https://repositorio.ufba.br/handle/ri/7907
Tipo: | Artigo de Periódico |
Título: | The fitting of potential energy and transition moment functions using neural networks: transition probabilities in OH (A2Rþ ! X2P) |
Título(s) alternativo(s): | Chemical Physics |
Autor(es): | Bitencourt, Ana Carla Peixoto Prudente, Frederico Vasconcellos Viana, Jose David Mangueira |
Autor(es): | Bitencourt, Ana Carla Peixoto Prudente, Frederico Vasconcellos Viana, Jose David Mangueira |
Abstract: | We have studied the performance of the back-propagation neural network with different architectures and activation functions to fit potential energy curves and dipolar transition moment functions of the OH molecule from the ab initio data points of Bauschlicher and Langhoff [J. Chem. Phys. 87 (1987) 4665]. The neural network fittings are tested in different moments of the training process by computing the vibrational levels, the transition probabilities between A2Rþ and X2P electronic states, and the radiative lifetimes. The results from the neural network fittings are then compared with experimental values, previous results calculated by Bauschlicher and Langhoff and the ones obtained by using of extended Rydberg function fitting. |
Palavras-chave: | Neural networks Back-propagation Discrete variable representation Potential energy surfaces Transition probabilities OH molecule |
Editora / Evento / Instituição: | Elservier |
URI: | http://www.repositorio.ufba.br/ri/handle/ri/7907 |
Data do documento: | 2004 |
Aparece nas coleções: | Artigo Publicado em Periódico (FIS) |
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
1-s2.0-S0301010403005548-main.pdf Restricted Access | 232,66 kB | Adobe PDF | Visualizar/Abrir Solicitar uma cópia |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.