Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/41160
Registro completo de metadados
Campo DCValorIdioma
dc.creatorVidal, Douglas Bitencourt-
dc.date.accessioned2025-02-10T17:48:31Z-
dc.date.available2025-02-10T17:48:31Z-
dc.date.issued2024-11-28-
dc.identifier.citationVIDAL, Douglas Bitencourt. Avaliação do potencial de geração de energia eólica offshore no litoral do Nordeste brasileiro. 2024. 153 f. Tese (Doutorado em Engenharia Industrial) – Universidade Federal da Bahia, Escola Politécnica, Salvador, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/41160-
dc.description.abstractThe generation of energy through cleaner technologies has become a topic of significant relevance today, as the way this energy is produced and utilized has a direct impact on the quality of life in society. Wind energy has been prominent in this context, gaining more space with the implementation of large wind farms worldwide. In 2023, global installed capacity increased by 117 GW, surpassing the 1 TW mark for the first time. Brazil stands out globally for its energy matrix with a significant share of renewable resources, especially wind energy, which represented 11.8% of the matrix in 2023. The country has 1049 operational wind projects and 93 more in development or planning stages. Although there is significant focus on offshore wind potential studies for electricity generation in Brazil, there is a scarcity of studies comparing in situ monitoring data in offshore regions with numerical modeling to determine the generation potential in the Northeast Region, despite it being the region with the highest installed wind capacity in the country. This thesis aims to evaluate and quantify the potential for offshore wind power generation on the Brazilian Northeast coast, employing numerical modeling techniques and computational simulation with the Weather Research and Forecast (WRF) Model. The study focused on studying the coastal margin area of the Brazilian Northeast coast up to a distance of approximately 24 nautical miles on the continental shelf, with an average depth of up to 50 meters. WRF data was compared with in situ measurements collected on ocean buoys and Automatic Weather Stations (EMA), as well as with atmospheric reanalysis data, aiming to statistically validate wind speed values for use in this study, where data consistency was observed. The research results highlighted distinct variations in wind intensity throughout the day for the Recife buoy and EMA in João Pessoa and Ilhéus, with different diurnal patterns. The monthly analysis emphasized average wind speeds always above 4 m/s, especially north of latitude 7°5'S, with higher speeds between July and December, highlighting the winter and spring periods. The states of Rio Grande do Norte and Piauí are identified as more conducive to offshore wind power generation. The results indicate a significant potential for offshore wind energy generation, with estimated generation capacities of 308 GW at 100 meters and 918.43 GW at 150 meters, resulting in an Annual Total Energy Production (PATE) of 1,214.14 TWh/year and 3,586.77 TWh/year, respectively, highlighting the enormous wind generation potential in the offshore region of Northeastern Brazil.pt_BR
dc.description.sponsorshipFAPESBpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEnergia eólica offshorept_BR
dc.subjectNordeste brasileiropt_BR
dc.subjectWeather Research and Forecastpt_BR
dc.subject.otherOffshore Wind Energypt_BR
dc.subject.otherNortheast Brazilpt_BR
dc.subject.otherWeather Research and Forecastpt_BR
dc.titleAvaliação do potencial de geração de energia eólica offshore no litoral do Nordeste brasileiropt_BR
dc.title.alternativeAssessment of the potential for offshore wind energy generation on the coast of the Brazilian Northeastpt_BR
dc.typeTesept_BR
dc.contributor.refereesMartins, Jorge José Gomes-
dc.publisher.programPrograma de Pós-Graduação em Engenharia Industrial (PEI) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA MECANICA::FENOMENOS DE TRANSPORTE::MECANICA DOS FLUIDOSpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA::GERACAO DA ENERGIA ELETRICApt_BR
dc.contributor.advisor1Torres, Ednildo Andrade-
dc.contributor.advisor1ID0000-0002-0574-5306pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2483185411923070pt_BR
dc.contributor.advisor2De Jong, Pieter-
dc.contributor.advisor2ID0000-0002-4589-8112pt_BR
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/1487299418409815pt_BR
dc.contributor.referee1Torres, Ednildo Andrade-
dc.contributor.referee2De jong, Pieter-
dc.contributor.referee3Silva, Julio Augusto Mendes da-
dc.contributor.referee4Santos, Alex Alisson Bandeira-
dc.contributor.referee5Santos, Carlos Antonio Cabral Dos-
dc.creator.ID0000-0001-5406-5369pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1949608716905670pt_BR
dc.description.resumoA geração de energia por meio de tecnologias mais limpas tem se tornado um tema de grande relevância na atualidade, uma vez que a forma como essa energia é produzida e utilizada exerce uma influência direta na qualidade de vida da sociedade. A energia eólica tem se destacado nesse contexto, ganhando cada vez mais espaço com a implantação de grandes parques eólicos ao redor do mundo. Em 2023, a capacidade global instalada aumentou em 117 GW, ultrapassando a marca de 1 TW pela primeira vez. O Brasil se destaca mundialmente por sua matriz energética com uma parcela significativa de recursos renováveis, especialmente a energia eólica, que representou 11,8% da matriz em 2023. O país conta com 1049 empreendimentos eólicos em operação e mais 93 em fase de desenvolvimento ou planejamento. Embora haja um grande foco nos estudos do potencial eólico offshore para a geração de energia elétrica no Brasil, há uma escassez em estudos que comparem dados de monitoramento in situ em regiões offshore, com modelagem numérica para a determinação do potencial de geração na Região Nordeste, mesmo sendo a região com a maior capacidade instalada eólica do país. Esta tese tem como objetivo avaliar e quantificar o potencial de geração de energia elétrica eólica offshore no litoral do Nordeste brasileiro, empregando técnicas de modelagem numérica e simulação computacional com o Modelo Weather Research and Forecast (WRF). O estudo se delimitou a estudar a área da margem da costa do litoral do nordeste brasileiro até uma distância de 24 milhas náuticas na plataforma continental, com profundidade média de até 50 metros. Os dados do WRF foram comparados com medições in situ coletados em boias oceânicas e Estações Meteorológicas Automáticas (EMA), como também com dados de reanálise atmosférica, visando validar estatisticamente os valores de velocidade do vento para seu uso neste estudo, onde observou-se a consistência dos dados. Os resultados da pesquisa destacaram variações distintas na intensidade do vento ao longo do dia para a boia de Recife e EMA’s de João Pessoa e Ilhéus, com padrões diurnos diferentes. A análise mensal ressaltou velocidades médias de vento sempre superiores a 4 m/s, especialmente ao norte da latitude 7°5'S, com velocidades mais altas entre julho e dezembro, destacando-se o período do inverno e primavera. Os estados do Rio Grande do Norte e Piauí, são identificados como a área mais propícia para geração de energia eólica offshore. Os resultados apontam um significativo potencial de geração de energia eólica offshore, com capacidades de geração estimadas de 308 GW para alturas de 100 metros e 918,43 GW para alturas de 150 metros, resultando em uma Produção Anual Total de Energia (PATE) de 1.214,14 TWh/ano e 3.586,77 TWh/ano, respectivamente, evidenciando o enorme potencial de geração eólica na região offshore do Nordeste Brasileiro.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.relation.referencesAGI. What are the advantages and disadvantages of offshore wind farms? Disponível em: <https://www.americangeosciences.org/critical-issues/faq/what-are-advantages-and-disadvantages-offshore-wind-farms>. Acesso em: 4 maio. 2024. AMAECHI, C. V. et al. Review on Fixed and Floating Offshore Structures. Part I: Types of Platforms with Some ApplicationsJournal of Marine Science and Engineering, 2022. AMANI, M. et al. Ocean Remote Sensing Techniques and Applications: A Review (Part I)Water (Switzerland), 2022. AMJITH, L. R.; BAVANISH, B. A review on biomass and wind as renewable energy for sustainable environment. Chemosphere, v. 293, 2022. AMORIM, L. F. C. DE. Políticas de incentivo à energia eólica: um estudo de caso sobre os processos de implementação e os motivos para a expansão da fonte eólica no setor elétrico brasileiro no período de 2001 a 2018. São Paulo: Universidade de São Paulo, 2021. ANEEL. Atlas de Energia Elétrica do Brasil, Brasília. Brasília : [s.n.]. Disponível em: <https://www.fisica.net/energia/atlas_de_energia_eletrica_do_brasul_3a-ed.pdf>. Acesso em: 22 abr. 2024. ___. Sistema de Informações de Geração da ANEEL. Disponível em: <https://app.powerbi.com/view?r=eyJrIjoiNjc4OGYyYjQtYWM2ZC00YjllLWJlYmEtYzdkNTQ1MTc1NjM2IiwidCI6IjQwZDZmOWI4LWVjYTctNDZhMi05MmQ0LWVhNGU5YzAxNzBlMSIsImMiOjR9>. ___. EVOLUÇÃO DA CAPACIDADE INSTALADA DE GERAÇÃO EÓLICA E FOTOVOLTAICA. Disponível em: <https://www.ons.org.br/Paginas/resultados-da-operacao/historico-da-operacao/evolucao_capacidade_instalada.aspx>. Acesso em: 22 abr. 2024b. ___. Matriz Elétrica Brasileira. Disponível em: <https://app.powerbi.com/view?r=eyJrIjoiNjc4OGYyYjQtYWM2ZC00YjllLWJlYmEtYzdkNTQ1MTc1NjM2IiwidCI6IjQwZDZmOWI4LWVjYTctNDZhMi05MmQ0LWVhNGU5YzAxNzBlMSIsImMiOjR9>. Acesso em: 21 abr. 2024c. ASTOLFI, D.; CARO, F. DE; VACCARO, A. Characterizing the Wake Effects on Wind Power Generator Operation by Data-Driven Techniques. Energies, v. 16, n. 15, p. 5818, 5 ago. 2023. ATHEARN, F. J.; RIGHTER, R. W. Wind Energy in America: A History. The Western Historical Quarterly, v. 27, n. 4, 1996. AZEVEDO, S. S. P. DE et al. Assessment of offshore wind power Potential along the Brazilian coast. Energies, v. 13, n. 10, 2020. BAIDYA ROY, S.; PACALA, S. W.; WALKO, R. L. Can large wind farms affect local meteorology? Journal of Geophysical Research D: Atmospheres, v. 109, n. 19, 2004. BARBOSA, R. Inserção da energia eólica offshore no Brasil: análise de princípios e experiências regulatórias. São Paulo: Universidade de São Paulo, 2018. BARNES, A.; MARSHALL-CROSS, D.; HUGHES, B. R. Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and developmentRenewable and Sustainable Energy Reviews, 2021. BARROSO, L. L. et al. Aspectos gerais sobre a viabilidade de instalação de Energia Eólica no Brasil. Research, Society and Development, v. 11, n. 9, 2022. BARTHELMIE, R. et al. Best practice for measuring wind speeds and turbulence offshore through in-situ and remote sensing technologies. Ithaca, Nova York: Cornell University, 2016. BEHRENS DE LUNA, R. et al. Quantifying the impact of modeling fidelity on different substructure concepts for floating offshore wind turbines - Part 1: Validation of the hydrodynamic module QBlade-Ocean. Wind Energy Science, v. 9, n. 3, 2024. BENEDET, G. W.; NORÕES, H. P. DE P.; ANDRADE, J. J. D. DE. Potential synergy between natural gas production and offshore wind power generation: a case study in northeast Brazil•. DYNA (Colombia), v. 88, n. 219, 2021. BENSALAH, A.; BARAKAT, G.; AMARA, Y. Electrical Generators for Large Wind Turbine: Trends and ChallengesEnergies, 2022. BEVILACQUA, J. V. Políticas de Incentivo À Energia Eólica no Brasil no Século XXI. Campinas: PUC, 2022. BILGILI, M.; ALPHAN, H. Global growth in offshore wind turbine technology. Clean Technologies and Environmental Policy, v. 24, n. 7, 2022. BILGILI, M.; YASAR, A.; SIMSEK, E. Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable and Sustainable Energy Reviews, v. 15, n. 2, p. 905–915, fev. 2011. BLESSMANN, J. O vento na engenharia estrutural. 02. ed. Alegre: Editora da UFRGS, 2013. BOGDANOVIĆ, M.; IVOŠEVIĆ, Š. Winds of Change: A Study on the Resource Viability of Offshore Wind Energy in Montenegro. Energies, v. 17, n. 8, p. 1852, 12 abr. 2024. BRASIL. LEI No 10.438, DE 26 DE ABRIL DE 2002.Diário Oficial do Brasil, 2002. BRETON, S. P.; MOE, G. Status, plans and technologies for offshore wind turbines in Europe and North America. Renewable Energy, v. 34, n. 3, 2009. BREYER, C. et al. On the History and Future of 100% Renewable Energy Systems Research. IEEE Access, v. 10, 2022. BURTON, T. et al. Wind Energy Handbook. [s.l.] Wiley, 2011. CALIGIURI, C.; STENDARDI, L.; RENZI, M. The use of Sentinel-1 OCN products for preliminary deep offshore wind energy potential estimation: A case study on Ionian sea. Engineering Science and Technology, an International Journal, v. 35, 2022. CANUL-REYES, D. A.; RODRÍGUEZ-HERNÁNDEZ, O.; JARQUIN-LAGUNA, A. Potential zones for offshore wind power development in the Gulf of Mexico using reanalyses data and capacity factor seasonal analysis. Energy for Sustainable Development, v. 68, 2022. CAZZARO, D. et al. Multi-scale optimization of the design of offshore wind farms. Applied Energy, v. 314, 2022. CEPEL. Atlas do Potencial Eólico Brasileiro: Simulações 2013. Rio de Janeiro: [s.n.]. Disponível em: <http://mtc-m21b.sid.inpe.br/col/sid.inpe.br/mtc-m21b/2017/12.21.11.22/doc/Novo-Atlas-do-Potencial-Eolico-Brasileiro-SIM_2013.pdf?metadatarepository=sid.inpe.br/mtc-m21b/2017/12.21.11.22.51&mirror=sid.inpe.br/mtc-m21b/2013/09.26.14.25.22>. Acesso em: 9 jan. 2022. CERNE. Eólicas Offshore: Comissão Do CERNE Estuda Marco Regulatório Brasileiro Em 2019. Disponível em: <https://cerne.org.br/eolicas-offshore-comissao-estuda-marco-regulatorio-brasileiro-em-2019/>. Acesso em: 14 out. 2023. CHAGAS, G. O. ; G. R. A. ; M. M. D. O. Estimating wind resource usingmesoscale modelingEuropean Wind Energy Conference. Anais...Marseille: EWEC , 2009 CHAUDHURI, A. et al. Energy Conversion Strategies for Wind Energy System: Electrical, Mechanical and Material AspectsMaterials, 2022. CHEHOURI, A. et al. Review of performance optimization techniques applied to wind turbinesApplied Energy, 2015. CONSTANTINESCU, E. M. et al. A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation. IEEE Transactions on Power Systems, v. 26, n. 1, 2011. CRESESB. Tipos de Aerogeradores para Geração de Energia Elétrica. Disponível em: <https://cresesb.cepel.br/index.php?section=com_content&lang=pt&cid=231>. Acesso em: 22 abr. 2024. CRIPPA, P. et al. A temporal model for vertical extrapolation of wind speed and wind energy assessment. Applied Energy, v. 301, 2021. CUCCHI, M. et al. WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies. Earth System Science Data, v. 12, n. 3, 2020. CUNHA, E. A. A. et al. ASPECTOS HISTÓRICOS DA ENERGIA EÓLICA NO BRASIL E NO MUNDO. Revista Brasileira de Energias Renováveis, v. 8, n. 4, 2019. DANTAS, J. C. A EXPANSÃO DOS PARQUES EÓLICOS NO SEMIÁRIDO BRASILEIRO NO SÉCULO XXI. Okara: Geografia em Debate, v. 16, n. 2, 2022. DEBASTIANI, G. et al. Assessment of the energy efficiency of a hybrid wind-photovoltaic system for Cascavel, PR. Renewable and Sustainable Energy Reviews, v. 131, 2020. DÍAZ, H.; GUEDES SOARES, C. An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline. Renewable and Sustainable Energy Reviews, v. 134, 2020a. ___. Review of the current status, technology and future trends of offshore wind farmsOcean Engineering, 2020b. DIRECT INDUSTRY. Turbinas eólicas offshore. Disponível em: <https://www.directindustry.com/pt/fabricante-industrial/turbina-eolica-offshore-75781.html>. Acesso em: 22 abr. 2024. EDWARDS, E. C. et al. Evolution of floating offshore wind platforms: A review of at-sea devicesRenewable and Sustainable Energy Reviews, 2023. ELETROBRAS. Programa de Incentivo às Fontes Alternativas de Energia Elétrica (Proinfa). Disponível em: <https://eletrobras.com/pt/Paginas/Proinfa.aspx>. Acesso em: 22 abr. 2024. EL-SHARKAWI, M. A. Wind Energy: An Introduction. [s.l: s.n.]. ENEVOLDSEN, P.; JACOBSON, M. Z. Data investigation of installed and output power densities of onshore and offshore wind turbines worldwide. Energy for Sustainable Development, v. 60, 2021. EPE. Plano Decenal de Expansão de Energia 2027. Rio de Janeiro: [s.n.]. Disponível em: <https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/plano-decenal-de-expansao-de-energia-2027>. Acesso em: 9 jan. 2022. ___. ROADMAP Eólica Offshore Brasil. [s.l: s.n.]. Disponível em: <https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-456/Roadmap_Eolica_Offshore_EPE_versao_R2.pdf>. Acesso em: 22 abr. 2024. ___. BALANÇO ENERGÉTICO NACIONAL. Brasília: [s.n.]. Disponível em: <https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-748/topico-687/BEN2023.pdf>. Acesso em: 9 out. 2023. EWEA. Wind Energy - The Facts. Disponível em: <http://www.ewea.org/Statistics/>. Acesso em: 22 abr. 2024. FAGBENLE, R. O. et al. Assessment of wind energy potential of two sites in North-East, Nigeria. Renewable Energy, v. 36, n. 4, 2011. FAILLA, G.; ARENA, F. New perspectives in offshore wind energy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 373, n. 2035, 2015. FARKAT DIÓGENES, J. R. et al. Overcoming barriers to onshore wind farm implementation in Brazil. Energy Policy, v. 138, 2020. FERREIRA, B. F. P. Estudo da previsão de produção de energia eólica offshore. Porto: Instituto Superior de Engenharia do Porto, 2017. FERREIRA, E. M. DA S. ENERGIA EÓLICA OFFSHORE: TRATAMENTO DE DADOS E AVALIAÇÃO DE APROVEITAMENTO EM ÁREAS DE GRANDE POTENCIAL NO BRASIL. [s.l: s.n.]. FISCHETTI, M. On the optimized design of next-generation wind farms. European Journal of Operational Research, v. 291, n. 3, 2021. FONSECA, J. S. DA;; MARTINS, G. DE ANDRADE. Curso de estatística. São Paulo: Atlas, 1995. FRANZ, G. et al. Coastal Ocean Observing and Modeling Systems in Brazil: Initiatives and Future Perspectives. Frontiers in Marine Science, v. 8, 2021. FREIRE, L. S. Large-Eddy Simulation of the Atmospheric Boundary Layer with Near-Wall Resolved Turbulence. Boundary-Layer Meteorology, v. 184, n. 1, 2022. GABRIEL FILHO, L. R. A. C. C. P. S. O. J. AND C. J. A. Characterization of the wind behavior in Botucatu-SP region (Brazil) by Weibull distributing; Caracterizacao do comportamento eolico da regiao de Botucatu-SP atraves da distribuicao de Weibull. Disponível em: <https://www.osti.gov/etdeweb/biblio/21340851>. Acesso em: 28 abr. 2024. GAERTNER, E. et al. Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine Technical Report. Technical Report NREL/TP-5000-75698, 2020. GALBIATTI SILVEIRA, P. Legal Framework for the Solution of Internal Conflicts in the Environmental Licensing Process of Renewable Energy Projects in Brazil and Germany. Em: Climate Protection and Environmental Interests in Renewable Energy Law. [s.l: s.n.]. . GASCH, R.; TWELE, J. Wind power plants: Fundamentals, design, construction and operation, second edition. [s.l: s.n.]. GIEBEL, G. ; L. L. ; M. K. ; W. H. P. Relative Performance of different Numerical Weather Prediction Models for Short Term Prediction of Wind EnergyProceedings of the European Wind Energy Conference. Anais...Nice: 1999 GIEBEL, G.; WALDL, H.-P. (IGOR). Einfluss des Dänischen und des Deutschen Wettervorhersagemodells auf die Qualität einer 48-Stunden-WindleistungsprognoseDEWEK. Anais...2000 GIL, A. C. Métodos e técnicas de pesquisa social . 6 ed. ed. São Paulo: Atlas, 2008. GLOBAL ENERGY MONITOR. Uma corrida para o topo: América Latina 2023. [s.l: s.n.]. Disponível em: <https://globalenergymonitor.org/wp-content/uploads/2023/03/GEM-LATAM-report-Portuguese.pdf>. Acesso em: 21 abr. 2024. GÓES, M. DE F. B. et al. Wind power projects in Brazil: challenges and opportunities increasing co-benefits and implications for climate and energy policies. Environment, Development and Sustainability, v. 23, n. 10, 2021. GOMES, B. B. OTIMIZAÇÃO DO CABEAMENTO INTERCONECTOR DE AEROGERADORES EM PARQUES EÓLICOS OFFSHORE. Alegrete: Universidade Federal do Pampa, 2018. GOMES FILHO, M. F. ; C. C. J. ; L. L. M. M. Um Estudo da Intensificação do Vento Próximo a Superfície no Verão do Estado da ParaíbaCongresso Brasileiro de Meteorologia. Anais...Salvador: 1990 GOMES, J. G. et al. Review of Offshore Wind Projects Status: New Approach of Floating Turbines2022 5th International Conference on Power and Energy Applications (ICPEA). Anais...IEEE, 18 nov. 2022 GOMES, M. S. DE S. PROPOSTA DE UMA METODOLOGIA PARA UTILIZAÇÃO DE ENERGIA EÓLICA OFFSHORE NO LITORAL SUDESTE DO BRASIL. UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EM GESTÃO E TECNOLOGIA CAMPUS DE SOROCABA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO – PPGEPS, v. 10, n. 2, 2018. GOOS-BRASIL. The Global Ocean Observing System Brasil. Disponível em: <http://www.goosbrasil.org/>. Acesso em: 22 abr. 2024. GWEC. Global Wind Report 2019. Wind Energy Technology, 2020a. ___. Global Wind Report 2019. [s.l: s.n.]. Disponível em: <https://gwec.net/global-wind-report-2019/>. Acesso em: 29 abr. 2024b. ___. Global Wind Report 2023| GWEC. Gwec, 2023. ___. Global Wind Report 2024. [s.l: s.n.]. Disponível em: <https://gwec.net/wp-content/uploads/2024/04/GWR-2024_digital-version_final-1.pdf>. Acesso em: 5 maio. 2024. HASAN, M. et al. A critical analysis of wind energy generation potential in different regions of Bangladesh. Energy Reports, v. 11, 2024. HE, J. et al. Linking SDG 7 to assess the renewable energy footprint of nations by 2030. Applied Energy, v. 317, 2022. HILLE, E.; OELKER, T. J. International expansion of renewable energy capacities: The role of innovation and choice of policy instruments. Ecological Economics, v. 204, 2023. HORN, R. Understanding Repeated-Measures ANOVA. SAS - Repeated Measures, n. 1, 2008. IBAMA. Mapas de projetos em licenciamento - Complexos Eólicos Offshore. Disponível em: <https://www.gov.br/ibama/pt-br/assuntos/laf/consultas/mapas-de-projetos-em-licenciamento-complexos-eolicos-offshore>. Acesso em: 21 abr. 2024a. ___. Mapas de projetos em licenciamento - Complexos Eólicos Offshore. Disponível em: <https://www.gov.br/ibama/pt-br/assuntos/laf/consultas/mapas-de-projetos-em-licenciamento-complexos-eolicos-offshore>. Acesso em: 6 maio. 2024b. IEA - AGÊNCIA INTERNACIONAL DE ENERGIA. Energy Statistics Data Browser. Disponível em: <https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=TESbySource>. Acesso em: 21 abr. 2024. INMET. A ESTAÇÃO METEOROLÓGICA E SEU OBSERVADOR. [s.l: s.n.]. Disponível em: <https://portal.inmet.gov.br/uploads/publicacoesDigitais/aestacaometeorologicaeseuobservador.pdf>. Acesso em: 22 abr. 2024. ___. Estações Automáticas - INMET. Disponível em: <https://mapas.inmet.gov.br/>. Acesso em: 22 abr. 2024. IPCC. Climate change 2007 : synthesis report. Geneca: [s.n.]. Disponível em: <https://www.ipcc.ch/report/ar4/syr/>. Acesso em: 21 abr. 2024. IQBAR, I. M. et al. Feasibility Study of Harnessing Low Wind Speed Turbine as Hybrid Power Source for Offshore Platforms. Journal of Marine Science and Engineering, v. 10, n. 7, p. 963, 14 jul. 2022. IRENA. Renewable Power Generation Costs in 2022. Abu Dhabi: [s.n.]. Disponível em: <https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022>. Acesso em: 6 maio. 2024. ___. Wind energy. Disponível em: <https://www.irena.org/Energy-Transition/Technology/Wind-energy>. Acesso em: 4 maio. 2024. JACOMINI, R. ET AL. Fundamentos de Energia Eólica. Natal: Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, 2023. JEREZ, S. et al. The impact of the north atlantic oscillation on renewable energy resources in Southwestern Europe. Journal of Applied Meteorology and Climatology, v. 52, n. 10, 2013. JIANG, Z. Installation of offshore wind turbines: A technical reviewRenewable and Sustainable Energy Reviews, 2021. JIMENEZ, B. et al. Offshore wind resource assessment with WAsP and MM5: comparative study for the German Bight. Wind Energy, v. 10, n. 2, p. 121–134, 13 mar. 2007. JOHNSTON, B. et al. Levelised cost of energy, A challenge for offshore wind. Renewable Energy, v. 160, 2020. JONG, P. DE et al. Forecasting high proportions of wind energy supplying the Brazilian Northeast electricity grid. Applied Energy, v. 195, p. 538–555, jun. 2017. JU, S. H.; HUANG, Y. C.; HUANG, Y. Y. Study of optimal large-scale offshore wind turbines. Renewable Energy, v. 154, 2020. JUÁREZ, A. A. et al. Development of the wind power in Brazil: Political, social and technical issuesRenewable and Sustainable Energy Reviews, 2014. JUNIOR, R. A. F. C. et al. A GERAÇÃO DISTRIBUÍDA E A REDUÇÃO DE CARBONO NA MATRIZ ELÉTRICA BRASILEIRA. Revista Internacional de Ciências, v. 11, n. 1, p. 42–60, 29 abr. 2021. KAISER, M. J.; SNYDER, B. F. Offshore wind energy cost modeling: Installation and decommissioning. Green Energy and Technology, v. 85, 2012. KALDELLIS, J. K.; KAPSALI, M. Shifting towards offshore wind energy-Recent activity and future development. Energy Policy, v. 53, 2013. KARIMIRAD, M. Offshore Energy Structures. [s.l: s.n.]. KIM, H.-Y. Statistical notes for clinical researchers: A one-way repeated measures ANOVA for data with repeated observations. Restorative Dentistry & Endodontics, v. 40, n. 1, 2015. KIM, Y. J. et al. Foundation Types of Fixed Offshore Wind Turbine. Journal of Ocean Engineering and Technology, v. 38, n. 2, p. 74–85, 30 abr. 2024. KISTLER, R. et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, v. 82, n. 2, 2001. KUMAR, M. Social, Economic, and Environmental Impacts of Renewable Energy Resources. Em: Wind Solar Hybrid Renewable Energy System [Working Title]. [s.l: s.n.]. . LEBEDYS, A. et al. Renewable Capacity Statistics 2023IRENA. [s.l: s.n.]. LETCHER, T. M. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines. [s.l: s.n.]. LI, J. et al. A review on development of offshore wind energy conversion systemInternational Journal of Energy Research, 2020. LIMA, F. J. L. DE et al. Evaluation of the Wind Power in the State of Paraíba Using the Mesoscale Atmospheric Model Brazilian Developments on the Regional Atmospheric Modelling System. ISRN Renewable Energy, v. 2012, 2012. LIMA, M. A. et al. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in BrazilEnvironmental Development, 2020. LIRA, M. A. T.; SILVA, E. M. DA; ALVES, J. M. B. Estimativa dos recursos eólicos no litoral cearense usando a teoria da regressão linear. Revista Brasileira de Meteorologia, v. 26, n. 3, 2011. LITVINENKO, V. et al. Global guidelines and requirements for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goalsJournal of Cleaner Production, 2022. LOUKA, P. et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. Journal of Wind Engineering and Industrial Aerodynamics, v. 96, n. 12, 2008. LUCENA, J. D. A. Y.; LUCENA, K. Â. A. Wind energy in Brazil: An overview and perspectives under the triple bottom lineClean Energy, 2019. LUN, I. Y. F.; LAM, J. C. A study of Weibull parameters using long-term wind observations. Renewable Energy, v. 20, n. 2, 2000. MA, Y. F. et al. Impact of PBL schemes on multiscale WRF modeling over complex terrain, Part I: Mesoscale simulations. Atmospheric Research, v. 297, 2024. MAANDAL, G. L. D.; TAMAYAO-KIEKE, M. A. M.; DANAO, L. A. M. Techno-economic assessment of offshore wind energy in the philippines. Journal of Marine Science and Engineering, v. 9, n. 7, 2021. MALEKJAFARIAN, A. et al. Foundation damping for monopile supported offshore wind turbines: A reviewMarine Structures, 2021. MANWELL, J. F.; MCGOWAN, J. G.; ROGERS, A. L. Wind Energy Explained: Theory, Design and Application. [s.l: s.n.]. MANZANO-AGUGLIARO, F. et al. Wind turbines offshore foundations and connections to gridInventions, 2020. MARINHA DO BRASIL. Limites Marítimos e LEPLAC. Brasília: [s.n.]. Disponível em: <https://www.marinha.mil.br/dhn/?q=pt-br/node/168>. Acesso em: 6 maio. 2024. ___. Limites Marítimos. Disponível em: <https://www.marinha.mil.br/dhn/?q=pt-br/node/169>. Acesso em: 17 maio. 2024. MARTINS, F. R.; GUARNIERI, R. A.; PEREIRA, E. B. O aproveitamento da energia eólica. Revista Brasileira de Ensino de Física, v. 30, n. 1, p. 1304.1-1304.13, 2008. MATHEW, S. Wind energy: Fundamentals, resource analysis and economics. [s.l: s.n.]. MATTEI, T. F.; PARRÉ, J. L. PANORAMA DO SETOR DE ENERGIA ELÉTRICA NO BRASIL E NO PARANÁ: POLÍTICAS E DESAFIOS PARA ENERGIAS ALTERNATIVAS. Revista Faz Ciência, v. 23, n. 38, 2021. MCNIDER, R. T.; POUR-BIAZAR, A. Meteorological modeling relevant to mesoscale and regional air quality applications: a reviewJournal of the Air and Waste Management Association, 2020. MIGUEL, F. K. Aplicação da teoria de portfólio de Markowitz para a geração de energia elétrica proveniente de empreendimentos eólicos no Brasil. São Paulo: Universidade de São Paulo, 2016. MIOT, H. A. Correlation analysis in clinical and experimental studiesJornal Vascular Brasileiro, 2018. MME; EPE. Plano Nacional de Energia - PNE 2050Plano Nacional de Energia - PNE 2050. [s.l: s.n.]. MOLTENI, F. et al. The ECMWF ensemble prediction system: Methodology and validation. Quarterly Journal of the Royal Meteorological Society, v. 122, n. 529, 1996. MUÑOZ, R. C. et al. Wind energy exploration over the atacama desert : A numerical model-guided observational program. Bulletin of the American Meteorological Society, v. 99, n. 10, 2018. MUSIAL, W. et al. Potential Offshore Wind Energy Areas in California: An Assessment of Locations, Technology, and Costs. Boem, n. December, 2016. NCAR. NATIONAL CENTER FOR ATMOSPHERIC RESEARCH . Disponível em: <https://ncar.ucar.edu/>. Acesso em: 28 abr. 2024. NOAA. Wind Maps – Geospatial Data Science. Disponível em: <https://www.nrel.gov/gis/wind-resource-maps.html>. Acesso em: 22 abr. 2024. NOURI, A. et al. Moroccan wind farm potential feasibility. Case study. Energy Conversion and Management, v. 122, p. 39–51, ago. 2016. OH, H. T. et al. Review of the marine environmental impact assessment reports regarding offshore wind farm. Fisheries and Aquatic Sciences, v. 24, n. 11, 2021. OLIVEIRA FILHO, O. D. Q. DE et al. Meeting Peak Load Demand by an Offshore Wind Farm in Brazil. Wind Engineering, v. 37, n. 5, p. 549–556, 1 out. 2013. OLIVEIRA, S. S. DE; SOUZA, E. P. DE. Análise de Modelos de Mesoescala para Caracterização do Potencial Eólico do Estado da Paraíba. Revista Brasileira de Meteorologia, v. 32, n. 2, p. 277–291, jun. 2017. OPTIS, M. et al. New methods to improve the vertical extrapolation of near-surface offshore wind speeds. Wind Energy Science, v. 6, n. 3, 2021. ORTIZ, G. P; KAMPEL, M. Potencial de energia eólica Offshore na margem do BrasilInstituto Nacional de Pesquisas Espaciais. [s.l: s.n.]. PAIVA, V. G. DE. ESTIMATIVA DO POTENCIAL DE GERAÇÃO DE ENERGIA EÓLICA OFFSHORE NA MARGEM CONTINENTAL BRASILEIRA. São José dos Campos: INPE, 2019. PAL, M.; BHARATI, P. Introduction to Correlation and Linear Regression Analysis. Em: Applications of Regression Techniques. [s.l: s.n.]. . PARANHOS, B. R. et al. Wind power use capacity in rural areas of complex topography via WRF model: A case study in a mountainous region in Rio de Janeiro state, Brazil. Anuario do Instituto de Geociencias, v. 42, n. 3, 2019. PAULA, M. et al. Predicting Energy Generation in Large Wind Farms: A Data-Driven Study with Open Data and Machine Learning. Inventions, v. 8, n. 5, 2023. PENG, X.; LIU, Z.; JIANG, D. A review of multiphase energy conversion in wind power generationRenewable and Sustainable Energy Reviews, 2021. PEREIRA DE LUCENA, A. F. et al. The vulnerability of wind power to climate change in Brazil. Renewable Energy, v. 35, n. 5, 2010. PEREIRA, E. B. et al. The impacts of global climate changes on the wind power density in Brazil. Renewable Energy, v. 49, 2013. PIMENTA, F.; KEMPTON, W.; GARVINE, R. Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil. Renewable Energy, v. 33, n. 11, p. 2375–2387, nov. 2008. PIMENTA, F. M. et al. Brazil offshore wind resources and atmospheric surface layer stability. Energies, v. 12, n. 21, 2019. PINSON, P.; KARINIOTAKIS, G. On-line assessment of prediction risk for wind power production forecasts. Wind Energy, v. 7, n. 2, 2004. PINTO, M. DE O. Estudo estimativo básico para implantação de turbinas eólicas offshore no litoral do estado do Rio Grande do Norte. [s.l.] Universidade Federal do Rio Grande do Norte, 2017. PINTOR, A. et al. Insights on the use of wind speed vertical extrapolation methods. Renewable Energy and Power Quality Journal, v. 20, 2022. POLI, P. et al. ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. Journal of Climate, v. 29, n. 11, p. 4083–4097, 1 jun. 2016. POSSNER, A.; CALDEIRA, K. Geophysical potential for wind energy over the open oceans. Proceedings of the National Academy of Sciences, v. 114, n. 43, p. 11338–11343, 24 out. 2017. PRECHEL, H. Organizational political economy, corporate power, and the great acceleration of environmental pollution in the United States. Em: Handbook on Inequality and the Environment. [s.l: s.n.]. . PREMA, V.; RAO, K. U. Time series decomposition model for accurate wind speed forecast. Renewables: Wind, Water, and Solar, v. 2, n. 1, 2015. RABELO, D. R. et al. Generation of Wind Energy in the State of Bahia, Brazil: Challenges and Possibilities. Revista Brasileira de Geografia Física, v. 16, n. 3, p. 1145–1155, 1 jun. 2023. REHMAN, S. et al. Horizontal AxisWind Turbine Blade Design Methodologies for Efficiency Enhancement A ReviewEnergies, 2018. REN 21 RENEWABLES NOW. Renewables Global Status Report 2019. [s.l: s.n.]. v. 105 RIO GRANDE DO NORTE, G. DO E. Atlas eólico e solar do Estado do Rio Grande do Norte. Natal - RN.: [s.n.]. Disponível em: <http://www.adcon.rn.gov.br/ACERVO/sedec/DOC/DOC000000000298278.PDF>. Acesso em: 13 set. 2024. ROGA, S. et al. Recent technology and challenges of wind energy generation: A review. Sustainable Energy Technologies and Assessments, v. 52, 2022. ROULSTON, M. S. et al. Using medium-range weather forcasts to improve the value of wind energy production. Renewable Energy, v. 28, n. 4, 2003. SAIDUR, R. et al. A review on global wind energy policy. Renewable and Sustainable Energy Reviews, v. 14, n. 7, p. 1744–1762, set. 2010. SAMPAIO, K. R. A.; BATISTA, V. O atual cenário da produção de energia eólica no Brasil: Uma revisão de literatura. Research, Society and Development, v. 10, n. 1, 2021. SANTANA, L. V. R. et al. Análise da regularidade da velocidade do vento no Nordeste do Brasil através da Sample Entropy. Research, Society and Development, v. 9, n. 7, 2020. SAWAYA, A. et al. Brazil could potentially become a key player in the global economy’s decarbonization process while driving sustainable inclusive growth. Disponível em: <https://www.mckinsey.com/br/en/our-insights/all-insights/the-green-hidden-gem-brazils-opportunity-to-become-a-sustainability-powerhouse>. Acesso em: 4 maio. 2024. SCHAFFARCZYK, A. P. Wind Power Technology: An Introduction. [s.l.] Springer Nature, 2023. SHU, Z. R.; LI, Q. S.; CHAN, P. W. Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function. Applied Energy, v. 156, 2015. SILVA, A. J. V. DE C.; CATALDII, M.; DRAGAUD, I. C. D. V. AVALIAÇÃO DO POTENCIAL DE GERAÇÃO EÓLICA OFFSHORE NA REGIÃO COSTEIRA DOS MUNICÍPIOS DE CABO FRIO E ARRAIAL DO CABO, ESTADO DO RIO DE JANEIROAnais do XIV Encontro Nacional de Estudantes de Engenharia Ambiental. Anais...São Paulo: Editora Edgard Blücher, out. 2016 SILVA, A. J. V. DE C.; VINHOZA, A. J.; SILVA, C. Potencial Eólico Offshore No Brasil: Localização De Áreas Nobres Através De Análise Multicritério. Coppe Ufrj, 2019. SILVA, B. B. DA et al. Potencial eólico na direção predominante do vento no Nordeste brasileiro. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 6, n. 3, 2002. SILVA DOS SANTOS, A. T. et al. Assessment of wind resources in two parts of Northeast Brazil with the use of numerical models. Meteorological Applications, v. 23, n. 4, p. 563–573, out. 2016. SILVA, J. A. Energia eólica no Brasil: avanços e desafios. Princípios, v. 42, n. 167, p. 179–202, 2023. SILVA, N. F. DA; ROSA, L. P.; ARAÚJO, M. R. The utilization of wind energy in the Brazilian electric sector’s expansionRenewable and Sustainable Energy Reviews, 2005. SIMANKOV, V. et al. Review of Estimating and Predicting Models of the Wind Energy AmountEnergies, 2023. SIMAS, M.; PACCA, S. Assessing employment in renewable energy technologies: A case study for wind power in BrazilRenewable and Sustainable Energy Reviews, 2014. SKAMAROCK WC, ET AL. A description of the advanced research WRF version 3, NCAR Tech. Note, NCAR/TN-468+STR. Natl. Cent. for Atmos. Res. Boulder, Colorado, n. June, 2008. SUN, H. et al. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data. Applied Energy, v. 280, 2020. SUN, X.; HUANG, D.; WU, G. The current state of offshore wind energy technology developmentEnergy, 2012. SWERA. Designing Renewable Resource Assessment Projects and Using Assessment Products. [s.l: s.n.]. Disponível em: <https://openei.org/w/images/9/94/SWERA_guide.pdf>. Acesso em: 22 abr. 2024. TATAGIBA, A. B. CRESWELL, John W. Projeto de pesquisa: métodos qualitativo, quantitativo e misto; tradução Magda Lopes. – 3 ed. – Porto Alegre: ARTMED, 296 páginas, 2010. Cadernos de Linguagem e Sociedade, v. 13, n. 1, p. 205–208, 3 jul. 2012. THE WORD BANK. China - Meeting the challenges of offshore and large-scale wind power : regulatory review of offshore wind in five European countries. Disponível em: <https://documents.worldbank.org/en/publication/documents-reports/documentdetail/122991468032969418/china-meeting-the-challenges-of-offshore-and-large-scale-wind-power-regulatory-review-of-offshore-wind-in-five-european-countries>. Acesso em: 22 abr. 2024. THOMAS, B. et al. Downscaling CMIP6 climate projections to classify the future offshore wind energy resource in the Spanish territorial waters. Journal of Cleaner Production, v. 433, 2023. TIAN, H.; SOLTANI, M. N.; NIELSEN, M. E. Review of floating wind turbine damping technologyOcean Engineering, 2023. TILLENBURG, D. Technical challenges of floating offshore wind turbines. EGU Journal of Renewable Energy Short Reviews, 2021. TOLMASQUIM, M. T.; GUERREIRO, A.; GORINI, R. Matriz energética brasileira: uma prospectiva. Novos Estudos - CEBRAP, n. 79, p. 47–69, nov. 2007. TUCHTENHAGEN, P. et al. WRF model assessment for wind intensity and power density simulation in the southern coast of Brazil. Energy, v. 190, 2020. TUCHTENHAGEN, P. N. Variabilidade do vento e potencial para energia eólica offshore no litoral Sul do Brasil. Natal: Universidade Federal do Rio Grande do Norte, 2019. TUY, S.; LEE, H. S.; CHRENG, K. Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent CO2 reduction. Renewable and Sustainable Energy Reviews, v. 163, 2022. URIŠIĆ, Ž.; MIKULOVIĆ, J. Assessment of the wind energy resource in the South Banat region, SerbiaRenewable and Sustainable Energy Reviews, 2012. U.S. ENERGY INFORMATION ADMINISTRATION (EIA). U.S. utility-scale electricity generation by source, amount, and share of total in 2023. [s.l: s.n.]. Disponível em: <https://www.eia.gov/tools/faqs/faq.php?id=427&t=3>. Acesso em: 21 abr. 2024. VAICBERG, H.; VALIATT, G. L. DE C.; QUEIROZ, M. F. Energia eólica offshore: Um Overview do cenário global e o contexto brasileiro. REVISTA DE DIREITO E NEGÓCIOS INTERNACIONAIS DA MARITIME LAW ACADEMY -MLAWINTERNATIONAL LAW AND BUSINESS REVIEW, v. 1, n. 1, 2021. VAKULCHUK, R.; OVERLAND, I.; SCHOLTEN, D. Renewable energy and geopolitics: A reviewRenewable and Sustainable Energy Reviews, 2020. VEERS, P. et al. Grand challenges in the science of wind energy. Science, v. 366, n. 6464, 2019. VELO, R.; LÓPEZ, P.; MASEDA, F. Wind speed estimation using multilayer perceptron. Energy Conversion and Management, v. 81, 2014. VERGARA, S. C. Projetos e Relatórios de Pesquisa em Administração. 16a. ed. ed. São Paulo: Atlas, 2016. VIDAL, D. B.; TORRES, E. A.; JONG, P. DE. Study of indicators on regulation for offshore wind energy exploitation in Brazil. DELOS: DESARROLLO LOCAL SOSTENIBLE, v. 16, n. 48, p. 3375–3398, 13 nov. 2023. VINHOZA, A.; SCHAEFFER, R. Brazil’s offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis. Renewable and Sustainable Energy Reviews, v. 146, p. 111185, ago. 2021. WAITE, M.; MODI, V. Modeling wind power curtailment with increased capacity in a regional electricity grid supplying a dense urban demand. Applied Energy, v. 183, p. 299–317, dez. 2016. WALDL, H. P. ; G. G. The Quality of a 48-Hours Wind Power Forecast Using the German and Danish Weather Prediction ModelEUWEC Special Topic Conference. Anais...Kassel: Wind Power for the 21st Century, 2000Disponível em: <https://uol.de/f/5/inst/physik/ag/enmet/publications/wind/conference/2000/ewea_kassel/The_Quality_of_a_48h_Wind_Power_Forecast_using_the_german_and_danish_weather_prediction_model.pdf>. Acesso em: 28 abr. 2024 WAN, L. et al. A review on the technical development of combined wind and wave energy conversion systemsEnergy, 2024. WEI, C. C.; CHIANG, C. S. Assessment of Offshore Wind Power Potential and Wind Energy Prediction Using Recurrent Neural Networks. Journal of Marine Science and Engineering, v. 12, n. 2, 2024. WERNER, D.; LAZARO, L. L. B. The policy dimension of energy transition: The Brazilian case in promoting renewable energies (2000–2022). Energy Policy, v. 175, 2023. WILKS, S. D. Statistical Methods In The Atmospheric Sciences. 2a ed. [s.l.] Academic Press, 2006. WILLMOTT, C. J.; MATSUURA, K. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. International Journal of Geographical Information Science, v. 20, n. 1, p. 89–102, jan. 2006. WILLMOTT, C. J.; MATSUURA, K.; ROBESON, S. M. Ambiguities inherent in sums-of-squares-based error statistics. Atmospheric Environment, v. 43, n. 3, p. 749–752, jan. 2009. WINDEUROPE. Wind energy in Europe: 2022 Statistics and the outlook for 2023-2027. [s.l: s.n.]. Disponível em: <https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027/>. Acesso em: 21 abr. 2024. XU, W. et al. Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy. Renewable Energy, v. 163, 2021. YANG, D. et al. A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutralityRenewable and Sustainable Energy Reviews, 2022. YANG, J. et al. Evolution of energy and metal demand driven by industrial revolutions and its trend analysis. Chinese Journal of Population Resources and Environment, v. 19, n. 3, 2021. YESILBUDAK, M.; SAGIROGLU, S.; COLAK, I. A new approach to very short term wind speed prediction using k-nearest neighbor classification. Energy Conversion and Management, v. 69, 2013. ZHANG, H. M.; BATES, J. J.; REYNOLDS, R. W. Assessment of composite global sampling: Sea surface wind speed. Geophysical Research Letters, v. 33, n. 17, 2006. ZHANG, J.; WANG, H. Development of offshore wind power and foundation technology for offshore wind turbines in China. Ocean Engineering, v. 266, 2022. ZHANG, X.; SUN, X. Performance enhancement of an H-Darrieus vertical axis wind turbine via moving surface boundary-layer control. Energy Science and Engineering, v. 11, n. 3, 2023. ZILONG, T.; XIAO WEI, D. Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads. Applied Energy, v. 306, 2022.pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PEI)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Defesa_Douglas_Vidal_07-02-25 (1).pdf8,3 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.