dc.relation.references | 1. Organização Mundial da Saúde (OMS). Doenças do espectro do autismo. 2017. 2. Silva LR, Rodrigues FV, Camparoto ML, Kerche-Silva LE. A genética e a neurofisiologia do autismo. 2016. Doi: 10.13140/RG.2.1.2670.3126. 3. Paula CS, Ribeiro SH, Fombonne E, Mercandante M. Brief report: prevalence of pervasive developmental disorder in brazil: a pilot study. Journal of Autism and Developmental Disorders 2011;41(2):1738-42. 4. Ferreira ECV. Prevalência de autismo em Santa Catarina: uma visão epidemiológica contribuindo para a inclusão social. [dissertação].Santa Catarina: Universidade Federal de Santa Catarina; 2008. 5. Costa MIF, Nunesmaia HGS. Epidemiologia genética do autismo infantil no Nordeste do Brasil. Psiquiatria Biológica 1996;4(4):199-204. 6. Teixeira MCTV, Mecca TP, Velloso RL, Bravo RB, Ribeiro SHB, Mercadante MT, et al. Literatura científica brasileira sobre transtornos do espectro autista. Revista da Associação Médica Brasileira 2010;56(5):607-14. 7. Simons Foundation Autism Research Initiative (SFARI Gene Autdb). 2019. [acesso em 21 July 2019]. Disponível em: https://sfari.org/. 8. Gupta AR, State MW. Autismo: genética. Revista Brasileira de Psiquiatria. 2006;28:29-38. 9. Miller DT, Adam MP, Aradhya S, Biesecker LG , Brothman AR , Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. American Journal of Human Genetics 2010 May 14;86(5):749-64. Doi: 10.1016/j.ajhg.2010.04.006. 10. Trakadis Y,Shevell M. Microarray as a first genetic test in global developmental delay: a cost-effectiveness analysis. Developmental Medicine & Child Neurology 2011;53(11):994-99. 11. Ajuriahuerra J. Las psicosis infantiles. Manual de psiquiatria infantil. 4. ed. Barcelona: Toray-Masson; 1977. p. 673-731. 12. Assumpção FB, Pimentel AC. Autismo infantil. Revista Brasileira de Psiquiatria. 2000; 22(supl. I):37-9. 13. Klin A. Autismo e síndrome de asperger: uma visão geral. Revista Brasileira de Psiquiatria 2006;28(supll. I):S3-S11. 65 14. Ornitz EM; Ritvo ER. A síndrome do autismo: uma revisão crítica. The American Journal of Psychiatry 1976;133(6):609-21. 15. Rutter M. Diagnosis and definitions of childhood autism. J Autism Dev Disord. 1978;8(2):139-61. 16. Manual Diagnóstico e Estatístico de Transtornos Mentais. DSM-I - Texto Revisado. Associação Americana de Psiquiatria,1952 17. Manual Diagnóstico e Estatístico de Transtornos Mentais. DSM-II - Texto revisado. 2. ed. Associação Americana de Psiquiatria, 1968. 18. Manual Diagnóstico e Estatístico de Transtornos Mentais. DSM-III - Texto revisado. 3. ed. Associação Americana de Psiquiatria,1980. 19. Manual Diagnóstico e Estatístico de Transtornos Mentais. DSM-IV - Texto revisado. 4. ed. Associação Americana de Psiquiatria, 1994. 20. Manual Diagnóstico e Estatístico de Transtornos Mentais. DSM-V - Texto revisado. 5. ed. Associação Americana de Psiquiatria, 2013. 21. Lançamento da CID. 11. ed. [acesso em 21 July 2019]. Disponível em: https://www.who.int/news-room/detail/18-06-2018-who-releases-new-internationalclassification-of-diseases-(icd-11). 22. Classificação Estatística Internacional de Doenças e Problemas relacionados com a Saúde. (CID-10) 10. ed. 1993. (CID-11) 23. Classificação Estatística Internacional de Doenças e Problemas relacionados com a Saúde. 11. ed. [acesso em July 2019]. Disponível em: https://icd.who.int/browse11/lm/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f437815624. 24. Carvalheira G, Vergani N, Brunoni D. Genética do Autismo. Revista Brasileira de Psiquiatria 2004;(26)4:270-2. 25. Lintas C, Persico AM. Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet 2009; 46(1):1-8. 26. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995;25(1):63-77. 27. Posar A, Visconti P. Autism in 2016: the need for answers. J Pediatr (Rio J) 2017 Mar - Apr;93(2):111-9. Doi: 10.1016/j.jped.2016.09.002. 66 28. Ng M, De Montigny JG, Ofner M, Do MT. Environmental factors associated with autism spectrum disorder: a scoping review for the years 2003–2013. Health Promotion and Chronic Disease Prevention in Canada. 2017;37(1):1-23. 29. Quais são as teorias e as pesquisas sobre as possíveis causas do autismo. 2018. [acesso em 01 ago. 2019]. Disponível em: https://www.bbc.com/portuguese/geral43577510. 30. Sandin S, Schendel D, Magnusson P, Hultman C, Surén P, Sussser E, et al. Autism risk associated with parental age and with increasing difference in age between the parents. Molecular Psychiatry 2016;21:693-700. 31. Shao Y, Wolpert CM, Raiford KL, Menold MM, Donnelly SL, Ravan SA, et al. Genomic screen and follow-up analysis for autistic disorders. American Journal Medical Genetics. 2002. v. 114, p. 99-105. 32. Gadia CA, Tuchman R, Rotta NT. Autismo e doenças invasivas de desenvolvimento. Jornal de Pediatria 2004;80(2). 33. Lai CSL, Fisher SE, Hurst J A, Vargha-Khadem F , Mônaco AP. A forkheaddomain gene is mutated in a severe speech and language disorder. Nature 2001;413:519-23. 34. Costa MF, Nunesmaia HGS. Diagnóstico genético e clínico do autismo infantil. Arquivos de Neuro-psiquiatria 1998;56(1):24-31. 35. Geschwind DH. Autism: many genes, common pathways? Cell 2008;35(3):391-5. 36. Coutinho JVSC, Bosso RMV. Autismo e genética: uma revisão de literatura. Revista Científica do ITPAC 2015 jan;8(1). 37. Scherer SW, Lee C, Birney E, Eichler EE, Carter NP, Hurles ME, et al. Challenges and standards in integrating surveys of structural variation. Nature Genetics. 2007;39(7):7-15. 38. Lins, T. C. L. Variação estrutural no número de cópias e sua implicação na expressão de microRNA em humanos. [dissertação]. Brasília: Universidade de Brasília;2014. 39. South S T, Lee C, Lamb AN, Cordeiro AN , Higgins AW , Kearney HM. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genetics in Medicine 2013;15(11):901-9. 40. Nowakowska B. Clinical interpretation of copy number variants in the human genome. J Appl Genetics. 2017;8:449-57. Doi: 10.1007/s13353-017-0407-4. 67 41. Vermeesch J R, Brady P D, Sanlaville D, Kok K , Hastings RJ . Genome wide arrays: quality criteria and platforms to be used in routine diagnostics. Human mutation 2012;33(6):906-15. 42. El Khattabi LA, Heide S, Caberg J-H. 16p13.11 microduplication in 45 new patients: refined clinical significance and genotype–phenotype correlations. J Med Genet 2018. p. 1–7. Doi:10.1136/jmedgenet-2018-105389 43. Ribeiro, CM. Estudo de genes candidatos aos transtornos do espectro autista. [tese]. São Paulo:Universidade de São Paulo; 2013. 44. Moreira DP, Oliveira KG, Martins ALB, Lourenço NCV, Takahashi VNO, Rocha K, et al. Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in Autism Spectrum Disorder Brazilian Individuals with and without Epilepsy. Revista Plos ONE. 2014;9(9). 45. Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Research 2011;1380:42-77. 46. Genecards – Human Gene Database. 2017. 47. Ribas LT, Cunha MC. Correlação entre a idade paterna, nova mutação genética e autismo/esquisofrenia infantil. Disturb Comum 2013;25(1). 48. Trost B, Walker S, Wang Z, Thiruvahindrapuram B, MacDonald JR, Sung WWL, et al. A Comprehensive workflow for read depth-based identification of copynumber variation from whole-genome sequence data. The American Journal of Human Genetics 2018;102:142-55. 49. El-Baz F, Zaghloul MS, Sobky EE. Chromosomal abnormalities and autism. The Egyptian Journal of Medical Human Genetics 2016;17:57-62. 50. Moreira DP, Griesi-Oliveira K, Bossolani-Martins AL, Lourenço NCV, Takahashi VNO, Rocha K, et al. Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in Autism Spectrum Disorder Brazilian Individuals with and without Epilepsy. Plos ONE 2014;9(9). 51. Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet 2014;677-94. 52. Guivarch J, Chatel C, Mortreux J. An atypical autistic phenotype associated with a 2q13 microdeletion: a case report. Journal of Medical Case Reports 2018;12(79). 53. Devlin B,Scherer SW. Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 2012 ;22(3):229-37. 68 54. Hladilkova E, Baroy T, Fannemel M, Vallova V, Misceo D , Bryn V, et al. A recurrent deletion on chromosome 2q13 is associated with developmental delay and mild facial dysmorphisms. Mol Cytogenet 2015;8(57). 55. Yu HE, Hawash K, Picker J. A recurrent 1.71Mb genomic imbalance at 2q13 increases the risk of developmental delay and dysmorphism. Clin Genet 2012;81(3): 257-64. 56. Riley KN, Catalano LM, Bernat JA, Adams SD, Martin DM, Lalani SR, et al. Recurrent deletions and duplications of chromosome 2q11.2 and 2q13 are associated with variable outcomes. Am J Med Genet A 2015;167A(11):2664-73. 57. Girirajan S, Rosenfeld JA, Coe BP, Parikh S, Friedman N, Goldstein A, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants.N Engl J Med 2012;367(14):1321-31. 58. Woodbury-Smith M, Paterson AD, O’Connor I. Genome-wide linkage study of autism spectrum disorder and the broad autism phenotype in extended pedigrees. Journal of Neurodevelopmental Disorders 2018;10(20). 59. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16(9):551-63. 60. Gaugler T, Klei L, Sanders SJ, Bodea CA , Goldberg AP , Lee AB et al. Most genetic risk for autism resides with common variation. Nat Genet 2014;46(8):881-5. 61. Hoang N, Cytrynbaum C, Scherer SW. Communicating complex genomic information: A counselling approach derived from research experience with Autism Spectrum Disorder. Patient Education and Counseling 2018;101:352-61, 62. Jacquemont S, Coe BP, Hersch M. A Higher Mutational Burden in Females Supports a ‘‘Female Protective Model’’ in Neurodevelopmental Disorders. The American Journal of Human Genetics. 2014;94:415-25. 63. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI, Hallmayer JF. Autism genetics: opportunities and challenges for clinical translation. Nature Reviews Genetics 2017;18(6):362. 64. Liu X, Takumi T. Genomic and genetic aspects of autism spectrum disorder. Biochemical and Biophysical Research Communications 2014;452:244-53. 65. Hanish AE, Cohen MZ, Starr LJ. Autism spectrum disorder and genetic testing: Parental perceptions and decision-making J Spec Pediatr Nurs 2018;23. 66. Szklarczyk D, Gable AL, Lyon D, Junção A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. 2019;47. 69 67. Menashe I, Larsen EC, Banerjee-Basu S. Prioritization of Copy Number Variation Loci Associated with Autism from AutDB-An Integrative Multi-Study Genetic Database PLoS ONE. 2013;8:e66707. 68. Rosenfeld JA, Stephens LE, Coppinger J. Deletions flanked by breakpoints 3 and 4 on 15q13 may contribute to abnormal phenotypes. Eur J Hum Genet 2011;9:54754. 69. Marini C, Cecconi A, Contini E, Pantaleo H , Metitieri t , Guarducci S, et al. Clinical and genetic study of a family with a paternally inherited 15q11–q13 duplication. American Journal of Medical Genetics Part A 2013;61(6):1459-64. 70. Noor A, Dupuis L, Mittal K, Lionel AC, Marshall CR, Scherer SW, et al. 15q11.2 duplication encompassing only the UBE3A gene is associated with developmental delay and neuropsychiatric phenotypes. Human mutation 2015;36(7):689-93. 71. Chen C P, Lin SP, Lee CL, Chern SR, Wu PS, Chen YN, et al. Familial transmission of recurrent 15q11.2 (BP1-BP2) microdeletion encompassing NIPA1, NIPA2, CYFIP1, and TUBGCP5 associated with phenotypic variability in developmental, speech, and motor delay. Taiwanese Journal of Obstetrics and Gynecology 2017; 56(1):93-97. 72. Burnside RD, Pasion R, Mikhail FM. Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay. Hum Genet. 2011 Oct;130(4):517-28. 73. Mei C, Fedorenko E, Amor DJ, Boys A, Hoeflin C, Carew P, et al. Deep phenotyping of speech and language skills in individuals with 16p11.2 deletion. Eur J Hum Genet 2018 May;26(5):676-86. 74. Gatti M, Tolva G, Bergamaschi S. Syndrome and 16p11.2 Recurrent Microdeletion: A Case Report and Review of the Literature. J Pediatr Adolesc Gynecol 2018 Oct;31(5):533-5. 75. Trisomy18p. [acesso 2019 Nov 01]. Disponível em: https://hpo.jax.org/app/browse/disease/ORPHA:1715. 76. Duplicação 18p.[acesso em 2019 nov 01]. Disponvel em: https://www.orpha.net/consor/cgibin/Disease_Search.php?lng=PT&data_id=340&Disease_Disease_Search_diseaseGr oup=18p&Disease_Disease_Search_diseaseType=Pat&Grupo%20de%20doen%E7as %20relacionadas=Duplicac-o18p&title=Duplica%E7%E3o%2018p&search=Disease_Search_Simple. 77. Orendi K, Uhrig S, Mach M, Tschepper P, Speicher MR. Complete and pure trisomy 18p due to a complex chromosomal rearrangement in a male adult with mild intellectual disability. Am J Med Genet A 2013;161A(7):1806-12. 70 78. Celestino-Soper PBS, Shaw CA, Sanders SJ, Li J, Murtha MT, Ercan-Sencicek, AG, et al. Use of array CGH to detect exonic copy number variants throughout the genome in autism families detects a novel deletion in TMLHE. Hum Molec Genet 2011;20:4360-70. 79. Celestino-Soper PBS, Violante S, Crawford EL, Lui R, Lionel A, Delaby E, et al. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc Nat Acad Sci 2012;109:7974-81. 80. Ziats M N, Comeaux M S, Yang Y. Improvement of regressive autism symptoms in a child with TMLHE deficiency following carnitine supplementation. Am. J. Med. Genet. 167A: 2162-2167, 2015. Note: Erratum: Am J Med Genet 167A:2496 only, 2015 81. Vandewalle J, Van Esch H, Govaerts K, Verbeeck J, Zweier C, Madrigal I, et al. Dosage-dependent severity of the phenotype in patients with mental retardation due to a recurrent copy-number gain at Xq28 mediated by an unusual recombination. Am J Hum Genet 2009;85:809-22. 82. Ramocki MB, Tavyev YJ, Peters SU. The MECP2 duplication syndrome. Am J Hum Genet 2010;152A:1079-88. 83. Shibayama A, Cook Jr EH, Feng J, Glanzman F. MECP2 structural and 3′‐UTR variants in schizophrenia, autism and other psychiatric diseases: A possible association with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2004;28(1):50-53. 84. Hamada N, Ito H, Nishijo T. Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci Rep 2016; 6:30805. Doi:10.1038/srep30805 85. Wamsley B, Jaglin XH, Favuzzi E, Quattrocolo G, Nigro MJ, Yusuf N, et al. RBFOX1, Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron 2018;100(4):846-59.e7. Doi:10.1016/j.neuron.2018.09.026 86. Glessner JT, Li J, Wang D, March M, Lima L, Desai A, et al. Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders. Genome Med 2017;9(1):106. Doi:10.1186/s13073017-0494-1. 87. Genes CACNA1H CACNA1E e CACN2B. [acesso em 201 Nov 03]. Disponível em: https://www.genecards.org/. 88. Splawski I, Yoo DS, Stotz SC, Cherry A, Clamphan DE, Keating MT. CACNA1H mutations in autism spectrum disorders. Journal of Biological chemistry 2006;281(31):22085-91. 71 89. Breitenkamp AF, Matthes J, Nass RD, Sinzig J, Lehmkhul K, Numberg P, et al. Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function. Doi:10.1371/journal.pone.0095579. PLoS One 2014;9(4):e95579. 90. O'Roak BJ, Vives L, Girirajan S. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012;485(7397):24650. Soi:10.1038/nature10989. 91. Shang L, Henderson LB, Cho MT, Petrey DS, Fong CT, Haude KM, et al. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and Doi:10.1007/s10048-015-0466-9. autism. Neurogenetics 2016;17(1):43-9. 92. Takata A, Miyake N, Tsurusaki Y, Fukai R, Miyatake S, Koshimizu E, et al. Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder. Cell reports 2018;22(3):734-47. autism 93. Iossifov I, O'Roak BJ, Sanders SJ. The contribution of de novo coding mutations to spectrum Doi:10.1038/nature13908. disorder. Nature. 2014;515(7526):216-221. 94. Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HAF, et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci 2017;20(8):1043-1051. Doi:10.1038/nn.4589. 95. Hérault J, Petit E, Martineau J. Autism and genetics: clinical approach and association study with two markers of HRAS gene. American journal of medical genetics 1995;60(4): 276-81. 96. Pantaleoni F, Lev D, Cirstea IC, Motta, Lepri FR, Bottero L, et al. Aberrant HRAS transcript processing underlies a distinctive phenotype within the RASopathy clinical spectrum. Human mutation 2017; 38(7):798-804. 97. Johnson EM, Ishak AD, Naylor PE, Stevenson DA, Reiss AL, Green T, et al. PTPN11 Gain-of-Function Mutations Affect the Developing Human Brain, Memory, and Attention. Cerebral Cortex 2018;29(7):2915-23. Doi: 10.1093/cercor/bhy158. 98. Balicza P, Varga NÁ, Bolgár B, Pentelényi K, Bencsik R, Gál A, et al. Comprehensive Analysis of Rare Variants of 101 Autism-Linked Genes in a Hungarian Cohort of Autism Spectrum Disorder Patients. Front Genet 2019;10:434. Doi:10.3389/fgene.2019.00434 99. Yuen RKC, Merico D, Bookman M, Howe LJ, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci 2017;20(4):602-11. Doi:10.1038/nn.4524. 72 100. Cobben JM, Weiss MM, Van Dijk FS. A de novo mutation in ZMYND11, a candidate gene for 10p15. 3 deletion syndrome, is associated with syndromic intellectual disability. European journal of medical genetics 2014;57(11-12): 636-8. 101. Eggert M, Müller S, Heinrich U, Mehraein Y. A new familial case of microdeletion syndrome 10p15. 3. European journal of medical genetics 2016:59(4):179-82. 102. Freed D, Pevsner J. The contribution of mosaic variants to autism spectrum disorder. PLoS Genet 2016;12(9):e1006245. Doi:10.1371/journal.pgen.1006245. 103. Witteveen JS, Willemsen MH, Dombroski TC, Van Bakel NH, Nillesen WM, Van Hulten JA, et al. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nature genetics 2016;48(8): 877. 104. Popp B, Ekici AB, Thiel CT. Exome Pool-Seq in neurodevelopmental disorders. Eur J Hum Genet 2017;25(12):1364-76. Doi:10.1038/s41431-017-0022-1. 105. Wang J, Gong J, Li L. Neurexin gene family variants as risk factors for autism spectrum disorder. Autism Research 2018;11(1):37-43. 106. Yuan H, Wang Q, Liu Y, Yang W, He Y, Gusella JF, et al. A rare exonic NRXN3 deletion segregating with neurodevelopmental and neuropsychiatric conditions in a three-generation Chinese family. Am J Med Genet B Neuropsychiatr Genet 2018;177(6):589-95. Doi:10.1002/ajmg.b.32673. 107. Seto T, Hamazaki T, Nishigaki S. A novel CASK mutation identified in siblings exhibiting developmental disorders with/without microcephaly. Intractable Rare Dis Res 2017;6(3):177-82. Doi:10.5582/irdr.2017.01031. 108. Aspromonte MC, Bellini M, Gasparini A, Carraro M, Bettella E, Polli R, et al. Characterization of intellectual disability and autism comorbidity through gene panel sequencing. Human mutation 2019; 40(9):1346-63. Doi: 10.1002/humu.23822. 109. Wong WR, Brugman KI, Maher S, Oh JY, Howe K, Kato M, et al. Autismassociated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. Human Molecular Genetics 2019;28(13): 2271-81. 110. Parente DJ, Garriga C, Baskin B. Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity. American journal of medical genetics Part A 2017;173(1):213-16. 111. Krumm N, Turner TN, Baker C. Excesso de mutações truncadas herdadas e raras no autismo. Nat Genet 2015; 47(6):582-8. Doi: 10.1038 / ng.3303. 73 112. Yu J, He X, Yao D, Li Z, Li H, Zhao Z. A sex-specific association of common variants of neuroligin genes (NLGN3 and NLGN4X) with autism spectrum disorders in a Chinese Han cohort. Behav Brain Funct 2011;7:13. Doi:10.1186/1744-9081-7-13. 113. Jamain S, Quach H, Betancur C. Mutações dos genes ligados ao X que codificam as neuroliginas NLGN3 e NLGN4 estão associadas ao autismo. Nat Genet. 2003; 34 (1): 27-9. Doi: 10.1038 / ng1136. 114. Quartier A, Courraud J, Thi Ha T. Novel mutations in NLGN3 causing autism spectrum disorder and cognitive impairment.Human Mutation. 2019 Nov;40(11):202132. Doi: 10.1002/humu.23836. 115. Bai Y, Qiu S, Li Y. Genetic association between SHANK2 polymorphisms and susceptibility to autism spectrum disorder. IUBMB life 2018;70(8):763-76. 116. Zaslavsky K, Zhang WB, McCready FP. SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat Neurosci. 2019;22(4):556-64. Doi:10.1038/s41593-019-0365-8. 117. Wang T, Guo H, Xiong B. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun 2016;7:13316. Doi:10.1038/ncomms13316. 118. Yuge K, Iwama K, Yonee C, Matsufuji M, Sano N, Saikusa T, et al. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl. Brain and Development 2018;40(6):493-7. 119. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. The American Journal of Human Genetics 2010; 86(5): 749-64. 120. Painel de genes – Centogene.[2019 dez 08]. Disponível em: https://www.centoportal.com/order/new/panels-arrays/analysis method?search=Syndromic%20autism%20panel. | pt_BR |