Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/39146
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Adilton Lopes da-
dc.date.accessioned2024-03-05T12:01:22Z-
dc.date.available2024-03-05T12:01:22Z-
dc.date.issued2023-12-07-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/39146-
dc.description.abstractThis work presents the necessary structuring for the implementation of an advanced quality controller of the type Model Predictive Control (MPC) for an industrial plant producing linear polyethylene using “Sclairtech” technology. Through this control, the dispersions of the Melt Index (MI) and density quality variables will be minimized and the consumption of catalysts, co-catalysts, deactivators and adsorbent bed will be optimized. A conceptual project was developed where all the premises for the control strategy are explained. An economic analysis was then developed to validate the economic viability of implementing the control, in accordance with the best global practices. Furthermore, a new technique for defining the optimal architecture for an Artificial Neural Network (ANN) model was developed and presented. This technique was applied to develop two virtual analyzers based on ANN to predict the MI quality and density variables. Finally, using historical data, industrial tests and empirical operational knowledge about the process, models were developed to simulate the developed control system and controllers. In this context, a new model development methodology for MPC controllers is presented, which also explicitly uses the experience of process experts. The results show a very adequate performance from a technical point of view, and a very substantial and viable economic return, demonstrating the viability of the study and project developed.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectControle avançadopt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectPolietilenopt_BR
dc.subjectModel predictive controlpt_BR
dc.subject.otherAdvanced quality controllerpt_BR
dc.subject.otherModel Predictive Controlpt_BR
dc.subject.otherPolyethylenept_BR
dc.subject.otherArtificial Neural Networkpt_BR
dc.titleAnalisadores Virtuais e Controle Avançado para uma Planta Industrial de Polietileno Linear e Avaliação de seus Benefícios Econômicospt_BR
dc.title.alternativeVirtual Analyzers and Advanced Control for an Industrial Linear Polyethylene Plant and Assessment of its Economic Benefitspt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Industrial (PEI) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICApt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA::POLIMEROSpt_BR
dc.contributor.advisor1Embiruçu, Marcelo-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8281601894113525pt_BR
dc.contributor.referee1Fontes, Cristiano Hora de Oliveira-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8533422209857268pt_BR
dc.contributor.referee2Pinto, José Carlos Costa da Silva-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6479420970768737pt_BR
dc.contributor.referee3Carvalho, Diego Moreira de Araújo-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3413821323159487pt_BR
dc.contributor.referee4Alfano Neto, Carlos de Freitas-
dc.creator.Latteshttp://lattes.cnpq.br/8145941783751681pt_BR
dc.description.resumoEsse trabalho apresenta a estruturação necessária pra a implementação de um controlador avançado de qualidade tipo Model Predictive Control (MPC, controle preditivo baseado em modelo) para uma planta industrial de produção de polietileno linear da tecnologia “Sclairtech”. Através desse controle serão minimizadas as dispersões das variáveis de qualidade Melt Index (MI) e densidade e otimizados os consumos de catalisadores, co-catalisadores, desativadores e leito adsoverdor. Um projeto conceitual foi confeccionado onde todas as premissas para a estratégia de controle são explicitadas. Em seguida foi desenvolvida a análise econômica para validar a viabilidade econômica da implementação do controle, conforme as melhores práticas globais. Além disso, foi desenvolvida e apresentada uma nova técnica de definição da arquitetura ótima para um modelo de Rede Neural Artificial (RNA). Essa técnica foi aplicada na criação de dois analisadores virtuais baseados em redes neurais artificiais para predição das variáveis de qualidade MI e densidade. Por fim, utilizando dados históricos, teste industriais e conhecimento operacional empírico sobre o processo, foram desenvolvidos os modelos para simulação do sistema de controle desenvolvido e os controladores. Nesse contexto, é apresentada uma nova metodologia de desenvolvimento de modelos para os controladores tipo MPC, que utiliza também a experiência de especialistas do processo de forma explícita. Os resultados mostram um desempenho muito adequado do ponto de vista técnico, e um retorno econômico bastante substancial e viável, demonstrando a viabilidade do estudo e projeto desenvolvidos.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.relation.referencesAgachi, P. S., Nagy, Z. K. & Cristea, M. V. .., 2006. Model Based Control - Case Studies in Process Engineering. s.l.:Wiley-VCH. Brisk, M. L., 2005. Process control: potential benefits and wasted opportunities. Australian Journal of Electrical and Electronics Engineering, pp. 2:1, 41-48. Camacho, E. F. & Bordons, C., 1998. Model Predictive Control. s.l.:Springer-Verlag. Coutinho, F. M. B., Mello, I. L. & Santa Maria, L. C. d., 2003. Polietileno: principais tipos, propriedades e aplicações.. São Carlos, s.n., pp. v. 13, n. 1,01-13. Demoro, E. P., Oliveira, A. T. M. D. & Axelrud, C., 2000. Brazil, Patente Nº EP1119800B1. EMBIRUÇU, M., 1998. Modelagem , Estimação e Controle em Reatores Industriais de Polimerização. Tese de Doutorado, UFRJ, Rio de Janeiro-Brasil,: s.n. Embiruçu, M., 2002. Nota de aula: Estimativa de Benefícios em Projetos de Controle Automático de Processos. Salvador/BA, Brasil: PEI, UFBA. Embiruçu, M., Lima, E. L. & Pinto, J. C., 1996. A survey of advanced control of polymerization reactors. Polymer Engineering and Science, pp. 36, no. 4, p. 433-447. Fernandes, F. A. N. & Lona, L. M., 2005. NEURAL NETWORK APPLICATIONS IN POLYMERIZATION PROCESSES. Brazilian Journal of Chemical Engineering , 22(03), pp. 401-418. Fontes, C. & Mendes, M., 2008. Nonlinear predictive control of an industrial slurry reactor. Controle e Automação, 19(4), pp. 417-430. Hwang, C.-A., Johnson, D. & Goff, S., 2002. Advanced Control Strategies for polyolefin gas phase processes. Anchorage, AK, USA, IEEE. Jacob, N. C. & Dhib, R., 2012. Nonlinear MPC of a multi-zone multi-feed LDPE autoclave reactor. Journal of Industrial and Engineering Chemistry, 18(5), pp. 1781-1795. Jesus, L., 2012. O Filtro de Kalman como analisador virtual para o controle de qualidade em processos de polimerização, Salvador/BA: Dissertação (mestrado em Engenharia Industrial) - Escola Politécnica, Universidade Federal da Bahia. Kano, M. & Fujiwara, K., 2011. Virtual Sensing techonology in Process Industries: Trends and Challenges Revealed by Recent industrial Applications. Journal of Chemical Engineering of japan, 44(1), pp. 1-17. Karjala, T., Meerdink, H. & Dems, B., 1997. Real-Time Estimation of Polymer Properties in an Industrial Polyethylene Reactor. IEEE Proceedings of 16th American CONTROL Conference - Albuquerque, New Mexico, pp. 3063-3067. Lewalle, A., 2007. Predictive model for density and melt index of polymer leaving loop reactor. Bruxelles, Patente Nº WO2009059969A1. Li, H., Yu, D. & Braun, J. E., 2011. A review of virtual sensing technology and application in building systems. HVAC&R RESEARCH , 17(5), pp. 619-645. Liu, J., 2007. On-line soft sensor for polyethylene process with multiple production grades. Control Engineering Pratice, 15(7), pp. 769-778. Martin, D., Kühl, N. & and Satzger, G., 2021. Virtual Sensors. Business & Information Systems Engineering, 63(3), pp. 315-323. MENG, W., LI, J., CHEN, B. & LI, H., 2013. Modeling and Simulation of Ethylene Polymerization in Industrial Slurry Reactor Series. Chinese Journal of Chemical Engineering, 21(8),. 21(8), p. 850–859. Muhammad, D., Ahmad, Z. & Aziz, N., 2019. Low density polyethylene tubular reactor control using state space model predictive control. Chemical Engineering Communications, 208(4), pp. 500-516. Muhammad, D., Ahmad, Z. & Aziz, N., 2021. Modeling of low density polyethylene tubular reactor using nonlinear block-oriented model. Material Today: Proceedings , 42(1), pp. 39-44. Neumann, G. A., Finkler, T. F., Cardozo, N. S. M. & Secchi, A. R., 2006. Comparison between Phenomenological and Empirical Models for Gas-Phase Polymerization Process Control. Industrial & Engineering Chemistry Research, 45(8), pp. 2651-2660. Neumann, G. A. & Moreira, I. d. S., 2015. CS06 - Braskem Uses Model Predictive Control. Chicago, IL. USA, Process Week 2015 - Rockwell. Nogueira, I. B. et al., 2020. A Robustly Model Predictive Control Strategy Applied in the Control of a simulated industrial polyethylene polymerization process. Computers & Chemical Engineering, Volume 133, p. 106664. Nogueira, I. B. et al., 2017. A model-based approach to quality monitoring of a polymerization process without online measurement of product specifications. Computers and Industrial Engineering, 106(C), pp. 123-136. Qin, S. & Badgwell, T. A., 2003. A survey of industrial model predictive control technology. Control Engineering Pratice, 11(7), p. 733–764. Seki, H. et al., 2000. A nonlinear predictive control for optimal grade transition of polymerization reactors. IFAC Proceedings Volumes, 33(10), pp. 701-706. Seki, H. et al., 2001. Industrial application of a nonlinear model predictive control to polymerization reactors. Control Engineering Pratice, 9(8), pp. 819-828. Skålén, S., Josefsson, F. & Ihrström, J., 2016. Nonlinear MPC for grade transitions in an industrial LDPE tubular reactor. IFAC-PapersOnLine, 49(7), p. 562–567. Strom, E. T. & Rasmussen, S. C., 2011. The History of Polyethylene. s.l., s.n., pp. Capítulo 9, 115–145. Wang, Y. et al., 2000. A nonlinear predictive control for optimal grade transition of polymerization reactors. IFAC Proceedings Volumes, 33(10), pp. 701-706. Zhao, Z. & Cui, M., 2011. Polymer properties on-line estimation for gas-phase polyethylene based on particle filtering joint estimation. 9th World Congress on Intelligent Control and Automation, pp. 505-510. Braskem; http://www.braskem.com.br/busca-de-produtos; Acesso em 13 fev. 2020. Embiruçu, M., “Nota de aula: Estimativa de Benefícios em Projetos de Controle Automático de Processos”, PEI, UFBA, Salvador/BA, Brasil, 2002. Huizena, D.; Chornoby, K.; Engelmann, Paul V.; “Optimization of performance characteristics of LDPE/LLDPE blends in blown film extrusion", Western Michigan University, EUA, 1990. Lima, Aline F., “Produção de copolímeros contendo olefinas e diolefinas com catalisadores ziegler-natta”, Dissertação de M.Sc., COPPE/UFRJ, Rio de Janeiro/RJ, Brasil, 2010, 11-19. Montgomery, D. C. Introduction to statistical quality control. 6ª Ed. New York: John Wiley & Sons, 2009. Remer, Donald S., Nieto, Armando P.; “A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods”; Int. J. Production Economics 42, 79-96, 1995. Santos, Rita de Cássia dos., “Caracterização vibracional e térmica de blendas de LDPE e m-LLDPE” [doi:10.11606/D.46.2005.tde-06032007-220909]. São Paulo: Instituto de Química, Universidade de São Paulo, 2005. Dissertação de Mestrado em Físico-Química. Vagas; https://www.vagas.com.br/cargo/engenheiro-de-processos; Acesso em 13 out. 2020. Xu, F.; Huang, B.; Akande, S.; “Performance Assessment of Model Pedictive Control for Variability and Constraint Tuning”, Industrial & Engineering Chemistry Research, 46(4), 1208–1219, 2007. TCU;http://portal.tcu.gov.br/lumis/portal/file/fileDownload.jsp?fileId=8A8182A155F0 B71C0156049CA21F7ADF; Acesso em 10 out. 2020. American Society for Testing and Materials, 2020a. Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. s.l.:ASTM 1238-20. American Society for Testing and Materials, 2020b. Standard Specification for Polyethylene Plastics Molding and Extrusion Materials. s.l.:ASTM D4976-12a. Basheer, I. & Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, design, and application,. Journal of Microbiological Methods 43, pp. 3-31. Belciug, S., 2020. Artificial Intelligence in Cancer: Diagnostic to Tailored Treatment. Academic Press. Beleites, C., Salzer, R. & Sergo, V.m 2013. Validation of soft classification models using partial class memberships: An extended concept of sensitivity & co. applied to grading of astrocytoma tissues. Chemometrics and Intelligent Laboratory Systems, vol. 122, pp. 12–22. Braga, A. d. P., Carvalho, A. P. & Ludermir, T. B., 2000. Redes Neurais Artificiais – Teoria e Aplicações. s.l.:Livros Técnicos eCientíficos Editora S.A.. Braga, J. M., 2002. Introdução às Redes Neurais Artificiais. s.l.:UFSC. Braskem, s.d. Catálogo de Produtos. [Online] Available at: https://www.braskem.com.br/catalogo-de-produtos?key=5 [Acesso em 05 01 2021]. Carraher, C. E. & Seymour, R. B., 1984. Structure - Property Relationships in Polymers. s.l.:Springer. Christopher, F. & Patil, S., 2002. Identification and Review of Sensitivity Analysis Methods. Rick Analysis, pp. 553-578. Croux, C. & Dehon, C., 2010. Influence functions of the Spearman and Kendall correlation measures. Statistical Methods and Applications, pp. 497-515. Cun, Y. L., Louretzky, L., Hinton, G. & Sejnowski, T., 1988. A theoretical framework for back-propagation. Pittsburgh, Pa, Morgan Kaufmann, pp. 21-28. DasGupta, B. & Schnitger, G., 1993. The Power of Approximating: A Comparison of Activation Functions.. Advances in Neural Information Processing Systems, pp. 615-622, San Mateo, CA. Morgan Kaufmann. Embiruçu, M., Lima, E. L. & Pinto, J. C., 2000. Continuous Soluble Ziegler-Natta Ethylene Polymerizations in Reactor Trains. Mathematical Modeling”, Journal of Applied Polymer Science, pp. Vol.77, 1574–1590. Ferreira, L. S., Marcon, S. M., Trierweiler, J. O. & Secchi, A. R., 2002. Desenvolvimento de um software de analisador virtual para bioprocessos. Porto Alegre, s.n.. Frey, H. C., Mokhtari, A. & Zheng, J., 2004. Recommended Practice Regarding Selection, Application, and Interpretation of Sensitivity Analysis Methods Applied to Food Safety Process Risk Models. Washington, D.C 148: North Carolina State University for U.S. Department of Agriculture. Frey, H. C. & Patil, S. R., 2002. Identification and Review of Sensitivity Analysis Methods. Risk Analysis, pp. Vol. 22, No. 3. Frey, H., Mokhtari, A. & Danish, T., 2003. Evaluation of Selected Sensitivity Analysis Methods Based Upon Applications to Two Food Safety Process Risk Models. Washington, DC: NC State University for U.S. Department of Agriculture. Hagan, M. T. & Menhaj, M. B., 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, pp. 989-993. Hair, J. F. et al., 2006. Análise multivariada de dados. s.l.:6a edição - Bookman. Hamby, D., 1995. A comparison of sensitivity analysis techniques. Health Phys, p. 68(2):195–204. Haykin, S., 1999. Neural Network: A Comprehensive Fundation. s.l.:Prentice Hall International Editions Series. Hecht-Nielsen, R., 1989. Theory of the Backpropagation Neural Network. s.l., s.n., p. 593–611. Hinkle, D. E., Wiersma, W. & Stephen G. J., 2003. Applied Statistics for the Behavioral Sciences. s.l.:5th ed. Boston: Houghton Mifflin. Hornik, K., Stinchcombe, M. & White, H., 1989. Multilayer Feedforward Networks are Universal Approximators. Neural Networks, p. 359. Lotufo, F. A. & Garcia, C., 2008. Sensores Virtuias ou Soft Senros: Uma introdução. s.l., s.n. Ludermir, T. B., Yamazaki, A. & Zanchettin, C., 2006. An Optimization Methodology for Neural Network Weights and Architectures. IEEE transactions on neural networks, pp. vol. 17, no. 6. Mccullock, W. S. & Pitts, W., 1943. A logical Calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, vol. 5,, pp. 115-133. Moore, D. S. & Mccabe, G. P., 2002. Introdução à prática da Estatística. s.l.:1a Edição, LTC. Nazghelichi, T., Aghbashlo, M. & Kianmehr, M. H., 2011. Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture, p. 84–91. Nogueira, I. B. R., 2016. Estimação de Parâmetros, Inferência e Controle de Propriedades de Qualidade de um Processo de Copolimerização de Eteno. s.l.:Dissertação de Mestrado, Universidade Federal da Bahia - UFBA - Escola Politécnica. Nogueira, I. et al., 2017. A model-based approach to quality monitoring of a polymerization process without online measurement of product specifications. Computers & Industrial Engineering, pp. 123-136. Peacock, A., 2000. Handbook of Polyethylene Structures: Properties, and Applications,. New York: 1st Edition, Marcel Dekker. Pianosi, F. et al., 2016. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, pp. 79, 214-232. Rafiq, M., Bugmann, G. & Easterbrook, D., 2001. Neural network design for engineering applications. Computers & Structures, pp. 79(17), 1541–1552. Saltelli, A., 2002. Sensitivity analysis for importance assessment. Risk Analysis, pp. 22(3): 579-590. Schenker, B. & Agarwal, M., 1996. Cross-validated structure selection for neural networks. Computers & Chemical Engineering, pp. v. 20, n. 2, p. 175–186. Schober, P., Boer, C. & Schwarte, L. A., 2018. Correlation coefficients: appropriate use and interpretation. Anesth Analg, vol. 126, pp. 1763–1768. Sprent, P. & Smeeton, N. C., Applied nonparametric statistical methods, 2001: 3rd ed. P. Sprent, N. C. Smeeton. Swinscow, T. & Campbell. M. J., 1997. Statistics at square one. s.l.:9° Edition. Copyright BMJ Publishing Group. Tetko, I. V., Livingstone, D. J. & Luik, A. I., 1995. Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Modeling, pp. 35(5), 826. Vieira, R., Embiruçu, M., Sayer, C., Pinto, J. C. & Lima, E. L., 2003. Control strategies for complex chemical processes. Applications in polymerization processes. Computers and Chemical Engineering, pp. 27(8-9), 1307–1327. Wang, L., 2009. Model Predictive Control System Design and Implementation Using MATLAB. s.l.: 9° Edition - Springer. Embiruçu, M., 1998. Modelagem, Estimação e Controle em Reatores Industriais de Polimerização de Eteno com Catálise Ziegler-Natta Solúvel. Tese D.Sc., PEQ-COPPE-UFRJ. Embiruçu, M.; Lima, E. L.; Pinto, J. C., 2000. Continuous Soluble Ziegler-Natta Ethylene Polymerizations in Reactor Trains- I. Mathematical Modeling. Journal of Applied Polymer Science (Print), v. 77, p. 1574-1590. Embiruçu, M.; Prata, D. M.; Lima, E. L.; Pinto, J. C., 2008a. Continuous Soluble Ziegler-Natta Ethylene Polymerizations in Reactor Trains, Part 2: Estimation of Kinetic Parameters from Industrial Data. Macromolecular Reaction Engineering, v. 2, p. 142-160. Embiruçu, M.; Pontes, K.; Lima, E. L.; Pinto, J. C., 2008b. Continuous Soluble Ziegler-Natta Ethylene Polymerizations in Reactor Trains, Part 3: Influence of Operation Conditions upon Process Performance. Macromolecular Reaction Engineering, v. 2, p. 161-175. Maciejowski, J. M., 2002. Predictive control: with constraints. s.l.:Pearson education. Pontes, K. V.; Cavalcanti, M.; Maciel Filho, R.; Embiruçu, M., 2010. Modeling and Simulation of Ethylene and 1-Butene Copolymerization in Solution with a Ziegler-Natta Catalyst. International Journal of Chemical Reactor Engineering, v. 8, p. A7.pt_BR
dc.type.degreeMestrado Profissionalpt_BR
Aparece nas coleções:Dissertação de Mestrado Profissional (PEI)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
MSc_Analisadores Virtuais e Controle Avançado para uma Planta Industrial de Polietileno Linear e Avaliação de seus Benefícios Econômicos.pdf10,49 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Este item está licenciada sob uma Licença Creative Commons Creative Commons