Campo DC | Valor | Idioma |
dc.creator | Fonseca, Marcus de Lemos | - |
dc.date.accessioned | 2024-11-14T11:59:17Z | - |
dc.date.available | 2024-11-14T11:59:17Z | - |
dc.date.issued | 2023-02-13 | - |
dc.identifier.citation | FONSECA, Marcus de Lemos. Aprendizado motor como um processo de otimização de padrões motores primitivos. 2024. 67 f. Tese (Doutorado em Processos Interativos dos Órgãos e Sistemas) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, 2023. | pt_BR |
dc.identifier.uri | https://repositorio.ufba.br/handle/ri/40626 | - |
dc.description.abstract | Introduction: Motor learning is the continuous development of increasingly efficient motor strategies to overcome the various environmental demands throughout life. Due to their specific characteristics, the Tai Chi Chuan (TC) movements favor biomechanical studies that seek to identify important motor learning parameters. Objectives: to outline the kinematic characteristics of the movements undertaken by the TC and attest if there is an optimizing behavior towards primitive motor patterns in motor learning processes and their movements. Methodology: This is an integrative review followed by an observational cross-sectional study. For the integrative review, publications from PubMed, Cochrane Library, Pedro and Scielo databases were selected, in addition to citations of concerning original research and review articles for any supporting study. The selection criteria were: articles published both in Portuguese and English that tracked biomechanical analysis of TC movements, without publication timeline restrictions. some keywords used were TC and other correlated ones, in addition to terms such as biomechanics, kinematics, movement, biomechanical phenomena and motion capture. In the observational study’s methodology, data from a secondary base were analyzed. Also, highly accurate kinematic data from 12 TC practitioners, who were divided into 4 groups according to skill level (beginner, intermediate, advanced and expert) and during 3 interpretations of 13 specific techniques, were analyzed. A movement decomposition model, the Movement Element Decomposition (MED), was then applied, which was capable of identifying aspects that indicate motor gesture optimization such as the Number of Movement Elements per time (Nt), the Number of Movement Peaks (Np) and Motion Smoothing (W) as cost savings over time. Results: it was identified 13 publications with similar methods of analysis, which described TC movements as slow, wide, smooth, with fewer starts and with a lower center of gravity, performing greater variation in its trajectory. In the observational study, through the Kruskal Wallis test, a significant difference was observed in more experienced practitioners when it came to the reduction of Nt, to the increase of Np and also to W. Conclusions: TC movements are slower, larger, smoother and more fluid. In more experienced practitioners, a gesture optimization behavior is observed, characterized by a smaller Nt, which means lesser movement elements necessary for the movement and larger Np associated with a slower W curve, indicating greater control and smoothness, even in more complex movements. | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal da Bahia | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Aprendizado motor | pt_BR |
dc.subject | Aprendizagem motora | pt_BR |
dc.subject | Movimento | pt_BR |
dc.subject | Aprendizagem | pt_BR |
dc.subject | Cinemática | pt_BR |
dc.subject | Fenômenos biomecânicos | pt_BR |
dc.subject | Tai Chi Chuan | pt_BR |
dc.subject.other | Motor Learning | pt_BR |
dc.subject.other | Movement Aprenticeship | pt_BR |
dc.subject.other | Movement | pt_BR |
dc.subject.other | Learning | pt_BR |
dc.subject.other | Biomechanical Phenomena | pt_BR |
dc.subject.other | Tai Ji | pt_BR |
dc.title | Aprendizado Motor como um processo de otimização de padrões motores primitivos | pt_BR |
dc.title.alternative | Motor learning as a process of optimizing primitive motors patterns | pt_BR |
dc.type | Tese | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) | pt_BR |
dc.publisher.initials | UFBA | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS DA SAUDE | pt_BR |
dc.contributor.advisor1 | Ribeiro, Nildo Manoel da Silva | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0002-1879-0405 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9314966879265748 | pt_BR |
dc.contributor.referee1 | Ribeiro, Nildo Manoel da Silva | - |
dc.contributor.referee1ID | https://orcid.org/0000-0002-1879-0405 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/9314966879265748 | pt_BR |
dc.contributor.referee2 | Santos, Cléber Luz | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/1351352771153286 | pt_BR |
dc.contributor.referee3 | Trippo, Karen Valadares | - |
dc.contributor.referee3ID | https://orcid.org/0000-0002-0182-0129 | pt_BR |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/7077622397421377 | pt_BR |
dc.contributor.referee4 | Pinheiro, Igor de Matos | - |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/0070316913989875 | pt_BR |
dc.contributor.referee5 | Freitas, Juliana Viana | - |
dc.contributor.referee5ID | https://orcid.org/0000-0001-7746-4274 | pt_BR |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/3305112523616019 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/5836274666580158 | pt_BR |
dc.description.resumo | Introdução – O aprendizado motor é a elaboração contínua de estratégias motoras cada vez mais eficientes para vencer as várias demandas ambientais ao longo da vida. Por suas características específicas, os movimentos do Tai Chi Chuan (TC) favorecem estudos biomecânicos que buscam identificar importantes parâmetros de aprendizado motor. Objetivos – Delinear as características cinemáticas dos movimentos empreendidos no TC e verificar se existe um comportamento de otimização de padrões motores primitivos em processos de aprendizado motor nos seus movimentos. Metodologia – Trata-se de uma revisão integrativa seguida de um estudo observacional de corte transversal. Para a revisão integrativa, foram selecionadas publicações das bases de dados PubMed, Biblioteca Cochrane, PEDro e Scielo, além de citações manuais de pesquisas originais relacionadas e artigos de revisão para qualquer estudo adicional. Os critérios de seleção foram: artigos publicados em português ou inglês, sem limites de período de publicação e que rastreassem a análise biomecânica dos movimentos do TC. As palavras-chave utilizadas foram TC e suas correlatas, associadas aos termos biomecânica, cinemática, movimento, fenômenos biomecânicos e captura de movimento. Na metodologia do estudo observacional foram analisados dados a partir de base secundária. Dados cinemáticos de grande precisão de 12 indivíduos praticantes de TC divididos em quatro grupos conforme o nível de habilidade (iniciante, intermediário, avançado e especialista), durante três interpretações de 13 técnicas específicas. Foi, então, aplicado um modelo de decomposição de movimentos, o Movement Element Decomposition (MED), capaz de identificar aspectos que indicam otimização do gestual motor, como o número de elementos do movimento por tempo (Nt), o número de picos de movimento (Np) e a suavização do movimento (W), conforme economia de custo em relação ao tempo. Resultados – 13 publicações com métodos semelhantes de análise, descrevendo os movimentos do TC como lentos, amplos, suaves, com menos arranques e com centro de gravidade mais baixo e desempenhando maior variação de trajetória. No estudo observacional verificou-se, através do teste de Kruskal Wallis, diferença significativa nos praticantes mais experientes com relação à redução dos Nt, aumento do Np e também do W. Conclusão – Os movimentos do TC são mais lentos, amplos, suaves e fluidos. Nos praticantes mais experientes, observa-se um comportamento de otimização do gestual, caracterizado por um Nt menor, ou seja, menos elementos de movimento necessários para o movimento e um Np maior, associado a uma curva mais lenta de W, indicando maior controle e suavidade, mesmo em movimentos mais complexos. | pt_BR |
dc.publisher.department | Instituto de Ciências da Saúde - ICS | pt_BR |
dc.relation.references | 1. Turvey MT, Fonseca S. Nature of motor control: perspectives and issues. In: Progress in Motor Control. Springer US 2009;629:93-123. doi: 10.1007/9780-387-77064-2_6 2. Fonseca ST, Faria CD, Ocarino JM, Mancini MC. Abordagem ecológica à percepção e ação: fundamentação para o comportamento motor. Braz J Motor Behavior. 2007:2(1):1-10. 3. Lima RCM, Nascimento LR, Teixeira-Salmela LF. O Movimento Funcional de alcance em uma abordagem ecológica. Fisioter Pesqui. 2010;17(2):184. doi: https://doi.org/10.1590/S1809-29502010000200016 4. Tani G, Freudenheim AM, Meira Júnior CDM, Corrêa U. Aprendizagem motora: tendências, perspectivas e aplicações. Rev Paul Educ Fís. 2004;18:55-72. 5. Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9(6):718-27. doi: 10.1016/s0959-4388(99)00028-8 6. Izawa J, Rane T, Donchin O, Shadmehr R. Motor adaptation as a process of reoptimization. J Neurosc. 2008;28(11):2883-91. doi: https://doi.org/10.1523/JNEUROSCI.5359-07.2008 7. Miranda JGV, Daneault, JF, Vergara-Dias, G, Torres, AFSOT, Quixadá, AP, Fonseca ML, et al. Complex upper-limb movements are generated y combining motor primitives that’s scale with the movement size. Scientific reports. 2018;8:1-11. 8. Fonseca ML, Daneault J-F, Vergara-Dias G, Quixadá AP, Torres AFS de OE, Sena EP, et al. Motor skill acquisition during a balance task as a process of optimization of motor primitives. Eur J Neurosci. 2019;51(10):1-13. doi: 10.1111/ejn.14649 9. Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688-703. In: Hoff B. A model of duration in normal and perturbed reaching movement. Biol Cybern, 1994;71:481-4. 10. Huh D, Sejnowski T. Spectrum of power laws curved hand movements. Exp Brain Res. 2015;112(29):3950-58. doi: https://doi.org/10.1073/pnas.151020811 11. Von Hofsten C. Development of visually guided reaching: the approach phase. J Hum Mov Stud. 1979;5:160. 60 12. Brooks V. Some examples of programmed limb movements. Brain Res. 1974;71(2-3):299-308. doi: 10.1016/0006-8993(74)90973-1 13. Latash M, Scholz JP, Schöner G. Toward a new theory of motor synergies. Motor Control. 2007;11(3):276-308. doi: 10.1123/mcj.11.3.276 14. Schmidt RC, Carello C, Turvey MT. Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform. 1990;16(2):227-47. doi: 10.1037//00961523.16.2.227 15. Finley JM, Bastian AJ, Gottschall JS. Learning to be economical: the energy cost of walking tracks motor adaptation. J Physiology. 2013;591(4):1081-95. doi: https://doi.org/10.1113/jphysiol.2012.245506 16. Lyu D, Lyu X, Zangh Y, Ren Y, Yang F, Zhou L, et al. Tai Chi for stroke rehabilitation: a systematic review and meta-analysis of ramdomized controlled trials. Front Physiol. 2018;9:983. doi: 10.3389/fphys.2018.00983 17. Law N, Li JC. The temporospatial and kinematic characteristics of typical tai chi movements: repulse monkey and wave-hand in cloud. Res Sports Med. 2014;22:111-23. 18. Tits M, Laraba S, Caulier E, Tilmanne J, Dutoit T. UMONS-TAICHI: a multimodal motion capture dataset of expertise in taijiquan gestures. Data in brief. Elsevier. 2018;19:1214-21. 19. Todorov E, Jordam MI. Optimal feedback control as theory of motor control. Nature neurosci. 2002;5(11):1226-35. 20. Latash M, Levin FM, Scholz JP, Schoner G. Motor control theories and their applications. Medicin. 2010;46(6):382-92. 21. Doyon J, Benalli H. Reorganization and plasticity in the adult brain during learning of motor skills. Current Opin Neurobiology. 2005;15(2):161-7. doi: 10.1016/j.conb.2005.03.004 22. Muratori LM, Lamberg EM, Quinn L, Duff SV. Applying principles of motor learning and control to upper extremity rehabilitation. J Hand Therapy. 2013;26(2):94-103. doi: 10.1016/j.jht.2012.12.007 23. Merel J, Botvinik M, Wayne G. Hierarchial motor control in mammal and machines. Nature communications. 2019;10:1-12. 24. Bastian, AJ. Understanding sensorimotor adaptation and learning adaptation. Current Opinions in Neurology. 2008;21:628-33. 61 25. Sipiridonov V, Loginov N, Ivanchel I, Kurgansky AV. The role of motor activity in insight problem solving (The Case of the Nine — Dot Problem). Front Psychol. 2019;10(2):1-17. doi: 10.3389/fpsyg.2019.00002 26. Thelen E, Corbetta D, Spencer JP. Development of reaching during the first year: role of movement speed. J Exp Psychol Hum Percept Perform. 1996;22(5):1059-76. doi: 10.1037//0096-1523.22.5.1059 27. LI S, Pathirana PN, Galea MP, Ottmann G, Kahn F. Quantitative assessment in ADL: a Pilot study of upper extremity reaching tasks. J Sensors. 2015;2015:114. doi: https://doi.org/10.1155/2015/236474 28. Lacquaniti F, Terzuolo C, Viviani P. The law relating kinematic and figural aspects of drawing movements. Acta Psychol. 1983;54:115-30. doi: https://doi.org/10.1016/0001-6918(83)90027-6 29. Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology and chemistry. Perseus Publishing. 2001;12(2):122-33. 30. Kelso JS. Multistability and metastability: understanding dynamic coordination in the brain. Philos Trans Royal Soc Biol Sci. 2012;367(1591):906-18. doi: 10.1098/rstb.2011.0351 31. Kelso JS. Dynamic patterns: the self-organization of brain and behavior. MIT Press. 1997;11(1):23-39. 32. Makino H, Hwang EJ, Hendrick NG, Komiyama T. Circuits mechanisms of sensorimotor learning. Neuron. 2016;92(4):705-21. doi: 10.1016/j.neuron.2016.10.029 33. Latash M. Evolution of motor control: from reflexes and motor programs to the equilibrium point hypothesis. J Hum Kinet. 2008;19(19):3-24. doi: 10.2478/v10078-008-0001-2 34. Shadmehr R, Brashes-Krug T. Functional stages in the formation of human long-term motor memory. J Neurosci. 1997;17(1):409-19. doi: 10.1523/JNEUROSCI.17-01-00409.1997 35. Berthier NE. Learning to reach: a mathematical model. Dev Psychol. 1996;5:811-23. 36. Viviani P, Terzuolo C. Trajectory determines movement dynamics. Neuroscience. 1982;7(2):431-7. doi: 10.1016/0306-4522(82)90277-9 62 37. Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688-703. https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985 38. Viviani P, McCollum C. The relation between linear extent and velocity in drawing movements. Neuroscience. 1983;1(10):211-8. doi: https://doi.org/10.1016/0306-4522(83)90094-5 39. Viviani P, Cenzato M. Segmentation and coupling in complex movements. J Expl Physiol Hum Percept Perform. 1985;6(11):828-45. doi: 10.1037//00961523.11.6.828 40. Flash T, Handzel AA. Affine differential geometry analysis of human arm movements. Biol Cybern. 2007;96:577-601. 41. Viviani P, Flash T. Minimum-jerk, two thirds power law, and isochrony: Converging approaches to movement planning. J Exp Physiol Hum Percept Perform. 1995;1(21):32-53. doi: 10.1037//0096-1523.21.1.32 42. Hoff B. A Model of duration in normal and perturbed reaching movement. Biol Cybern. 1994;71:481-8. 43. Li S, Phatirana PN, Galea MP, Ottman G, Khan F. Quantitative assessment of ADL: A pilote study of upper extremity reaching tasks. J Sensors. 2015; 03(2):1-13. 44. Davidson PR, Wolpert DM. Motor learning and prediction in a variable environment. Current Opin Neurobiol. 2003;13(2):1-6. doi: 10.1016/s09594388(03)00038-2 45. Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neuroscience. 2011;3:1-13. 46. Kal E, Proseé R, Winters M, Van der Kamp J. Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A Systematic Review. PloS One. 2018;13(9):1-25. doi: 10.1371/journal.pone.0203591 47. Jeannerod M. The neural and behavioural organization of goal-directed movements. Neuroscience. 1988;2(12):213-24. 48. Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis. Champaing, II: Human Kinectis. 2005. 49. Edelman S, Flash T. A model of handwriting. Biol Cybern. 1987;57(1-2):25-36. doi: 10.1007/BF00318713 63 50. Shadmehr R. The Computational neurobiology of reaching and pointing: a foundation for motor learning. MIT press 2002. 51. Koh TC, Susan MBB. Tai Chi Chuan. Institute for advanced research in Asian and science medicine. Am J Chinese Med. 1981;9:15-22. 52. Yang GY, Sabag A, Hao WL, Zhang LJ, Jia MX, Dai N, et al. Tai Chi for health and well-being: a bibliometric analysis of published clinical studies between 2010 and 2020. Complement ther Med. 2021;60:1-7. doi: 10.1016/j.ctim.2021.102748 53. Gatts S. A Tai Chi Chaun training model to improve balance control in older adults. Current Aging sci. 2008;1:68-70. doi: 10.2174/1874609810801010068 54. Pan J, Liu C, Li L, Zhang X. The effect of Tai Chi Chuan exercise on postural time-to-contact in manual fitting task among older adults. Gait Posture. 2020; 82:61-7. doi: 10.1016/j.gaitpost.2020.08.124 55. Wu G. Biomechanical characteristics of stepping in older Tai Chi practitioners. Gait Posture. 2012;36(3):361-66. doi: https://doi.org/10.1016/j.gaitpost.2012.03.029 56. Yang Y, Hao Y-L, Tian W-J, Gong L, Zhang K, Shi Q-G, et al. The effectiveness of Thai Chi for patients with Parkinson’s disease: study protocol for a randomized controlled trial. Biomed Central. 2015;16:1-7. doi: 10.1186/s13063-015-0639-8 57. Zamparo P, Zorzi E, Marcantoni S, Cesari P. Is beauty in the eyes of the beholder? Aesthetic versus technical skill in movement evaluation of Tai Chi. PloS One: 2015;10(6):1-13. doi: 10.1371/journal.pone.0128357 58. Chau KW, Mao DW. The characteristics of foot movements in Tai Chi Chuan. Res Sports Med. 2007;14:19-28. doi: 10.1080/15438620500528216 59. Dong X, HU, X, Chen, B. Biomechanical analysis of arm manipulation in Tai Chi. Computat Intell Neurosci. 2022;1-12. 60. Hong Y, Li JX. Biomechanics of Tai Chi. A Review. Sports Biomech. 2007; 6(3):453-64. doi: 10.1080/14763140701491674 61. Hua H, Zhu D, Wang Y. Comparative study on the joint biomechanics of different skill level practitioners in chen-style Tai Chi punching. Int J Environ Res Public Health. 2022;19(10):1-12. doi: 10.3390/ijerph19105915 64 62. Law NY, Li JX. The temporospatial and kinematic characteristics of typical Tai Chi movements: repulse monkey and wave-hand in cloud. Res Sports Med. 2014;22(2):111-23. doi: 10.1080/15438627.2014.881819 63. Wu G, Liu W, Hitt J, MIllon D. Spatial, temporal and muscle action patterns of Tai Chi gait. J Electromyogr Kinesiol. 2004;14(3):343-54. doi: 10.1016/j.jelekin.2003.09.002 64. Chan SP, Luk TC, Hong Y. Kinematic and electromyographic analysis of the push movement in Tai Chi. Br J Sports Med. 2003;37(4):339-44. doi: 10.1136/bjsm.37.4.339 65. Li Y, Wang K, Wang L, Chang T, Zang S, Niu W. Biomechanical analysis of the meniscus and cartilage of the knee during a typical Tai Chi movement – brush and knee and twist-step. Math Biosciences Eng. 2018;16(2):898-908. doi: 10.3934/mbe.2019042 66. Zorzi E, Nardelo F, Fracasso E, Franchi S, Clauti A, Cesari P, et al. kinematic and metabolic analysis of the first Lu of Tai Chi in experts and beginners. 2015. Appl Physiol Nutr Metab. 2015;40(10):1082-5. doi: 10.1139/apnm2015-0064 67. Yang F, Liu W. Biomechanical mechanism of Tai Chi gait for preventing falls: a pilot study. J Biomech. 2020;105:1-10. doi: 10.1016/j.jbiomech.2020.109769 68. Wu G. Age-related differences in Tai Chi gait kinematics and leg muscle electromyography: a pilot study. Arch Phys Med Rehabil. 2008;89(2):351-8. doi: 10.1016/j.apmr.2007.08.147 69. Wu G, Ren X. Speed effect of selected Tai Chi Chuan movement on leg muscle activity in young and old practitioners. Clin Biomech. 2009;24(5):41521. doi: 10.1016/j.clinbiomech.2009.03.001 70. Friedman J, Korman M. Offline optimization of the relative timing of movements in a sequential is blocked by retroactive behavioral interference. Front Hum Neurosci. 2016;10:1-15. doi: 10.3389/fnhum.2016.00623 71. Fetters T, Hogan N. Quantitative assessment of infant reaching movements. J Mot Behav. 1987;19(2):147-66. doi: https://doi.org/10.1080/00222895.1987.10735405 72. Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123(Pt 5):940-53. doi: 10.1093/brain/123.5.940 73. Roher B, Fasoli S, Krebs HI, Huges R, Volpe B, Frontera WR, et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22: 8297-8304. 65 74. Scholz JP, Schoner G. The uncontrolled manifold concept: identifying control variables for functional task. Exp Brain Res. 1999;126(3):289-306. doi: 10.1007/s002210050738 75. Latash ML, Anson JG. Synergies in health and disease: relations to adaptive changes in motor coordination. Phys Ther. 2006;86:1151-60. 76. Van Beers RJ, Brenner E, Smeets JBJ. Random walk of motor planning in taskirrelevant dimensions. J Neurophysiol. 2013;109(4):969-77. doi: 10.1152/jn.00706.2012 77. Dhawale AK, Smith MA, Olcevzky BP. The role of variability in motor learning. Annu Rev Neurosci. 2017;40:479-98. doi: 10.1146/annurev-neuro-072116031548 78. Hillis JM, Ernst MO, Banks MS, Landy MS. Combining sensory information: mandatory fusion within, but not between, senses. Science. 2002;298(5598):1627-30. doi: 10.1126/science.1075396 79. Orban P, Peigneux P, Lungu O, Debas K, Barakat M, Bellec P, et al. Funstional neuroanatomy associated with the expression of distinct movement kinematics in motor sequence learning. Neuroscience. 2011;179:94-103. doi: 10.1016/j.neuroscience.2011.01.040 | pt_BR |
dc.type.degree | Doutorado | pt_BR |
Aparece nas coleções: | Tese (PPGPIOS)
|