Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/40669
Registro completo de metadados
Campo DCValorIdioma
dc.creatorFontes, Rebeca Menezes Vaz Queiroz-
dc.date.accessioned2024-11-22T14:22:00Z-
dc.date.available2024-11-22T14:22:00Z-
dc.date.issued2023-10-11-
dc.identifier.citationFONTES, Rebeca Menezes Vaz Queiroz. Reprodutibilidade de evidências forenses em mandíbulas: comparação entre reconstrução tridimensional e impressão 3D. 2023. 95 f. Tese (Doutorado em Processos Interativos dos Órgãos e Sistemas) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/40669-
dc.description.abstractIntroduction: 3D printing can be used for many applications, including document imaging, human identification, comparative dentistry, bite mark and pattern analysis, ballistics, facial reconstruction, crime scene reconstruction, as well as disaster victim identification (DVI), forensic anthropology, and archaeology. The present study was designed to evaluate the reproducibility of artificial mandibles containing lesions of forensic interest through three dimensional reconstruction obtained by cone beam computed tomography (CBCT) and 3D printing. Methods: In this study, a quantitative and descriptive approach was used, dispensing ethical assessment for the use of 14 artificial jaws in resin (polyurethane). Five stages were performed, from the preparation of nine simulated lesions of forensic interest (bullet entrance hole, bullet exit hole, multiple bullet holes, sharp force trauma, tooth loss, coronary tooth fractures, mandibular fracture and complete and incomplete condyle fractures) to the tomographic scans of the 14 jaws using CBCT with voxel sizes of 0. 25, 0.3 and 0.4mm, followed by the analysis of 10 landmarks in the 3D volumes generated (Article 1) and subsequent three-dimensional printing using the FDM technique of volumes generated with voxel 0.3, to compare the two reproduction techniques used (tomographic = AT and printed = AC). The data were analyzed using T-Student and ICC tests and presented in Bland-Altman plots (article 2). Results: In article 1, the results showed that the protocols with voxels of 0.3 mm should be preferred for the evaluation of linear and angular measurements. Statistical analysis showed that there was no statistically significant difference in the intra-examiner A (p=0.920) and B (p=0.424) and inter-examiner (p=0.664) scores. This demonstrated the reliability of the used method. The study showed that it is possible to create reference points in 3D models, which is an important step in consolidating the use of prototypes in forensic studies. In article 2, the statistical analysis with the ICC test showed that most of the variables (simulated lesions) were well reproduced (ICC above 0.8) in both techniques. It was also observed that the pairs AT and AC had measurements close to the mean difference and remained within the confidence interval, although the printing technique showed less variation in the measurements performed compared to the original ones (AC). Discussion: According to the results of the two articles, there was success in the use of 3D technologies (CBCT and printing) to evaluate the reliability and reproducibility of these techniques in forensic contexts. Article 1 showed, in its results, that the error found in the inter-examiner comparison (using the same measurement method) was small and remained stable, regardless of the evaluated variables. Regarding the comparison of three-dimensional reproducibility by tomographic (CBCT) and printed methods, article 2 showed that both techniques are reliable. The result of the reproducibility of the simulated lesions selected for article 2 showed that all lesions were reproduced. The shape, number, and anatomical relationships were preserved. The simulated lesions caused by firearm projectile (bullet entrance and bullet exit hole), sharp force trauma and tooth loss were rated from good to excellent in tomographic and 3D printed reproductions. Articles 1 and 2 presented as a result of this thesis are complementary in the sense that the first has evaluated three dimensionals volumes digitally reproduced (well established craniometric points were observed), and the second allows a comparative evaluation between three-dimensional digital and printed volumes (analyzing the reproduction of specific forensic lesions). Conclusion: The implementation of this methodology of prototypes as conditions of clinical and forensic simulation allows the comparison of the human database in identification issues. The analog measurement technique applied in the 3D printed volume proved to be accurate and reproducible when compared with the computerized technique using 3D digital images. New studies are needed in the search for standardization of three-dimensional measurements in digitized and printed volumes.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectTomografia computadorizada de feixe cônicopt_BR
dc.subjectMarcos anatômicospt_BR
dc.subjectPontos de referência anatômicospt_BR
dc.subjectMandíbulapt_BR
dc.subjectImpressão 3Dpt_BR
dc.subjectImpressão Tridimensionalpt_BR
dc.subjectCiências Forensespt_BR
dc.subject.otherCone beam computed tomographypt_BR
dc.subject.otherAnatomical landmarkspt_BR
dc.subject.otherAnatomic Landmarkspt_BR
dc.subject.otherMandiblept_BR
dc.subject.other3D printingpt_BR
dc.subject.otherPrinting, Three-Dimensionalpt_BR
dc.subject.otherForensic Sciencespt_BR
dc.titleReprodutibilidade de evidências forenses em mandíbulas: comparação entre reconstrução tridimensional e impressão 3Dpt_BR
dc.title.alternativeReproducibility of forensic evidence in mandibles: comparison between three-dimensional reconstruction and 3D printingpt_BR
dc.typeTesept_BR
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDEpt_BR
dc.contributor.advisor1Ribeiro, Patricia Miranda Leite-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-4243-6887pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1291478815901411pt_BR
dc.contributor.advisor-co1Marques, Jeidson Antonio Morais-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-3070-7077pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5885473983139193pt_BR
dc.contributor.advisor-co2Corte-Real, Ana Teresa-
dc.contributor.referee1Ribeiro, Patrícia Miranda Leite-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-4243-6887pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1291478815901411pt_BR
dc.contributor.referee2Corte-Real, Ana Teresa-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-2477-1857pt_BR
dc.contributor.referee2LattesCiência ID 3711-505F-A232pt_BR
dc.contributor.referee3Sarmento, Viviane Almeida-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-4403-3659pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1685402449556308pt_BR
dc.contributor.referee4Vieira, Duarte Nuno Pessoa-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-7366-6765pt_BR
dc.contributor.referee5Marques, Jeidson Antônio Morais-
dc.contributor.referee5IDhttps://orcid.org/0000-0003-3070-7077pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/5885473983139193pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-0384-7931pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6081092746400210pt_BR
dc.description.resumoIntrodução: A importância da impressão 3D no âmbito das ciências forenses abrange uma série de possibilidades, incluindo o registro de documentação, a identificação humana, anatomia odontológica comparada e antropologia odontológica, marca de mordida e análise de padrão - reconstrução balística, reconstrução facial forense, reconstrução da cena do crime e acidente, bem como a identificação de vítima de desastre (DVI), antropologia forense e arqueologia. O presente estudo foi desenvolvido para avaliar a reprodutibilidade de mandíbulas artificiais, contendo lesões de interesse forense, através da reconstrução tridimensional obtida por meio de tomografia computadorizada de feixe cônico (CBCT) e impressão 3D. Método: Neste estudo, foi utilizada uma abordagem quantitativa e descritiva, dispensando apreciação ética por se tratar do uso de 14 mandíbulas artificiais em resina (poliuretano). Foram realizadas 5 etapas, desde a confecção de nove lesões simuladas de interesse forense (orifício de entrada, orifício de saída, lesão de orifícios múltiplos, lesão corto-contusa, área de perda dentária, fraturas dentárias coronárias, fratura mandibular e fraturas do côndilo - completa e incompleta) até a realização de tomadas tomográficas das 14 mandíbulas com CBCT, utilizando-se voxel de tamanhos de 0,25, 0,3 e 0,4 mm, seguidas de análises de 10 marcos humanos nos volumes 3D gerados (artigo 1) e posterior impressão tridimensional através da técnica FDM dos volumes gerados com voxel 0.3, para comparação entre as duas técnicas de reprodução utilizadas (tomográfica = AT e impressa = AC). Os dados foram analisados por meio dos testes t-Student e ICC e apresentados em gráficos de Bland-Altman (artigo 2). Resultados: No artigo 1, os resultados analisados mostraram que os protocolos com voxels de 0,3 mm devem ser preferencialmente indicados na avaliação das medidas lineares e angulares. A análise estatística revelou que não houve diferença estatisticamente significante nas avaliações intra-examinador A (p=0.920) e B (p=0.424) e inter-examinador (p=0,664). Isto demonstrou a confiabilidade do método escolhido. O estudo mostrou que é possível criar pontos de referência em modelos 3D, evidenciando um passo importante para a consolidação no uso de protótipos em estudos forenses. No artigo 2, as análises estatísticas com o teste ICC mostraram que a maioria das variáveis (lesões simuladas) foram bem reproduzidas (ICC acima de 0,8) em ambas as técnicas. Observou-se ainda que os pares AT e AC tiveram medidas próximas da diferença média e permaneceram dentro do intervalo de confiança, embora a técnica de impressão tenha apresentado menor variação nas medidas realizadas quando comparadas com as originais (AC). Discussão: De acordo com os resultados dos dois artigos, houve sucesso na utilização de tecnologias 3D (CBCT e impressão) para avaliar a confiabilidade e reprodutibilidade destas técnicas em contextos forenses. O artigo 1 mostrou, em seus resultados, que o erro encontrado na comparação inter-examinador (utilizando o mesmo método de medição) foi pequeno e permaneceu estável, independentemente das variáveis avaliadas. Sobre a comparação quanto à reprodutibilidade tridimensional pelos métodos tomográfico (CBCT) e impresso, o artigo 2 mostrou que as duas técnicas são confiáveis. O resultado quanto à reprodutibilidade das lesões simuladas escolhidas para o artigo 2 mostrou que todas as lesões foram reproduzidas, sendo preservadas a forma, o número e as relações anatômicas presentes. Destacaram-se as lesões simuladas causadas por projétil de arma de fogo (orifício de entrada e orifício de saída), lesão corto-contusa e de perdas dentárias que foram avaliadas de boa a excelente nas reproduções tomográfica e impressa 3D. Os artigos 1 e 2 apresentados como resultado desta tese são complementares no sentido de o primeiro ter avaliado volumes reproduzidos tridimensionais digitalmente (tendo sido observados pontos craniométricos bem estabelecidos) e o segundo possibilitando uma avaliação comparativa entre volumes tridimensionais digitais e impressos (analisando a reprodução de lesões específicas forenses). Conclusão: A implementação desta metodologia de protótipos como condições de simulação clínica e forense permite a comparação da base de dados humana em questões de identificação. A técnica de medição analógica aplicada em volume impresso 3D, quando comparada à técnica computadorizada, utilizando imagens digitais 3D, mostrou-se precisa e reprodutível. Novos estudos são necessários na busca da padronização de medidas tridimensionais em volumes digitalizados e impressos.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.references1. 2. 3. 4. 5. 6. 7. 8. 9. Oliveira GS, Marques JAM. Uso da Tecnologia de Impressão Tridimensional na Rugoscopia Palatina. RBOL 2015; 2(2):20-34. Mowry SE, Jammal H, Myer C 4th, et al. A novel temporal bone simulation model using 3D printing techniques. Otol Neurotol. 2015; 36:1562–5. Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. 2016;41: E50–4. Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer HF, Thieringer FM. Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology. J. Clin. Med. 2020; 9, 817; doi:10.3390/jcm9030817. Marques, JAM. Food bite marks expertise from intra-oral 3D scanning and 3D printing. Facere Scientia.2022.2 (1). Jani G, Johnson A, Marques J, Franco A. Three-dimensional(3D) printing in forensic science–An emerging technology in India. Annals of 3D Printed Medicine 1 (2021) 100006. https://doi.org/10.1016/j.stlm.2021.100006 Abramov SS, Boldyrev NN, Evseev AV, et al. ADOLEC-Possibilidade de uso de método de estereolitografia a laser em medicina legal; Sudebno-meditsinskaia Ekspertiza. Maio-junho de 1998; 41 (3): 13-17. Urbanová P, Vojtisek T, Frishons J, Sandor O, Jurda M, Krajsa J. Applying 3D prints to reconstructing postmortem craniofacial features damaged by devastating head injuries. Legal Med. 2018; 33:48-52. Vargas BFS, Coutinho MA, Coutinho FS. Impressão 3D na medicina legal e resolução de crimes: revisão integrativa da literatura / 3D printing in forensic medicine and crime solving: integrative literature review. Rev Med (São Paulo). 2021 jan.-feb.;100(1):62-9. 10. Errickson D, Fawcett H, Thompson TJU, Campbell A. The effect of different imaging techniques for the visualisation of evidence in court on jury comprehension. Int J Legal Med.2020; 134 (4) 1451-1455, DOI 10.1007/s00414-019-02221- 11. Blau S, Phillips E, O’Donnell C, Markowsky G. Evaluating the impact of different formats in the presentation of trauma evidence in court: a pilot study. Australian Journal of Forensic Sciences. 2018. DOI: 10.1080/00450618.2018.1457717. 12. Corte-Real AT, Vieira DN. Identificação em Medicina Dentária Forense. Coimbra: Imprensa da Universidade de Coimbra, 2015. 13. Lopez-Capp TT, Rynn C, Wilkinson C, et al. Discriminant analysis of mandibular measurements for the estimation of sex in a modern Brazilian sample. Int. J Legal Med. 2017;132: 843-851. 82 14. Marques JAM, Musse JO, Gois BC, et al. Cone-beam computed tomography analysis of the frontal sinus in forensic investigation. Int J Morphol. 2014; 32(2):660-665. 15. Almeida VSM, Bomfim RT, Sobreira ACR, et al. Linear measurement accuracy of CBCT panoramic reconstructions: experimental study with dry human mandibles. Oral Radiology 2021; 37: 421-426. 16. Corte-Real AT, Kato RM, Nunes T, et al. Reproducibility of mandibular landmarks for three-dimensional assessment. Forensic Sci Int. Rep. 2. 2020.100144. 17. Coelho J, Almiro PA, Nunes T, et al. Sex and age biological variation of the mandible in a Portuguese population- a forensic and medico-legal approaches with threedimensional analysis. Science & Justice.2021;61(6):704-713. 18. Freire E. Trauma: a doença dos séculos. São Paulo: Atheneu; 2001. 19. Hussain K, Wijetunge DB, Grubnic S, Jackson IT: A comprehensive analysis of craniofacial trauma. J Trauma.1994; 36: 34–47. 20. Girotto JA, MacKenzie E, Fowler C, Redett R, Robertson B, Manson PN: Long-term physical impairment and functional outcomes after complex facial fractures. Plast Reconstr Surg.2001; 108:312–327. 21. Dahlberg LL, Krug EG. Violência: um problema global de saúde pública. Ciên Saúde Colet. 2007; 11(Sup):1163-78. 22. França GV. Medicina Legal. 11. ed. Rio de Janeiro: Guanabara Koogan, 2017. 23. Rodrigues CV, Silva MT, Truzzi OMS. Forensic science: a service approachruzzi. Gest. Prod., São Carlos. 2010; 4 (17): 843-857. 24. Nucci GS. Código de processo penal comentado. 5. ed. São Paulo: Revista dos Tribunais, 2006. 1214. 25. Le TD, Orman JA, Stockinger ZT, Spott MA, West SA, Mann-Salinas EA, et al. The Military Injury Severity Score (mISS): a better predictor of combat mortality than Injury Severity Score (ISS). J Trauma Acute Care Surg. 2016;81(1):114-21. 26. Parreira JG, Rondini GZ, Below C, Tanaka GO, Pelluchi JN, et al. Relação entre o mecanismo de trauma e lesões diagnosticadas em vítimas de trauma fechado. Rev. Col. Bras. Cir. 2017; 44(4): 340-347. DOI: 10.1590/0100-69912017004007. 27. Macedo JLSM, Camargo LM, Almeida PF, Rosa SC. Perfil epidemiológico do trauma de face dos pacientes atendidos no pronto-socorro de um hospital publico. Rev Col Bras Cir 2008; 35(1):9-1. 28. Moura MTFM, Daltro RM, Almeida TF. Facial trauma: a systematic review of literature. RFO, Passo Fundo. 2016. 3 (21): 331-337. 29. Fonseca RJ, Barber HD, Powers MP, Frost DE. Oral and Maxillofacial Trauma. 4th Edition - November 27, 2013. 83 30. Zide MF, Kent JN. Indications for open reduction of mandibular condyle fractures. J Oral Maxillofac Surg 1983;1:89-98. 31. Dingman R, Natvig, P. Surgery official fractures, W. Saunders Company, USA.1969.142-144. 32. Harborview Radiology University of Washington. Disponível em: https://faculty.washington.edu/jeff8rob/trauma-radiology-reference-resource/2hn/dingman-and-natvig-classification-of-mandibular-fractures/ 33. Ward Booth P, Eppley BL, Schmelzeisen R: Maxillofacial trauma and esthetic facial reconstruction, ed 2, St. Louis, 2012, Saunders. 34. Instituto de Pesquisa Econômica aplicada. Atlas de Violência. Ministério da Saúde. Brasil. 2022. Disponível em: https://www.ipea.gov.br/atlasviolencia/filtros-series. 35. Maia ABP, Assis SGA, Ribeiro FML, Pinto LW. As marcas da violência por arma de fogo em face. Brazilian Journal of Otorhinolaryngology 2021;87(2) 145-151. 36. Nayar S, Bhuminathan S, Bhat WM. Prototipagem rápida e estereolitografia em odontologia. J Pharm Bioallied Sci, 7 (abril (Suppl 1)) (2015), pp. S216 - 219 37. Rocha MS. Desenvolvimento do processo de produção de próteses crâniomaxilofaciais por processos alternativos à fundição. Faculdade de Engenharia da Universidade do Porto Mestrado Integrado em Engenharia Mecânica. Julho 2014. 38. Júnior OC, Júnior AS, Neto AI. Rapid prototyping processes by deposition or removal of material in the design of new products- a comparative approach. ENEGEP 2007. Brasil. (Portuguese). 39. Giovacchini F, Gilli M, Mitro V, et al. Rapid prototyping: applications in oral and maxillofacial surgery. J Oral Med Oral Surg. 2021; 27:11-15. 40. Marques JAM, Musse JO, Gois BC, et al. Cone-beam computed tomography analysis of the frontal sinus in forensic investigation. Int J Morphol. 2014; 32(2):660-665. 41. Tang X, Krupinski EA, Xie H, etal. On the data acquisition, image reconstruction, cone beam artifacts, and their suppression in axial MDCT and CBCT – A review. Med. Phys.2018;45:761-782. 42. Corte-Real, A., et al., Cone Beam Computed Tomography (CBCT) Technology and Learning Outcomes in Dental Anatomy Education: E-Learning Approach. Anatomical Sciences Education, 2021. 43. Almeida VSM, Bomfim RT, Sobreira ACR, et al. Linear measurement accuracy of CBCT panoramic reconstructions: experimental study with dry human mandibles. Oral Radiology 2021; 37: 421-426. 44. Corte-Real AT, Kato RM, Nunes T, et al. Reproducibility of mandibular landmarks for three-dimensional assessment. Forensic Sci Int. Rep. 2. 2020.100144. 84 45. Farkas LG. Anthropometry of the head and face. 2a ed. New York: Raven Press. 1994;1-77. 46. Konigsberg, LW, Algee-Hewitt, BF, Steadman, DW. Estimation and evidence in forensic anthropology: sex and race. American journal of physical anthropology. 2009;139(1): 77-90. 47. Lopez-Capp TT, Rynn C, Wilkinson C, et al. Discriminant analysis of mandibular measurements for the estimation of sex in a modern Brazilian sample. Int. J Legal Med. 2017;132: 843-851. 48. Agnihotri AK, Kachhwaha S, Googoolye K, et al. Estimation of stature from cephalofacial dimensions by regression analysis in Indo-Mauritian population. J Forensic Leg Med. 2011;18, (4):167-172. 49. Duckworth WLH. The international agreement for the unification of anthropometric measurements to be made on the living subject. Am J Phys Anthropol.1919; 2:61-67. 50. Ludlow JB, Gubler M, Cevidanes L, et al. Precision of cephalometric landmark identification: Cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop. 2009;136(3):312. 51. Jodi C, Carl NS. A standardized nomenclature for craniofacial and facial anthropometry. International Journal of Legal Medicine. 2016;130(3), 863-879. 52. Hilgers ML, Scarfe WC, Scheetz JP, et al. Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. Am J Orthod Dentofacial Orthop. 2005;128(6): 803-811. 53. Motawei SM, Helaly AMN, Aboelmaaty WM, et al. Length of the ramus of the mandible as an indicator of chronological age and sex: a study in a group of Egyptians, Forensic Sci Int. Rep. 2.2020; 54. Martínez-Hernández RM. Determinación del género de acuerdo a las medidas antropométricas del maxilar inferior. Rev Mex Med Forense. 2018; 3(2):25-38. 55. Gillet C, Costa-Mendes L, Rérolle C, et al. Sex estimation in the cranium and mandible: a multislice computed tomography (MSCT) study using anthropometric and geometric morphometry methods. Int. J. Legal Med.2020. 56. Almeida VSM, Bomfim RT, Sobreira ACR, et al. Linear measurement accuracy of CBCT panoramic reconstructions: experimental study with dry human mandibles. Oral Radiology 2021; 37: 421-426. 57. Corte-Real AT, Kato RM, Nunes T, et al. Reproducibility of mandibular landmarks for three-dimensional assessment. Forensic Sci Int. Rep. 2. 2020.100144. 58. Coelho J, Almiro PA, Nunes T, et al. Sex and age biological variation of the mandible in a Portuguese population- a forensic and medico-legal approaches with threedimensional analysis. Science & Justice.2021;61(6):704-713. 59. Goodman M. Future crimes: tudo está conectado, todos somos vulneráveis e o que 85 podemos fazer sobre isso. São Paulo: HSM; 2015. 60. Abramov SS, Boldyrev NN, Evseev AV, et al. ADOLEC-Possibilidade de uso de método de estereolitografia a laser em medicina legal; Sudebno-meditsinskaia Ekspertiza. Maio-junho de 1998; 41 (3): 13-17. 61. Simon G, Poor VS. Applications of 3D printing in forensic medicine and forensic pathology. A systematic review. Annals of 3D Printed Medicine 8 .2022. 100083. https://doi.org/10.1016/j.stlm.2022.100083 62. Nascimento MM, Sarmento VA, Beal VE, et al. [Identification of individuals through bite marks in food using reverse engineering and rapid prototyping: simulated case]. Arq Odontol .2012;48(3):134-41. Portuguese. 63. Woźniak K, Woźniak ER, Moskala A, Pohl J, Latacz K, Dybala B. Weapon identification using antemortem computed tomography with virtual 3D and rapid prototype modeling-A report in a case of blunt force head injury. Forensic Sci Int. 2012; 222:29-32. doi: https://doi.org/10.1016/j. forsciint.2012.06.012. 64. Komar DA, Davy-Jow S, Decker SJ, The use of a 3-D laser scanner to document ephemeral evidence at crime scenes and postmortem examinations, J. Forensic Sci. 57 (1) (2012) 188–191, https://doi.org/10.1111/j.1556-4029.2011.01915. 65. P. Urbanová M, Jurda T, Vojtíšek, Krajsa J, Using drone-mounted cameras for on-site body documentation: 3D mapping and active survey, Forensic Sci. Int. 281 (2017) 5262, https://doi.org/10.1016/j.forsciint.2017.10.027. 66. Verolme E, Mieremet A. Application of forensic image analysis in accident investigations, Forensic Sci. Int. 2017; 278:137–147. https://doi.org/10.1016/j. forsciint.2017.06.039. 67. Nacional Ossos. São Paulo. Site disponível em: https://ossos.com.br/12285-mandibularadiopaca-c-todos-os-dentes-p-cranio-9001.html 68. Brauner E, Laudoni F, Amelina G, Cantore M, Matteo Armida M, et al. Dental Management of Maxillofacial Ballistic Trauma. J. Pers. Med. 2021. 11. 69. Eze UO, Ojifinni KA. Trauma Forensics in Blunt and Sharp Force Injuries. Journal of the West African College of Surgeons .2022.4 (12). 70. Prahlow JA. Forensic Autopsy of Sharp Force Injuries. E medicine Medscape. 2022. 129. 71. Martinez LF, Ferreira A. Análise de Dados Com SPSS Primeiros Passos. Lisboa.Escolar Editora, 2010 72. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. London. 1999; 8: 135-160. 73. Shapiro SS, WILK MB. An analysis of variance test for normality (complete samples). Biometrika.1965; 52(3–4):591-611. 86 74. Fisher RA. Statistical methods for research workers. Edinburgh: Oliver and Boyd; 1954. 75. Araújo LG, Biancalana RC, Terada ASSD, et al. Human identification of victims of mass disasters: the importance and role of Forensic Dentistry. RFO UPF.2013;18(2):224-229. 76. Marques J, Musse J, Caetano C, Corte-Real F, Corte-Real AT. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT) –3D reconstruction. J Forensic Odontostomatol. 2013;31(1) :1-7. 77. Lopez-Capp TT, Rynn C, Wilkinson C, et al. Discriminant analysis of mandibular measurements for the estimation of sex in a modern Brazilian sample. Int. J Legal Med. 2017;132: 843-851. 78. Carvalho SPM, Brito LM, Paiva LAS, et al. Validation of a physical anthropology methodology using mandibles for gender estimation in a Brazilian population. J Appl Oral Sci.2013;21(4):358-62. 79. Tunis TS, Sarig R, Cohen H, et al. Sex estimation using computed tomography of the mandible.Int J Legal Med.2017;131:1691-1700. 80. Sarment DP, Christensen AM. The use of cone beam computed tomography in forensic radiology. J Forensic Radiol Imag. 2014;2(4):173-181. 81. Yossef M, Chen A. Applicability and Limitations of 3D Printing for Civil Structures. Civil, Construction and Environmental Engineering Conference Presentations and Proceedings. 2015;35: 237-246. 82. Edwards J, Rogers T. The Accuracy and Applicability of 3D Modeling and Printing Blunt Force Cranial Injuries.J Forensic Sci. 2017;63(3):683-691. 83. Leonardi RM. 3D Imaging Advancements and New Technologies in Clinical and Scientific Dental and Orthodontic Fields. J Clin Med. 2022; 11:2200. 84. Yoshimura H, Matsuda S, Ohba S, et al. Stereolithographic model assisted reconstruction of the mandibular condyle with a vascularized fibular flap following hemimandibulectomy: Evaluation of morphological and functional outcomes. Oncology Letters. 2017; 14: 5471-5483. 85. Figueiredo SS, Cuccolo EC, Santos RRLQ, et al. The influence of different CBCT image alignment position on the virtual linear measurements of dental implant relationships: a laboratory study. Implant News Perio. 2018;3(1):38-44. 86. Nica DF, Gabor AG, Duma VF. Sinus Lift and Implant Insertion on 3D-Printed Polymeric Maxillary Models: Ex Vivo Training for In Vivo Surgical Procedures. J Clin Med. 2021; 10: 4718-4733. 87. Giovacchini F, Gilli M, Mitro V, et al. Rapid prototyping: applications in oral and maxillofacial surgery. J Oral Med Oral Surg. 2021; 27:11-15. 88. Dirkmaat DC, Cabo LL, Ousley SD, et al. New perspectives in forensic anthropology. Am J Phys Anthropol. 2008;(Suppl 47):33-52. 87 89. Carew R, Errickson D. Imaging in forensic science: five years on. J Forensic Radiol Imaging. 2019; 16: 24-33. 90. Suomalainen A, Esmaeili EP, Robinson, S. Dentomaxillofacial imaging with panoramic views and cone beam CT. Insights Imaging. 2015; 6: 1-16. 91. Gaudino C, Cosgarea R, Heiland S, et al. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT. Eur Radiol. 2011; 21:2575-2583. 92. Perini TA; Oliveira GL, Ornellas JS; et al. Calculation of technical measurement error in Antropometry. Revista Brasileira de Medicina do Esporte.2005; 11(1): 81-85. Portuguese. 93. Silva DL,Neto FXP, Carneiro SG, et al. Treacher Collins Syndrome: Review of Literature. Intl Arch. Otorhinolaryngol. 2008; 12: 116-121. 94. Chang CC, Steinbacher DM. Treacher Collins Syndrome. Semin Plast Surg. 2012; 26: 83-90. 95. Silva RCT, Nascimento EC, Barbosa CTM, et al. [Literature review on Treacher Collins syndrome: embryological and phenotypic descriptions]. Cadernos de Graduação. 2018; 4(1): 27-34. Portuguese. 96. Giudice A, Belhous K, Barone S, et al., The use of three-dimensional reconstructions of CT scans to evaluate anomalies of hyoid bone in Pierre Robin sequence: A retrospective study. J Stomatol Oral Maxillofac Surg. 2019; 743:1-6. 97. Pederson D, Gore C. Error en la medición antropométrica. In: Norton K, Olds T, editors. Antropométrica. Argentina: Biosystem Servicio Educativo. 2000;71-86. 98. Le T, Farkas L, Ngim R, et al. Proportionality in Asian and North American Caucasian Faces Using Neoclassical Facial Canons as Criteria. Aesth Plast Surg. 2002; 26: 64-69. 99. Patcas R, Muller L, Ullrich O, et al. Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. Am J Orthod Dentofacial Orthop. 2012; 141:41-50. 100. Al-Rawi B, Hassan B, Vandenberge B, et al. Accuracy assessment of three-dimensional surface reconstructions of teeth from Cone Beam Computed Tomography scans. J Oral Rehab. 2010; 37(5): 352-358. 101. Torres MG, Campos PS, Segundo NP, et al. Accuracy of linear measurements in cone beam computed tomography with different voxel sizes. Implant Dent. 2012; 21:150155. 102. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of chiropractic medicine, 2016; 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012. 103. Baier W, Warnett JM, Payne M, Williams MA. Introducing 3D printed models as demonstrative evidence at criminal trials. J Forensic Sci. 2018; 63 (4): 1298-1302. 88 https://doi.org/10.1111/1556-4029.13700. 104. Fuyamada M, Nawa H, Shibata M, Yoshida K, Kise Y, Katsumata A, et al. Reproducibility of landmark identification in the jaw and teeth on 3-dimensional conebeam computed tomography images. The Angle Orthodontist. 2011; 81(5): 843–849. https://doi:10.2319/010711-5.1 105. Yan X, Gu P. A review of rapid prototyping technologies and systems. Computer-Aided Design. 1996; 4 (26): 307-316. 106. Prahlow JA, Ross KF, Lene WJ, Kirby DB. Accidental sharp force injury fatalities. Am J Forensic Med Pathol. 2001; 22(4):358-66. 107. Morris JM, Reichard RR, McGee KP. 3D printing in forensic radiology. 3D Printing for the Radiologist, Elsevier. 2022;157-173.https://doi: 10.1016/B978-0-323-775731.00004-X. 108. Fontes RMVQ, Nunes TAC, Machado RFS, Ribeiro PML, Marques JAM, Corte-Real A. Reproducibility of human landmarks identification in morphological mandible prototype - major parameters for 3D CBCT approach. Journal of Research in Forensic Sciences. 2023. https://doi: 10.1093/fsr/owad029. 109. Khosravani MR, Berto F, Ayatollahi MR, Reinicke T. Characterization of 3D-printed PLA parts with different raster orientations and printing speeds. Scientific Reports.2022; 12:1016. https://doi.org/10.1038/s41598-022-05005-4. 110. Li Z, Rathore AS, Song C, Wei S, Wang Y, Xu W. PrinTracker: Fingerprinting 3D Printers using Commodity Scanners. 2018;1306-1323. Doi: 10.1145/3243734.3243735. 111. Gassner R, Tuli T, Hachl O, Rudisch A, Ulmer H. Cranio-maxillofacial trauma: a 10 year review of 9.543 cases with 21.067 injuries. Journal of Cranio-Maxillofacial Surgery.2003;31: 51–61. 112. Khatib B, Gelesko S, Amundson M, Cheng A, Patel A,Bui T, et al. Updates in Management of Craniomaxillofacial. Gunshot Wounds and Reconstruction of the Mandible. Facial Plast Surg Clin N Am. 2017;25:563–576. http://dx.doi.org/10.1016/j.fsc.2017.06.007 . 113. De Lima CHR, Ranúzia I, Pereira IF, Vasconcelos BCE. Firearm Injury on Face: Literature Review and Case Report. Acta Scientific Dental Sciences. 2018; 2:37-40. 114. Luo T, Shi C, Zhao X, Zhao Y, Xu J. Automatic synthesis of panoramic radiographs from dental cone beam computed tomography data. PLOS One.2016;11(6):1-20. DOI:10.1371/journal.pone.0156976 115. Von See C, Bormann KH, Schumann P, Goetz F, Gellrich NC, Rucker M. Forensic imaging of projectiles using cone-beam computed tomography. Forensic Science International. 2009; 190: 38–41. 116. Dirnhofer R, Vock P, Thali M, Jackowski C, Potter K. Virtopsy: minimally invasive, imaging-guided virtual autopsy. Radiographics. 2006; 26:1305-33. 89 117. Thali M, Dirnhofer R, Vock P. The virtopsy approach: 3D optical and radiological scanning and reconstruction in forensic medicine. Boca Raton, Fl.: CRC Press; 2009. 118. Baca D, Ahmad R. The Impact on the Mechanical Properties of Multi-Material Polymers Fabricated with a Single Mixing 1359. Nozzle and Multi-Nozzle Systems via Fused Deposition Modeling. Int. J. Adv. Manuf. Technol. 2020, 106, 4509–4520, 1360. doi:10.1007/s00170-020-04937-3. 119. Kettner M, Schmidt P, Potente S, Ramsthaler F, Schrodt M. Reverse Engineering— Rapid Prototyping of the Skull in Forensic Trauma Analysis. J Forensic Sci, July 2011; 56 (4): 1015-1017. doi: 10.1111/j.1556-4029.2011.01764. x 120. El‐Katatny I, Masood SH, Morsi YS. "Error analysis of FDM fabricated medical replicas", Rapid Prototyping Journal. 2010;16 (1): 36-43. 121. Johnson A, Jani G, Pandey A, Patel N. Digital tooth reconstruction: An innovative approach in forensic odontology. JFOS - Journal of Forensic Odonto-Stomatology. 2019; 37(3): 12-20. 122. Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer HF, Thieringer FM. Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology. J. Clin. Med. 2020; 9: 817. 123. Ibrahim D, Broilo TL, Heitz C, De Oliveira MG, De Oliveira HW, Nobre SMW, et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. Journal of Cranio-Maxillofacial Surgery. 2009; 37: 167-173. doi:10.1016/j.jcms.2008.10.008 124. Phogat A, Chhabra D, Sindhu V, Ahlawat, A. Analysis of Wear Assessment of FDM Printed Specimens with PLA, MultiMaterial and ABS via Hybrid Algorithms. Mater. Today Proc. 2022; 62: 37–43. 125. Damstra J, Fourie Z, Huddleston Slater JJ, Ren Y. Accuracy of lin ear measurements from cone-beam computed tomography-derived surface models of diferent voxel sizes. Am J Orthod Dentofacial Orthop. 2010;137(16) :1–6. 126. Liedke GS, da Silveira HE, Silveira HL, Dutra V, de Figueiredo JA. Influence of voxel size in the diagnostic ability of cone beam tomography to evaluate simulated external root resorption. J Endod. 2009; 35: 233–5. 127. Salmi M, Paloheimo KS, Tuomi J, Wolff J, Mäkitie A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). Journal of Cranio-MaxilloFacial Surgery .2013;41:603-609. 128. Watzke O, Kalender WA, A pragmatic approach to metal artifact reduction in CT: merging of metal artifact reduced images, Eur. Radiol. 2004;14: 849-856. 129. Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L, Reducing metal artifacts in cone-beam CT images by preprocessing projection data, Int. J. Radiat. Oncol. Biol. Phys. 2007;67: 924-932.pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Rebeca Vaz. Tese com Termo de aprov.pdf2,4 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.