dc.relation.references | ALEEM, S.; CAPRETZ, L. F.; AHMED, F. Game development software engineering
process life cycle: a systematic review. Journal of Software Engineering Research and
Development, SpringerOpen, v. 4, n. 1, p. 6, 2016.
ALHA, K. et al. Free-to-play games: Professionals’ perspectives. Proceedings of nordic
DiGRA, v. 2014, 2014.
ANDRADE, L. A. Jogos pervasivos: Educação, cultura e cidade digital. Revista Opara,
v. 3, n. 1, 2013.
BORBORA, Z. H.; SRIVASTAVA, J. User behavior modelling approach for churn prediction
in online games. In: IEEE. Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 International Confernece on Social Computing
(SocialCom). [S.l.], 2012. p. 51–60.
CAILLOIS, R. Man, play, and games. [S.l.]: University of Illinois Press, 1961.
CASTRO, E. G.; TSUZUKI, M. S. Churn prediction in online games using players’ login
records: A frequency analysis approach. IEEE Transactions on Computational Intelligence
and AI in Games, IEEE, v. 7, n. 3, p. 255–265, 2015.
CHAWLA, N. V. et al. Smote: synthetic minority over-sampling technique. Journal of
artificial intelligence research, v. 16, p. 321–357, 2002.
DEMEDIUK, S. et al. Player retention in league of legends: a study using survival
analysis. In: Proceedings of the Australasian computer science week multiconference. [S.l.:
s.n.], 2018. p. 1–9.
DRACHEN, A.; EL-NASR, M. S.; CANOSSA, A. Game analytics – the basics. In:
. Game Analytics: Maximizing the Value of Player Data. London: Springer London,
2013. p. 13–40. ISBN 978-1-4471-4769-5. Disponível em: <https://doi.org/10.1007/
978-1-4471-4769-5\_2>.
DRACHEN, A. et al. Rapid prediction of player retention in free-to-play mobile games.
arXiv preprint arXiv:1607.03202, 2016.
EL-NASR, M. S.; DRACHEN, A.; CANOSSA, A. Introduction. In: . Game Analytics:
Maximizing the Value of Player Data. London: Springer London, 2013. p. 3–12.
ISBN 978-1-4471-4769-5. Disponível em: <https://doi.org/10.1007/978-1-4471-4769-5\
_1>.EL-NASR, M. S.; DRACHEN, A.; CANOSSA, A. Game analytics. [S.l.]: Springer, 2016.
ENGSTRÖM, H. et al. Game development from a software and creative product perspective:
A quantitative literature review approach. Entertainment Computing, Elsevier,
v. 27, p. 10–22, 2018.
ERDEM, A. N.; HALICI, U. Applying computational aesthetics to a video game application
using machine learning. IEEE Computer Graphics and Applications, IEEE, v. 36,
n. 4, p. 23–33, 2016.
FARRIER, M. et al. Game development. 2012.
GAGNÉ, A. R.; EL-NASR, M. S.; SHAW, C. D. A deeper look at the use of telemetry
for analysis of player behavior in rts games. In: SPRINGER. International Conference
on Entertainment Computing. [S.l.], 2011. p. 247–257.
GARETH, J. et al. An introduction to statistical learning: with applications in R. [S.l.]:
Spinger, 2013.
HADIJI, F. et al. Predicting player churn in the wild. In: IEEE. Computational intelligence
and games (CIG), 2014 IEEE conference on. [S.l.], 2014. p. 1–8.
HAMARI, J. et al. Why do players buy in-game content? an empirical study on concrete
purchase motivations. Computers in Human Behavior, Elsevier, v. 68, p. 538–546, 2017.
HAMARI, J.; HANNER, N.; KOIVISTO, J. Service quality explains why people use
freemium services but not if they go premium: An empirical study in free-to-play games.
International Journal of Information Management, Elsevier, v. 37, n. 1, p. 1449–1459,
2017.
HUIZINGA, J. Homo ludens: o jogo como elemento da cultura. [S.l.]: Editora da Universidade
de S. Paulo, Editora Perspectiva, 1971.
HULLETT, K. et al. Empirical analysis of user data in game software development.
In: IEEE. Empirical Software Engineering and Measurement (ESEM), 2012 ACM-IEEE
International Symposium on. [S.l.], 2012. p. 89–98.
KITCHENHAM STUART CHARTERS, D. B. P. B. M. T. S. L. M. J. E. M. G. V. B.
Guideline for performing systematic literature reviews in software engineering. School of
Computer Science and Mathematics Keele University, v. 2007, 2007.
KOULIERIS, G. A. et al. Gaze prediction using machine learning for dynamic stereo
manipulation in games. In: IEEE. 2016 IEEE virtual reality (VR). [S.l.], 2016. p. 113–
120.
LEE, S.-K. et al. Predicting churn in mobile free-to-play games. In: IEEE. Information
and Communication Technology Convergence (ICTC), 2016 International Conference on.
[S.l.], 2016. p. 1046–1048.LI, S.; CHEN, C. Interest scheme: A new method for path prediction. In: Proceedings
of 5th ACM SIGCOMM workshop on Network and system support for games. [S.l.: s.n.],
2006. p. 41–es.
LIM, C.-U.; HARRELL, D. F. Modeling player preferences in avatar customization using
social network data: A case-study using virtual items in team fortress 2. In: IEEE. 2013
IEEE Conference on Computational Inteligence in Games (CIG). [S.l.], 2013. p. 1–8.
MAHLMANN, T. et al. Predicting player behavior in tomb raider: Underworld. In: IEEE.
Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games.
[S.l.], 2010. p. 178–185.
MILOŠEVIĆ, M.; ŽIVIĆ, N.; ANDJELKOVIĆ, I. Early churn prediction with personalized
targeting in mobile social games. Expert Systems with Applications, Elsevier, v. 83,
p. 326–332, 2017.
OLIVEIRA, J. K. Coerção, manipulação e tecnologia: estratégias de monetização em
jogos free-to-play. Universidade Federal de São Carlos, 2022.
PAAVILAINEN, J. et al. Social network games: Players’ perspectives. Simulation &
Gaming, SAGE Publications Sage CA: Los Angeles, CA, v. 44, n. 6, p. 794–820, 2013.
PERIÁÑEZ, Á. et al. Churn prediction in mobile social games: towards a complete
assessment using survival ensembles. In: IEEE. Data Science and Advanced Analytics
(DSAA), 2016 IEEE International Conference on. [S.l.], 2016. p. 564–573.
PETERSEN, K. et al. Systematic mapping studies in software engineering. In: 12th
International Conference on Evaluation and Assessment in Software Engineering (EASE)
12. [S.l.: s.n.], 2008. p. 1–10.
RAMADAN, R.; WIDYANI, Y. Game development life cycle guidelines. In: IEEE. Advanced
Computer Science and Information Systems (ICACSIS), 2013 International Conference
on. [S.l.], 2013. p. 95–100.
RUNGE, J. et al. Churn prediction for high-value players in casual social games. In:
IEEE. Computational Intelligence and Games (CIG), 2014 IEEE Conference on. [S.l.],
2014. p. 1–8.
SALEN, K.; ZIMMERMAN, E. Rules of play: Game design fundamentals. [S.l.]: MIT
press, 2004.
SHEN, C.; WILLIAMS, D. Unpacking time online: Connecting internet and massively
multiplayer online game use with psychosocial well-being. Communication Research, Sage
Publications Sage CA: Los Angeles, CA, v. 38, n. 1, p. 123–149, 2011.
SIFA, R. et al. Customer lifetime value prediction in non-contractual freemium settings:
Chasing high-value users using deep neural networks and smote. In: Proceedings of the
51st Hawaii International Conference on System Sciences. [S.l.: s.n.], 2018.SIFA, R. et al. Predicting retention in sandbox games with tensor factorization-based
representation learning. In: IEEE. 2016 IEEE Conference on Computational Intelligence
and Games (CIG). [S.l.], 2016. p. 1–8.
TAMASSIA, M. et al. Predicting player churn in destiny: A hidden markov models
approach to predicting player departure in a major online game. In: IEEE. Computational
Intelligence and Games (CIG), 2016 IEEE Conference on. [S.l.], 2016. p. 1–8.
TYCHSEN, A. Crafting user experience via game metrics analysis. In: Workshop Research
Goals and Strategies for Studying User Experience and Emotion, part of NordiCHI
2008. [S.l.: s.n.], 2008.
VELLOSO, L. M. R. O espaço nos videogames: dentro e fora do círculo mágico. Tese
(Doutorado) — Universidade de São Paulo, 2017.
VILJANEN, M. et al. Playtime measurement with survival analysis. IEEE Transactions
on Games, IEEE, v. 10, n. 2, p. 128–138, 2017.
VILJANEN, M. et al. Modelling user retention in mobile games. In: IEEE. 2016 IEEE
Conference on Computational Intelligence and Games (CIG). [S.l.], 2016. p. 1–8.
VINKEMEIER, D.; VALSTAR, M.; GRATCH, J. Predicting folds in poker using action
unit detectors and decision trees. In: IEEE. 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018). [S.l.], 2018. p. 504–511.
WEBER, B. G. et al. Modeling player retention in madden nfl 11. In: IAAI. [S.l.: s.n.],
2011.
XIE, H.; DEVLIN, S.; KUDENKO, D. Predicting disengagement in free-to-play games
with highly biased data. In: Twelfth Artificial Intelligence and Interactive Digital Entertainment
Conference. [S.l.: s.n.], 2016.
XIE, H. et al. Predicting player disengagement and first purchase with event-frequency
based data representation. In: IEEE. 2015 IEEE Conference on Computational Intelligence
and Games (CIG). [S.l.], 2015. p. 230–237. | pt_BR |