Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/8340
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorLogrado, P. G.-
dc.contributor.authorVianna, J. D. M.-
dc.creatorLogrado, P. G.-
dc.creatorVianna, J. D. M.-
dc.date.accessioned2013-02-04T15:40:33Z-
dc.date.issued1997-
dc.identifier.issn0259-9791-
dc.identifier.urihttp://www.repositorio.ufba.br/ri/handle/ri/8340-
dc.descriptionTexto completo: acesso restrito. p.107-116pt_BR
dc.description.abstractUsually the partitioning technique (PT) has been studied under two aspects: (i) as a numerical tool for solving secular equations of high order, and (ii) as a theoretical method related to the infinite‐order perturbation theory and the iteration–variation methods. Here it is shown that there exists a form of the PT equations which allows us to determine explicitly the spectrum and eigenstates of the Hamiltonian operator for different forms of potentials without the utilization of perturbative expansions or iterative equations of the type E=f(E). As a first application of the new approach, we consider the hydrogen‐atom in strong magnetic fields (B ~ 109 G).pt_BR
dc.language.isoenpt_BR
dc.sourcehttp://dx.doi.org/10.1023/A:1019119813449pt_BR
dc.titlePartitioning technique procedure revisited: Formalism and first application to atomic problemspt_BR
dc.title.alternativeJournal of Mathematical Chemistrypt_BR
dc.typeArtigo de Periódicopt_BR
dc.identifier.numberv. 22, n. 2-4pt_BR
dc.embargo.liftdate10000-01-01-
Aparece nas coleções:Artigo Publicado em Periódico (FIS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Logrado.pdf
  Restricted Access
546,37 kBAdobe PDFVisualizar/Abrir Solicitar uma cópia
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.