Campo DC | Valor | Idioma |
dc.contributor.author | Barbosa, José Nelson Bastos | - |
dc.creator | Barbosa, José Nelson Bastos | - |
dc.date.accessioned | 2012-08-28T20:51:08Z | - |
dc.date.available | 2012-08-28T20:51:08Z | - |
dc.date.issued | 2005 | - |
dc.identifier.issn | 0017-0895 | - |
dc.identifier.uri | http://www.repositorio.ufba.br/ri/handle/ri/6648 | - |
dc.description | p. 149-153 | pt_BR |
dc.description.abstract | The aim of this paper is to prove that the Ricci curvature RicM of a complete hypersurface Mn, n≥3, of the Euclidean sphere Sn+1, with two distinct principal curvatures of multiplicity 1 and n−1, satisfies supRicM≥inff(H), for a function\, f depending only on n and the mean curvature H. Supposing in addition that Mn is compact, we will show that the equality occurs if and only if H is constant and Mn is isometric to a Clifford torus Sn−1(r)×S1(1−r2−−−−−√). | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | Cambridge University Press | pt_BR |
dc.source | http://dx.doi.org/10.1017/S0017089504002137 | pt_BR |
dc.title | Hypersurfaces of sn+1 with two distinct principal curvatures | pt_BR |
dc.title.alternative | Glasgow Mathematical Journal | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
dc.identifier.number | v. 47, n. 1 | pt_BR |
Aparece nas coleções: | Artigo Publicado em Periódico (IME)
|