Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/40477
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPires, Clara Resende-
dc.date.accessioned2024-10-22T14:13:11Z-
dc.date.available2024-10-22T14:13:11Z-
dc.date.issued2021-12-20-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/40477-
dc.description.abstractBiological signals in animal communication are subjected to evolutionary pressures and often can affect the survivorship and reproduction of senders and receivers. The communication via sound production is spread among animals and it has been considered an efficient way to change information. Both the environment and the social context are important forces regulating the properties of acoustic signals. The hypothesis of sociability in communication postulates that with increasing social complexity, animals will present greater complexity in their signals. However, little is known about how the relationships involved in acoustic communication with sociability occur. Animals which have sound as their main sense use a wide variety of signals in all their vital activities, especially in social behaviors, and the link between sociability and acoustic diversity may be related to the evolution of tonal sounds. Thus, the overall objective of the study was to analyze the relationships involved in acoustic communication by evaluating the direct and indirect effects of social complexity on acoustic complexity, mediated by tonal signals, using cetaceans as a model for testing. The statistical technique of Structural Equation Modeling (SEM) was applied, using the variables of group size, group type, and number of calves to measure social complexity; the variables of tonality (dB), amplitude (dB) of the fundamental frequency, maximum frequency (Hz), minimum frequency (Hz), and duration (s) to describe the tonal signals; and the variables of number of inflection points and number of notes to measure acoustic complexity. According to the SEM results, the variables describing the tonal sounds mediated all the effects of the social complexity variables. The significant effects of greatest magnitude came from, mainly, group size and number of calves. The SEM showed that the number of notes had most of its variance (R² = 0.94) explained, receiving effects of greater magnitude from the group size and number of calves. The number of inflection points, on the other hand, had the lowest coefficient of determination (R² = 0.35), which received no significant direct effect from any of the social complexity variables, receiving influence only from the tonal signal descriptor variables. The present study provided a greater understanding of the nature of animal communication, with the communication signals of cetaceans presenting functions for the interactions that predominate in their societies, with a clear relationship between social structures and tonal signals acoustic diversity seen in the most different groups of this taxon, demonstrating a possible modeling framework to be applied to communicative systems.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectComplexidade acústicapt_BR
dc.subjectComplexidade socialpt_BR
dc.subjectSinais tonaispt_BR
dc.subjectComunicação animalpt_BR
dc.subjectCetáceospt_BR
dc.subjectMisticetospt_BR
dc.subjectOdontocetospt_BR
dc.subject.otherAcoustic complexitypt_BR
dc.subject.otherSocial complexitypt_BR
dc.subject.otherTonal signalspt_BR
dc.subject.otherAnimal communicationpt_BR
dc.subject.otherCetaceanspt_BR
dc.subject.otherMysticetipt_BR
dc.subject.otherOdontocetipt_BR
dc.titleComplexidade acústica na comunicação animal e sua influência na ecologia dos cetáceospt_BR
dc.title.alternativeAcoustic complexity in animal communication and its influence on cetacean ecologypt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Ecologia:TAV(antigo Programa de Pós em Ecologia e Biomonitoramento) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::ECOLOGIApt_BR
dc.contributor.advisor1Santos, Marcos Roberto Rossi dos-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-7171-3011pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0609193167642901pt_BR
dc.contributor.advisor-co1Podos, Jeffrey Edward-
dc.contributor.referee1Podos, Jeffrey Edward-
dc.contributor.referee2Japyassú, Hilton Ferreira-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-9788-5460pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9708517516877630pt_BR
dc.contributor.referee3Santos, Marcos Roberto Rossi dos-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-7171-3011pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0609193167642901pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9994824506872335pt_BR
dc.description.resumoA teoria da comunicação animal afirma que os sinais biológicos são expressões da seleção natural, sendo a sobrevivência e o sucesso na reprodução as principais forças motrizes. A comunicação acústica é uma das mais utilizadas, principalmente devido a eficiência de sua transmissão no meio. Dentre as hipóteses que permeiam a comunicação pelo som, a de adaptação acústica postula que o ambiente é um importante fator de modificação dos sinais acústicos, resultantes da interação entre indivíduos e habitat. Já a hipótese da sociabilidade na comunicação postula que com o aumento da complexidade social, os animais apresentarão maior complexidade em suas sinalizações. No entanto, pouco se sabe como ocorrem as relações envolvidas na comunicação acústica com a sociabilidade. Os animais que possuem o som como principal sentido utilizam uma ampla variedade de sinais em todas suas atividades vitais, principalmente em comportamentos sociais, sendo que a ligação entre sociabilidade e diversidade acústica pode estar relacionada com a evolução dos sons tonais. Assim, o objetivo geral do estudo foi analisar as relações envolvidas na comunicação acústica, avaliando os efeitos diretos e indiretos da complexidade social sobre a complexidade acústica, mediados pelos sinais tonais, usando os cetáceos como modelo para testes. Foi aplicada a técnica estatística de Modelagem de Equações Estruturais (MEE), utilizando-se as variáveis de tamanho de grupo, tipo de sociedade e número de filhotes para medir a complexidade social; as variáveis de tonalidade (dB), amplitude (dB) da frequência fundamental, frequência máxima (Hz), frequência mínima (Hz) e duração (s) para descrever os sinais tonais; e as variáveis de número de pontos de inflexão e número de notas para medir a complexidade acústica. De acordo com os resultados do MEE, as variáveis descritoras dos sons tonais mediaram todos os efeitos das variáveis de complexidade social. Os efeitos significativos de maior magnitude foram provenientes, principalmente, de tamanho de grupo e número de filhotes. O MEE mostrou que o número de notas teve a maior parte de sua variação (R² = 0.94) explicada, recebendo efeitos de maior magnitude dos coeficientes de caminho de tamanho de grupo e número de filhotes. Já o número de pontos de inflexão teve o menor coeficiente de determinação (R² = 0.35), a qual não recebeu efeito direto significativo de nenhuma das variáveis de complexidade social, recebendo influência apenas das variáveis descritoras dos sinais tonais. O presente estudo forneceu uma maior compreensão sobre a natureza da comunicação animal, com os sinais de comunicação dos cetáceos apresentando funções para as interações que predominam em suas sociedades, com uma nítida relação entre as estruturas sociais e a diversidade acústica dos sinais tonais vistos nos mais diferentes grupos deste táxon, demonstrando uma possível estrutura de modelagem a ser aplicada aos sistemas comunicativos.pt_BR
dc.publisher.departmentInstituto de Biologiapt_BR
dc.relation.referencesAlves, F.; Quérouil, S.; Dinis, A.; Nicolau, C.; Ribeiro, C.; Freitas, L.; Kaufmann, M.; Fortuna, C. Population structure of short-finned pilot whales in the oceanic archipelago of Madeira based on photo-identification and genetic analyses: implications for conservation. Aquatic Conservation: Marine and Freshwater Ecossytems, 2013. Aschettino, J.M.; Baird, R.W; Mcsweeney, D.J.; Webster, D.L.; Schorr, G.S.; Huggins, J.L; Martien, K.K; Mahaffy, S.D.; West, K.L. Population structure of melon-headed whales (Peponocephala electra) in the Hawaiian Archipelago: Evidence of multiple populations based on photo identification. Marine Mammal Science, 2011. Au, W.W.L.; Hastings, M.C. Principles of Marine Bioacoustics. Springer, 2008. Aubin, T.; Jouventin, P. Localisation of an acoustic signal in a noisy environment: the display call of the king penguin Aptenodytes patagonicus. The Journal of Experimental Biology, Vol. 205, 2002. Azzolin, M.; Papale, E.; Lammers, M.O.; Gannier, A.; Giacoma, C. Geographic variation of whistles of the striped dolphin (Stenella coeruleoalba) within the Mediterranean Sea. J. Acoust. Soc. Am., Vol. 134, No. 1, 2013. Baird, R.W. Risso’s Dolphin, Grampus griseus. (Eds.) Perrin, W.F.; Würsig, B.; Thewissen, J.G.M. In: Encyclopedia of Marine Mammals. Elsevier, 2009. Baird, R.W. The Lives of Hawai'i's Dolphins and Whales: Natural History and Conservation. University of Hawai'i Press, Honolulu, Hawai’i, 2016. Barnard, C. Animal Behaviour: Mechanism, Development, Function and Evolution. Pearson Education Limited, 2004. Bazúa-Durán, C.; Au, W.W.L. Geographic variations in the whistles of spinner dolphins (Stenella longirostris) of the main Hawai’ian islands. J. Acoust. Soc. Am., Vol. 116, No. 6, 2004. Bazúa-Durán, C.; Au, W.W.L. The whistles of Hawaiian spinner dolphins. J. Acoust. Soc. Am., Vol. 112, No. 6, 2002. Bolgan, M.; Amorim, C.P.; Fonseca, P.J.; Di Iorio, L.; Parmentier, E. Acoustic Complexity of vocal fish communities: a field and controlled validation. Scientific Reports, Vol. 8, 2018. Brumm, H.; Slater, P.J.B. Animals can vary signal amplitude with receiver distance: Evidence from zebra finch song. Animal Behaviour, Vol. 72, 2006. Caldwell, M.C.; Caldwell, D.K. Individualized whistle contours in bottlenosed dolphins (Tursiops truncatus). Nature, Vol. 207, 1965. Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. JSS Journal of Statistical Software. Vol. 61, No. 6, 2014. Cholewiak, D.M.; Sousa-Lima, R.S.; Cerchio, S. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Marine Mammal Science, Vol. 29, No. 3, 2013. Clapham, P.J. The humpback whale: Seasonal feeding and breeding in a baleen whale. (Eds.) Mann, J.; Tyack, P.L.; Connor, R.; Whitehead, H. In: Cetacean Societies: Field Studies of Dolphins and Whales. University of Chicago Press, 2000. Connor, R.C. Group living in whales and dolphins. In: Cetacean Societies: Field studies of dolphins and whales. (Eds.) Mann, J.; Connor, R.C.; Tyack, P.L.; Whitehead, H. Chicago: The University of Chicago Press, 2000. Cook, M.L.H.; Sayigh, L.S.; Blum, J.E.; Wells, R.S. Signature-whistle production in undisturbed free-ranging bottlenose dolphins (Tursiops truncatus). Proc. R. Soc. B, Vol. 271, 2004. Crawford, J.D.; Hagedorn, M.; Hopkins, C.D. Acoustic Communication in an Electric Fish, Pollimy rusisidori (Mormyridae). Journal of Comparative Physiology A, Vol. 159, 1986. Ding, W.; Würsig, B.; Evans, W.E. Whistles of bottlenose dolphins: Comparisons among populations. Aquat. Mammals, Vol. 21, No. 1, 1995. Dombroski, J.R.G.; Parks, S.E.; Groch, K.R.; Flores, P.A.C.; Sousa-Lima, R.S. Vocalizations produced by southern right whale (Eubalaena australis) mother-calf pairs in a calving ground off Brazil. J. Acoust. Soc. Am., Vol. 140, No. 3, 2016. Dooling, R.J. Auditory perception in birds. (Eds.) Kroodsma, D.E.; Miller, E.H. In: Acoustic Communication in Birds. New York: Academic Press, Vol. 2, 1982. Farina, A. Soundscape Ecology: Principles, Patterns, Methods and Applications. Springer, 2014. Fischer, J.; Wadewitz, W.; Hammerschmidt, K. Structural variability and communicative complexity in acoustic communication. Animal Behaviour, 2016. Fitch, W.T.; Hauser, M.D. Vocal Production in Nonhuman Primates: Acoustics, Physiology, and Functional Constraints on “Honest” Advertisement. American Journal of Primatology, Vol. 37, 1995. Ford, J.K.B.; Ellis, G.E.; Balcomb, K.C.III. Killer Whales. Vancouver: University of British Columbia Press, Vol. 2, 2000. Ford, J.K.B.; Ellis, G.M.; Balcomb, K.C. Killer Whales: The Natural History and Genealogy of Orcinus orca in the Waters of British Columbia and Washington. UBC Press and University of Washington Press, Vancouver, BC and Seattle, WA, 2000. Freeberg, T.M.; Dunbar, R.I.M.; Ord, T.J. Social complexity as a proximate and ultimate factor in communicative complexity. Philosophical Transactions of the Royal Society B, Vol. 367, 2012. Fripp, D.; Owen, C.; Quintana-Rizzo, E.; Shapiro, A.; Buckstaff, K.; Jankowski, K.; Wells, R.; et al. Bottlenose dolphin (Tursiops truncatus) calves appear to model their signature whistles on the signature whistles of community members. Anim. Cogn., Vol. 8, 2005. Fripp, D.; Tyack, P.L. Post-partum whistle production in bottlenose dolphins. Marine Mammal Science, Vol. 24, 2008. Gillespie, D.; Gordon, J.; Mchugh, R.; Mclaren, D.; Mellinger, D.; Redmond, P.; Thode, A.; et al. PAMGUARD: Semiautomated, opensource software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am., Vol. 30, 2008. Grace, J.B. Structural Equation Modeling and Natural Systems. Cambridge University Press, 2006. Grace, J.B.; Schoolmaster Jr., D.R.; Guntenspergen, G.R; Little, A.M.; Mitchell, B.R.; Miller, K.M.; Schweiger, E.W. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere, Vol. 3, 2012. Hahn, A.H.; Congdon, J.V.; Campbell, K.A.; Scully, E.N.; McMillian, Sturdy, C.B. Mechanisms of Communication and Cognition in Chickadees: Explaining Nature in the Lab and Field. In: Advances in the Study of Behavior. (Eds.) Naguib, M.; Podos, J.; Simmons, L.W.; Barrett, L.; Healy, S.D.; Zuk, M. Elsevier, 2017. Harley, H.E. Whistle discrimination and categorization by the Atlantic bottlenose dolphin (Tursiops truncatus): A review of the signature whistle framework and a perceptual test. Behavioural Processes, Vol. 77, 2008. Hawkins, E.R.; Gartside, D.F. Whistle emissions of Indo-Pacific bottlenose dolphins (Tursiops aduncus) differ with group composition and surface behaviors. The Journal of Acoustical Society of America, Vol. 127, No. 4, 2010. Henry, L.; Barbu, S.; Lemasson, A.; Hausberger, M. Dialects in Animals: Evidence, Development and Potential Functions. Animal Behavior and Cognition, Vol. 2, No. 2, 2015. Hernandez, E.N.; Solangi, M.; Kuczaj, S.A.II. Time and frequency parameters of bottlenose dolphin whistles as predictors of surface behavior in the Mississippi Sound. Journal of the Acoustical Society of America, Vol. 127, No. 5, 2010. Herzing, D.L. Acoustics and Social Behavior of Wild Dolphins: Implications for a Sound Society. In: Hearing by Whales and Dolphins. (Eds.) Au, W.W.L.; Popper, A.N.; Fay, R.R. Springer, 2000. Hoese, W.J.; Podos, J.; Boetticher, N.C.; Nowicki, S. Vocal Tracts Function in Birdsong Production: Experimental Manipulation of Beak Movements. The Journal of Experimental Biology, Vol. 203, 2000. Hopp, S.L.; Owren, M.J.; Evans, C.S. Animal Acoustic Communication: Sounds Analysis and Research Methods. Springer, 1998. Horwood, J. Seiwhale: Balaenoptera borealis. In: Encyclopedia of Marine Mammals. (Eds.) Würsig, B.; Thewissen, J. G. M.; Kovacs, K. M.3th edition. Academic Press – Elsevier, 2018. Jefferson, T.A.; Odell, D.K.; Prunier, K.T. Notes on the biology of the Clymene dolphin (Stenella clymene) in the northern Gulf of Mexico. Mar. Mamm. Sci., Vol. 11, 1995. Klump, G.M. Bird communication in the noisy world. (Eds.) Kroodsma, D.E.; Miller, E.H. In: Ecology and Evolution of Acoustic Communication in Birds. Ithaca and London: Cornell University Press, 1996. Krams, I.; Krama, T.; Freeberg, T.M.; Kullberg, C.; Lucas, J.R. Linking social complexity and vocal complexity: a parid perspective. Phil. Trans. R. Soc. B, Vol. 367, 2012. Kuczaj, S.A.II. Language learning in cetaceans. (Eds.) Brooks, P.; Kempe, V.; Golsoon, J. In: Encyclopedia of language development. Thousand Oaks, CA: Sage, 2014. Kuczaj, S.A.II.; Eskelinen, H.C.; Jones, B.L.; Borger-Turner, J.L. Gotta go, mom’s calling: Dolphin (Tursiops truncatus) mothers use individually distinctive acoustic signals to call their calves. Animal Behavior and Cognition, Vol. 2, No. 1, 2015. Lammers, M.O.; Au, W.W.L. Directionality in the whistles of hawaiian spinner dolphins (Stenella longirostris): A signal feature to cue direction of movement? Marine Mammal Science, Vol. 19, No. 2, 2003. Langbauer Jr., W.R. Elephant Communication. Zoo Biology, Vol. 19, 2000. Lefcheck, J.S. piecewise SEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, Vol. 7, No. 5, 2016. May-Collado, L.J.; Agnarsson, I.; Wartzok, D. Phylogenetic Review of Tonal Sound Production in Whales in Relation to Sociality. BMC Evolutionary Biology, Vol. 7, No. 136, 2007. May-Collado, L.J.; Wartzok, D. A comparison of bottlenose dolphin whistles in the Atlantic Ocean: Factors promoting whistle variation. J. Mamm., Vol. 89, No. 5, 2008. Morton, E.S. Ecological Sources of Selection on Avian Sounds. The American Naturalist, Vol. 109, No. 965, 1975. Morton, E.S. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. The American Naturalist, Vol. 111, No. 981, 1977. Naguib, M. Reverberation of rapid and slow trills: Implications for signal adaptations to long-range communication. Journal of the Acoustical Society of America, Vol. 113, 2003. Neco, L.C.; Japyassú, H.F.; El-Hani, C.N.; Châline, N. From Classificatory to Quantitative Concepts in the Study of Sociality in Animals: An Epistemological View. Biological Theory, 2018. Norris, K.S.; Wursig, B.; Wells, R.S.; Wursig, M. The Hawaiian Spinner Dolphin. University of California Press, 1994. Oswald, J.N.; Rankin, S.; Barlow, J.; Lammers, M.O. A tool for real-time acoustic species identification of delphinid whistles. J. Acoust. Soc. Am., Vol. 122, No. 1, 2007. Parks, S.E.; Tyack, P.L. Sound production by North Atlantic right whales (Eubalaena glacialis) in surface active groups. J. Acoust. Soc. Am., Vol. 117, No. 5, 2005. Peckre, L.; Kappeler, P.M.; Fichtel, C. Clarifying and expanding the social complexity hypothesis for communicative complexity. Behav. Ecol. Sociobiol, Vol. 73, No. 11, 2019. Perrin, W.F. Stenella attenuata. Mamm. Species, Vol. 633, 2001. Perrin, W.F.; Caldwell, D.K.; Caldwell, M.C. Atlantic spotted dolphin Stenella frontalis (G. Cuvier, 1829). (Eds.) Ridgway, S.H.; Harrison, R. In: Handbook of Marine Mammals. Academic Press, Vol. 5, 1994. Pollard, K.A.; Blumstein, D.T. Evolving communicative complexity: insights from rodents and beyond. Phil. Trans. R. Soc. B, Vol. 367, 2012. Quick, N.J.; Janik, V.M. Bottlenose dolphins exchange signature whistles when meeting at sea. Proc. R. Soc. Lond. B, 2012. Raven Pro: Interactive Sound Analysis Software (Version 1.5) [Computer software]. Center for Conservation Bioacoustics. Ithaca, NY: The Cornell Lab of Ornithology, 2014. Available from http://ravensoundsoftware.com/. Rendell, L.E.; Matthews, J.N.; Gill, A.; Gordon, J.C.D.; Macdonald, D.W. Quantitative analysis of tonal calls from five odontocete species, examining interspecific and intraspecific variation. J. Zool. London, Vol. 249, 1999. Riesch, R.; Ford, J.K.B.; Thomsen, F. Stability and group specificity of stereotyped whistles in resident killer whales, Orcinus orca, off British Columbia. Animal Behaviour, Vol. 71, 2006. Rossi-Santos, M.R. Comportamento e ecologia acústica da baleia jubarte (Megaptera novaeangliae) na região Nordeste do Brasil. Tese (Doutorado), Universidade Federal do Rio Grande do Norte, Natal, 2012. RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, 2020. URL http://www.rstudio.com/. Rubenstein, D.R.; Alcock, J. Animal Behavior. Oxford University Press USA, Vol. 11, 2019. Ryan, M.J. Constraints and Patterns in the Evolution of Anuran Acoustic Communication. In: Offprints from the Evolution of the Amphibian Auditory System. (Eds.) Fritzsch, B. John Wiley & Sons, Inc, 1988. Schmidt, S. Beyond echolocation: Emotional Acoustic Communication in Bats. In: Evolution of Emotional Communication: from Souds in Nonhuman Mammals to Speech and Music in Man. (Eds.) Altenmuller, E.; Schmidt, S.; Zimmermann, E. Oxford University Press, 2013. Searcy, W.A.; Nowicki, S. The Evolution of Animal Communication: Reliability and Deception in Signalling Systems. Princeton University Press, 2005. Seber, G.A.F. Multivariate Observations. John Wiley & Sons, New York, 1984. Seyfarth, R.M.; Cheney, D.L.; Marler, P. Vervet Monkeys Alarm Calls: Semantic Communication in a Free-ranging Primate. Animal Behavior, Vol. 28, 1980. Shannon, C.E. A mathematical theory of communication. The Bell System Technical Journal, Vol. 27, No. 3, 1948. Smolker, R.A.; Mann, J.; Smuts, B.B. Use of signature whistles during separations and reunions by wild bottlenose dolphin mothers and infants. Behavioral Ecology and Sociobiology, Vol. 33, 1993. Sokal, R.; Michener, C. A Statistical Method for Evaluating Systematic Relationships. University of Kansas Science Bulletin, Vol. 38, No. 22, 1958. Stearns, S.C.; Hoekstra, R.F. Evolution. Oxford University Press, 2000. Steinbach, M.; Kumar, V.; Tan, P. Cluster analysis: basic concepts and algorithms. Introduction to data mining, Pearson Addison Wesley, 2005. Steiner, W.W. Species-specific differences in pure tonal whistle vocalizations of five western north Atlantic dolphin species. Behav. Eco. Sociobiol., Vol. 9, 1981. Stewart, K.W. Vibrational Communication in Insects: Epitome in the Language of Stoneflies? American Entomologist, 1997. Sueur, J.; Aubin, T.; Simonis, C. Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics, Vol. 18, 2008. Tomecek, S.M. Animal Behavior: Animal Communication. Infobase Publishing, 2009. Tyack, P. Interactions between singing Hawaiian humpback whales and conspecifics nearby. Behavioral Ecology and Sociobiology, Vol. 8, No. 2, 1981. Tyack, P.L. Functional Aspects of Cetacean Communication. In: Cetacean Societies: Field Studies of Dolphins and Whales. (Eds.) Mann, J.; Connor, R.C.; Tyack, P.L.; Whitehead, H. The University of Chicago, 2000. Tyack, P.L. Population Biology, Social Behavior and Communication in Whales and Dolphins. Tree, Vol. 1, No. 6, 1986. Tyack, P.L.; Clark, C.W. Communication and Acoustic Behavior of Dolphins and Whales. In: Hearing by Whales and Dolphins. (Eds.) Au, W.W.L.; Popper, A.N.; Fay, R.R. Springer, 2000. Vergne, A.L.; Pritz, M.B.; Mathevon, N. Acoustic Communication in Crocodilians: from Behaviour to Brain. Biological Reviews, Vol. 84, 2009. Wells, R.S. Dolphin social complexity: Lessons from long-term study and life history. (Eds.) de Waal, F.B.M.; Tyack, P.L. In: Animal Social Complexity: Intelligence, Culture, and Individualized Societies. Harvard University Press, 2003. Whitehead, H. Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis. The University of Chicago, 2008. Wiley, R.H.; Richards, D.G. Adaptations for acoustic communication in birds: Transmission and signal detection. (Eds.) Kroodsma, D.E.; Miller, E.H. In: Acoustic Communication in Birds. New York: Academic Press, Vol. 2, 1982. Wiley, R.H.; Richards, D.G. Physical Constraints on Acooustic Communication in the Atmosphere: Implications for the Evolution of Animal Vocalizations. Behavioral Ecology and Sociobiology, Vol. 3, 1978.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (Pós-Ecologia)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Clara Resende Pires. TCC - Dissertação.pdfTítulo: Complexidade acústica na comunicação animal e sua influência na ecologia dos cetáceos1,06 MBAdobe PDFVisualizar/Abrir
Ata_defesa_dissertacao_Clara_R_Pires_assinada.pdfAta de defesa assinada por todos os integrantes102,4 kBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.