Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/41009
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSoares, Ilza Cristina Madalena Pires-
dc.date.accessioned2025-01-27T15:53:52Z-
dc.date.available2025-01-27T15:53:52Z-
dc.date.issued2024-10-30-
dc.identifier.citationSOARES, Ilza Cristina Madalena Pires. Reatividade cruzada de anticorpos desenvolvidos após a vacinação com tríplice viral (SCR) com as proteínas do SARS-CoV-2. Orientadores: Thiago Marconi de Souza Cardoso e Lucas Pedreira de Carvalho. 2024. 57 f. Dissertação (Mestrado em Ciências da Saúde) - Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/41009-
dc.description.abstractINTRODUCTION: COVID-19 was the world's biggest health emergency from 2019 to today. The possible cross-reactivity of antibodies generated by the MMR vaccine and the antigens of SARS-CoV2 could be an alternative to containing the disease and treating it. Objective: Investigate the protection promoted by MMR antibodies against SARS-CoV2 infection and severe forms of COVID-19. METHODOLOGY: This is a cross-sectional study in which professionals in health care and the general population present positive and/or negative serology for SARS-CoV2 and who have or do not have a MMR vaccination. Sera of subjects were tested for SARS-CoV2 to detect IgM and/or IgG antibodies by immunochromatography, as well as a history of MMR vaccination. ELISAs were performed to detect antibodies against S1, S1RBD, S2, and N-protein and to mumps, measles, and rubella. RESULTS: Individuals vaccinated with MMR had protection against severe forms of COVID-19, presenting a lower production of IgG-class antibodies against S1RBD and N-protein compared to MMR-unvaccinated subjects. These individuals vaccinated with MMR were asymptomatic for SARS-CoV2 compared to unvaccinated subjects. CONCLUSION: MMR-vaccinated subjects have remarkable protection against SARS-CoV2 infection or, when infected, have milder symptoms compared to unvaccinated individuals.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado da Bahia (FAPESB)pt_BR
dc.description.sponsorshipNational Institutes of Health (NIH)pt_BR
dc.description.sponsorshipCNPq - MCTIC/CNPq/FNDCT/MS/SCTIE/Decit Nº 07/2020pt_BR
dc.languageporpt_BR
dc.publisherUniversidade federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectSARS-CoV-2.pt_BR
dc.subjectReatividade cruzadapt_BR
dc.subjectSCR.pt_BR
dc.subjectCOVID-19pt_BR
dc.subject.otherSARS-CoV-2pt_BR
dc.subject.otherCross-reaction.pt_BR
dc.subject.otherMMR vaccinept_BR
dc.subject.otherCOVID-19pt_BR
dc.titleReatividade cruzada de anticorpos desenvolvidos após a vacinação com tríplice viral (SCR) com as proteínas do SARS-CoV-2.pt_BR
dc.title.alternativeCross-reactivity of antibodies developed after MMR vaccination (MRV) with SARS-CoV-2 proteins.pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPós-Graduação em Ciências da Saúde (POS_CIENCIAS_SAUDE) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDEpt_BR
dc.contributor.advisor1Cardoso, Thiago Marconi de Souza-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2625559385693613pt_BR
dc.contributor.advisor2Carvalho, Lucas Pedreira de-
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/7308383096084856pt_BR
dc.contributor.referee1Cardoso, Thiago Marconi de Souza-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2625559385693613pt_BR
dc.contributor.referee2Carvalho, Augusto Marcelino Pedreira de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3762093118858117pt_BR
dc.contributor.referee3Costa, Rubia Suely Santana-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1284983704368584pt_BR
dc.creator.IDhttps://orcid.org/0009-0009-6336-2811pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5814609618102900pt_BR
dc.description.resumoINTRODUÇÃO: O COVID-19 é a mais grave emergência de saúde mundial desde 2019. A possível reatividade cruzada de anticorpos provenientes da imunização com tríplice viral (SCR) e antígenos do SARS-CoV-2 pode ser um complemento vacinal alternativo às vacinas específicas para SARS-CoV-2. OBJETIVO: Investigar a aparente reatividade cruzada de anticorpos gerados pela vacina SRC com antígenos do SARS-CoV-2. MATERIAIS E MÉTODOS: Trata-se de um estudo transversal que recruta 284 doadores, apresentando sorologia positiva e/ou negativa para SARS-CoV-2 e que possuem ou não assinatura sorológica de vacinação com SCR. O estudo foi desenvolvido utilizando como banco de dados profissionais do HUPES-UFBA e indivíduos da comunidade. Realizou-se sorologia para IgM e/ou IgG - SARS-CoV-2 bem como anticorpos IgG-SRC. RESULTADOS: Indivíduos vacinados com SCR tem menor razão de chances de contrair SARS-CoV-2, apresentando menor produção de anticorpos da classe IgG contra S1-RBD e proteína N em comparação com indivíduos não vacinados com SCR. O grupo vacinado com SCR foi, em sua maioria, assintomático para COVID-19 em comparação com o grupo não vacinado com SCR. CONCLUSÃO: A vacinação com SCR apresenta algum grau de proteção contra a infecção por SARS-CoV-2 e sintomas brandos de COVID-19.pt_BR
dc.publisher.departmentFaculdade de Medicina da Bahiapt_BR
dc.relation.references1. ASHFORD, J. W. et al. MMR Vaccination: A Potential Strategy to Reduce Severity and Mortality of COVID-19 Illness. American Journal of Medicine, v. 134, n. 2, p. 1533155, 1 fev. 2021. 2. BATES, T. A. et al. Neutralization of SARS-CoV-2 variants by convalescent and BNT162b2 vaccinated serum. Nature Communications 2021 12:1, v. 12, n. 1, p. 137, 26 ago. 2021. 3. Bio-Manguinhos/Fiocruz. Caxumba: sintomas, transmissão e prevenção. Disponível em: <https://www.bio.fiocruz.br/index.php/br/caxumba-sintomas-transmissao-e-prevencao-168>. Acesso em: 18 jul. 2024. 4. Bio-Manguinhos/Fiocruz. Rubéola: sintomas, transmissão e prevenção. Disponível em: <https://www.bio.fiocruz.br/index.php/br/rubeola-sintomas-transmissao-e-prevencao>. Acesso em: 18 jul. 2024. 5. BORREGA, R. et al. Cross-reactive antibodies to sars-cov-2 and mers-cov in pre-covid-19 blood samples from sierra leoneans. Viruses, v. 13, n. 11, p. 2325, 1 nov. 2021. 6. BUNYAVANICH, S.; DO, A.; VICENCIO, A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA, v. 323, n. 23, p. 242732429, 16 jun. 2020. 7. BUONAGURO, F. M.; PUZANOV, I.; ASCIERTO, P. A. Anti-IL6R role in treatment of COVID-19-related ARDS. Journal of Translational Medicine, v. 18, n. 1, 14 abr. 2020. 8. CARRYN, S. et al. Long-term immunogenicity of measles, mumps and rubella-containing vaccines in healthy young children: A 10-year follow-up. Vaccine, v. 37, n. 36, p. 532335331, 23 ago. 2019. 9. CHEN, Y. et al. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications, v. 525, n. 1, p. 135, 4 abr. 2020. 10. CHEN, Y.; LIU, Q.; GUO, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, v. 92, n. 4, p. 418, 1 abr. 2020. 11. DA SILVA, T. M. R. et al. Number of doses of Measles-Mumps-Rubella vaccine applied in Brazil before and during the COVID-19 pandemic. BMC infectious diseases, v. 21, n. 1, 1 dez. 2021. 12. DEPARTMENT OF COMMUNICABLE DISEASE SURVEILLANCE AND 48 RESPONSE. 13. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS) Acknowledgement. 2003. 14. ESCRIOU, N. et al. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology, v. 4523453, p. 32341, 1 mar. 2014. 15. Família SBIm. Vacina tríplice viral (sarampo, caxumba e rubéola) 3 SCR. Disponível em: <https://familia.sbim.org.br/vacinas/vacinas-disponiveis/vacina-triplice-viral-sarampo-caxum ba-e-rubeola-scr>. Acesso em: 10 jul. 2024. 16. FEHR, A. R.; PERLMAN, S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses: Methods and Protocols, v. 1282, p. 1323, 26 fev. 2015. 17. FIDEL, P. L.; NOVERR, M. C. Could an unrelated live attenuated vaccine serve as a preventive measure to dampen septic inflammation associated with covid-19 infection? mBio,v. 11, n. 3, p. 134, 1 maio 2020. 18. GE, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, v. 503, n. 7477, p. 535, 2013. 19. GOLD, J. E. et al. Analysis of Measles-Mumps-Rubella (MMR) Titers of Recovered COVID-19 Patients. mBio, v. 11, n. 6, 22 dez. 2020. 20. GROBBEN, M. et al. Cross-reactive antibodies after sars-cov-2 infection and vaccination. eLife, v. 10, 2021. 21. HANFF, T. C. et al. Is There an Association Between COVID-19 Mortality and the Renin-Angiotensin System? A Call for Epidemiologic Investigations. Clinical Infectious 22. Diseases: An Official Publication of the Infectious Diseases Society of America, v. 71, n. 15, p. 870, 8 ago. 2020. 23. HASSANI, D. et al. Does prior immunization with measles, mumps, and rubella vaccines contribute to the antibody response to COVID-19 antigens? Iranian journal of immunology : IJI, v. 18, n. 1, p. 47353, 1 mar. 2021. 24. HU, B. et al. Bat origin of human coronaviruses. Virology Journal, v. 12, n. 1, 22 dez. 2015. 25. JACKSON, Cody B. et al. Mechanisms of SARS-CoV-2 entry into cells. Nature reviews Molecular cell biology, v. 23, n. 1, p. 3-20, 2022. 26. KAKODKAR, P.; KAKA, N.; BAIG, M. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19).Cureus, v. 12, n. 4, p. 7560, 6 abr. 2020. 27. KELLEY, L. A. et al. The Phyre2 web portal for protein modeling, prediction and analysis. 49 Nature Protocols 2015 10:6, v. 10, n. 6, p. 8453858, 7 maio 2015. 28. KOEKEN, V. A. C. M. Controlling inflammation in the elderly with BCG vaccination. Science Advances, v. 7, n. 32, 1 ago. 2021. 29. LINIGER, M. et al. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses. Vaccine, v. 26, n. 17, p. 2164, 4 abr. 2008. 30. LU, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, v. 395, n. 10224, p. 5653574, 22 fev. 2020. 31. LV, H. et al. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. bioRxiv, 17 mar. 2020. 32. MEDURI, G. U. et al. Activation and Regulation of Systemic Inflammation in ARDS: Rationale for Prolonged Glucocorticoid Therapy. Chest, v. 136, n. 6, p. 163131643, 1 dez. 2009. 33. MENACHERY, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nature Medicine 2015 21:12, v. 21, n. 12, p. 150831513, 9nov. 2015. 34. Ministério da Saúde. Caxumba. Disponível em: <https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/c/caxumba>. Acesso em: 18 jul. 2024. 35. Ministério da Saúde. Ministério da Saúde destaca a importância da vacina tríplice viral. Disponível em: 36. <https://portal.fiocruz.br/noticia/ministerio-da-saude-destaca-importancia-da-vacina-tr iplice-v iral>. Acesso em: 11 jul. 2024. 37. Ministério da Saúde. Rubéola. Disponível em: <https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/r/rubeola>. Acesso em: 18 jul. 2024. 38. Ministério da Saúde. Vacina tríplice viral: saiba quem pode se imunizar. Disponível em: 39. <https://www.gov.br/saude/pt-br/assuntos/noticias/2022/julho/vacina-triplice-viral-s aiba-que m-pode-se-imunizar>. Acesso em: 11 jul. 2024. 40. MORAES, M. M. DE et al. Estudo soroepidemiológico do sarampo em populações residentes na Região Metropolitana de Belém, estado do Pará, Brasil, 2016 a 2018. Revista Pan-Amazônica de Saúde, v. 11, n. 0, set. 2020. 41. MURUGAVELU, P. et al. Non-neutralizing SARS CoV-2 directed polyclonal antibodies demonstrate cross-reactivity with the HA glycans of influenza virus. International Immunopharmacology, v. 99, p. 1080203108020, 29 jul. 2021. 42. MVEANG NZOGHE, A. et al. Evidence and implications of pre0existing humoral cross0reactive immunity to SARS0CoV02. Immunity, Inflammation and Disease, v. 9, n. 1,p. 128, 1 mar. 2021. 50 43. MYSORE, V. et al. Protective heterologous T cell immunity in COVID-19 induced by MMR and Tdap vaccine antigens. bioRxiv, 4 maio 2021. 44. NEWMAN, L. Maurice Hilleman. BMJ : British Medical Journal, v. 330, n. 7498, p. 1028, 4 abr. 2005. 45. NOGUEIRA, J. M. DA R.; SILVA, L. O. P. DA. Diagnóstico laboratorial da COVID-19 no Brasil. Revista Brasileira de Análises Clínicas, v. 52, n. 2, 2020. 46. OPAS. Centro de perguntas e respostas. Disponível em: <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answershu b>. Acesso em: 10 jul. 2024. 47. OPAS/OMS. Histórico da pandemia de COVID-19. Disponível em: <https://www.paho.org/pt/covid19/historico-da-pandemia-covid-19>. Acesso em: 18 jul. 2024. 48. 49. OPAS/OMS. Perguntas frequentes: vacinas contra a COVID-19. Disponível em: <https://www.paho.org/pt/vacinas-contra-covid-19/perguntas-frequentes-vacinas-con tra-covid-19#top>. Acesso em: 18 jul. 2024. 50. PICCALUGA, P. P. et al. Cross-Immunization Against Respiratory Coronaviruses May Protect Children From SARS-CoV2: More Than a Simple Hypothesis? Frontiers in Pediatrics, v. 8, p. 595539, 18 jan. 2021. 51. ROCCO, P. R. M.; DOS SANTOS, C.; PELOSI, P. Lung parenchyma remodeling in acute respiratory distress syndrome. 2009. 52. Secretaria da Saúde. Diagnóstico e tratamento. Disponível em: <https://saude.rs.gov.br/diagnostico-e-tratamento>. Acesso em: 18 jul. 2024. 53. SHAKAIB, B. et al. A comprehensive review on clinical and mechanistic pathophysiological aspects of COVID-19 Malady: How far have we come? Virology Journal, v. 18, n. 1, 1 dez. 2021. 54. SHI, Y. et al. An overview of COVID-19. Journal of Zhejiang University. Science. B, v. 21, n. 5, p. 343, 1 maio 2020. 55. SIDIQ, K. R. et al. Does Early Childhood Vaccination Protect Against COVID-19? Frontiers in Molecular Biosciences, v. 7, p. 545566, 5 jun. 2020. 56. SI-PNI. Sistema de Informação do Programa Nacional de Imunização. Disponível em: <http://pni.datasus.gov.br/calendario_vacina_Infantil.asp>. Acesso em: 10 jul. 2024. 57. SKEHEL, John J.; WILEY, Don C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual review of biochemistry, v. 69, n. 1, p. 531-569, 2000. 58. SONG, W. et al. Cryo-EM structure of the SARS coronavirus spike glycoprotein in 51 complex with its host cell receptor ACE2. PLOS Pathogens, v. 14, n. 8, p. e1007236, 1 ago. 2018. 59. TAN, S. S. et al. Correspondence: Cross-reactivity of SARS-CoV-2 with HIV chemiluminescent assay leading to false-positive results. Journal of Clinical Pathology, v. 74, n. 9, p. 614, 1 set. 2021. 60. UMAKANTHAN, S. et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgraduate Medical Journal, v. 96, n. 1142, p. 753, 1 dez.2020. 61. VADUGANATHAN, M. et al. Renin3Angiotensin3Aldosterone System Inhibitors in Patients with Covid-19. New England Journal of Medicine, v. 382, n. 17, p. 165331659, 23 abr.2020. 62. VITALE, R. F.; RIBEIRO, F. DE A. Q. The role of Tumor Necrosis Factor -Alpha (TNF-³) in bone resorption present in middle ear cholesteatoma. Brazilian Journal of Otorhinolaryngology, v. 73, n. 1, p. 117, 2007. 63. WHO. Emergências: Regulamentações sanitárias internacionais e comitês de emergência. Disponível em: <https://www.who.int/news-room/questions-and-answers/item/emergencies-inte rnational-heal th-regulations-and-emergency-committees>. Acesso em: 10 jul. 2024. 64. WHYTE, C. S. et al. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID019. Journal of Thrombosis and Haemostasis, v. 18, n. 7, p. 1548, 1 jul. 2020. 65. WILD, T. F.; MALVOISIN, E.; BUCKLAND, R. Measles virus: Both the haemagglutinin and fusion glycoproteins are required for fusion. Journal of General Virology, v. 72, n. 2, p.4393442, 1 fev. 1991. 66. WU, A. et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host & Microbe, v. 27, n. 3, p. 325, 3 mar. 2020a. 67. WU, Z. et al. Elevation of plasma angiotensin II level is a potential pathogenesis for the critically ill COVID-19 patients. Critical Care, v. 24, n. 1, 5 jun. 2020b. 68. XU, X. et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China. Life Sciences, v. 63, n. 3, p. 457, 1 mar. 2020. 69. YAN, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.y.), v. 367, n. 6485, p. 1444, 3 mar. 2020. 70. YIN, H. S. et al. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proceedings of the National Academy of Sciences of the United States of America, v. 102, n. 26, p. 9288, 6 jun. 2005. 71. YOUNG, A. et al. Homologous protein domains in SARS-CoV-2 and measles, mumps and rubella viruses: preliminary evidence that MMR vaccine might provide protection against COVID-19. medRxiv, p. 2020.04.10.20053207, 10 abr. 2020. 52 72. YÜCE, M.; FILIZTEKIN, E.; ÖZKAYA, K. G. COVID-19 diagnosis 4A review of current methods. Biosensors and Bioelectronics, v. 172, p. 112752, 15 jan. 2021. 73. ZOU, X. et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of Medicine, v. 14, n. 2, p. 185, 1 abr. 2020.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PPgCS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ILZA DI (1).pdfDissertação781,02 kBAdobe PDFVisualizar/Abrir
01_-_Folha_de_aprovacao_de_Dissertacao_-_Ilza_assinado_assinado_29_assinado (1) (1).pdfFolha aprovação219,5 kBAdobe PDFVisualizar/Abrir
Ficha catalografica_Mestrado_Ilza Cristina Madalena Pires Soares.pdfFicha catolografica112,14 kBAdobe PDFVisualizar/Abrir
05- Ata da defesa - - Ilza (1).pdfAta171,2 kBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.