Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/40062
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSILVA, Lorena Ferraz Santos-
dc.date.accessioned2024-09-02T14:45:51Z-
dc.date.available2024-04-04-
dc.date.available2024-09-02T14:45:51Z-
dc.date.issued2024-01-30-
dc.identifier.citationSILVA, Lorena Ferraz Santos. Aplicação da fibrina rica em plaquetas e a fotobiomodulação na regeneração óssea guaiada: estudo experimental em ratos. Orientadora: Paula Mathias de Morais Canedo. 2023. 61 f. il. Tese (Doutorado em Processos Interativos dos Órgãos e Sistemas) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, 2023.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/40062-
dc.description.abstractIntroduction: Bone loss can result from various etiological factors, such as traumas, pathological injuries, or tissue atrophy following the loss of dental units. The pursuit of improvements that assist or lead to bone repair to restore the anatomical pattern has increased. Autologous platelet-rich fibrin (PRF) membrane has been used to aid this process of bone neoformation, demonstrating good results, as has low-level laser therapy (LLLT).Objective: To investigate the effect of LLLT (λ = 830 nm), with the use of the PRF membrane, on bone neoformation. Methodology: This membrane was obtained from intracardiac puncture of donor rats. A bone defect was created in the calvaria of 48 Wistar rats, which were divided into four groups: D (bone defect), DL (bone defect and laser), DPRF (bone defect and PRF), and DPRFL (defect, PRF, and laser). Six animals from each group were euthanized after 30 and 60 days and processed histologically. Total cell count, presence of angiogenesis, and area of formed bone repair were evaluated. Results: In the analysis between groups, there was a significant difference in the total number of cells between groups D and DPRFL after 30 (p***< 0.001) and 60 days (p**< 0.01), as well as a greater presence of angiogenesis (p**< 0.01). Although the difference was not significant, group DPRFL showed a greater area of repair in bone defect created after 30 days. Conclusion: PRF had a positive effect on bone neoformation, and when associated with LLLT, it showed greater vertical bone thickness.pt_BR
dc.languageporpt_BR
dc.publisherUNIVERSIDADE FEDERAL DA BAHIApt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectFibrina rica em plaquetaspt_BR
dc.subjectLaser de baixa intensidadept_BR
dc.subjectTerapia com Luz de Baixa Intensidadept_BR
dc.subjectRegeneração ósseapt_BR
dc.subjectOdntologiapt_BR
dc.subject.otherPlatelet-Rich Fibrinpt_BR
dc.subject.otherLow-level laser therapypt_BR
dc.subject.otherLow-Level Light Therapypt_BR
dc.subject.otherBone Regenerationpt_BR
dc.subject.otherDentistrypt_BR
dc.titleAplicação da fibrina rica em plaquetas e a fotobiomodulação na regeneração óssea guaiada: estudo experimental em ratospt_BR
dc.title.alternativeApplication of platelet-rich fibrin and photobiomodulation in guided bone regeneration: an experimental study in rats.pt_BR
dc.typeTesept_BR
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDEpt_BR
dc.contributor.advisor1Canedo, Paula Mathias de Morais-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-2589-3760pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2083666798930829pt_BR
dc.contributor.referee1Silveira, Bruno Botto de Barros da-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-4754-3152pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8330266463843507pt_BR
dc.contributor.referee2Pinto Filho, Jorge Moreira-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9493289751416523pt_BR
dc.contributor.referee3Caponi, Lívia Silva Figueiredo e Ribeiro-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3905694837352790pt_BR
dc.contributor.referee4Lima, Max José Pimenta-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-7017-1185pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3501853309630011pt_BR
dc.contributor.referee5Canedo, Paula Mathias de Morais-
dc.contributor.referee5IDhttps://orcid.org/0000-0002-2589-3760pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/2083666798930829pt_BR
dc.creator.Latteshttps://lattes.cnpq.br/7066317798732682pt_BR
dc.description.resumoIntrodução: A perda óssea pode ser resultante de alguns fatores etiológicos, como traumas, lesões patológicas ou atrofia tecidual após a perda das unidades dentárias. A busca por melhorias que auxiliem ou levem ao reparo ósseo para restabelecer o padrão anatômico tem aumentado. A membrana autóloga de fibrina rica em plaquetas tem sido utilizada para auxiliar este processo de neoformação óssea, demonstrando bons resultados, assim como a laserterapia de baixa intensidade. Objetivo: Investigar o efeito da laserterapia de baixa intensidade (λ = 830 nm), com o uso da citada membrana na neoformação óssea. Metodologia: Essa membrana foi obtida a partir de punção intracardíaca de ratos doadores. Um defeito ósseo foi criado na calvária de 48 ratos Wistar. Os animais foram divididos em quatro grupos: D (defeito ósseo), DL (defeito ósseo e laser), DPRF (defeito ósseo e PRF) e DPRFL (defeito, PRF e laser). Seis animais de cada grupo foram eutanasiados após 30 e 60 dias e processados histologicamente. Avaliaram-se contagem total de células, presença de angiogênese e área de reparo ósseo formada. Resultados: Em análise entre os grupos, houve uma diferença significativa no número total de células entre o grupo D e o grupo DPRFL após 30 (p***< 0,001) e 60 dias (p**< 0,01), além de maior presença de angiogênese (p**< 0,01) entre o grupo D e o grupo DPRFL. Embora a diferença não tenha sido significativa, o grupo DPRFL apresentou maior área de reparo em defeito ósseo criado após 30 dias. Conclusão: A membrana autóloga de fibrina rica em plaquetas teve um efeito positivo na neoformação óssea e quando associada à laserterapia de baixa intensidade apresentou maior espessura óssea vertical.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.referencesAbdullah WA. Evaluation of bone regenerative capacity in rats claverial bone defect using platelet rich fibrina with and without beta tri calcium phosphate bone graft material. Saudi Dent J. 2016;28(3):109-17. Almeida JM et al. Influence of lowlevel laser therapy on the healing process of autogenous bone block grafts in the jaws of systemically nicotine-modified rats: a histomorphometric study. Arch Oral Biol. 2017; 75:21–30. Altan AB, Bicakci AA, Avunduk MC, Esen H. The effect of dosage on the efficiency of LLLT in new boné formation at the expanded suture in rats. 2015; 30(1): 255-62. Alzahrani AA, Murriky A, Shafik S. Influ-ence of platelet rich fibrin on post-extraction socket healing: a clinical and radiographic study. Saudi Dent J. 2017; 29:149–55. Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci. 2014; 5(4):163 Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed. Laser Surg. 2015, 33, 183–4. Arakeeb MAA, Zaky AA, Harhash TA, Salem WS, El-Mofty M. Effect of combined application of growth factors and diode laser bio-stimulation on the osseo integration of dental implants. Open Access Maced J Med Sci. 2019. 15; 7(15): 2520–7. Basford JR. Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med. 1995. 16:331-42. Basford, JR. Low intensity laser therapy: Still not an established clinical tool. Lasers Surg. Med. 1995; 16 (4) 331–42. Batista PSC, Sant’ana Filho, Manoel. Avaliação microscópica do processo de reparo em cavidades ósseas submetidas a implante de osso liofilizado bovino. [s.n.t] Belkin M, Schwartz M. New biological phenomena associated with laser radiation. Health Physics. 1989; 56(5): 687-90. Bikmulina PY, Kosheleva NV, Shpichka AI, Efremov YM, Yusupov VI, Timashev os, Rochev YA. Beyond 2D: efeitos da fotobiomodulação em sistemas 3D semelhantes a tecidos. J. Biomédica. Optar.2020,25, 048001. Bosshardt DD, Bornstein MM, Carrel JP, Buser D, Bernard JP. Maxillary sinus graft-ing with a synthetic, nanocrystalline hy-droxyapatite-silicagel in humans: histologic and histomorphometric results. Int J Periodontics Restorative Dent. 2014; 34:259–67. Brawn PR, Kwong-Hing A. Histologic comparison of light emitting diode phototherapy-treated hydroxyapatite-grafted extraction sockets: a same-mouth case study. Implant Dent. 2007;16(2):204–11. Buchaim DV, Andreo JC, Pomini KT, Barraviera B, Ferreira RS, Duarte MAH, Alcalde MP, Reis CHB, Bortoli Teixeira D, Souza Bueno CR et al. A biocomplex to repair experimental critical size defects associated with photobiomodulation therapy. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022; 28:1–14. 53 Castro AB et al. Regenerative potential of leucocyte- and platelet-rich fibrin. Part A: intra-bony defects, furcation defects and periodontal plastic surgery. A systematic review and metaanalysis. J Clin Periodontol. 2017;44(1):67–82. Castro AN, Meschi A, Temmerman et al. Regenerative potential of leucocyte- and plateletrich fibrin. Part B: sinus floor elevation, alveolar ridge preservation and implant therapy. A systematic review, Journal of Clinical, 2017;44 (2): 225-34. Choi K et al. Low-level laser therapy promotes the osteogenic potential of adiposederived mesenchymal stem cells seeded on an acellular dermal matrix, J. Biomed. Mater. Res. B Appl. Biomater. 2013;101(6):919–28. Choukroun J et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:299–303. Choukroun J, Adda F, Shoeffler C, Vervelle A. Uneopportunité en paro-implantologie: le PRF. Implantodontie. 2001;42:55-62. Christensen, K. et al. Autologous platelet gel: an in vitro analysis of platelet-rich plasma using multiple cycles. J. Extra Corpor. Technol. 2006; 38,249–53. Clark D et al. Advanced platelet-rich fibrin and freeze-dried bone allograft for ridge preservation: a randomized controlled clinical trial. J Periodontol. 2018;89(4):379–87. Cobb CM, Low SB, Coluzzi DJ. Lasers and the treatment of chronic periodontitis. Dent Clin North Am. 2020;54:35-5 Cohen, I. K.; Mast, B. A. Models of Wound Healing. The Journal of Trauma: Injury, Infection, and Critical Care. 1990;30:149–54. Colombo E, Signore A, Aicardi S, Zekiy A, Utyuzh A, Benedicenti S, Amaroli A. Aplicações experimentais e clínicas da fotobiomodulação vermelha e infravermelha próxima na disfunção endotelial: uma revisão. Biomedicamentos. 2021;9:274. Comarck DH. Histologia. 9. ed. Rio de Janeiro: Guanabara Koogan;1991. Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol. 1996;23(5):492–6. Della Coletta BB, Jacob TB, Moreira LA C, Pomini KT, Buchaim DV, Eleutério RG, Pereira ESBM, Roque DD, Rosso MPdO, Shindo JVTC et al. Photobiomodulation therapy on the guided bone regeneration process in defects filled by biphasic calcium phosphate associated with fibrin biopolymer. Molecules. 2021;26:847. Dohan DM et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:37–44. Dohan EDM, Del Corso M, Diss A, Mouhyi J, Charrie JB. Three-dimensional architecture and cell composition of a choukroun’s platelet-rich fibrin clot and membrane. J. Periodontol. 2010;81(4):546-55. Dohan Ehrenfest, David M. How to optimize the preparation of leukocyte and plateletrich fibrin (L-PRF, Choukroun’s technique) clots and membranes: introducing the PRF box. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology. 2010;110(3):275-8. 54 Dragonas P, Katsaros T, Avila-Ortiz G, Chambrone L, Schiavo JH, Palaiologou A5. Effects of leukocyte–platelet- rich fibrin (L-PRF) in different intraoral bone grafting procedures: a systematic review Int J Oral Maxillofac Surg. 2019;48(2):250-62. Eshghpour M, Dastmalchi P, Nekooei AH, Nejat A. Effect of platelet-rich fibrin on frequency of alveolar osteitis following mandibular third molar surgery: a doubleblinded randomized clinical trial. J Oral Maxillofac Surg. 2014;72:1463–7. Freitas Dutra J E, Hidd SMCM, Amaral MM, Filho ALMM, Assis L, Ferreira RS, Barraviera B, Martignago CCS, Figueredo-Silva J, Oliveira RA et al. Tratamento da lesão parcial do tendão calcâneo com biopolímero heterólogo de fibrina e/ou fotobiomodulação em ratos. Lasers Med. Ciência. 2022;37:971–81. Freitas NC et al. Evaluation of photobiomodulation therapy associated with guided bone regeneration in critical size defects. In vivo study. J. Appl. Oral Sci. 2017;26. Fujioka-Kobayashi M, Miron RJ, Hernandez M, Kandalam U, Zhang Y, Choukroun J Optimized platelet-rich fibrin with the low-speed concept: growth factor release, biocompatibility, and cellular response. J Periodontol. 2017;88:112–21. Fukuhara E, Goto T, Matayoshi T, Kobayashi S, Takahashi T. Optimal low-energy laser irradiation causes temporal G2/Marrest on rat calvarial osteoblasts. Calcif Tissue Int. 2006;79(6):443–50. Galav S, Chandrashekar KT, Mishra R, Tripathi V, Agarwal R, Galav A. Comparative evaluation of platelet-rich fibrin and autogenous bone graft for the treatment of infrabony defects in chronic periodontitis: Clinical, radiological, and surgical reentry. Indian J Dent Res. 2016;27(5):502-7. Gassling V et al. Comparison of two different absorbable membranes for the coverage of lateral osteotomy sites in maxillary sinus augmen-tation: a preliminary study. J Craniomaxil- lofac Surg. 2013; 41:76–82. Gassling V, Douglas T, Warnke PH, Acil Y, Wiltfang J, Becker ST. Platelet-rich fibrin membranes as scaffolds for periosteal tissue engineering. Clin Oral Implants Res 2010;21:543–9. Gassling V, Hedderich J, Acil Y, Purcz N, Wiltfang J, Douglas T. Comparison of platelet rich fibrin and collagen as osteoblast-seeded scaffolds for bone tissue engineering applica-tions. Clin Oral Implants Res. 2013;24:320–8. Ghahroudi AAR et al. Effect of low-level laser therapy irradiation and Bio-Oss graft material on the osteogenesis process in rabbit calvarium defects: a double blind experimental study, Lasers Med. Sci. 2014;29(3):925–32. Ghanaati S et al. Advanced plateletrich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40:679–89. Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep. 2017; 16(6):87-100. Gibble JW, Ness PM. Fibrin glue: The perfect operative sealant? Transfusion, 1990;30(8): 741-7. 55 Goulart CS, Nouer PRA, Martins LM, Garbin IU, Lizarelli RFZ. Photoradiation and orthodontic movement: experimental study with canines. Photomed Laser Surg. 2006; 24:192–6. Gross AJ, Jelkmann W. Helium-neon laser irradiation inhibits the growth of kidney epithelial cells in culture. Lasers Surg Med. 1990;10:40-1. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci 2006 Dec;1092:385-96. Hamad SA, Naif JS, Abdullah MA. Effect of diode laser on healing of tooth extraction socket: an experimental study in rabbits. J Maxillofac Oral Surg. 2016;15(3):308–14. Hamblin, M.R. Photobiomodulation or low-level laser therapy. J. Biophotonics 2016; 9: 1122–4. Han M, Fang H, Li QL, Cao Y, Xia R, Zhang ZH. Effectiveness of laser therapy in the management of recurrent aphthous stomatitis: a systematic review. Scientifica (Cairo) 2016;906-2430. Hoaglin DR, Lines GK. Prevention of localized osteitis in mandibular third-molar sites using platelet-rich fibrin. Int J Dent. 2013;2013:875. Huang YY, Chen AC-H, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7(4):358–83. Huertas RM, Luna-Bertos ED, Ramos-Torrecillas J, Leyva FM, Ruiz C, GarciaMartinez O. Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs. 2014;16(2):191. Inchingolo F, Hazballa D, Inchingolo A, Malcangi G, Marinelli G, Mancini A, Maggiore M, Bordea I, Scarano A, Farronato M, Tartaglia G, Lorusso F, Inchingolo A, Dipalma G. Innovative concepts and recent breakthrough for engineered graft and constructs for bone regeneration: A literature systematic review. Materials, Basel, 2022;15(3):1120. Doi 10.3390/ma15031120. Jahani-Sherafat S, Mokmeli S, Rostami-Nejad M, Razzaghi Z, Tavirani MR, Razzaghi M. The effectiveness of photobiomudulation therapy (Pbmt) in COVID-19 infection. J. Lasers Med. Sci. 2020; 11:S23–S29. Jonasson TH et al. Effects of low-level laser therapy and platelet concentrate on boné repair: Histological, histomorphometric, immunohistochemical, and radiographic study. J Craniomaxillofac Surg. 2017;45(11):1846-53. Kang YH et al. Platelet-rich fibrin is a bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng A. 2011;17:349–59. Karayürek F et al. Combining platelet rich fibrin with different bone graft materials: an experimental study on the histopathological and immunohistochemical aspects of bone healing. J Craniomaxillofac Surg. 2019;47(5):815-25. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B. 2005;81(2):98–106. Karu TI. Photobiology of low-power laser effects. Health Physics. 1989;56(5):691-704. 56 Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP. Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:693–700. Kitayama S, Wong LO, Ma L, Hao J, Kasugai S, Lang NP et al. Regeneration of rabbit calvarial defects using biphasic calcium phosphate and a strontium hydroxyapatitecontaining collagen membrane. Clin Oral Implants Res. 2015;27(12):206-14. Kobayashi E et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig. 2016;20:2353–60. Kobayashi E, Fluckiger L, Fujioka-Kobayashi M et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig, 2016;20:2353–60. Kubesch A, Barbeck M, Al-Maawi S, Orlowska A, Booms PF, Sader RA et al. A lowspeed centrifugation concept leads to cell accumulation and vascularization of solid platelet-rich fbrin: an experimental study in vivo. Platelets. 2018;1–12. Kumar YR et al. Platelet-rich fibrin: the benefits. Br J Oral Maxillofac Surg. 2016; 54:57–61. Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J. Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci. 1982;1:61–77. Li Q et al. Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation. Biomed Res Int. 2013. Lichtenfels M, Colomé L, Sebben AD, Braga-Silva J. Effect of platelet rich plasma and platelet rich fibrin on sciatic nerve regeneration in a rat model. Microsurgery. 2013;33(5):383–90. Litvinov RI, Pieters M, Lange-Loots Z, Weisel JW. Fibrinogen and fibrin. In: Macromolecular protein complexes III: Structure and function subcellular biochemistry; Berlin: Springer, 2021; p. 471–501 Lourenço ES, Mourão CFAB, Leite PEC, Granjeiro JM, Calasans-Maia MD, Alves GG. The in vitro release of cytokines and growth factors from fibrin membranes produced through horizontal centrifugation. J Biomed Mater Res A. 2018;106(5):1373-80. Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S. Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med. 1998; 22:97–102. Mackie, EJ. Osteoblasts: Novel roles in orchestration of skeletal architecture. The International Journal of Biochemistry & Cell Biology, 2003;35:1301-5. Mãe H, Yang J-P, Bronzeado RK,Lee HW, Han S-K. Efeito da terapia a laser de baixa intensidade na proliferação e síntese de colágeno de fibroblastos humanos in vitro. J. Gerenciamento de Feridas. Res.2018;141–6. Maitland ME, Arsenault LA, A correlation between the distribution of biological apatite and amino acid sequence of type I collagen. Calcified Tissue International, 1991;48(5): 341-52. Matras HD. Wirkungen vershiedener Fibrinpraparate auf Kontinuitat-strennungen der Rattenhaut. Osterr. Z. Stomatol. 1970;67:33859. 57 Mehdiyev I, Gülsen U, Sentürk FM, Sayan, NB. Radiographic evaluation of low‑level laser therapy‑enhanced maxillary sinus augmentation with simultaneous dental implant placement. Ann Maxillofac Surg. 2019;9(1):48–52. Messora MR et al. Bone healing in critical-size defects treated with platelet-rich plasma: a histologic and histometric study in rat calvaria. J Periodontol Res. 2007;43(2):217–23. Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F. Laserinduced osteoblast proliferation is mediated by ROS production. Lasers Med Sci. 2014; 29(4):1463–7. Miron RJ, Fujioka-Kobayashi M, Bishara M, Zhang Y, Hernandez M, Choukroun J. Plate-letrich fibrin and soft tissue wound healing: a systematic review. Tissue Eng Part B Rev 2017;23(1):83–99. Miron RJ, Zhang YF. Osteoinduction: a review of old concepts with new standards. J Dent Res, 2012; 91:736–44. Monea A, Beresescu G, Boeriu S, Tibor M, Popsor S, Antonescu DM. Erratum to: bone healing after low-level laser application in extraction sockets grafted with allograft material and covered with a resorbable collagen dressing: a pilot histological evaluation. BMC Oral Health. 2016;16:16. Moraschini V, Barboza E S P. (2016). Use of platelet-rich fibrin membrane in the treatment of gingival recession: A systematic review and meta-analysis. Journal of Periodontology. 2016; 87:281-90. https://doi.org/10.1902/jop.2015.150420. Moussa M, El-Dahab OA, El Nahass H. Anterior maxilla augmentation using palatal bone block with platelet-rich fibrin: a con-trolled trial. Int J Oral Maxillofac Implants. 2016; 31:708–15. Nacopoulos C, Dontas I, Lelovas P, Galanos A, Vesalas A-M, Raptou P, Michael Mastoris, Eustathios Chronopoulos, Nikolaos Papaioannou. Enhancement of Bone. Platelet-Rich Fibrin and Synthetic Graft. 2014.The Journal of craniofacial surgery 25(6).DOI:10.1097/SCS.0000000000001172 Nissan J, Assif D, Gross MD, Yaffe A and Binderman I. Effect of low intensity laser irradiation on surgically created bony defects in rats. Journal of Oral Rehabilitation. 2006; 33(8):619-924. Noba C et al. Laser for bone healing after oral surgery: systematic review. Lasers in Medical Science. 2018;3(3):667-74. Oliveira CTB de, Leonel BC, Oliveira AC de, Paiva M de B, Ramos J, Barraviera B, Ferreira Junior RS, Shimano AC. Effects of fibrin sealant and bone fragments on defect regeneration performed on rat tibiae: An experimental study. Journal of the Mechanical Behavior of Biomedical Materials. 2020;104:103662 Oliveira Gonçalves JB, Buchaim DV, Souza Bueno CR, Pomini KT, Barraviera B, Júnior RSF, Andreo JC, Castro Rodrigues A, Cestari TM,Buchaim RL Effects of low-level laser therapy on autogenous bone graft stabilized with a new heterologous fibrin sealant. J. Photochem. Photobiol. B Biol. 2016;162:663–8. Oliveira LSS, Araujo AA, Araujo Junior RF, Barboza CAG, Borges BCD, Silva JSP. Lowlevel laser therapy (780 nm) combined with collagen sponge scaffold promotes repair of rat cranial critical-size defects and increases TGF-beta, FGF-2, OPG/RANK and osteocalcin expression. Int J ExpPathol. 2017;98(2):75-85. 58 Oliveira MR, Silva A de C, Ferreira S, Avelino CC, Garcia IR Jr, Mariano RC. Influence of the association between platelet-rich fibrin and bovine bone on bone regeneration. A histomorphometric study in the calvaria of rats. Int. J. Oral Maxillofac. Surg. 2015;44(5):649–55. Osawa Y, Shimizu N, Kariya G, Abiko Y. Low-power laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone. 1998; 22:347-54. Ozgul O et al. Efficacy of platelet rich fibrin in the reduction of the pain and swelling after impacted third molar sur- gery: randomized multicenter split-mouth clinical trial. Head Face Med. 2015;11:37. Padilha WSM et al. 2018. Histologic evaluation of leucocyte- and platelet-rich fibrin in the inflammatory process and repair of noncritical bone defects in the calvaria of rats. Int J Oral Maxillofac Implants. 2018;33(6):1206-12. Pertsov SS, Abramova Y, Chekhlov VV. Effect of repeated stress exposures on the blood cytokine profile in rats with different behavioral parameters. Bull. Exp. Biol. Med. 2022;172:397–401. Pinheiro AL et al. Effect of low level laser therapy on the repair of bone defects grafted with inorganic bovine bone. Braz. Dent. J. 2003;14(3). Pinheiro AL, Gerbi ME. Photoengineering of bone repair processes. Photomed Laser Surg. 2006;24:169–78. Pinheiro ALB, Brugnera Junior A, Zanin FAP. (Org.). Aplicação do laser na odontologia. São Paulo: Ed. Santos; 2010. p. 77-89 Pluemsakunthai W, Kuroda S, Shimokawa H, Kasugai S. A basic analysis of plateletrich fibrin: distribution and release of platelet-derived growth factor- BB. Inflammation Regenerat 2013;33:164-72. Pomini KT et al. Fibrin sealant derived from human plasma as a scaffold for bone grafts associated with photobiomodulation therapy. Int J Mol Sci. 2019;10:20(7). Prados-Frutos JC, Rodriguez-Molinero J, Prados-Privado M, Torres JH, Rojo R. Lack of clinical evidence on low-level laser therapy (LLLT) on dental titanium implant: a systematic review. Lasers Med Sci. 2016;31(2):383–92. Priglinger E, Maier J, Chaudary S, Lindner C, Wurzer C, Rieger S, Redl H, Wolbank S, Dungel P. Fotobiomodulação de células da fração vascular estromal derivadas de tecido adiposo humano recentemente isoladas por diodos emissores de luz pulsados para aplicação clínica direta. J Tissue Eng Regen Med. 2018 Jun;12(6):1352-62. doi: 10.1002/term.2665. Rasouli Ghahroudi AA et al. Effect of low-level laser therapy irradiation and Bio-Oss graft material on the osteogenesis process in rabbit calvarium defects: a double blind experimental study. Lasers Med Sci. 2014;29(3):925-32. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 2021;13:1105. Renno AC, McDonnell PA, Crovace MC, Zanotto ED, Laakso L. Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg. 2010;28(1):131-3. Romao MM, Marques MM, Cortes AR, Horliana AC, Moreira MS, Lascala CA. Microcomputed tomography and histomorphometric analysis of human alveolar bone 59 repair induced by laser phototherapy: a pilot study. Int J Oral Maxillofac Surg. 2015; 44(12):1521-8. Şahin O, Tártaro B, Ekmekcioğlu C, Aliyev, T, Odabaşi O. Prevenção da osteonecrose da mandíbula relacionada a medicamentos após cirurgia dentoalveolar: a experiência de uma instituição. J. Clin. Exp. Dente. 2020;12:e771–e6. Şahin O, Akan E, Tártaro B, Ekmekcioğlu C, Ünal N, Odabaşı O. Abordagem combinada para tratamento de estágios avançados de osteonecrose relacionada a medicamentos em pacientes maxilares. Braz. J. Otorrinolaringol. 2021;88:613–20. Saito S, Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop. 1997;111:525–32. Sattayut S, Hughes F, Bradley P. 820 nm Gallium aluminum ar-senide laser modulation of prostaglandin E2 production in in-terleukin I stimulated myoblasts. LASER Ther. 1999;11(2):88- 95. Schaffer M, Bnel H, Sroka R at al. Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary findings on time-dependent T1-weighted constrast-enhanced magnetic resonance imaging (MRI). J. Photobiol. 2000;54:55-60 Schär MO, Diaz-Romero J, Kohl S, Zumstein MA, Nesic D. Platelet-rich con- centrates diferentially release growth factors and induce cell migration in vitro. Clin Orthop Relat Res. 2015;473(5):1635–43 Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin. Orthop. Relat. Res. 1986;205:299–308. Schwartz-Filho HO, Reimer AC, Marcantonio C, Marcantonio E Jr, Marcantonio RAC. Effects of low-level laser therapy (685nm) at different doses in osteogenic cell cultures. Lasers Med Sci. 2011;26:539–43. Seifi M, Shafeei HA, Daneshdoost S, Mir M. Effects of two types of low-level laser wavelengths (850 and 630nm) on the orthodontic tooth movements in rabbits. Lasers Med Sci. 2007; 22:261–4. Shakouri SK, Soleimanpour J, Salekzamani Y, Oskuie MR. Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci. 2010;25(1):73-7. Sherif A, Saleh, AB, Hesham A. Platelet-rich fibrin in maxillary sinus augmentation: A systematic review. Journal of Oral Implantology, 2015;41(6):746-53. Sigurdsson TJ, Lee MB, Kubota K, Turek TJ, Wozney JM, Wikesjö UME. Periodontal repair in dogs: recombinant boné morphogenetic protein-2 significantly enhances periodontal regeneration. J Periodontol. 1995; 66:131-8. Silva AP, Petri AD, Crippa GE, Stuani AS, Stuani AS, Rosa AL, Stuani MB. Effect of lowlevel laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers Med Sci. 2012;27(4):777–83. Silva Júnior AN, Pinheiro ALB, Oliveira MG, Weismann R, Ramalho LM, Nicolau RA. Computerized morphometric assessmentof the effect of low-level laser therapy on bone repair: na experimental animal study, J Clin Laser Med Surg. 2002;20:83-7. Silveira BBB, Filho JMP, Martinez EF. Protocolo de produção de fibrina rica em plaquetas a parte da espécie Rattusnorvegicusalbinus (linhagem Wistar) para manipulação laboratorial – nota técnica. Contemporary Journal, 2023; 3(3):1257-67. 60 Sleem SSMEB, Zayet MK, El-Ghareeb TI. Evaluation of the bio-stimulatory effect of platelet rich fibrin augmented by diode laser compared to platelet rich fibrin alone on dental implant replacing posterior mandibular teeth. Randomised Clinical Trial: Split Mouth Study. Open Access Maced J Med Sci. 2019;14:7(5): 869–75. Stein A, Benayahu D, Maltz L, Oron U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblastos in vitro. Photomed Laser Surg. 2005;23(2):161–6. Stein E et al. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr. 2008; 120(3-4):112–7. Suttapreyasri S, Leepong N. Influence of platelet-rich fibrin on alveolar ridge preservation. J Craniofac Surg. 2013; 24:1088–94. Tajima N, Ohba S, Sawase T, Asahina I. Evaluation of sinus floor augmentation with simultaneous implant placement using platelet- rich fibrin as sole grafting material. Int J Oral Maxillofac Implants. 2013;28:77-83. Takagi K, Urist MR. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects. Ann. Surg. 1982;196:100–9. Thalaimalai DBR, Victor DJ, Prakash PSG, Subramaniam S, Cholan PK. Effect of lowlevel laser therapy and plateletrich fibrin on the treatment of intra-bony defects. J. Lasers Med. Sci. 2020;11:456–63 Temmerman A et al. The use of leucocyte and platelet-rich fibrin in socket management and ridge pres-ervation: a split-mouth, randomized, con-trolled clinical trial. J Clin Periodontol. 2016; 43:990–9. To M, Su CY, Hidaka K, Okudera T, Matsuo M. Effect of advanced platelet‑rich fibrin on accelerating alveolar boné formation in dogs: a histological and immunofluorescence evaluation. Anat Sci Int. 2019;94(3):238-44. Tsirogianni AK, Moutsopoulos NM, Moutso-poulos HM. Wound healing: immunological aspects. Injury. 2006;37(Suppl 1):5–12. Uyanik LO, Bilginaylar K, Etikan I. Effects of platelet-rich fibrin and Piezosurgery on impacted mandibular third molar surgery outcomes. Head Face Med. 2015;11:25. Vilar R, Fish R.J, Casini A, Neerman-Arbez, M. Fibrinogen in human disease: Both friend and foe. Haematologica. 2020,105:284–96. Walsh LJ. The current status of low level laser therapy in dentistry. Part I. Soft tissue applications. Aust Dent J. 1997;42:247-54. Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 2003 Jul;21(7):803-6. doi: 10.1038/nbt839. Epub 2003 Jun 15. Xu M et al. Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg. 2009;27(2):309–15. Yilmaz D, Dogan N, Ozkan A, Sencimen M, Eren B Mutlu I. Effect of platelet rich fibrin and beta tricalcium phosphate on bone healing. A histological study in pigs. Acta Cirúrgica Bras. 2014; 29(1):59–65. Zaky AA, El Shenawy HM, Harhsh TA, Shalash M, Awad NM. Can low level laser therapy benefit bone regeneration in localized maxillary cystic defects? - a prospective randomized control trial. Open Access Maced J Med Sci. 2016;4(4):720–5. 61 Zhang Y, Tangl S, Huber CD, Lin Y, Qiu L, Rausch-Fan X. Effects of Choukroun’s plate-letrich fibrin on bone regeneration in com-bination with deproteinized bovine bone mineral in maxillary sinus augmentation: a histological and histomorphometric study. J Craniomaxillofac Surg. 2012;40:321-8.pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE DOUTORADO.pdfTese de doutorado Lorena Ferraz2,05 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.