Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/41204
Tipo: Tese
Título: Aplicação de técnicas de aprendizado de máquina para planejamento e gerenciamento de redes ópticas elásticas
Título(s) alternativo(s): Application of machine learning techniques for planning and management of elastic optical networks
Autor(es): Melo, Talison Augusto Correia de
Primeiro Orientador: Assis, Karcius Day Rosário
metadata.dc.contributor.referee1: Assis, Karcius Day Rosário
metadata.dc.contributor.referee2: Lopes, Waslon Terllizzie Araújo
metadata.dc.contributor.referee3: Santos Filho, José Valentim dos
metadata.dc.contributor.referee4: Esquerre, Vitaly Félix Rodriguez
metadata.dc.contributor.referee5: Novo, Marcela Silva
Resumo: As Redes Ópticas Elásticas (EONs) surgiram como uma resposta inovadora às redes ópticas tradicionais, trazendo novas concepções operacionais que melhoram a flexibilidade e a eficiência no uso dos recursos. Um problema recorrente em EONs é o Roteamento e Alocação de espectro (RSA), que busca definir uma rota para cada requisição e alocar um número adequado de slots de acordo com a demanda requerida, utilizando a menor quantidade possível de espectro. Este trabalho apresenta técnicas de aprendizado de máquina supervisionado para o projeto de virtualização com proteção em EONs, com o objetivo de prever o número total de slots de espectro necessários para suportar todas as demandas de tráfego. Focando em Redes Ópticas Virtuais (VONs) sujeitas a proteção específica, investiga-se a aplicação de técnicas de Aprendizado de Máquina (ML), especificamente Perceptron Multicamadas (MLP) e Regressão por Vetores de Suporte (SVR), para resolver o problema de capacidade de enlace de EONs com virtualização de forma mais rápida do que as formulações tradicionais de Programação Linear Inteira (ILP), mantendo resultados próximos dos ótimos. O desempenho dos modelos foi avaliado por meio de métricas estatísticas, tempo de treinamento e inferência. Os resultados mostraram que o método proposto é eficaz para prever o número de slots necessários no substrato físico sujeito a várias VONs.
Abstract: Elastic Optical Networks (EONs) have emerged as an innovative response to traditional optical networks, bringing new operational concepts that improve flexibility and resource efficiency. A recurring problem in EONs is Routing and Spectrum Allocation (RSA), which seeks to define a route for each request and allocate an appropriate number of slots according to the required demand, using the minimum possible spectrum. This work presents supervised machine learning techniques for the virtualization design with protection in EONs, aiming to predict the total number of spectrum slots needed to support all traffic demands. Focusing on Virtual Optical Networks (VONs) subjected to specific protection, the application of machine learning techniques, specifically Multilayer Perceptron (MLP) and Support Vector Regression (SVR), is investigated to solve the link capacity problem in EONs with virtualization faster than traditional Integer Linear Programming (ILP) formulations, while maintaining results close to optimal. The performance of the models was evaluated through statistical metrics, training time, and inference. The results showed that the proposed method is effective in predicting the number of slots needed in the physical substrate subjected to various VONs.
Palavras-chave: Redes ópticas elásticas
Roteamento e alocação de espectro
Aprendizado do computador
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Idioma: por
País: Brasil
Editora / Evento / Instituição: Universidade Federal da Bahia
Sigla da Instituição: UFBA
metadata.dc.publisher.department: Escola Politécnica
metadata.dc.publisher.program: Programa de Pós-Graduação em Engenharia Elétrica (PPGEE) 
Tipo de Acesso: Acesso Aberto
URI: https://repositorio.ufba.br/handle/ri/41204
Data do documento: 9-Dez-2024
Aparece nas coleções:Tese (PPGEE)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese_Talison_Melo_2024.pdfTese Talison Melo19,25 MBAdobe PDFVisualizar/Abrir
Mostrar registro completo do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.