Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/40204
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCerqueira, Roney das Mercês-
dc.date.accessioned2024-09-16T23:13:51Z-
dc.date.available2024-09-16-
dc.date.available2024-09-16T23:13:51Z-
dc.date.issued2024-06-12-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/40204-
dc.description.abstractThe improvement of Photonic Integrated Circuits to make them more flexible, reconfigurable and compact has been the norm for telecommunications systems. Against this backdrop, attention has turned to Multimode Interference devices due to the advantages presented by their properties and functionalities. This dissertation project proposes using Machine Learning techniques for the inverse design of Multimode Interference devices, as a power divider in the wavelength range of 1.25 ~ 1.7µm integrating the O, E, S, C, L and U bands. To do this, in addition to carrying out a literature survey, it was necessary to simulate Multimode interference devices in specific software and develop an algorithm using Artificial Neural Networks. The neural network architecture was configured with the following input parameters: wavelength (λ), core refractive index (n1), substrate refractive index (n2), device width (WMMI) and transmission efficiency (%) and as output parameters it targeted the coordinates of the x-axis1, x-axis2 referring to the position of the output ports (1 × M) of the device and the coordinates of the y-axis referring to the cut-off length (LMMI) of the arrangement for the highest coupled power of the output ports. As a result, the Artificial Neural Network developed presented a cross-validation Mean Square Error equivalent to 6.39410 × 10-5, a linear regression of 0.99997 and a computational processing time of 7.46 seconds, capable of providing data for the design of compact Multimodal Interference devices with dimensions from 2.00 × 5.32µm and losses ranging from 0.32 to 0.47dB for the most efficient device.pt_BR
dc.languageporpt_BR
dc.publisherUNIVERSIDADE FEDERAL DA BAHIApt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectInterferência Multimodopt_BR
dc.subjectMachine Learningpt_BR
dc.subjectDesign Inversopt_BR
dc.subject.otherMultimode Interferencept_BR
dc.subject.otherMachine Learningpt_BR
dc.subject.otherInverse Designpt_BR
dc.titleAlgoritmo baseado em machine learning para projeto de dispositivos de interferência multimodopt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Elétrica (PPGEE) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApt_BR
dc.contributor.advisor1Esquerre, Vitaly Félix Rodríguez-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-3884-7162pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9324813375750858pt_BR
dc.contributor.advisor-co1Sisnando, Anderson Dourado-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-1142-0396pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5540143488570288pt_BR
dc.contributor.referee1Assis, Karcius Day Rosário-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-9424-8810pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0117460865270656pt_BR
dc.contributor.referee2Mercedes, Cosme Eustáquio Rubio-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-4692-798Xpt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7557063063968191pt_BR
dc.contributor.referee3Sisnando, Anderson Dourado-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-1142-0396pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5540143488570288pt_BR
dc.creator.IDhttps://orcid.org/0009-0006-9454-3699pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4326250260493828pt_BR
dc.description.resumoO aprimoramento dos Circuitos Fotônicos Integrados tornando-os mais flexíveis, reconfiguráveis e compactos tem sido via de regra para os sistemas de telecomunicações. Diante deste cenário, os olhares tem se voltado para os dispositivos de Interferência Multimodo devido as vantagens apresentadas em suas propriedades e funcionalidades. Neste projeto de dissertação, propõe utilizar técnicas de Machine Learning para design inverso de dispositivos de Interferência Multimodo, como divisor de potência na faixa de comprimento de ondas (λ) de 1,25 ~ 1,7µm integrando as bandas O, E, S, C, L e U. Para tal, além de realizar um levantamento bibliográfico, foi necessário simular dispositivos de interferência Multimodo em software específico e desenvolver um algoritmo utilizando Redes Neurais Artificiais. A arquitetura da rede neural foi configurada com os seguintes parâmetros de entrada: comprimento de ondas (λ), índice de refração do núcleo (n1), índice de refração do substrato (n2), largura do dispositivo (WMMI) e eficiência de transmissão (%) e como parâmetro de saída teve como alvo as coordenadas do eixo-x1, eixo-x2 referente a posição das portas de saída (1 x M) do dispositivo e a coordenadas do eixo-y referente ao comprimento (LMMI) de corte do disposto para maior potência acoplada das portas de saída. Como resultados, a Rede Neural Artificial desenvolvida apresentou o Erro Quadrático Médio de validação cruzada equivalente a 6,39410 × 10-5, regressão linear de 0,99997 e tempo de processamento computacional de 7,46 segundos, capaz de fornecer dados para design dos dispositivos de Interferência Multimodal compacto com dimensões a partir 2,00 × 5,32µm e perdas que variam entre 0,32 a 0,47dB para o dispositivo mais eficiente.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PPGEE)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Roney das Merces Cerqueira. Dissertação.pdfDissertação de Mestrado. Roney das Mercês Cerqueira2,19 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.