Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/41634
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBarbosa, Renata Santana da Silva-
dc.date.accessioned2025-03-31T12:45:18Z-
dc.date.available2025-03-31T12:45:18Z-
dc.date.issued2024-08-12-
dc.identifier.citationBARBOSA, Renata Santana da Silva. Equilíbrio postural e disfunção temporomandibular: uma abordagem linear e de aprendizado de máquina. Orientador: Cristiano Sena da Conceição. 2024. 114 f. Tese (Doutorado em Processos Interativos dos Órgãos e Sistemas) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, 2024pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/41634-
dc.description.abstractIntroduction – Temporomandibular dysfunction (TMD) is a condition affecting the temporomandibular joint (TMJ) and is associated with symptoms such as facial pain, headaches, and limited mandibular movement. Studies suggest that TMD may impact postural balance (PB), a crucial function maintained by the complex interaction between the body's sensory and motor systems. Understanding the relationship between TMD and PB is essential for improving the assessment and treatment of patients with TMD. The objective of this thesis was to explore the relationship between TMD and PB from both linear and machine-learning perspectives. Specifically, it aimed to compare PB between individuals with and without TMD and develop a decision tree representing the interaction between TMD and PB. Methods – This is an observational, cross-sectional study conducted with a non-probabilistic sample of 50 women divided into groups with (37) and without (13) TMD. Linear measures were used to assess PB, including the area and velocity of the centre of pressure (COP) sway, as well as circular variables such as Rho (line size) and Theta (angle). The conditions tested included open/closed eyes, open/closed mouth, and a base of support at hip width and semi-tandem. Machine learning algorithms were applied to explore the underlying mechanisms of TMD, such as neuromuscular and sensory integration and psychosocial variables. Results – Participants with TMD showed greater COP sway area and velocity, particularly under conditions of closed eyes and a base of support at hip width. Analyses of Rho and Theta variables revealed significant differences between the groups under certain conditions, indicating greater magnitude in sway and less directional variation of the COP in participants with TMD. Article 1 confirmed the significant influence of TMD on PB, while Article 2 highlighted the relevance of decision trees for diagnosing TMD, emphasising the importance of joint sounds and postural balance variables. Conclusion – The presence of TMD can affect postural stability, and the use of decision trees indicates that the key variables for diagnosing TMD are joint sounds and postural balance. Therefore, the results of this study support the notion that both in clinical practice and future studies, the effectiveness of therapeutic interventions for TMD should be assessed with particular attention to these two variables.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUNIVERSIDADE FEDERAL DA BAHIApt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectDisfunção temporomandibularpt_BR
dc.subjectEquilíbrio posturalpt_BR
dc.subjectArticulação temporomandibularpt_BR
dc.subjectAprendizado de máquinapt_BR
dc.subjectMedidas circularespt_BR
dc.subject.otherTemporomandibular disorderpt_BR
dc.subject.otherPostural Balancept_BR
dc.subject.otherTemporomandibular Jointpt_BR
dc.subject.otherMachine Learningpt_BR
dc.subject.otherCircular measurespt_BR
dc.titleEquilíbrio postural e disfunção temporomandibular: uma abordagem linear e de aprendizado de máquinapt_BR
dc.title.alternativePostural balance and temporomandibular dysfunction: a linear and machine learning approachpt_BR
dc.typeTesept_BR
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDEpt_BR
dc.contributor.advisor1Conceição, Cristiano Sena-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-1642-2614pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2854903179490993pt_BR
dc.contributor.referee1Góes, Ana Lúcia Barbosa-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-2486-0876pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0668405431296677pt_BR
dc.contributor.referee2Carneiro, Ana Paula Andrade Gomes Quixadá-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-7399-0645pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5499853794469370pt_BR
dc.contributor.referee3Miranda, José Garcia Vivas-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-7752-8319pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1608472474770322pt_BR
dc.contributor.referee4Lopes, Paulo Raimundo Rosário-
dc.contributor.referee4IDhttps://orcid.org/0000-0003-1388-8988pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6753731428504234pt_BR
dc.contributor.referee5Conceição, Cristiano Sena da-
dc.contributor.referee5IDhttps://orcid.org/0000-0003-1642-2614pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/2854903179490993pt_BR
dc.creator.Latteshttps://lattes.cnpq.br/4409219581700109pt_BR
dc.description.resumoIntrodução – A disfunção temporomandibular (DTM) é uma condição que está associada a sintomas como dor facial, cefaleia e limitação de movimento mandibular. Estudos sugerem que a DTM pode afetar o equilíbrio postural (EP), uma função corporal essencial mantida por uma interação complexa entre os sistemas sensoriais e motores do corpo. Compreender a relação entre a DTM e o EP é crucial para melhorar a avaliação e o tratamento de pacientes com DTM. O objetivo desta tese foi explorar a relação entre DTM e EP, a partir das perspectivas lineares e de aprendizado de máquina. Especificamente, buscou-se comparar o EP entre indivíduos com e sem DTM e elaborar uma árvore de decisão representativa da interação entre DTM e EP. Métodos – Trata-se de um estudo observacional, transversal conduzido com uma amostra não probabilística de 50 mulheres, divididas em grupos com DTM (37) e sem DTM (13). Para a análise do EP destinada à abordagem linear, foi utilizada a área e a velocidade de oscilação do centro de pressão (COP), além de variáveis circulares como Rho (tamanho da reta) e Theta (ângulo). As condições testadas incluíram olhos abertos ou fechados, boca aberta ou fechada e base de suporte na largura do quadril e semitandem. Para analisar a interação dos mecanismos subjacentes à DTM, como integração neuromuscular e sensorial e variáveis psicossociais, foi empregado o aprendizado de máquina. Resultados – As participantes com DTM apresentaram maior área e velocidade de oscilação do COP, especialmente em condições de olhos fechados e base de suporte na largura do quadril. As análises das variáveis Rho e Theta revelaram diferenças significativas entre os grupos, em algumas condições, indicando maior magnitude nas oscilações e menor variação direcional do COP em participantes com DTM. Além disso, as técnicas de aprendizado de máquina, como árvores de decisão, demonstraram alta eficácia no diagnóstico da DTM, com 15 de 26 atributos sendo significativos. Variáveis de oscilação corporal, como “olho aberto, quadril e boca fechada” (13,39%), mostraram importância comparável à de fatores clínicos, com 100% de acurácia. “Sons articulares” foi a variável mais crítica, enquanto “etnia” e “duração da dor” tiveram menor relevância (<2%). No Artigo 1, confirma-se a influência significativa da DTM no EP, enquanto, no Artigo 2, destaca-se a relevância da árvore de decisão para o diagnóstico da DTM, com a importância das variáveis de sons articulares e de equilíbrio postural. Conclusão – Sugere-se que a presença da DTM tenha influência sobre a estabilidade postural e o emprego da árvore de decisão indica que as principais variáveis a serem utilizadas para triagem e diagnóstico da DTM são sons articulares e equilíbrio postural. Dessa maneira, os resultados deste trabalho indicam que a presença de sons articulares e a análise do equilíbrio postural são ações importantes para diagnóstico e acompanhamento de pessoas com DTM. Novos estudos podem testar a eficácia do aprendizado de máquina na detecção precoce dos distúrbios da ATM para prevenção e mitigação da dor articular.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.references1. Tosato JP, Caria PHF. Prevalência de DTM em diferentes faixas etárias. Rev Gaúcha Odont, Porto Alegre. 2006;54(3):211-24 2. Rasman BG, Forbes PA, Tisserand R, Blouin JS. Sensorimotor manipulations of the balance control loop-beyond imposed external perturbations. Front Neurol. 2018 Oct; 26(9):899 3. Butts R, Dunning J, Perreault T, Mettille J, Escaloni J. Pathoanatomical characteristics of temporomandibular dysfunction: Where do we stand? (Narrative review part 1). Journal of Bodywork and Movement Therapies. 2017; 21. 4. Horak FB. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls?: Age and Ageing. 2006Sep;35 Suppl 2:ii7- ii11.5. Walia JK, Saravanan. Association of dental occlusion, body posture and temporomandibular disorders: An overview. Indian J Public Heal Res Dev. 2019;10(12). 6. Álvarez Solano C, González Camacho LA, Castaño Duque SP, Cortés Velosa T, Vanoy Martin JA, Chambrone L. To evaluate whether there is a relationship between occlusion and body posture as delineated by a stabilometric platform: A systematic review. Cranio - J Craniomandib Pract. 2023 Jul;41(4):368-79. 7. Fiorillo L, Musumeci G. TMJ dysfunction and systemic correlation., Journal of Functional Morphology and Kinesiology. 2020;5. 8. Giraudeau A, Nicol C. Macchi R, Coyle T, Mesure S, Berdha K, Orthlieb J-DB. Impact of occlusal proprioception on static postural balance. Heliyon. 2023;9(10):1–10. 9. Amaricai E, Onofrei RR, Suciu O, Marcauteanu C, Stoica ET, Negruțiu ML, et al. Do different dental conditions influence the static plantar pressure and stabilometry in young adults? PLoS One. 2020 Feb 1;15(2). 10. Baugh L. L, Wilson A. Strengthening complex systems for chronic disease prevention: A systematic review. BMC Public Health. 2019;19. 11. Nota A, Tecco S, Ehsani S, Padulo J, Baldini A. Postural stability in subjects with temporomandibular disorders and healthy controls: A comparative assessment. J Electromyogr Kinesiol. 2017 Dec 1;37:21–4. 12. Rocha T, Castro MA, Guarda-Nardini L, Manfredini D. Subjects with temporomandibular joint disc displacement do not feature any peculiar changes in body posture. J Oral Rehabil. 2017 Feb; 44(2):81-88. 13. Westersund CD, Scholten J, Turner RJ. Relationship between craniocervical orientation and center of force of occlusion in adults. Cranio - J Craniomandib Pract. 2017;35(5). 14. Nashner LM, Shupert CL, Horak FB, Black FO. Organization of posture controls: An analysis of sensory and mechanical constraints. Prog Brain Res. 1989;80:411-8; discussion 395-7. 15. Góes KRB, Grangeiro MTV, Figueiredo VMG de. Epidemiologia da disfunção temporomandibular: uma revisão de literatura. J Dent Public Heal. 2018 Jun 25;9(2):115–20. 165 94 16. Shumway-Cook A, Woollacott MH. The growth of stability: Postural control from a developmental perspective. J Mot Behav. 1985 Jun.17;(2):131-47. 17. Nashner LM. Organization and programming of motor activity during posture control. Prog Brain Res. 1979:50:177-84. 18. Mochizuki L, Amadio AC. As informações sensoriais para o controle postural. Fisioter e Mov. 2006. Disponível em: https://www.podiatria.com.br/uploads/trabalho/44.pdf 19. Jonsson E, Seiger Å, Hirschfeld H. Postural steadiness and weight distribution during tandem stance in healthy young and elderly adults. Clin Biomech. 2005 Feb;20(2):202- 8. 20. Biancalana V, Alessandra N. Postural analysis from foot to the centre of mass with ledpodolaser. Science, Movement and Health. 2018 Jan.;18(1):25-30 21. Peterka RJ. Sensory integration for human balance control. In: Handbook of Clinical Neurology. New York: Elsevier B.V.; 2018. p. 27–42. 22. Goodman SE, Hasson CJ. Elucidating sensorimotor control principles with myoelectric musculoskeletal models. Front Hum Neurosci. 2017;11. 23. Bankoff ADP, Bekedor R. Bases neurofisiológicas do equilíbrio corporal. EFDeportes.com. 2007. Dispomível em: https://www.efdeportes.com/efd106/basesneurofisiologicas-do-equilibrio-corporal.htm. 24. Rosker J, Markovic G, Sarabon N. Effects of vertical center of mass redistribution on body sway parameters during quiet standing. Gait Posture. 2011 Mar;33(3):452–6. 25. McDonald KA, Stearne SM, Alderson JA, North I, Pires NJ, Rubenson J. The role of arch compression and metatarsophalangeal joint dynamics in modulating plantar fascia strain in running. PLoS One. 2016 Apr 7;11(4):e0152602 26. Chen B, Liu P, Xiao F, Liu Z, Wang Y. Review of the upright balance assessment based on the force plate., International Journal of Environmental Research and Public Health. 2021 Mar 8;18(5):2696. 27. Bukowska JM, Jekiełek M, Kruczkowski D, Ambroży T, Jaszczur-Nowicki J. Biomechanical aspects of the foot arch, body balance and body weight composition of boys training football. Int J Environ Res Public Health. 2021;18(9). 28. Forbes PA, Chen A, Blouin JS. Sensorimotor control of standing balance. In: Handbook of Clinical Neurology. New York: Elsevier, 2018.p. 61–83. 29. Horak FB. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing. 2006 Sep;35 Suppl 2:ii7-ii11. 30. Kleiner A, De Camargo Schlittler D, Del Rosário Sánchez-Arias M. O papel dos sistemas visual, vestibular, somatosensorial e auditivo para o controle postural. Neurociências. 2011;19:2. 31. Avagnina L. El examen biomecánico mediante plataformas baropodométricas. Rev Int Ciencias Podol. 2007; 1(1):45-8.32. Pinheiro HA, Vilaça KHC, Carvalho G de A. Postural stability, risk of falls and fear of falling in elderly with diabetic neuropathy who do therapeutic exercises. Fisioter e Pesqui. 2014. Disponível em: https://www.scielo.br/j/fp/a/zm38GydZg6M9W4xW7x6ysBr/ 33. A.M. DN, F. S, P. T, M. B, C. Z, C. V. et al. Biofeedback rehabilitation of posture and weightbearing distribution in stroke: A center of foot pressure analysis. Funct Neurol. 2014 Oct 13;29(2):127–34. 165 95 34. Duarte M, Freitas SMSF. Revisão sobre posturografia baseada em plataforma de força para avaliação do equilíbrio. Revista Brasileira de Fisioterapia. 2010 Jan.;14(3). 35. Costa MS da S, Ferreira A de S, Felicio LR. Static and dynamic balance in ballet dancers: a literature review. Fisioter e Pesqui. 2013. Disponívem em: https://www.scielo.br/j/fp/a/jjM6YnJT5dDJgBTWhpX6LHr/?lang=en&format=pdf 36. Coelho DB, Duarte M. Identificação paramétrica da relação entre centro de massa e centro de pressão durante postura ereta quieta. Rev Bras Biomecânica. 2008;9(16):13- 20. 37. Rodrigues S, Montebelo M, Teodori R. Distribuição da força plantar e oscilação do centro de pressão em relação ao peso e posicionamento do material escolar. Brazilian J Phys Ther. 2008 Feb.;12(1). 38. Bankoff ADP, Bekedorf RG, Schmidt A, Ciol P, Zamai CA. Análise do equilíbrio corporal estático através de um baropodômetro eletrônico. Conexões. 2007. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/conexoes/article/view/8637971. 39. Oliveira JL de. Parâmetros cinemáticos do equilíbrio na postura estática obtidos por cinemetria em indivíduos com a doença de Parkinson. 2019. Tese (Doutorado) - Programa de Pós-graduação em Processos Interativos dos Órgãos e Sistemas, Instittuo de Ciências da Saúde,Universidade Federal da Bahia, Salvador, 2019. Disponível em: https://ppgorgsistem.ufba.br/sites/ppgorgsistem.ufba.br/files/tese_de_doutorado_0.pdf 40. Hesthaven J, Warburton T. Nodal discontinuous galerkin methods: Algorithms, analysis, and applications. New York: Springer; 2008. (Texts in Applied Mathematics; vol. 54). doi:10.1007/978-0-387-72067-8. 41. Ohrbach R, Dworkin SF. The evolution of TMD diagnosis. J Dent Res. 2016 Jun; 95(10). 42. Maia IHT, Rifane TO, Oliveira AS de, Silvestre FA, Freitas B de FB de, Leitão AKA, et al. Disfunção temporomandibular e fatores psicológicos: uma revisão de literatura. Res Soc Dev. 2021;10(3). 43. Jivnani HM, Tripathi S, Shanker R, Singh BP, Agrawal KK, Singhal R. A Study to Determine the Prevalence of Temporomandibular Disorders in a Young Adult Population and its Association with Psychological and Functional Occlusal Parameters. J Prosthodont. 2019;28(1). 44. Sójka A, Huber J, Hędzelek W, Wiertel-Krawczuk A, Szymankiewicz-Szukała A, Seraszek-Jaros A, et al. Relations between the results of complex clinical and neurophysiological examinations in patients with temporomandibular disorders symptoms. Cranio - J Craniomandib Pract. 2017; 36(1):1-9.45. De Luccas GR, Lira CES de, Guedes KP, Silva LWO, Stechman-Neto J, Corrêa C de C. Disfunção temporomandibular e sono: revisão integrativa de literatura. Arch Heal Investig. 2021;10(5). 46. Fehrenbach J, Gomes da Silva BS, Pradebon Brondani L. A associação da disfunção temporomandibular à dor orofacial e cefaleia. J Oral Investig. 2018;7(2). 47. Biasotto-Gonzalez DA, Andrade DV de, Gonzalez TDO, Martins MD, Fernandes KPS, Corrêa JCF, et al. Correlação entre disfunção temporomandibular, postura e qualidade de vida. J Hum Growth Dev. 2017 Mar 8;18(1):79. 48. List T, Jensen RH. Temporomandibular disorders: Old ideas and new concepts. Cephalalgia. 2017. Disponível em: https://journals.sagepub.com/doi/10.1177/0333102416686302 165 96 49. Teixeira Maia Passos T, Rodrigues Golçanves H, Melo Peixoto R, Ribeiro Porto F, Heleno Pereira T, Lima Ferraz Junior AM. Avaliação da qualidade de vida em pacientes com disfunção temporomandibular. HU Rev. 2020;46. 50. Chiodelli L, Pacheco A de B, Missau TS, Silva AMT da, Corrêa ECR. Associação entre funções estomatognáticas, oclusão dentária e sinais de disfunção temporomandibular em mulheres assintomáticas. Rev CEFAC. 2015 Feb;17(1) 51. Lopes R. Desordens temporomandibulares-aspectos clínicos e guia para a odontologia e fisioterapia. Jornal Brasileiro de Oclusão, ATM e Dor Orofacial. 2002 Jan-Mar; 2(5):43-7.52. Araújo OSM de, Cruz JH de A, Oliveira Filho AA de, Alves MASG. Tratamento farmacológico e não farmacológico da disfunção temporomandibular: uma revisão da literatura. Arch Heal Investig. 2020;10(2). 53. Bracco P, Deregibus A, Piscetta R. Effects of different jaw relations on postural stability in human subjects. Neurosci Lett. 2004 Feb 19;356(3):228-30; 54. Gomes CA, Brandão JGT. Biomecânica da articulação temporomandibular (ATM ). RBC - Rev Int Cir e Traumatol Bucomaxilofacial. 2005 set-out;5(22): 153-7 55. Isaia B, Ravarotto M, Finotti P, Nogara M, Piran G, Gamberini J, et al. Analysis of dental malocclusion and neuromotor control in young healthy subjects through new evaluation tools. J Funct Morphol Kinesiol. 2019 Mar 1;4(1). 56. Contreras EFR, Fernandes G, Ongaro PCJ, Campi LB, Gonçalves DAG. Systemic diseases and other painful conditions in patients with temporomandibular disorders and migraine. Braz Oral Res. 2018;32. Disponível em: https://www.scielo.br/j/bor/a/rnSNVWLRxcSynCt73cXRJqg/?lang=en 57. Garrigós-Pedrón M, Elizagaray-García I, Domínguez-Gordillo AA, Del-Castillo-Pardode-Vera JL, Gil-Martínez A. Temporomandibular disorders: Improving outcomes using a multidisciplinary approach. J Multidiscip Healthc. 2019; 58. Frank H. Netter M. Netter - Atlas de Anatomía Humana. Masson. 2015. 59. Docherty N. Netter’s head and neck anatomy for dentistry, 2nd edition. Br Dent J. 2012; 60. Fernandes G, Goncalves DA de G, Siqueira JTT de, Camparis CM. Painful temporomandibular disorders, self reported tinnitus, and depression are highly associated. Arq Neuropsiquiatr. 2013; 61. Donnarumma MDC, Muzilli CA, Ferreira C, Nemr K. Disfunções temporomandibulares: sinais, sintomas e abordagem multidisciplinar. Rev CEFAC. 2010 Apr 23;12(5):788–94. 62. Delgado-Delgado R, Martínez-Conesa A, Valera-Calero JA, Calvo-Moreno SO, Gallego-Sendarrubias GM, Centenera-Centenera MB. Association between temporomandibular disorders with head and neck posture: A systematic review. International Journal of Dentistry and Oral Science. 2021;8. 63. Viziano A, Micarelli A, Carlino P, Granito I, Alessandrini M. Bridging the gap between temporomandibular disorders, static balance impairment and cervicogenic dizziness: Posturographic and clinical outcomes. J Electromyogr Kinesiol. 2020 Oct 1;54. 64. Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Man Ther. 2008 Feb;13(1):2–11. 165 97 65. Britto HMJ de S, Mendes L de A, Moreno C de C, Silva EMG de S e, Lindquist ARR. Correlation between balance, speed, and walking ability in individuals with chronic hemiparesis. Fisioter em Mov. 2016;29(1). 66. Câmara-Souza MB, Figueredo OMC, Maia PRL, Dantas I de S, Barbosa GAS. Cervical posture analysis in dental students and its correlation with temporomandibular disorder. Cranio - J Craniomandib Pract. 2018;36(2). 67. Da Costa DRA, De Lima Ferreira AP, Pereira TAB, Porporatti AL, Conti PCR, Costa YM, et al. Neck disability is associated with masticatory myofascial pain and regional muscle sensitivity. Arch Oral Biol. 2015;60(5). 68. Shiozawa P, Cordeiro Q, Cho HJ, Trevizol AP, Brietzke E. A critical review of trials of transcranial direct current stimulation and trigeminal nerve stimulation for depression: the issue of treatment-emergent mania. Trends Psychiatry Psychother.2017 JanMar;39(1):48-53.69. 69 Cuccia A, Caradonna C. The relationship between the stomatognathic system and body posture. Clinics. 2009:64:61–6. 70. Campi LB, Camparis CM, Jordani PC, Gonçalves DA de G. Influência de abordagens biopsicossociais e autocuidados no controle das disfunções temporomandibulares crônicas. Rev Dor. 2013 set;14 (3). 71. Dahan H, Shir Y, Velly A, Allison P. Specific and number of comorbidities are associated with increased levels of temporomandibular pain intensity and duration. J Headache Pain. 2015; 72. Costa YM, Conti PCR, de Faria FAC, Bonjardim LR. Temporomandibular disorders and painful comorbidities: clinical association and underlying mechanisms. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(3). 73. Jedynak B, Jaworska-Zaremba M, Grzechocińska B, Chmurska M, Janicka J, Kostrzewa-Janicka J. Tmd in females with menstrual disorders. Int J Environ Res Public Health. 2021;18(14). 74. Ohrbach R. Diagnostic criteria for temporomandibular disorders: Assessment instruments. Disponível em: www.rdc-tmdinternational.org 75. E. S, R. O, E. T, J. L, G. A, J.P. G, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J Oral Facial Pain Headache. 2014Winter;28(1):6-27. 76. Katsikogianni E, Schweigert-Gabler S, Krisam J, Orhan G, Bissar A, Lux CJ, et al. Diagnostic accuracy of the Diagnostic Criteria for Temporomandibular Disorders for children aged 8-12 years. J Oral Rehabil. 2021;48(1). 77. Lucena LBS de, Kosminsky M, Costa LJ da, Géoes PSA de. Validation of the Portuguese version of the RDC/TMD Axis II questionnaire. Braz Oral Res. 2006 Dec; 20 (4) 78. Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet J-P, et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group. J Oral Facial Pain Headache. 2014 Jan;28(1):6–27. 79. Fonseca DM, Bonfante G, Valle AL FS. Diagnóstico pela anamnese da disfunção 165 98 craniomandibular. Rev Gaúcha Odont. 1994jan-fev; 42(1):.23-8. 80. Leeuw R,Klasser GD. Orofacial pain: Guidelines for assessment, diagnosis, and management. 6.ed. EUA: Quintessense, 2018. 81. Di Benedetto D. TMD diagnostic criteria. J Am Dent Assoc. 2016 Oct;147(10):775-6. doi: 10.1016/j.adaj.2016.08.013. 82. Schiffman E, Smith B, van der Meulen M, Gaul C, Visscher CM, Ohrbach R, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J Oral Facial Pain Headache. 2014 Winter;28(1):6-27. 83. Rocha T, Castro MA, Guarda-Nardini L, Manfredini D. Subjects with temporomandibular joint disc displacement do not feature any peculiar changes in body posture. J Oral Rehabil. 2017 Feb;44(2):81-8. 84. Kanter RJAM, Battistuzzi PGFCM, Truin G-J. Temporomandibular disorders: “Occlusion” matters! Pain Res Manag. 2018 May; 85. Aires CCG, Peixoto L dos SF, Lima IFM de, Silva CP da, Vasconcellos RJDH. Atualizações e avanços na etiopatogenia e tratamento dos tumores da articulação temporomandibular. Res Soc Dev. 2020;9(10). 86. Fillingim RB, Ohrbach R, Greenspan JD, Knott C, Diatchenko L, Dubner R, et al. Psychological factors associated with development of TMD: The OPPERA prospective cohort study. J Pain. 2013;14(12 suppl.). 87. Battistella CB, Guimarães TB, Quaglio CL, Ferreira-Cabrini MB, Gaspar-Martins DA, Novo NF, et al. Biopsychosocial factors of Axis II of the research diagnostic criteria for temporomandibular disorders in individuals with muscular temporomandibular disorder and migraine. Rev Dor. 2016 Jan-Mar;17(1). 88. Perinetti G. Temporomandibular disorders do not correlate with detectable alterations in body posture. J Contemp Dent Pract. 2007Jul;1;8(5):60-7. 89. Silveira O dos S, Silva FCS, Almeida CEN de, Tuji FM, Seraidarian PI, Manzi FR. Utilização da tomografia computadorizada para o diagnóstico da articulação temporomandibular. Rev CEFAC. 2014 nov-dez;16 (6).90. 90 Paixão GM de M, Santos BC, Araujo RM de, Ribeiro MH, Moraes JL de, Ribeiro AL. Machine Learning na Medicina: Revisão e Aplicabilidade. Arq Bras Cardiol [Internet]. 2022 Jan 10 [cited 2024 Aug 5];118(1):95–102. Disponível em: https://abccardiol.org/article/machine-learning-na-medicina-revisao-e-aplicabilidade/ 91. Komuro J, Kusumoto D, Hashimoto H, Yuasa S. Machine learning in cardiology: Clinical application and basic research. Journal of Cardiology. 2023;82. 92. Danieli MG, Brunetto S, Gammeri L, Palmeri D, Claudi I, Shoenfeld Y, et al. Machine learning application in autoimmune diseases: State of art and future prospectives. Autoimmunity Reviews. 2024;23. 93. Crepaldi PG, Avila RNP, Paulo JPMDO, Rodrigues R, Martins RL. Um Estudo sobre a árvore de decisão e sua importância na habilidade de aprendizado. Rev Saber. 2008;6. 94. Rudin C, Chen C, Chen Z, Huang H, Semenova L, Zhong C. Interpretable machine learning: Fundamental principles and 10 grand challenges. Stat Surv. 2022;16. 95. Ozsari, A., Yilmaz, K., & Akcay M. Hyperparameter optimization in machine learning: 165 99 A comprehensive review of grid search and cross-validation techniques. J Mach Learn Res. 2023;24:1–23. 96. Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. A survey on distributed machine learning. ACM Computing Surveys. 2020;53. 97. Hariharan V, Harland TA, Young C, Sagar A, Gomez MM, Pilitsis JG. Machine Learning in Spinal Cord Stimulation for Chronic Pain. Oper Neurosurg. 2023;25(2). 98. Chen T, Or CK. Automated machine learning-based prediction of the progression of knee pain, functional decline, and incidence of knee osteoarthritis in individuals at high risk of knee osteoarthritis: Data from the osteoarthritis initiative study. Digit Heal. 2023;9. 99. Berg B, Gorosito MA, Fjeld O, Haugerud H, Storheim K, Solberg TK, et al. Machine Learning Models for Predicting Disability and Pain Following Lumbar Disc Herniation Surgery. JAMA Netw Open. 2024;7(2). 100. Borboudakis, G.; Stergiannakos, T.; Frysali, M.; Klontzas E., Tsamardinos, I.; Froudakis Ge. Chemically intuited, large-scale screening of Npj, mofs by machine learning techniques. Comput Mater Nat Publ. 2017;3(1):40. 101. Rojas J. Entropía : un breve esbozo. Fac Ing - Univ Rafael Landívar. 2015;(4). 102. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Mark. 2021;31(3). 103. Jha, N., Lee, K.-S., & Kim Y-J. Diagnosis of temporomandibular disorders using artificial intelligence technologies: A systematic review and meta-analysis. PLoS One. 2022;17(8):e0272715. 104. Zangirolami-Raimundo J, Echeimberg J de O, Leone C. Research methodology topics: Cross-sectional studies. J Hum Growth Dev. 2018;28(3). 105. Cuccia A, Caradonna C. The relationship between the stomatognathic system and body posture. Clinics. 2019 May 30;64(1):61–6. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807- 59322009000100011&lng=en&nrm=iso&tlng=en 106. Grzegorzewski B, Kowalczyk A. First-order statistics of human stabilogram. Hum Mov Sci. 2001 Dec;20(6):853-66. 107. Carneiro JAO, Santos-Pontelli TEG, Colafêmina JF, Carneiro AAO, Ferriolli E. Análise do equilíbrio postural estático utilizando um sistema eletromagnético tridimensional. Braz J Otorhinolaryngol. 2010 Dec;76(6):783–8. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1808- 86942010000600018&lng=pt&nrm=iso&tlng=en 108. Minervini G, Franco R, Marrapodi MM, Crimi S, Badnjević A, Cervino G, et al. Correlation between temporomandibular disorders (TMD) and posture evaluated trough the diagnostic criteria for temporomandibular disorders (DC/TMD): A systematic review with meta-analysis. Journal of Clinical Medicine. 2023;12. 109. Mochizuki L, Amadio AC. As informações sensoriais para o controle postural. Fisioter em Mov. 2006 abr-jun;19(2):11-8 110. Haukoos JS LR. Advanced statistics: Bootstrapping confidence intervals for statistics with “difficult” distributions. Acad Emerg Med. 12(4):360–5. 111. Friedrich, S., Konietschke, F., & Pauly M. Analysis of variance for multivariate time 165 100 series. METRON. 2017;75(3):277–89. 112. Landler, L., Ruxton, G. D., Malkemper EP. Circular data in biology: advice for effectively implementing statistical procedures. Behav Ecol Sociobiol. 2018;72(8):128. 113. Cohen J. Statistical power for the social sciences. Hillsdale, NJ: Laurence Erlbaum Assoc. 1988; 114. Ries LGK, Bérzin F. Analysis of the postural stability in individuals with or without signs and symptoms of temporomandibular disorder. Braz Oral Res. 2008 Dec 14;22(4):378–83. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806- 83242008000400016&lng=en&tlng=en 115. Moon HJ, Lee YK. The relationship between dental occlusion/temporomandibular joint status and general body health: Part 1. Dental occlusion and TMJ status exert an influence on general body health.Journal of Alternative and Complementary Medicine. 2011; 17. 116. Paya-Argoud M, Tardieu C, Cheynet F, Raskin A, Borel L. Impact of orthognathic surgery on the body posture. Gait Posture. 2019 Jan 1;67:25–30. 117. Michelotti A, Buonocore G, Manzo P, Pellegrino G, Farella M. Dental occlusion and posture: a systematic review. J Oral Rehabil. 2011;38(11):863–76. 118. Gomes CAFP de, Politti F, El Hage Y, Sousa DFM de, Amorin C Ferreira, Gonzalez T de O, et al. Interference of different types of mastication on static balance in individuals without temporomandibular disorder. J Japanese Phys Ther Assoc. 2014;17(1). 119. Qian L. The temporomandibular joint: A key functional complex. J Oral Rehabil. 2012;39(9):679–89. 120. Grochala R, Dobrowolska-Zachwieja A. Chladek G. The role of temporomandibular disorders in the quality of life of affected patients: A comprehensive review. Int J Environ Res Public Health. 2021;18(4):2043. 121. Vázquez Pérez ED. Teoría de sistemas: De Ludwig von Bertalanffy a Niklas Luhmann. Miradas. 2023;18(1). 122. Lunardon N, Menardi G, Torelli N. ROSE: A package for binary imbalanced learning. R Journal. 2014;6(1):79–89. 123. Kuhn M, Wickham HT. A collection of packages for modeling and machine learning using tidyverse principles. J Open Source Softw. 2020;5(52):2483. 124. Provost F Fawcett T. Data science for business: What you need to know about data mining and data-analytic thinking. Cidade: O’Reilly Media, 2013. 125. Campi LB, Camparis CM, Jordani PC, Gonçalves DA de G. Influência de abordagens biopsicossociais e autocuidados no controle das disfunções temporomandibulares crônicas TT Rev Dor. 2013Sep.;14 (3) 126. Bianchi, J., de Oliveira Ruellas, A. C., Gonçalves, J. R., Paniagua, B., Prieto, J. C., Styner, M. et al. Osteoarthritis of the temporomandibular joint can be diagnosed earlier using biomarkers and machine learning. Sci Rep. 2020;10(1):8012. 127. World Organizazion of Health. International classification of functioning, disability and health (ICF). Geneve: 2001. 128. Ferreira M C, Machado W, Borges P G, Silva P L, Rodrigues RS. The influence of 165 101 temporomandibular dysfunction on postural control and balance: a review. J Phys Ther Sci. 2017;29(10):1687–91. 129. Martins M D, Zuim P R ., Dantas RA. The influence of dental occlusion on dynamic balance and muscular tone. Front Physiol. 2019;10:1626. 130. Furlan R, Solnik S, Cortes N, Latash ML. Proprioceptive control of postural stability in patients with temporomandibular disorders. PLoS One. 2020;15(3):e0230304. 131. Manfredini D, Perinetti G, Stellini E, Di Leonardo B, Guarda-Nardini L, GuardaNardini L. Temporomandibular disorders and posture: A clinical investigation. J Clin Med. 2018;7(10):334. 132. Rocha C P, Croci C S, Caria . H F, Oliveira AS. Postural control in individuals with temporomandibular disorders. J Electromyogr Kinesiol. 2019;48:37–43. 133. Michelotti A, Wijer A, Steenks M, Farella M. The additional value of a physical therapy protocol in the treatment of temporomandibular disorders: a randomized controlled trial. J Oral Rehabil. 2017;44(8):579–88. 134. Anatomia da ATM. 2024. Disponível em: anatomiaemfoco.com.brpt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
RenataSantana_Tese-vFinal-3.pdfTese de Renata Santana da Silva Barbosa (2024)12,86 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.