in heart failure. Heart. 2023;1-9. doi: https://doi.org/10.1136/heartjnl-2022-321132 63 50. Taylor RS, Walker S, Smart NA, Piepoli MF, Warren FC, Ciani O, et al. Impact of Exercise Rehabilitation on Exercise Capacity and Quality-of-Life in Heart Failure: Individual Participant Meta-Analysis. J Am Coll Cardiol. 2019;73(12):1430–43. 51. Chen S, Lach J, Lo B, Yang GZ. Toward Pervasive Gait Analysis With Wearable Sensors: a Systematic Review. IEEE J Biomed Health Inform. 2016; 20(6):1521–37. doi: 10.1109/JBHI.2016.2608720 52. Micó-Amigo ME, Bonci T, Paraschiv-Ionescu A, Ullrich M, Kirk C, Soltani A, et al. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium. J Neuroeng Rehabil. 2023;20(1):126. 53. Sáez de Asteasu ML, Martínez-Velilla N, Zambom-Ferraresi F, Casas-Herrero Á, Ramirez-Vélez R, Izquierdo M. Role of muscle power output as a mediator between gait variability and gait velocity in hospitalized older adults. Exp Gerontol. 2019; 124:1-7. doi: 10.1016/j.exger.2019.110631 54. Turcu D, Roman AI, Teodorescu M, Popescu M, Ploesteanu R, Ghilence A L, et al. Correlations between walking speed and Timed Up and Go (TUG) in patients with heart failure class II-III NYHA. Ro J Med Pract. 2021;16(3):364–9. 55. Ghosal R, Varma VR, Volfson D, Hillel I, Urbanek J, Hausdorff JM, et al. Distributional data analysis via quantile functions and its application to modeling digital biomarkers of gait in Alzheimer’s Disease. Biostatistics. 2023;24(3):539–61. doi: 10.1093/biostatistics/kxab041 56. De Ridder R, Lebleu J, Willems T, De Blaiser C, Detrembleur C, Roosen P. Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J Sport Rehabil. 2019;28(6):1-4. doi: 10.1123/jsr.2018-0295 57. Savarese G, Lund LH. Global Public Health Burden of Heart Failure. Card Fail Rev. 2017;3(1):1-5. 58. DATASUS-2023 Internet. [citado 2023 jun 02]. Disponível em: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sih/cnv/niuf.def 59. Tanriverdi A, Kahraman BÖ, Acar S, Özsoy I, Özpelit E, Sentürk B, et al. Determinants of gait speed in patients with heart failure with reduced ejection fraction. Anatol J Cardiol. 2021;25(9):617–22. doi: 10.5152/AnatolJCardiol.2021.17735 60. Dodson JA, Arnold S V, Gosch KL, Gill TM, Spertus JA, Krumholz HM, et al. Slow Gait Speed and Risk of Mortality or Hospital Readmission after Myocardial Infarction in the Translational Research Investigating Underlying Disparities in Recovery from Acute Myocardial Infarction: Patients’ Health Status Registry. J Am Geriatr Soc. 2016;64(3):596–601. doi: 10.1111/jgs.14016 61. Malachias MVB, Souza WKSB, Plavnik FL, Rodrigues CIS, Brandão AA, Neves MF et al. 7ª Diretriz Brasileira de Hipertensão Arterial. Arq Bras Cardiol. 2016;107(3):183. 64 62. Novaes RD, Miranda AS, Dourado VZ. Velocidade usual da marcha em brasileiros de meia idade e idosos. Rev Bras Fisioter. 2011;15(2):117–39. doi: https://doi.org/10.1590/S1413-35552011000200006 63. Mukaka MM. Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research. Malawi Med J. 2012;24(3):1-3. 64. Álvarez-Millán L, Castillo-Castillo D, Quispe-Siccha R, Pérez-Pacheco A, Angelova M, Rivera-Sánchez J, et al. Frailty Syndrome as a Transition from Compensation to Decompensation: Application to the Biomechanical Regulation of Gait. Int J Environ Res Public Health. 2023;20(11):1-18. doi: 10.3390/ijerph20115995 65. Kawai H, Taniguchi Y, Seino S, Sakurai R, Osuka Y, Obuchi S, et al. Reference values of gait parameters measured with a plantar pressure platform in community-dwelling older japanese adults. Clin Interv Aging. 2019;14:1265–76. 66. Lau LK, Wee SL, Pang WJB, Chen KK, Jabbar KA, Yap PLK, et al. Reference values of gait speed and gait spatiotemporal parameters for a south east asian population: The yishun study. Clin Interv Aging. 2020;15:1753–65. doi: 10.2147/CIA.S270407 67. Abdul Jabbar K, Seah WT, Lau LK, Pang BWJ, Ng DHM, Tan QLL, et al. Fast gait spatiotemporal parameters in adults and association with muscle strength – The Yishun study. Gait Posture. 2021;85:217–23. doi: 10.1016/j.gaitpost.2021.01.001 68. Pua YH, Tay L, Clark RA, Thumboo J, Tay EL, Mah SM, et al. Reference Ranges for Gait Speed and Sit-to-Stand Performance in a Cohort of Mobility-Intact CommunityDwelling Older Adults From Singapore. J Am Med Dir Assoc. 2022;23(9):15791584.e1. doi: 10.1016/j.jamda.2021.12.045 69. Sialino LD, Schaap LA, van Oostrom SH, Picavet HSJ, Twisk JWR, Verschuren WMM, et al. The sex difference in gait speed among older adults: how do sociodemographic, lifestyle, social and health determinants contribute? BMC Geriatr. 2021;21(1)1-11. doi: 10.1186/s12877-021-02279-7 70. Dekleva M, Düngen HD, Gelbrich G, Incrot S, Lazic JS, Kleut MP, et al. Beta blockers therapy is associated with improved left ventricular systolic function and sustained exercise capacity in elderly patients with heart failure. CIBIS-ELD sub-study. Aging Clin Exp Res. 2012;24(6):675–81. doi: 10.3275/8720 71. Abbate A, Van Tassell BW, Canada JM, Dixon DL, Arena RA, Biondi-Zoccai G. Pharmacologic and surgical interventions to improve functional capacity in heart failure. Heart Fail Clin. 2015;11:117–24. doi: 10.1016/j.hfc.2014.08.005 72. Montero-Odasso M, Sarquis-Adamson Y, Song HY, Bray NW, Pieruccini-Faria F, Speechley M. Polypharmacy, Gait Performance, and Falls in Community-Dwelling Older Adults. Results from the Gait and Brain Study. J Am Geriatr Soc. 2019;67(6):1182–8. 73. Hornsby WE, Sareini MA, Golbus JR, Willer CJ, McNamara JL, Konerman MC, et al. Lower Extremity Function Is Independently Associated With Hospitalization Burden in Heart Failure With Preserved Ejection Fraction. J Card Fail. 2019;25(1):2–9. doi: 10.1016/j.cardfail.2018.09.002 65 74. Arruda VL de, Machado LMG, Lima JC, Silva PR de S. Tendência da mortalidade por insuficiência cardíaca no Brasil: 1998 a 2019. Rev Bras Epidemiol. 2022;25:1-13. doi: https://doi.org/10.1590/1980-549720220021.2 75. Sato A, Kamiya K, Hamazaki N, Nozaki K, Ichikawa T, Yamashita M, et al. Gait speed and 6-minute walking distance are useful for identifying difficulties in activities of daily living in patients with cardiovascular disease. Heart Lung. 2022;51:46–51. doi: 10.1016/j.hrtlng.2021.09.002 76. Donelan JM, Kram R, Duo AD. Mechanical work for step-to-step transitions is a major determinant of the. metabolic cost of human walking. J Exp Biol. 2002;205:3717–27. doi: 10.1242/jeb.205.23.3717 77. Russell DM, Apatoczky DT. Walking at the preferred stride frequency minimizes muscle activity. Gait Posture. 2016 Mar 1;45:181–6. doi: 10.1016/j.gaitpost.2016.01.027 78. Allet L, IJzerman H, Meijer K, Willems P, Savelberg H. The influence of stride-length on plantar foot-pressures and joint moments. Gait Posture. 2011;34(3):300–6. 79. Green DJ, Panizzolo FA, Lloyd DG, Rubenson J, Maiorana AJ. Soleus Muscle as a Surrogate for Health Status in Human Heart Failure. Exerc Sport Sci Rev. 2016 Jan 1;44(1):45–50. doi: 10.1249/JES.0000000000000069 80. Hebenstreit F, Leibold A, Krinner S, Welsch G, Lochmann M, Eskofier BM. Effect of walking speed on gait sub phase durations. Hum Mov Sci. 2015;43:118–24. doi: 10.1016/j.humov.2015.07.009 81. Williams DS, Martin AE. Gait modification when decreasing double support percentage. J Biomech. 2019;92:76–83. doi: 10.1016/j.jbiomech.2019.05.028 82. Lo OY, Halko MA, Zhou J, Harrison R, Lipsitz LA, Manor B. Gait speed and gait variability are associated with different functional brain networks. Front Aging Neurosci. 2017;9:1-8. doi: 10.3389/fnagi.2017.00390 83. Stamp KD, Prasun MA, McCoy TP, Rathman L. Providers’ assignment of NYHA functional class in patients with heart failure: a vignette study. Heart and Lung. 2022; 51:87–93. doi: 10.1016/j.hrtlng.2021.07.009 84. Klöpfer-Krämer I, Brand A, Wackerle H, Müßig J, Kröger I, Augat P. Gait analysis – Available platforms for outcome assessment. Injury. 2020;51(Suppl 2):S90–6. doi: 10.1016/j.injury.2019.11.011 85. Milovic M, Farías G, Fingerhuth S, Pizarro F, Hermosilla G, Yunge D. Detection of Human Gait Phases Using Textile Pressure Sensors: A Low Cost and Pervasive Approach. Sensors. 2022;22(8):1283-93. doi: https://doi.org/10.3390/s22082825 86. Pereira R, Belo A, Silva N. Febre reumática: atualização dos critérios de Jones à luz da revisão da American Heart Association – 2015. Rev Bras Reumatol. 2017;57(4): 36468. doi: https://doi.org/10.1016/j.rbre.2017.03.001 87. Sarraf EM, Barros RD de, Ribeiro NMDS. Análise descritiva dos índices de morbidade e mortalidade de pacientes com cardiopatia reumática crônica em Salvador, Bahia, 66 Brasil. Rev Ciênc Méd Biol. 2018;17(3):310-14. doi: https://doi.org/10.9771/cmbio.v17i3.28667 88. Bona RL, Bonezi A, da Silva PF, Biancardi CM, de Souza Castro FA, Clausel NO. Effect of walking speed in heart failure patients and heart transplant patients. Clin Biomech. 2017; 42:85–91. doi: 10.1016/j.clinbiomech.2017.01.008pt_BR
dc.contributor.refereesLatteshttp://lattes.cnpq.br/9314966879265748pt_BR
dc.contributor.refereesIDshttps://orcid.org/0000-0002-1879-0405pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Fatores associados a marcha de pacientes adultos hospitalizados com insuficiência cardíaca - EMMANUELLE MELO SARRAF DE SOUZA Tese .pdfTese2,01 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.