Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/39883
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAlmeida, Iury Maia de-
dc.date.accessioned2024-08-15T12:52:51Z-
dc.date.available2024-08-15T12:52:51Z-
dc.date.issued2023-12-21-
dc.identifier.citationALMEIDA, Iury Maia de. Predição da evasão de jogadores em jogo grátis-para-jogar utilizando game analytics. 2023. 70 f. Dissertação (Mestrado em Ciência da Computação), Instituto de Computação, Universidade Federal da Bahia, Salvador (Bahia), 2023.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/39883-
dc.description.abstractThe issue of player churn in free-to-play games poses a significant challenge in the electronic gaming industry. The growing popularity of these business models, where players can access the game for free, places a crucial emphasis on retaining these users to ensure the financial success and sustainability of the game. In this scenario, predictive analysis emerges as an essential tool to anticipate and understand the patterns of player churn. This study began with a systematic literature review in the field of predictive models in game analytics, aiming to answer the main research question: How are predictive models applied in game analytics? The research was conducted based on a protocol that defined the objectives, research questions, and inclusion and exclusion criteria. The main findings indicate that research on predictive models in game analytics has grown significantly since 2010, with a variety of machine learning techniques being applied. Furthermore, the most investigated prediction targets include the probability of winning, churn prediction, and player expertise. Regarding preprocessing techniques, several approaches were identified, such as Principal Component Analysis (PCA) and web scraping techniques. We focused our research on churn prediction, initially by defining churn and establishing cutoff dates, considering multiple time windows for classifying players as churned or recurrent. The analysis addressed the validity threats of the work, including churn definition issues, class imbalance, and the use of techniques like SMOTE to balance the data. Six machine learning models were evaluated, with an emphasis on metrics like accuracy, precision, recall, and AUC (Area Under the Curve). The 10-fold cross-validation technique was applied to validate the models, providing a more comprehensive view of their performance. The analysis of feature importance revealed which player characteristics were most relevant for churn prediction, although the interpretation of these features was highlighted as context-dependent. Ultimately, the work offered promising insights into the prediction of player churn in free-to-play games but emphasized the need for careful approaches and contextual considerations to mitigate validity threats and ensure the generalization of models to different datasets and time periods.pt_BR
dc.description.sponsorshipFAPESB - Fundação de Amparo à Pesquisa do Estado da Bahiapt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectModelos preditivospt_BR
dc.subjectGame analyticspt_BR
dc.subjectAprendizado de máquinapt_BR
dc.subjectJogos eletrônicospt_BR
dc.subjectPredição de evasãopt_BR
dc.subject.otherPredictive modelspt_BR
dc.subject.otherGame analyticspt_BR
dc.subject.otherMachine learningpt_BR
dc.subject.otherElectronic gamespt_BR
dc.subject.otherChurn predictionpt_BR
dc.titlePredição da evasão de jogadores em jogo grátis-para-jogar utilizando game analytics.pt_BR
dc.title.alternativePlayer evasion prediction in free-to-play game using game analytics.pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência da Computação (PGCOMP) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
dc.contributor.advisor1Souza, Rodrigo Rocha Gomes e-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-8186-0069pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7697794806460975pt_BR
dc.contributor.referee1Souza, Rodrigo Rocha Gomes e-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-8186-0069pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7697794806460975pt_BR
dc.contributor.referee2Motta, Tiago Oliveira-
dc.contributor.referee2IDhttps://orcid.org/0000-0001-6054-6046pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6923977651005774pt_BR
dc.contributor.referee3Alves, Lynn Rosalina Gama-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-3688-3506pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2226174429595901pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/0681342881591253pt_BR
dc.description.resumoA problemática da evasão de jogadores em jogos grátis-para-jogar representa um desafio significativo na indústria de jogos eletrônicos. A crescente popularidade desses modelos de negócios, nos quais os jogadores podem acessar o jogo gratuitamente, coloca uma ênfase crucial na retenção desses usuários para garantir o sucesso financeiro e a sustentabilidade do jogo. Nesse cenário, a análise preditiva emerge como uma ferramenta essencial para antecipar e compreender os padrões de evasão. O trabalho começou com um mapeamento sistemático de literatura no campo de modelos preditivos em game analytics, visando responder à principal questão de pesquisa, Como modelos preditivos estão sendo aplicados em game analytics?. A pesquisa foi conduzida com base em um protocolo que definiu os objetivos, questões de pesquisa e critérios de inclusão e exclusão. Os principais resultados indicam que a pesquisa sobre modelos preditivos em game analytics tem crescido significativamente desde 2010, com uma variedade de técnicas de aprendizado de máquina sendo aplicadas. Além disso os objetos de predição mais investigados incluem a probabilidade de vitória, a predição de evasão e a perícia do jogador. Quanto às técnicas de pré-processamento, foram identificadas várias abordagens, como análise de componentes principais (PCA) e técnicas de raspagem da web (web scraping). Focamos nossa pesquisa em predição de evasão, inicialmente pela definição de evasão e estabelecimento de datas de corte, com a consideração de múltiplas janelas de tempo para classificação dos jogadores como evadidos ou recorrentes. A análise abordou as ameaças à validade do trabalho, incluindo questões de definição de evasão, desequilíbrio de classes e o uso de técnicas como o SMOTE para balancear os dados. Foram avaliados seis modelos de aprendizado de máquina, com ênfase em métricas como acurácia, precisão, recall e AUC (Area Under the Curve). A técnica de 10-fold cross validation foi aplicada para validar os modelos, proporcionando uma visão mais abrangente de seu desempenho. A análise da importância das features revelou quais características dos jogadores eram mais relevantes para a previsão da evasão, embora a interpretação dessas features tenha sido destacada como dependente do contexto do jogo. Em última análise, o trabalho ofereceu insights promissores para a previsão de evasão de jogadores em jogos grátis-para-jogar, mas ressaltou a necessidade de abordagens cuidadosas e considerações contextuais para mitigar ameaças à validade e garantir a generalização dos modelos para diferentes conjuntos de dados e períodos no tempo.pt_BR
dc.publisher.departmentInstituto de Computação - ICpt_BR
dc.relation.referencesALEEM, S.; CAPRETZ, L. F.; AHMED, F. Game development software engineering process life cycle: a systematic review. Journal of Software Engineering Research and Development, SpringerOpen, v. 4, n. 1, p. 6, 2016. ALHA, K. et al. Free-to-play games: Professionals’ perspectives. Proceedings of nordic DiGRA, v. 2014, 2014. ANDRADE, L. A. Jogos pervasivos: Educação, cultura e cidade digital. Revista Opara, v. 3, n. 1, 2013. BORBORA, Z. H.; SRIVASTAVA, J. User behavior modelling approach for churn prediction in online games. In: IEEE. Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom). [S.l.], 2012. p. 51–60. CAILLOIS, R. Man, play, and games. [S.l.]: University of Illinois Press, 1961. CASTRO, E. G.; TSUZUKI, M. S. Churn prediction in online games using players’ login records: A frequency analysis approach. IEEE Transactions on Computational Intelligence and AI in Games, IEEE, v. 7, n. 3, p. 255–265, 2015. CHAWLA, N. V. et al. Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, v. 16, p. 321–357, 2002. DEMEDIUK, S. et al. Player retention in league of legends: a study using survival analysis. In: Proceedings of the Australasian computer science week multiconference. [S.l.: s.n.], 2018. p. 1–9. DRACHEN, A.; EL-NASR, M. S.; CANOSSA, A. Game analytics – the basics. In: . Game Analytics: Maximizing the Value of Player Data. London: Springer London, 2013. p. 13–40. ISBN 978-1-4471-4769-5. Disponível em: <https://doi.org/10.1007/ 978-1-4471-4769-5\_2>. DRACHEN, A. et al. Rapid prediction of player retention in free-to-play mobile games. arXiv preprint arXiv:1607.03202, 2016. EL-NASR, M. S.; DRACHEN, A.; CANOSSA, A. Introduction. In: . Game Analytics: Maximizing the Value of Player Data. London: Springer London, 2013. p. 3–12. ISBN 978-1-4471-4769-5. Disponível em: <https://doi.org/10.1007/978-1-4471-4769-5\ _1>.EL-NASR, M. S.; DRACHEN, A.; CANOSSA, A. Game analytics. [S.l.]: Springer, 2016. ENGSTRÖM, H. et al. Game development from a software and creative product perspective: A quantitative literature review approach. Entertainment Computing, Elsevier, v. 27, p. 10–22, 2018. ERDEM, A. N.; HALICI, U. Applying computational aesthetics to a video game application using machine learning. IEEE Computer Graphics and Applications, IEEE, v. 36, n. 4, p. 23–33, 2016. FARRIER, M. et al. Game development. 2012. GAGNÉ, A. R.; EL-NASR, M. S.; SHAW, C. D. A deeper look at the use of telemetry for analysis of player behavior in rts games. In: SPRINGER. International Conference on Entertainment Computing. [S.l.], 2011. p. 247–257. GARETH, J. et al. An introduction to statistical learning: with applications in R. [S.l.]: Spinger, 2013. HADIJI, F. et al. Predicting player churn in the wild. In: IEEE. Computational intelligence and games (CIG), 2014 IEEE conference on. [S.l.], 2014. p. 1–8. HAMARI, J. et al. Why do players buy in-game content? an empirical study on concrete purchase motivations. Computers in Human Behavior, Elsevier, v. 68, p. 538–546, 2017. HAMARI, J.; HANNER, N.; KOIVISTO, J. Service quality explains why people use freemium services but not if they go premium: An empirical study in free-to-play games. International Journal of Information Management, Elsevier, v. 37, n. 1, p. 1449–1459, 2017. HUIZINGA, J. Homo ludens: o jogo como elemento da cultura. [S.l.]: Editora da Universidade de S. Paulo, Editora Perspectiva, 1971. HULLETT, K. et al. Empirical analysis of user data in game software development. In: IEEE. Empirical Software Engineering and Measurement (ESEM), 2012 ACM-IEEE International Symposium on. [S.l.], 2012. p. 89–98. KITCHENHAM STUART CHARTERS, D. B. P. B. M. T. S. L. M. J. E. M. G. V. B. Guideline for performing systematic literature reviews in software engineering. School of Computer Science and Mathematics Keele University, v. 2007, 2007. KOULIERIS, G. A. et al. Gaze prediction using machine learning for dynamic stereo manipulation in games. In: IEEE. 2016 IEEE virtual reality (VR). [S.l.], 2016. p. 113– 120. LEE, S.-K. et al. Predicting churn in mobile free-to-play games. In: IEEE. Information and Communication Technology Convergence (ICTC), 2016 International Conference on. [S.l.], 2016. p. 1046–1048.LI, S.; CHEN, C. Interest scheme: A new method for path prediction. In: Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games. [S.l.: s.n.], 2006. p. 41–es. LIM, C.-U.; HARRELL, D. F. Modeling player preferences in avatar customization using social network data: A case-study using virtual items in team fortress 2. In: IEEE. 2013 IEEE Conference on Computational Inteligence in Games (CIG). [S.l.], 2013. p. 1–8. MAHLMANN, T. et al. Predicting player behavior in tomb raider: Underworld. In: IEEE. Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games. [S.l.], 2010. p. 178–185. MILOŠEVIĆ, M.; ŽIVIĆ, N.; ANDJELKOVIĆ, I. Early churn prediction with personalized targeting in mobile social games. Expert Systems with Applications, Elsevier, v. 83, p. 326–332, 2017. OLIVEIRA, J. K. Coerção, manipulação e tecnologia: estratégias de monetização em jogos free-to-play. Universidade Federal de São Carlos, 2022. PAAVILAINEN, J. et al. Social network games: Players’ perspectives. Simulation & Gaming, SAGE Publications Sage CA: Los Angeles, CA, v. 44, n. 6, p. 794–820, 2013. PERIÁÑEZ, Á. et al. Churn prediction in mobile social games: towards a complete assessment using survival ensembles. In: IEEE. Data Science and Advanced Analytics (DSAA), 2016 IEEE International Conference on. [S.l.], 2016. p. 564–573. PETERSEN, K. et al. Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12. [S.l.: s.n.], 2008. p. 1–10. RAMADAN, R.; WIDYANI, Y. Game development life cycle guidelines. In: IEEE. Advanced Computer Science and Information Systems (ICACSIS), 2013 International Conference on. [S.l.], 2013. p. 95–100. RUNGE, J. et al. Churn prediction for high-value players in casual social games. In: IEEE. Computational Intelligence and Games (CIG), 2014 IEEE Conference on. [S.l.], 2014. p. 1–8. SALEN, K.; ZIMMERMAN, E. Rules of play: Game design fundamentals. [S.l.]: MIT press, 2004. SHEN, C.; WILLIAMS, D. Unpacking time online: Connecting internet and massively multiplayer online game use with psychosocial well-being. Communication Research, Sage Publications Sage CA: Los Angeles, CA, v. 38, n. 1, p. 123–149, 2011. SIFA, R. et al. Customer lifetime value prediction in non-contractual freemium settings: Chasing high-value users using deep neural networks and smote. In: Proceedings of the 51st Hawaii International Conference on System Sciences. [S.l.: s.n.], 2018.SIFA, R. et al. Predicting retention in sandbox games with tensor factorization-based representation learning. In: IEEE. 2016 IEEE Conference on Computational Intelligence and Games (CIG). [S.l.], 2016. p. 1–8. TAMASSIA, M. et al. Predicting player churn in destiny: A hidden markov models approach to predicting player departure in a major online game. In: IEEE. Computational Intelligence and Games (CIG), 2016 IEEE Conference on. [S.l.], 2016. p. 1–8. TYCHSEN, A. Crafting user experience via game metrics analysis. In: Workshop Research Goals and Strategies for Studying User Experience and Emotion, part of NordiCHI 2008. [S.l.: s.n.], 2008. VELLOSO, L. M. R. O espaço nos videogames: dentro e fora do círculo mágico. Tese (Doutorado) — Universidade de São Paulo, 2017. VILJANEN, M. et al. Playtime measurement with survival analysis. IEEE Transactions on Games, IEEE, v. 10, n. 2, p. 128–138, 2017. VILJANEN, M. et al. Modelling user retention in mobile games. In: IEEE. 2016 IEEE Conference on Computational Intelligence and Games (CIG). [S.l.], 2016. p. 1–8. VINKEMEIER, D.; VALSTAR, M.; GRATCH, J. Predicting folds in poker using action unit detectors and decision trees. In: IEEE. 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). [S.l.], 2018. p. 504–511. WEBER, B. G. et al. Modeling player retention in madden nfl 11. In: IAAI. [S.l.: s.n.], 2011. XIE, H.; DEVLIN, S.; KUDENKO, D. Predicting disengagement in free-to-play games with highly biased data. In: Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference. [S.l.: s.n.], 2016. XIE, H. et al. Predicting player disengagement and first purchase with event-frequency based data representation. In: IEEE. 2015 IEEE Conference on Computational Intelligence and Games (CIG). [S.l.], 2015. p. 230–237.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PGCOMP)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Capa_Azul_Verso_Final_-_Iury_Maia_-_PREDIO_DA_EVASO_DE_JOGADORES_EM_JOGO_GR.pdf1,3 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.